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Abstract

Among the knots that are the connected sum of two torus knots with cobordism distance 1,
we characterise those that have 4-dimensional clasp number at least 2, and we show that their
n-fold connected self-sum has 4-dimensional clasp number at least 2n. Our proof works in
the topological category. To contrast this, we build a family of topologically slice knots for
which the n-fold connected self-sum has 4-ball genus n and 4-dimensional clasp number at
least 2n.

2020 Mathematics Subject Classification: 57K10, 57N70 (Primary)

1. Introduction

Recently the authors determined for which pairs of torus knots {Tp,q, Tp′,q ′ } the cobor-
dism distance is equal to 1, with one exception [FP19, Theorem 1·2]. This was done by
comparing explicit constructions of cobordisms with the lower bound for the cobordism
distance using the ν+-invariant [HW16] from the Heegaard Floer knot complex. As an
application, the authors determined which pairs of torus knots have Gordian distance 1;
see [FP19, Corollary 1.3]. The first result of this paper has two motivations.

Firstly, when determining Gordian distance 1 pairs of torus knots, we relied on ν+, but
speculated that the proof could be done using the Tristram–Levine signatures [Tri69,Lev69];
see [FP19, Remark 4·3]. Here, we partially confirm this speculation using signature
calculations via the Hirzebruch-Brieskorn formula [Bri66, GG05].

Secondly, recent interest in the 4-dimensional clasp number c4 and its difference to the
4-ball genus g4 [KM19, Kro20, JZ20, DS20a, DS20b], made us revisit the lower bounds
we had on the Gordian distance of the pairs {Tp,q , Tp′,q ′ } and consider whether they yield
lower bounds on c4(K ) and c4(#n K ), where K = Tp,q# − Tp′,q ′ . More precisely, Daemi–
Scaduto [DS20a, Theorem 1] used equivariant singular instanton theory to show that, if K is
the knot 74, then c4(#n K ) − g4(#n K ) ≥ n/5 (in fact, they showed a stronger statement which
we will discuss at the end of this section). Also, Juhász–Zemke [JZ20, Corollary 1·5] used
knot Floer homology to show that, if K = T2,11# − T4,5, then c4(#n K ) − g4(#n K ) ≥ n. In this
article, we show that it is also possible to establish this behaviour by using Tristram–Levine
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signatures, and we provide examples of topologically slice knots with such behaviour, for
which the use of smooth tools are a necessity.

We see this paper as shining a spotlight on what can be achieved using a some-
what classical setup of concordance homomorphism, while the new exciting invariants
from [KM19, JZ20, DS20a] might be used to discover interesting phenomena beyond.

We write −J to denote the reverse of the mirror image of a knot J , and we write gtop
4 and

ctop
4 to denote the topological counterparts of g4 and c4, respectively.

THEOREM 1·1. Let {Tp,q , Tp′,q ′ } be a pair of positive torus knots, K = Tp,q# − Tp′,q ′ , and
n be a positive integer. If g4(K ) = 1 and the Gordian distance between Tp,q and Tp′,q ′ is not
1, then

g4(#
n K ) = gtop

4 (#n K ) = n and c4(#
n K ) ≥ ctop

4 (#n K ) ≥ 2n.

Furthermore, if {Tp,q , Tp′,q ′ } is either {T2,7, T3,4}, {T2,9, T3,5}, or {T3,7, T4,5}, then

g4(#
n K ) = gtop

4 (#n K ) = n and c4(#
n K ) = ctop

4 (#n K ) = 2n.

We comment on the condition g4(K ) = 1. The point is that g4(K ) = 1 implies that
{Tp,q, Tp′,q ′ } must be one of an infinite family of pairs of torus knots, among which we know
which are Gordian distance 1 apart, and, in fact, infinitely many are further apart [FP19];
see Section 3. With this the first part of Theorem 1·1 reduces to showing gtop

4 (#n K ) ≥ n
and ctop

4 (#n K ) ≥ 2n for an explicit infinite family of knots. We do this in Section 3 using
Tristram–Levine signatures. The ‘furthermore’-part comes down to finding appropriate
crossing changes. For the pairs {T2,7, T3,4} and {T2,9, T3,5},1 we believe Theorem 1·1 to be
known to experts, but for the pair {T3,7, T4,5} we will exhibit two crossing changes turning
one into the other explicitly.

Question 1·2. Are there other pairs of torus knots for which g4(K ) = 1 and c4(K ) = 2?

We also obtain further equivalent characterizations of Gordian distance 1 pairs of torus
knots (compare with [FP19, Corollary 1·3]). Let us(J ) denote the slicing number of a knot J .
We have the following chain of inequalities:

us(J ) ≥ c4(J ) ≥ g4(J ).

It is unknown whether there is a knot J with us(J ) > c4(J ); see e.g. [OS16, Proposition 6].

