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BASIS THEOREMS FOR Σ12-SETS

CHI TAT CHONG, LIUZHENWU, AND LIANG YU

Abstract. We prove the following two basis theorems for Σ12-sets of reals:
(1) Every nonthin Σ12-set has a perfect Δ

1
2-subset if and only if it has a nonthin Δ

1
2-subset, and this is

equivalent to the statement that there is a nonconstructible real.
(2) Every uncountable Σ12-set has an uncountable Δ

1
2-subset if and only if either every real is constructible

or �L1 is countable.
We also apply the method that proves (2) to show that if there is a nonconstructible real, then there is a

perfect Π12-set with no nonempty Π
1
2-thin subset, strengthening a result of Harrington [4].

§1. Introduction and preliminaries.
1.1. Introduction. The main theme of this paper concerns basis theorems for Σ12-
sets of reals. Let≤r be a reducibility relation.We say that a perfect set P is r-pointed
if there is a perfect tree T ⊆ 2<� such that [T ] = P (where [T ] denotes the set of
infinite paths in T ) and for all x ∈ [T ], T ≤r x. Martin [8] proved that under the
axiom of determinacy (AD), every A ⊆ 2� whose corresponding Turing degrees
are cofinal contains a Δ01-pointed perfect subset. Woodin (unpublished) has shown
that Turing determinacy implies AD in L(R). It follows that the assumption of AD
is necessary for Martin’s theorem to hold. If Turing reducibility is replaced with a
coarser reducibility notion, then the set-theoretic assumption may be considerably
weakened. For example, Martin [9] showed that it is a theorem of ZFC that every
uncountable Δ11-set contains a Δ

1
1-pointed perfect subset (this is false in general for

uncountable Π11-sets by a theorem of Mansfield [7] and Solovay [12], see Sacks [10]
for a proof). The natural question is how far can Martin’s theorem be generalized
within ZFC, in particular whether it holds with regard to Δ12-reducibility for Σ

1
2-sets.

A set is thin if it contains no perfect subset. It is known (applying a Cantor-
Bendixson–type construction of Mansfield [7] and Solovay [12]) that if A is Σ12
and contains a nonconstructible real, then it is not thin and in fact contains a
perfect subset whose elements range over an upper cone of L-degrees. It was asked
at the Dagstuhl workshop in February 2017 whether the perfect set could range
over an upper cone of Δ12-degrees. The point here is that a Cantor-Bendixson–style
construction over a Suslin representation of a nonthin Σ12-set may involve stages
beyond �L1 which is greater than �

1
2 , the least ordinal which is not the order type of
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a Δ12-well ordering of �. Nevertheless, the answer to the question is affirmative by
a different argument (see Corollary 1.4). We show in Section 2 that every nonthin
Σ12-set has a perfect Δ

1
2-pointed subset if and only if there is a nonconstructible real.

Furthermore, the Δ12-pointed perfect subset, if it exists, can be chosen to be the set
of paths of a perfect Δ12-tree.
A more general and perhaps basic question regarding Σ12-sets is whether every
uncountable Σ12-set has an uncountable Δ

1
2-subset. Since Σ

1
2-subsets of L are Σ1(L)-

definable, the situation is reminiscent of that in � where every infinite recursively
enumerable set has an infinite recursive subset. Generalizations of this fundamental
theorem to ordinals have been studied in higher recursion theory (see Sacks [10]),
most of which stayed within the realm of the constructible universe. Our interest
here is to investigate this problem beyond L. A characterization of conditions
guaranteeing every uncountable Σ12-set to have an uncountable Δ

1
2-subset is given in

Section 3, i.e., the statement is true if and only if 2� ⊂ L or �L1 < �1.
Harrington [4] showed that if there is a nonconstructible real, then there is a
perfect Π12-set with no Π

1
2-singleton. In the concluding section of the paper, we

apply the method in Section 3 to strengthen this result by proving that under the
same hypothesis, there is a Π12-set with no thin Π

1
2-subset.

1.2. Preliminaries. We follow the standard terminologies and notations (cf. [2],
[5], and [10]). Given a tree T , let [T ] denote the set of infinite paths in T . If
� ∈ 2<� , then [�] denotes the collection of binary strings which extend �. If α is
a limit ordinal and {x�}�<α is a sequence of length α, let x = lim�→α x� denote
∃� < α∀� ≥ �(x� = x). If x is a real, then �L[x]1 denotes the first uncountable
ordinal in the structure (L[x],∈).
The following Spector-Gandy–type characterization of Σ12-sets (see [2]) will be
used throughout the paper.