COROLLARY 1·3. If {Tp,q , Tp′,q ′ } is a pair of positive torus knots, then the following
statements are equivalent;

(i) the knots Tp,q and Tp′,q ′ have Gordian distance 1;
(ii) the knot Tp,q# − Tp′,q ′ has slicing number 1;

(iii) the knot Tp,q# − Tp′,q ′ has 4-dimensional clasp number 1;
(iv) the pair {Tp,q, Tp′,q ′ } is one of the following:

(a) {T2,2n+1, T2,2n+3} for an integer n ≥ 0;
(b) {T3,3n+1, T3,3n+2} for an integer n ≥ 1;
(c) {T2,5, T3,4}, {T2,7, T3,5}.

1These pairs are familiar in singularity theory as the knots of singularities of the pairs of simple singularities
{A6, E6} and {A8, E8}, which have δ-constant deformations to A4 and A6, respectively.
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A note on the four-dimensional clasp number of knots 215

Question 1·4. Are there pairs of torus knots for which their Gordian distance is strictly larger
than c4(#n K )/n for some integer n ≥ 1?

Given that not just c4 − g4 but also ctop
4 − g4 can be large even on connected sums of

a positive and a negative torus knot (by Theorem 1·1), it seems interesting to find a fam-
ily of examples of topologically slice knots on which c4 − g4 is unbounded. Note that
if J is topologically slice (i.e. ctop

4 (J ) = gtop
4 (J ) = 0), then the Tristram–Levine signature

obstruction for the 4-dimensional clasp number vanishes; hence, one needs to use other
invariants. Following in the footsteps of Livingston–Friedl–Zentner [FLZ17] and Juhász–
Zemke [JZ20] among others, we use the Ozsváth–Stipsicz–Szabó ϒ-invariant [OSS17] to
find such families.

Indeed, let D denote the positive untwisted Whitehead double of the right-handed
trefoil, and let Jp,q denote the (p, q)-cable of a knot J , where p is the longitudinal
winding.

THEOREM 1·5. Let i ≥ 2 and n ≥ 1 be integers. If Ki = D2,2i+1# − T2,2i+1# − D, then Ki

is a topologically slice knot that satisfies

g4(#
n Ki ) = n and c4(#

n Ki ) ≥ 2n.

The lower bounds for c4 obtained by using Tristram–Levine signatures and the Ozsváth–
Stipsicz–Szabó ϒ-invariant fall into a rather general setup of invariants going back to
Livingston [Liv04]; see Section 2. However, the lower bound for ctop

4 cannot be obtained
in the exact same way. Regardless, we provide a bound for ctop

4 (see Lemma 2·3) that yields
the topological statements of our results above.

By design, the invariants we consider do not (or at least not in an obvious way) allow
to show that c4(J ) > 2g4(J ) or c4,+(J ) > g4(J ), where c4,+ denotes a version of the 4-
dimensional clasp number that only counts positive clasps. In particular, such invariants will
not allow to answer the next question.

Question 1·6. Are there 4-ball genus 1 knots with arbitrarily large 4-dimensional clasp
number? Denoting by C the set of smooth concordance classes, is lim sup

[J ]�=0∈C
(c4(J )/g4(J )) > 2?

In contrast, the recent work that was part of the inspiration for this paper [KM19, JZ20,
DS20a] has the potential to address Question 1·6. In fact, [DS20a, Theorem 1] shows that
the gap between c4,+ and g4 can be made arbitrarily large.

2. Lower bounds on c4 and g4 from concordance homomorphism

First, we consider the smooth category. The 4-dimensional clasp number c4(J ) of a knot
J can be defined as the smallest non-negative integer k such that J can be turned into the
unknot using a finite sequence of smooth concordances and crossing changes with at most
k crossing changes. Equivalently, one can define the 4-dimensional clasp number as the
smallest non-negative integer k such that there is a smoothly immersed disk with k transverse
double points (also called clasps) in B4 bounding J and no other singular points; indeed, any
such disk is isotopic to a smoothly immersed disk resulting from stacking a smooth concor-
dance, the trace of k crossing changes, and a smooth slice disk; see [OS16, Proposition 2·1].
One defines weighted version c4,+(J ) (resp. c4,−(J )) as the smallest non-negative integer of
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positive-to-negative (resp. negative-to-positive) crossing changes in a sequence as above. In
particular, for any knot J ,

c4,+(J ) + c4,−(J ) ≤ c4(J ). (2·1)

We recall a setup implicit in [Liv04] and explicit in [Fel14, Lemma 17] and [FLZ17,
Lemma 17]. Let C denote the smooth knot concordance group.