Theorem 1.1 (Shoenfield). Given a set A ⊆ 2�, the following are equivalent:
• A is Σ12.
• There is a Σ1-formula ϕ such that for all reals x,

x ∈ A⇔ L�L[x]1
[x] |= ϕ(x).

• There is a Σ1-formula ϕ such that for all reals x,
x ∈ A⇔ L�12 (x)[x] |= ϕ(x),

where �12(x) is the least ordinal not the order type of a Δ
1
2(x)-well ordering of �.

Theorem 1.1 enables one to use recursion-theoretic arguments to study Σ12-sets.
It follows that there is a version of “Church-Turing Thesis” for Σ12-sets that we can
appeal to in the construction of such sets.
The following theorem, which shows the pervasive presence of nonconstructible
reals, will be used as a basic result in this paper.

Theorem 1.2 (Groszek and Slaman [3]). Suppose that there is a nonconstructible
real. Then every perfect set contains a nonconstructible real.

Proposition 1.3. Suppose that there is a nonconstructible real. If A is Σ12 and not
thin, then A contains a Δ12-perfect subset.
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Proof. Since A is Σ12, there is a Π
1
1 set B ⊆ �� × �� such that

∀x(x ∈ A↔ ∃y((x, y) ∈ B)).
By Π11-uniformization, we may assume that ∀x(∃y(x, y) ∈ B → ∃!y(x, y) ∈ B).
By Theorem 1.2, A contains a nonconstructible real and so does B. It follows from
the Mansfield-Solovay theorem that B is not thin either. Let

C = {T ⊆ �<� × �<� |[T ] ⊆ B ∧ ∀(�, 	) ∈ T∃(�0, 	0) ∈ T∃(�1, 	1) ∈ T
(�0  � ∧ �1  � ∧ �0|�1)}.

Since B was replaced by its uniformization, it is not difficult to see that C is a
nonempty Π11-set and hence contains an element T ∈ Δ12. Let D = {x | ∃y(x, y) ∈
[T ]} be a Σ11(T )-set. Since B is uniformized and [T ] ⊆ B, we have that D must
be uncountable and so contains a perfect subset. Again since B is uniformized, we
have that x ∈ D ⇔ ∃y ∈ L�x1 [x](x, y) ∈ T . So, by Spector-Gandy’s theorem, D
must be Δ11(T ). Then by Shoenfield absoluteness relative to T , there is a perfect tree
S ∈ Δ12(T ) such that [T ] ⊆ D.1 Thus S is Δ12. �

Corollary 1.4. Every nonthin Σ12-set has a Δ
1
2-pointed subset.

Proof. Let A be an uncountable Σ12-set. We consider two cases:
Case 1. There is a nonconstructible real. By Proposition 1.3, A has a Δ12-perfect,
and hence Δ12-pointed subset.
Case 2. Otherwise. Let B = {T | [T ] ⊆ A ∧ T is perfect}. Let T0 ∈ B. Then
T0 ∈ L since every real is constructible. Let α0 be such that T0 ∈ Lα0+1 \Lα0 . Then
by [1] and [6], there is a master code z ∈ Lα0+1 \ Lα0 . Note that T0 ≥Δ12 z and
T0 ≤T z. Let C = [T0] \ {x | x ∈ Lα0}. Then C is Δ11(z).2 Since C is uncountable,
there is a Δ12(z)-perfect tree T1 such that [T1] ⊆ C . Since for every real x ∈ [T1],
x �∈ Lα0 , we have z ≤Δ12 x. It follows that [T1] ⊆ A and T1 is a Δ12-pointed tree. �

§2. Perfect subsets of 2� . First note that the argument in Proposition 1.3 does
not go throughwithout the assumption 2� �⊂ L. For example, sincex ∈ L∩2� if and
only if there is a realy ∈ L�y1 such that x ≤T y, letB = {(x, y) | x ≤T y∧y ∈ L�y1 }.
Then B is Π11 and thin. We have x ∈ L∩2� ↔ ∃y(x, y) ∈ B, so that, assuming that
every real is constructible, the Σ12-set of all reals is the projection of a thin Π

1
1-set.

Then C in the proof of the proposition is not defined. This failure leads us to the
following which implies the necessity of the hypothesis in Proposition 1.3.