LEMMA 2·1. Let ν : C →R be any homomorphism such that:

(i) ν(J ) ≤ g4(J ) for every knot J and;
(ii) there exists a knot J ′ with ν(J ′) = 1 such that J ′ can be turned into a smoothly slice

knot by a positive-to-negative crossing change;

then, for each knot J , we have

|ν(J )| ≤ g4(J ), ν(J ) ≤ c4,+(J ), and − ν(J ) ≤ c4,−(J ). (2·2)

For explicit examples of ν and their treatment via this approach, we point to [Liv04,
Corollary 3] for ν(J ) = τ(J ), [Fel14, Lemmas 11 and 17] for ν(J ) = −σω(J )/2 when ω

is regular, and [Liv17, Theorem 13.1] for ν(J ) = −ϒJ (t)/t . Here, ω is regular if ω ∈ S1 �
{1} and f (ω) �= 0 for all integer coefficient Laurent polynomials f with f (t) = f (t−1) and
f (1) = 1.

Remark 2·2. We note that the above definitions and Lemma 2·1 also work in the topolog-
ically locally-flat category by replacing C with the topological concordance group and g4,
c4,+, c4,−, and c4 with gtop

4 , ctop
4,+, ctop

4,−, and ctop
4 . In particular, for ν(J ) = −σω(J )/2 when ω

is regular, (2·2) holds in the locally-flat category.

Warning. We note the following subtlety. Above we gave two equivalent definitions of c4

(and implicitly c4,±) in the smooth category. It is tempting to speculate that the same equiva-
lence of definitions holds in the locally-flat category. However, the authors are not aware of a
proof of this, hence the locally-flat version of Lemma 2·1 (see Remark 2·2) is to be read with
ctop

4 , ctop
4,+, and ctop

4,− defined using sequences of concordances and crossing changes. However,
from Lemma 2·3 below, we know that the lower bound (2·2) for ν(J ) = −σω(J )/2 with ω

regular holds also when defining ctop
4 (J ), ctop

4,+(J ), and ctop
4,−(J ) via counting double points

in locally-flat immersed disks filling J with only transversal double points as singularities.
Thus, Theorem 1·1 holds for this definition of ctop

4 .

We formulate the following lemma for locally-flat immersed surfaces bounding links
since we believe this to be of independent interest; however, for the use in this text it suffices
to consider the case of L being a knot and F being a disk in the statement (in particular,
|ηω(L) − b0(F) + 1| = b1(F) = 0). For ω ∈ S1, we denote by σω(L) and ηω(L) the signa-
ture and the nullity, respectively, of (1 − ω)M + (1 − ω̄)MT , where M is a Seifert matrix
for L .

LEMMA 2·3. Let F be an oriented compact surface with boundary, let φ : F → B4 be
a locally-flat proper immersion with p positive transversal double points and n negative
transversal double points and no other singular points, and let L be the link φ(∂ F) ⊂ S3.
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Then, for all regular ω, we have

σω(L) + |ηω(L) − b0(F) + 1| ≤ b1(F) + 2n.

We derive Lemma 2·3 from the Tristram–Levine bound:

|σω(L)| + |ηω(L) − b0(F ′) + 1| ≤ b1(F ′) ([Tri69, Lev69, KT76, Pow17, CNT20]), (2·3)

for every locally-flat embedded proper compact oriented surface F ′ with boundary the link
L ⊂ S3.

Proof of Lemma 2·3. Without loss of generality we assume F has no closed components
(otherwise, consider the restriction of φ to the union of the non-closed components of F).

We claim that there exists a locally-flat proper embedding of F ′ = F � {p + n open disks}
into B4 with boundary a link L ′ that is the union of L and p + n meridians, p of which
are link positively with L and n of which link negatively with L . To see this claim,
take 4-balls Ni around double points of φ(F) such that (Ni , Ni ∩ φ(F)) is homeomor-
phic to (B4, B4 ∩ {(x, y) ∈ B4 ⊂C2 | xy = 0}) preserving orientations, where the disk B4 ∩
{(x, y) | x = 0} carries the orientation induced by the complex orientation and B4 ∩ {(x, y) |
y = 0} carries the induced complex and anti-complex orientation for a positive and nega-
tive double point, respectively. Choose p + n properly embedded pairwise disjoint arcs αi

in φ(F)� N ◦
1 ∪ · · · ∪ N ◦

p+n such that αi has one endpoint on L and the other on Ni . Letting
N be the union of the Ni and regular neighborhoods of the αi , we observe that the pair
(B4 � N ◦, φ(F)� N ◦) is homeomorphic to (B4, F ′) preserving orientations, where F ′ is
a locally-flat properly embedded surface with boundary a link L ′ as claimed. In particular,
b0(F ′) = b0(F) and b1(F ′) = b1(F) + p + n.