Lemma 2.1. If every real is constructible, then there is a co-countableΔ12-setA with
no Δ12-perfect subset.

1In fact one can construct a perfect set S ≤T T such that [S] ⊆ A.
2This follows from Jensen’s fine structure theory of L [6]: Since T0 ∈ Lα0+1 \ Lα0 , there is an n such

that T0 is a new Σn(Lα0 ) subset of �. Hence there exists a Σn -master code z in the sense of Jensen in [6].
Then T0 is Σ0((L�, z)) and so T0 ≤T z. Also by the results in [6], there is a Σn(Lα0 ) partial function
p mapping � onto α0. Thus the set E = {2i3j | Both p(i) and p(j) are defined and p(i) < p(j)} is a
Σn(Lα0 ) subset of � coding a well ordering of length α0. Since z is a Σn -master code, we have E ≤T z
and so �z1 > α0. Now by a simple calculation, one can see that C is Δ

1
1(z).
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Proof. We L�1 -recursively build two sets A and B such that A = 2
� \ B as

follows:
By Π11-uniformization, fix a partial Π

1
1-function p : � → 2� such that Range(p)

contains all Π11-singletons. Let q : � × � → 2� be a partial function such that
q(e, i) = x ⇔ p(i) ↓ ∧Φp(i)e is total ∧ x = Φp(i)e ∧ x codes a perfect tree Te,i ,

where Φe is the e-th oracle Turing machine. Then Range(q) contains exactly the
Δ12-perfect trees. Since every real is constructible, q is Σ1 over L�1 . We now proceed
with the construction.
Let A0 = B0 = ∅. At stage � < �1, select the least (e, i) such that q(e, i) ↓ at
stage � and

⋃
�′<� B�′ ∩ [Te,i ] = ∅. If there is no such (e, i), let A� =

⋃
�′<� A�′ ,

B� =
⋃
�′<� B�′ , and go to the next stage. Otherwise, choose the <L-least real

x ∈ [Te,i ] \ L� and let B� =
⋃
�′<� B�′ ∪ {x}. Define A� = (L� ∩ 2�) \ B� . Then

both A =
⋃
�<�1
A� and B =

⋃
�<�1
B� are Σ1(L�1 ). By Theorem 1.1, A and B are

Σ12. Since they are complementary to each other, both are Δ
1
2, and the construction

ensures that B is countable. Furthermore, if T is a Δ12-perfect tree, then there is an
(e, i) and a stage � where q(e, i) ↓, Te,i = T , and [Te,i ] ∩ B �= ∅. Hence A contains
no Δ12-perfect subset. �
The above Lemma and Proposition 1.3 imply the following:

Theorem 2.2. Every nonthin Σ12-set has a Δ
1
2-perfect subset if and only if there is a

nonconstructible real.

While the set A in Lemma 2.1 was constructed to answer the question under
the hypothesis 2� ⊂ L, it also presents an “extreme case” as the next observation
shows. We say that a set A is ZFC-provably Δ12, or Δ

1,ZFC
2 for short, if there are two

Σ12-formulas ϕ and 
 such that

ZFC � ∀x(x ∈ A↔ ϕ(x)↔ ¬
(x)).
Proposition 2.3. If A is a nonthin Δ1,ZFC2 -set, then it contains a Δ12-perfect subset.

Proof. ByProposition 1.3, it is sufficient to assume that every real is constructible.
Hence there is a perfect tree T ∈ L such that [T ] ⊆ A. Adding a Cohen generic real
g to V , by the Shoenfield absoluteness lemma, V [g] |= [T ] ⊆ A since A is Δ12. Then
V [g] |= A contains a perfect subset. By Proposition 1.3, there is a T̃ such that

V [g] |= A contains a Δ12-perfect subset [T̃ ].
Then T̃ ∈ V and V |= [T̃ ] ⊆ A ∧ T̃ is Δ12 also by Shoenfield absolutness. By
Shoenfield absoluteness again,

V |= (∃T̃ )(A contains a Δ12-perfect subset [T̃ ]). �
A more general problem is to characterize the conditions under which every
nonthin Σ12-set has a nonthin Δ

1
2-subset. This is provided by the following theorem.

Theorem 2.4. Every nonthin Σ12-set has a nonthin Δ
1
2-subset if and only if there is

a nonconstructible real.

Proof. The direction from right to left follows from Theorem 2.2 immediately.
We prove the other direction by an “infinitary” priority argument.
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Fix a recursive enumeration of all Σ12-pairs {(Bi , Ci)}i∈� and an L�1 -effective
enumeration {T�}�<�1 of perfect trees. We shall construct a co-countable Σ12-set A
satisfying the following requirements:

Pi : ∃�([T� ] ⊆ Ci ∧ Bi = 2� \ Ci → ∃x ∈ Ci \ A).

Construction:
Stage 0.LetA = ∅ and define �i0 = 0. Let xi,0 be the leftmost infinite path through
T�i0 for each i .
Stage α = limit ordinal. For each i , let �iα = min{� | ∀� < α(�i� ≤ �)} and let
xi,α be the <L-least infinite path through T�iα not in A. Go to the next stage.
Stage α + i + 1 where α < �1 is a limit ordinal. If [T�iα ] ∩ Bi ∩ Lα �= ∅, then let
�iα+i+1 = �

i
α+i +1 and let xi,α+i+1 be the<L-least infinite path throughT�iα+i+1 not in

A. For j �= i , let xj,α+i+1 = xj,α and �jα+i+1 = �jα . Put all reals inLα+i other than the
xj,α+i+1’s, where j ∈ �, intoA and proceed to the next stage. If [T�iα ]∩Bi ∩Lα = ∅,
let xj,α+i+1 = xj,α and �

j
α+i+1 = �

j
α for all j ∈ �, and proceed to the next stage.

By the construction, A is clearly Σ12. The construction ensures that a real x is not
in A if and only if there is an i such that x = limα→�1 xi,α . Hence A is co-countable.
Now suppose that C is Δ12 and has a perfect subset. Let i be such that C = Ci ,
Bi = 2� \ Ci , and [T�i ] ⊆ Ci for the least �i . Then limα→�1 �iα = �i . Let α be the
least stage α such that �iα = �i . Then an infinite path xi,α in [T�iα ] was selected to be
kept out of A at stage α. Since Bi = 2� \ Ci and [Ti ] ⊆ Ci , by the construction,
∀� ≥ α(xi,α = xi,�). Then xi,α �∈ A and hence Ci \ A ⊇ {xi,α} �= ∅. �

§3. Uncountable subsets ofΣ12-sets. Since Σ12-sets of reals inL are Σ1-definable set-
theoretically, the following proposition is an immediate consequence of the general
theory of recursively enumerable sets in α-recursion theory (see [10]).

Proposition 3.1. Suppose that every real is constructible. Then every uncountable
Σ12-set has an uncountableΔ

1
2-subset. In fact, every uncountable Σ

1
2-set contains a pair

of disjoint uncountable Σ12-subsets.

Corollary 3.2. Every nonthin Σ12-set A has an uncountable Δ
1
2-subset.

Proof. This is an immediate consequence of Proposition 3.1 if every real is
constructible, and a consequence of Proposition 1.3 otherwise. �
The rest of the section studies conditions for the converse of Corollary 3.2 to
hold.

Lemma 3.3. If �L1 < �1, then every uncountable Σ
1
2-set has a Δ

1
2-perfect subset.

Proof. Since �L1 is countable, every uncountable Σ
1
2-set has a nonconstructible

member and hence not thin by theMansfield-SolovayTheorem. By Proposition 1.3,
every uncountable Σ12-set has a Δ

1
2-perfect subset. �

In subsequent proofs, we will need to decide if “[T ] ⊆ A” holds for a perfect
tree T and a Σ12-set A. However, the statement is Π

1
3(T ) which is not absolute. To

overcome this difficulty, we require an analysis of the set of reals finer than what the
Shoenfield absoluteness lemma provides, in the sense of the following Lemma.
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Lemma 3.4. Suppose that there is a nonconstructible real. Given a perfect tree
T ∈ L and a Σ12-set A such that [T ] ∩ A contains a perfect subset, there is a perfect
tree T̃ ∈ L such that [T̃ ] ⊆ [T ]∩A. Furthermore, T̃ may be computed uniformly and
effectively fromT andA. In other words, there is a partial functionf : P(�<�)×� →
P(�<�) Σ1 definable over L(�1)L such that for any perfect tree T ⊆ �<� in L and any
index e of a Σ12-set A, if [T ] ∩Ae has a perfect subset, then f(T, e) is a perfect subset
of [T ] ∩ Ae in L.3
Proof. The proof follows essentially that of either Lemma 9.3 in [10] or Lemma
4.3.2 in [2].
We assume that T = 2<� first. As in the proof of Proposition 1.3, one can
effectively compute (an index of) a Π11-set B such that

x ∈ A⇔ ∃!y ∈ L�x⊕y1
[x]((x, y) ∈ B).