We note that L ′ arises as a p + n fold connected sum of L with n positive Hopf links
H+ and p negative Hopf links H−. Hence, by additivity of signature and nullity using that
σω(H±) = ∓1 and ηω(H±) = 0, we find

σω(L ′) = σω(L) − n + p and ηω(L ′) = ηω(L), (2·4)

where ηω and σω denote the nullity and signature, respectively, for every ω ∈ S1 � {1}.
We conclude the proof by calculating that, for every regular ω, we have

σω(L) + |ηω(L) − b0(F) + 1| (2·4)= σω(L ′) − p + n + |ηω(L ′) − b0(F) + 1|
b0(F ′)=b0(F)= σω(L ′) + |ηω(L ′) − b0(F ′) + 1| − p + n

(2·3)≤ b1(F ′) − p + n
b1(F ′)=b1(F)+p+n= b1(F) + 2n.

3. Theorem 1·1 via signature calculations and crossing changes

We start by making the family of pairs of torus knots from Theorem 1·1 explicit. Recall
that we write K := Tp,q# − Tp′,q ′ . Pairs of torus knots {Tp,q, Tp′,q ′ } with Gordian distance
two or more and g4(K ) = 1 are among the following:

(I) {T3n+1,9n+6, T3n+2,9n+3} for n ≥ 1;
(II) {T2n+1,4n+6, T2n+3,4n+2} for n ≥ 1; or
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(III) {T2,11, T3,7}, {T2,13, T3,8}, {T2,7, T3,4}, {T2,9, T3,5}, {T2,11, T4,5}, {T3,7, T4,5},
{T3,10, T4,7}, {T4,9, T5,7}, {T3,14, T5,8}.

In fact, all these pairs have Gordian distance two or more, and, except for {T3,14, T5,8}, all
these pairs are known to satisfy g4(K ) = 1. See [FP19, Theorem 1·2 and Corollary 1·3].

The aim of this section is to prove Theorem 1·1. The following lower bound will be used.

COROLLARY 3·1. If J is a knot in S3, then

ctop
4 (J ) ≥ max

ω regular

σω(J )

2
+ max

ω regular
−σω(J )

2
.

We note that Corollary 3·1 holds for both definitions of ctop
4 (J ) discussed in Section 2.

Proof. We first note that ctop
4 (J ) ≥ ctop

4,+(J ) + ctop
4,−(J ). (This works for either of the two

definitions of ctop
4 , ctop

4,+, and ctop
4,−). We show

ctop
4,+(J ) ≥ max

ω regular
−σω(J )

2
and ctop

4,−(J ) ≥ max
ω regular

σω(J )

2
. (3·1)

In fact, it suffices to establish one of the inequalities since ctop
4,+(J ) = ctop

4,−(−J ) and σω(J ) =
−σω(−J ) for all ω ∈ S1.

In case ctop
4,−(J ) is defined as the minimal number of negative crossing changes among all

finite sequences of concordances and crossing changes turning J into the unknot, then (3·1)
follows from (2·2) for ν = −σω/2 (which applies by Remark 2·2).

In case ctop
4,−(J ) is defined as the minimal number of negative clasps in a immersed disk

in B4 with boundary J , then (3·1) follows from Lemma 2·3. To see this, let D be a locally-
flat immersed disk that realizes ctop

4,−(J ), that is, D has only transversal double points as
singularities and the number of negative transversal double points of D is ctop

4,−(J ), and let
ω ∈ S1 be regular. By Lemma 2·3, we have

σω(J ) = σω(J ) + |ηω(J ) − b0(D) + 1| ≤ b1(D) + 2ctop
4,−(J ) = 2ctop

4,−(J ).

The upper bound will be achieved by explicit constructions.

3·1. Proof of Theorem 1·1
In this subsection, we provide the proof of Theorem 1·1 except the necessary signature

calculations. The latter are provided in the next subsection.

Proof of Theorem 1·1. Let K = Tp,q# − Tp′,q ′ be such that g4(K ) = 1 and there does not
exist a crossing change turning Tp,q into Tp′,q ′ ; in particular, {Tp,q , Tp′,q ′ } must be among
(I), (II), or (III). We establish in Examples 3·4, 3·5, and 3·6 below that

max
ω regular

σω(K ) = 2 and max
ω regular

−σω(K ) = 2. (3·2)

Hence, by Corollary 3·1 and the additivity of the Tristram–Levine signatures, we have

ctop
4 (#n K ) ≥ 2n.
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Fig. 1. T4,5 (left, as the closure of a 4-braid) can be turned into T3,7 (right, as the closure of a 3-braid) by
two crossing changes (modification in indicated 3-balls (red)). Also indicated (=) are braid isotopies (gray
for the isotopy between the first and second braid, blue for the one between the second and third braid).
Only the braids, rather than their closures, are drawn.

Moreover, for all integers n ≥ 1,

g4(#
n K ) = gtop

4 (#n K ) = n,

since all these quantities are at most n by g4(K ) = 1, and the lower bound comes from the
Tristram–Levine signatures bound (2·3).

It remains to discuss the ‘furthermore’-paragraph. It suffices to show that for the pairs in
question, Tp,q can be turned into Tp′,q ′ by two crossing changes (necessarily of opposite sign
by (2·2)). Since then, #n K can be turned into a slice knot with 2n crossing changes, n of
each sign, for all integers n ≥ 1; hence,

2n ≥ c4(#
n K ) ≥ ctop

4 (#n K ).