By Theorem 1.2, there is a nonconstructible real x0 ∈ A. Fix the corresponding
unique real y0 ∈ L[x0] so that (x0, y0) ∈ B. Note that x0 ⊕ y0 �∈ L�x0⊕y01

. So the

Σ12 set {(x, y) | (x, y) ∈ B ∧ x ⊕ y �∈ L�x⊕y1
} is not empty. Thus there exists a pair

(x, y) ∈ B such that (x, y) ∈ L but x ⊕ y �∈ L�x⊕y1
. Let (x1, y1) be such a pair.

We may also effectively obtain a tree T0 ⊆ 2<� × 2<� × �<�1 ∈ L such that
(x, y) ∈ B ⇔ ∃f ∈ L�x⊕y1

[x ⊕ y]((x, y,f) ∈ [T0]).
Since the set {(x, y) | x ⊕ y �∈ L�x⊕y1

} is Σ11, there is a recursive tree S ⊆
�<� × �<� × �<� such that

∃z ∈ L[x ⊕ y](x, y, z) ∈ [S]⇔ x ⊕ y �∈ L�x⊕y1
.

Note that, since (x1, y1) ∈ B ∩ L and (x1, y1) �∈ L�x1⊕y11
, we may fix α0 to be the

least admissible ordinal α for which there is a pair (x2, y2) ∈ B ∩ L such that
(x2, y2) �∈ Lα and �x2⊕y21 = α. Let Tα00 = T0 ∩Lα0 and

T1 = {(�, 	, �, u) | (�, 	, �) ∈ Tα00 ∧ (�, 	, u) ∈ S}.
By the assumption on α0, there is an infinite path through T1. Moreover for any
infinite path (x, y,f, z) though T1, �

x⊕y
1 ≥ α0. Note that for any (�, 	, �, u) ∈ T1,

if there is an infinite path through T1 extending (�, 	, �, u), then there must be
incompatible pairs of strings (�1, 	1) and (�2, 	2) extending (�, 	) and pairs (�1, u1)
and (�2, u2) for which there exist infinite paths through T1 extending (�1, 	1, �1, u1)
and (�2, 	2, �2, u2) respectively (otherwise, there will be an infinite path (x, y,f, z)
through T1 such that (x, y,f, z) ∈ L�x⊕y1

). Then (x, y, z) ∈ [S] but x ⊕ y ∈ L�x⊕y1
,

a contradiction. More details can be found in the proof of either Lemma 9.3 in [10]
or Lemma 4.3.2 in [2].
Now, by the property of T1, it is not difficult to see that there is a perfect tree T2
in L such that [T2] ⊆ B. For our purpose, we fix an algorithm to construct T2 as
following. Let T ′

1 be the outcome of Cantor-Bendixson construction with the input

3Note that we do not claim it is a theorem of ZFC that we may find such a tree T̃ . The point is
that if T̃ exists, then we may find it effectively. To do this, one needs the assumption that there is a
nonconstructible real.
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being the countable tree T1. Then T ′
1 ⊆ �<� ×α<�0 ×�<� ×�<� has the property

that for any (�, 	, �, u) ∈ T ′
1, there are nodes (�1, 	1, �1, u1) and (�2, 	2, �2, u2) in

T ′
1 so that (�1, 	1) and (�2, 	2) are distinct nodes extending (�, 	). Now let T2 be
the projection of T ′

1 into first two coordinate. Since B is already uniformized, we
conclude that there is a perfect tree T̃ derived from T2 so that [T̃ ] ⊆ A.
For an arbitrary perfect treeT ∈ L, one relativizes the proof above toT to obtain
the corresponding perfect tree T̃ .
By the uniformity of the construction, we see that the function (T,Ae) �→ T̃e is a
Σ1(L(�1)L) partial function. �
Corollary 3.5. Suppose that there is a nonconstructible real. IfA is Σ12 and 2