For the pairs {T2,7, T3,4} and {T2,9, T3,5} such crossing changes are available in the litera-
ture (see e.g. [Fel14]). We end the proof with an explicit sequence of two crossing changes
and isotopies turning T4,5 into T3,7; see Figure 1.

3·2. Tristram–Levine signatures calculation

Denoting by σt(J ) = σe2π i t (J ) the Tristram–Levine signature for ω = e2π i t ∈ S1 of a knot
J [Tri69, Lev69], one has for every fixed knot an integer-valued piecewise linear function,
which is constant in neighbourhoods t for which ω = e2π i t is regular. We define t0 ∈ (0, 1) to
be a jump point of the signature function of J , if the right limit limt→t+ σt(J ) differs from the
left limit limt→t− σt(J ). And say the jump at t0 ∈ (0, 1) is limt→t+ σt(J ) − limt→t− σt(J ). For
a more detailed discussion, and a complete description of what functions arise as signature
functions, we refer to [Liv18].

For the proof of Theorem 1·1, it remains to check (3·2) for the pairs from the fami-
lies (I), (II) and (III). This is done by using the signature formula going back to Hirzebruch
and Brieskorn [Bri66] [GG05, Proposition 5.1], which we recall below in the proof of
Lemma 3·2. We focus on (I) and (II) since (III) consists of a small finite list of examples
for which (3·2) can be checked by hand or computer (see Example 3·6).
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LEMMA 3·2. Let 0 < p < q be coprime integers. The signature function σt(Tp,q) is mono-
tonically decreasing on [0, p + q/pq). More precisely, the jump points on [0, p + q/pq)

occur at {
/pq | p � 
 and q � 
} and each jump is −2. Furthermore, the jump at p + q/pq
is 2. In other words, for integers 
 with 0 ≤ 
 < p + q, we have

σt(Tp,q) =

⎧⎪⎨⎪⎩
−2

(
l −

⌊



q

⌋
−

⌊



p

⌋)
for t ∈

(



pq , 
+1
pq

)
,

−2
(

p + q − 4 −
⌊

q
p

⌋)
for t ∈

(
p+q
pq ,

p+q+1
pq

)
.

The content of Lemma 3·2 might be well known to experts. In particular, the first author
previously discussed the monotonicity of the signature function of the torus knot Tp,q on
[0, p + q/pq) with Charles Livingston. For completeness, we provide a proof.

Proof of Lemma 3·2. We recall the torus knot signature version of the Hirzebruch–Brieskorn
signature formula [Bri66] as explicitly stated in [Lit79, Proposition 1]; compare also [GG05,
Proposition 5·1]. For coprime integers p, q > 0 and

S := { k
p + j

q | k, l ∈Z, 0 < k < p, and 0 < j < q} ⊂ (0, 2),

we have

σe2π i t (Tp,q) = σt(Tp,q) = #{S � [t, 1 + t]} − #{S ∩ (t, 1 + t)} for all t ∈ [0, 1].
We start by using this formula to prove the following four observations:

(i) min S = p + q/pq;
(ii) 1 + p + q/pq /∈ S;

(iii) 1 + 
/pq ∈ S for all 0 < 
 < p + q with p � 
 and q � 
;
(iv) 
/pq, 1 + 
/pq /∈ S for all 0 < 
 < pq with p | 
 or q | 
.

Note that (i) follows immediately from the definition of S. Towards establishing (ii)-(iv),
we note the following claim.

CLAIM. For 0 < 
 < pq, exactly one of 
/pq and 1 + 
/pq is in S if p � 
 and q � 
, while
neither is the case if p | 
 or q | 
.

To see this claim, for 0 < 
 < pq, note that 
 ≡ kq + j p mod pq for some 0 ≤ k < p
and 0 ≤ j < q. Moreover, p � 
 and q � 
 if and only if k �= 0 and j �= 0, which implies iv).
Since 0 ≤ kq + j p < 2pq, we see that 
 is either kq + j p or kq + j p − pq. If 
 = kq +
j p with 0 < k < p and 0 < j < q, then 
/pq ∈ S. For the sake of contradiction, assume
1 + 
/pq ∈ S, then pq + 
 = k ′q + j ′ p for some 0 < k ′ < p and 0 < j ′ < q. This implies
that (k ′ − k)q + ( j ′ − j)p = pq and p | (k ′ − k) and q | ( j ′ − j). In particular, we have that
k = k ′ and j = j ′, which lead us to a contradiction. A similar argument shows that if 
 =
kq + j p − pq with 0 < k < p and 0 < j < q, then 1 + 
/pq ∈ S and 1 + 
/pq /∈ S.

With the claim, observation (ii) follows from (i) since (p + q)/pq ∈ S. With the claim
observation (iii) also follows in a similar way as (ii) since for 0 < 
 < p + q, we have
that 
/pq /∈ S. Finally, observation (vi) is contained in the claim. We have thus established
observations (i)-(iv).

It remains to show that (i)-(iv) imply Lemma 3·2. First we note that (iii) and (iv) imply
that the jump points on [0, p + q/pq) occur at {
/pq | p � 
 and q � 
} and each jump is −2;
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in particular, the signature function σt(Tp,q) is monotonically decreasing on [0, p + q/pq).
Secondly, (i) and (ii) show that the jump at p + q/pq is 2. That last sentence of Lemma 3·2
is a formulaic reformulation of the two former statements.

COROLLARY 3·3. Let 0 < p < q and 0 < p′ < q ′ be pairs of coprime integers such that
pq = p′q ′ and p < p′, then

σt(Tp,q# − Tp′,q ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 for t ∈
[

0,
1

q

)
,

2 for t ∈
(

1

q
,

1

q
+ 1

pq

)
,

2

(⌊
p′ + q ′

q

⌋
+

⌊
p′ + q ′

p

⌋
− 4 −

⌊
q ′

p′

⌋)
for t ∈

(
p′+q ′

qp ,
p′+q ′+1

qp

)
.

Example 3·4. [Family (I)] Fix an integer n ≥ 1 and set p = 3n + 1, q = 9n + 6, p′ = 3n +
2, q ′ = 9n + 3.

If t ∈
(

1

9n + 6
,

1

9n + 6
+ 1

3(3n + 1)(3n + 2)

)
, then σt(Tp,q# − Tp′,q ′) = 2.

If t ∈
(

12n + 5

3(3n + 1)(3n + 2)
,

12n + 6

3(3n + 1)(3n + 2)

)
, then

σt(Tp,q# − Tp′,q ′) = 2

(⌊
12n + 5

9n + 6

⌋
+

⌊
12n + 5

3n + 1

⌋
− 4 −

⌊
9n + 3

3n + 2

⌋)
= 2 (1 + 4 − 4 − 2) = −2.

Example 3·5. [Family (II)] Fix an integer n ≥ 1 and set p = 2n + 1, q = 4n + 6, p′ =
2n + 3, q ′ = 4n + 2.

If t ∈
(

1

4n + 6
, 1

4n+6 + 1

2(2n + 1)(2n + 3)

)
, then σt(Tp,q# − Tp′,q ′) = 2.

If t ∈
(

6n + 5

2(2n + 1)(2n + 3)
,

6n + 6

2(2n + 1)(2n + 3)

)
, then

σt(Tp,q# − Tp′,q ′) = 2

(⌊
6n + 5

4n + 6

⌋
+

⌊
6n + 5

2n + 1

⌋
− 4 −

⌊
4n + 2

2n + 3

⌋)
= 2 (1 + 3 − 4 − 1) = −2.

Example 3·6. [Family (III)] For all K = Tp,q# − Tp′,q ′ from family (III), we provide some
ω = e2π i t for which the maximum 2 and the minimum −2 of the Tristram–Levine signatures
are realized. Slightly more conceptually, we note that pq > p′q ′ in all these examples, which
immediately yields that min

ω regular
σω(K ) ≤ −2. The reader might argue for the maximum being

2 using Lemma 3·2. However, this seems artificial given the availability of the signature
functions, which in particular yield the following:

{T2,11, T3,7}: σt(K ) = 2 for t ∈ ( 2
21 ,

3
22 ) and σt(K ) = −2 for t ∈ ( 1

22 ,
1

21 ),{T2,13, T3,8}: σt(K ) = 2 for t ∈ ( 2
26 ,

3
24 ) and σt(K ) = −2 for t ∈ ( 1

26 ,
1

24 ),

{T2,7, T3,4}: σt(K ) = 2 for t ∈ ( 2
12 ,

3
14 ) and σt(K ) = −2 for t ∈ ( 1

14 ,
1

12 ),
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{T2,9, T3,5}: σt(K ) = 2 for t ∈ ( 2
15 ,

3
18 ) and σt(K ) = −2 for t ∈ ( 1

18 ,
1

15 ),

{T2,11, T4,5}: σt(K ) = 2 for t ∈ ( 2
20 ,

3
22 ) and σt(K ) = −2 for t ∈ ( 1

22 ,
1

20 ),

{T3,7, T4,5}: σt(K ) = 2 for t ∈ ( 3
20 ,

4
21 ) and σt(K ) = −2 for t ∈ ( 1

21 ,
1

20 ),

{T3,10, T4,7}: σt(K ) = 2 for t ∈ ( 3
28 ,

4
30 ) and σt(K ) = −2 for t ∈ ( 1

30 ,
1

28 ),

{T4,9, T5,7}: σt(K ) = 2 for t ∈ ( 4
35 ,

5
36 ) and σt(K ) = −2 for t ∈ ( 1

36 ,
1

35 ),

{T3,14, T5,8}: σt(K ) = 2 for t ∈ ( 3
40 ,

4
42 ) and σt(K ) = −2 for t ∈ ( 1

42 ,
1

40 ).

4. Theorem 1·5 via Heegaard Floer invariants and cabling

The aim of this section is to prove Theorem 1·5. We start with a proposition that
summarizes the properties of the ϒ-invariant [OSS17] that we use in the proof.

PROPOSITION 4·1. For any knot J , the ϒ-invariant ϒJ is a piecewise linear function
ϒJ : [0, 2] →R with the following properties:

(i) [OSS17, Corollary 1·12] ϒ is a concordance invariant and, for all knots J
and J ′,

ϒJ#J ′(t) = ϒJ (t) + ϒJ ′(t);
(ii) [OSS17, Theorem 1·11] For 0 < t ≤ 1, |ϒJ (t)/t | ≤ g4(J );

(iii) [OSS17, Theorem 1·14] For a positive integer i ,

ϒT2,2i+1(t) = −i · t for t ∈ [0, 1].
Proposition 4·1 and Lemma 2·1 imply the following lower bound for the 4-dimensional

clasp number. Compare with [Liv17, Theorem 13·1] for Lemma 4·2 and its proof via
Lemma 2·1, and compare with [JZ20, Proposition 2·1], where Lemma 4·2 is derived from
the stronger bound using ν+ given in [HW16, BCG17]. More on ν+ below.

LEMMA 4·2. If J is a knot in S3, then

c4(J ) ≥ max
t∈(0,1]

ϒJ (t)/t + max
t∈(0,1]

−ϒJ (t)/t.

In [HW16], Hom and Wu define a non-negative integer valued smooth concordance
invariant ν+ for knots in S3. Following [KP18] (see also [Hom17]), we say two knots J
and J ′ are ν+-equivalent if

ν+(J# − J ′) = ν+(J ′# − J ) = 0,

and it is straight forward to verify that this forms a equivalence relation on the set of
concordance classes of knots. By [OSS17, Proposition 4·7], we have that ν+-equivalent
knots have the same ϒ-invariant. Recall that D denotes the positive untwisted Whitehead
double of the right-handed trefoil. The key fact that we will use is that D and T2,3 are
ν+-equivalent [HKL16, Proposition 6·1]. Furthermore, we have the following proposition.
Recall that Jp,q denotes the (p, q)-cable of a knot J , where p is the longitudinal winding.

PROPOSITION 4·3. If Ki = D2,2i+1# − T2,2i+1# − D, then Ki and (T2,3)2,2i+1# − T2,2i+3

are ν+-equivalent.
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Proof. As mentioned above D and T2,3 are ν+-equivalent [HKL16, Proposition 6·1].
Furthermore, for positive integer n, we have that #nT2,3 and T2,2n+1 are also ν+-equivalent
[HKL16, Theorem B·1]. Moreover, [KP18, Theorem B] implies that (T2,3)2,2i+1 and D2,2i+1

are ν+-equivalent. Hence the proof is complete by noting that ν+-equivalence forms a equiv-
alence relation on the set of concordance classes of knots and the fact that K1#K2 and J1#J2

are ν+-equivalent if Ki and Ji are ν+-equivalent for i = 0, 1 (see e.g. [KKP19, Prop. 3.12]).

Finally, we compute the ϒ-invariant of D2,2i+1# − T2,2i+1# − D. By Proposition 4·3, we
only need to compute the ϒ-invariant of (T2,3)2,2i+1# − T2,2i+3. Note that (T2,3)2,2i+1 and
T2,2i+3 are both L-space knots and for each L-space knot J there is a formal semigroup SJ ,
a subset of Z≥0, associated to J [Wan18]. For positive integers a1, a2, . . . , a
, let

〈a1, a2, . . . , a
〉 := {c1a1 + c2a2 + · · · + c
a
 | ci ∈Z≥0 for i = 1, 2, . . . , n}.

For instance, the formal semigroup associated to a positive torus knot Tp,q is 〈p, q〉. More
generally, the formal semigroups of iterated cables of torus knots that are L-space knots can
be computed. We only state the simplest case.

LEMMA 4·4 ( [Wan18, Proposition 2·7]). If (Tp,q)r,s is an L-space knot, then the formal
semigroup S(Tp,q )r,s for (Tp,q)r,s is 〈pr, qr, s〉.

The ϒ-invariant of an L-space knot can be computed in terms of its formal semigroup
(see also [BL16, Proprotion 4.4] for algebraic knots).

LEMMA 4·5 ( [Wan18, Proposition 3·2]). If J is an L-space knot with g4(J ) = g and SJ

is the formal semigroup associated to J , then

ϒJ (t) = max
m∈{0,...2g}

{−2# (SJ ∩ [0, m)) + (m − g) · t}.

We need one last computational lemma before we prove Theorem 1·5.

LEMMA 4·6. If Ki = D2,2i+1# − T2,2i+1# − D where i > 1, then

ϒKi (t) =
{ −t for t ∈ [0, 1/2],

−2 + 3t for t ∈ [1/2, 1].
Proof. By Proposition 4·3, Ki and (T2,3)2,2i+1# − T2,2i+3 are ν+-equivalent and hence have
the same ϒ-invariant. Moreover, by Proposition 4·1 (i) and (iii), it suffices to compute the
ϒ-invariant of (T2,3)2,2i+1. For i > 1, note that (T2,3)2,2i+1 is an L-space knot since 2i + 1 ≥
2(2g4(T2,3) − 1) = 2 [Hed09, Theorem 1·10] and note that g4((T2,3)2,2i+1) = i + 2. Hence,
by Lemma 4·4 and Lemma 4·5, we obtain

ϒ(T2,3)2,2i+1(t) = max
m∈{0,...2i+4}

{−2# (〈4, 6, 2i + 1〉 ∩ [0, m)) + (m − i − 2) · t}.

We claim that for t ∈ [0, 1],

max
m∈{1,...2i+4}

{−2# (〈4, 6, 2i + 1〉 ∩ [0, m)) + (m − i − 2) · t} = −2 + (2 − i) · t. (4·1)
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Indeed, if 1 ≤ m ≤ 3 and t ∈ [0, 1], then

−2# (〈4, 6, 2i + 1〉 ∩ [0, m)) + (m − i − 2) · t = −2 + (m − i − 2) · t

≤ −2 + (2 − i) · t.

If instead m = 4 and t ∈ [0, 1], then

−2# (〈4, 6, 2i + 1〉 ∩ [0, m)) + (m − i − 2) · t = −2 + (2 − i) · t.

Finally, if 5 ≤ m ≤ 2i + 4 and t ∈ [0, 1], since

〈4, 6〉 = {4, 6, 8, 10, 12, . . .} ⊂ 〈4, 6, 2i + 1〉
we have

−2# (〈4, 6, 2i + 1〉 ∩ [0, m)) + (m − i − 2) · t ≤ −2 (�m/2� − 1) + (m − i − 2) · t

≤ −2�m/2� + 2 + (2�m/2� − i − 2) · t

≤ −2 + (2 − i) · t,

where the last inequality follows from the fact that if 5 ≤ m ≤ 2i + 4 and t ∈ [0, 1], then

(−2�m/2� + 4) ≤ (−2�m/2� + 4) · t.

Hence we have verified equation (4·1). Finally, note that this implies that

ϒ(T2,3)2,2i+1(t) = max
m∈{0,4}

{−2# (〈4, 6, 2i + 1〉 ∩ [0, m)) + (m − i − 2) · t}

=
{ −(i + 2) · t for t ∈ [0, 1/2],

−2 + (2 − i) · t for t ∈ [1/2, 1].
Combining the above with Proposition 4·1 (i) and (iii) yields the desired formula.

Proof of Theorem 1·5. Let Ki = D2,2i+1# − T2,2i+1# − D, where i > 1. The knot D is a
topologically slice knot [Fre82], which implies that Ki is topologically concordant to
T2,2i+1# − T2,2i+1 which is slice. Hence Ki is topologically slice.

We claim that g4(#n Ki ) = n. First, we show that g4(Ki) = 1 by following the same argu-
ment as in [HW16, Lemma 3.3]. We consider a genus i + 2 Seifert surface � for D2,2i+1

obtained by taking two parallel copies of the genus one Seifert surface for D and connecting
them with i half-twisted bands. Note that there is a genus i + 1 Seifert surface �′ for the
knot D#T2,2i+1 embedded in �. The Seifert surface �′ is obtained by taking the connected
sum with the slightly pushed in Seifert surface for D and the surface which is obtained by
pushing in the half-twisted bands. Now, we consider a Seifert surface �̃ for Ki obtained by
taking the boundary connected sum of � with the Seifert surface for −T2,2i+1# − D with
genus i + 1. Hence the genus of �̃ is 2i + 3. Moreover, taking the boundary connected sum
of �′ with a slightly pushed in Seifert surface for −T2,2i+1# − D yields a Seifert surface �̃′

for J = T2,2i+1#D# − T2,2i+1# − D embedded in �̃ with genus 2i + 2. Performing surgery
along J oN �̃ in B4 yields a genus 1 surface for Ki . Hence we conclude that g4(Ki) ≤ 1.
Moreover, by Lemma 4·6 and Proposition 4·1 (i) and (ii), we have g4(#n Ki ) = n for any
positive integer n.
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We conclude the proof by applying Lemma 4·2 to

ϒKi (t)/t = −1 for t ∈ (0, 1/2] and ϒKi (t)/t = 1 for t = 1 (Lemma 4·6).
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