� \A
is thin, then for any perfect tree T ∈ L, there is a perfect tree T ′ ∈ L such that
[T ′] ⊆ [T ] ∩ A. Moreover, the partial function p : (T,A) �→ T̃ is Σ1(L(�1)L).
Proof. Let A and T ∈ L be as given. It is clear that there is a perfect tree S ⊆ T
such that [S]∩L = ∅. Hence A∩ [T ] contains a nonconstructible real and therefore
a perfect subset. Now by Lemma 3.4, there is a perfect tree T ′ ∈ L such that
[T ′] ⊆ [T ] ∩ A. The definability also follows from the Lemma. �
LetB = {B | B is Σ12 ∧ 2� \ B is thin}.
Lemma 3.6. Suppose that �L1 = �1 and there is a nonconstructible real. Then
there is an uncountable Σ12-set A with no uncountable Δ

1
2-subset. In fact there is an

uncountable Σ12-set A ⊂ L such that |A \⋂B∈B B| ≤ ℵ0.
Proof. The proof of Lemma 3.6 is a finite injury priority argument over L�1 .
The idea is as follows: Every Σ12-set B ∈ B is nonthin by assumption, and hence by
the proof of Proposition 1.3 contains a Δ12-perfect tree in L. By Corollary 3.5, one
may wait for a stage where a perfect tree T̃ with [T̃ ] ⊂ B is enumerated in L. The
aim then is to make A a subset of [T̃ ] except for possibly countably many elements.
To satisfy this for each B ∈ B clearly creates conflicts. These are resolved by the
use of a fusion argument.
We fix a Σ1(L(�1)L) partial function p as in Corollary 3.5.
Construction: Fix a recursive enumeration {Bi}i∈� of all Σ12-sets. We construct a
Σ12-set A such that

|A \
⋂

Bi∈B

Bi | ≤ ℵ0.

Let Pi be the requirement stating that A \ Bi is countable if Bi ∈ B.
Stage 0.We may assume that B0 = 2�. Let T0 = 2<� and f0 = id : 2<� → 2<�
be the identity map. By definition,P0 receives attention at stage 0 and noPi receives
attention at stage 0 for i > 0.
Stage α + 1. Let fα : 2<� ∼= Tα be the canonical homeomorphism. We say that
Pi requires attention at stage α + 1 if it has not received attention thus far, or is
injured at stage α, and for each � ∈ 2i , there is a perfect tree

T�α ⊆ {	 | 	 ∈ Tα ∧ 	 is compatible with fα(�)}
enumerated in Lα+1 \ Lα where [T�α ] ⊆ Bi . In other words, p({	 | 	 ∈ Tα ∧
	 is compatible with fα(�)}, i) is defined at stage α + 1; and we let T�α = p({	 |
	 ∈ Tα ∧ 	 is compatible with fα(�)}, i).
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If no i requires attention, letfα+1 = fα,Tα+1 = Tα . Declare all the requirements
injured at stage α to remain injured at stage α + 1 and go to the next stage.
Otherwise, let iα+1 be the least such i . Define Tα+1 =

⋃
�∈2iα+1 T

�
α for � ∈ 2iα+1 ,

fα+1 : 2<� ∼= Tα+1 the canonical homeomorphism, and declare Piα+1 to have
received attention. Every Pj for j > iα+1 is injured at stage α + 1.
Stageα a limit ordinal. By Claim 1(ii) below, for each i ∈ � there is a �i < α such
that ∀�∀� ∈ 2i(�i < � < α → f�(�) = f�i (�)). Hence lim�→α f�(�) exists for
each � ∈ 2<� . Let Tα be the perfect tree generated by {lim�→α f�(�) | � ∈ 2<�}.
Choose the least stage � ≤ α such thatT� = Tα . For each real x ∈ [Tα ]∩(Lα \L�),
put it into A.
This completes the construction of A at stage α. It is clear thatA ⊆ L is a Σ12-set.
Claim 1.

(i) Each requirement receives attention at most finitely many times.
(ii) For each �, {� | f�(�) �= f�+1(�)} is finite. In particular, limα→�1 fα(�)
exists for each �.

(iii) ∃α∀� ≥ α(T� = Tα).
Proof of Claim 1. We prove (i) and (ii) by induction on i . The construction
ensures that if Pi receives attention at stage α, then it receives attention again at
some � > α only if some Pj , j < i , receives attention at � ′ where α < � ′ < � .
NowP0 clearly receives attention atmost once (we identify � ∈ 20 with the empty
string). Let n be given and assume that each Pi , i ≤ n, receives attention finitely
many times. Let �n be a stage such that for all i ≤ n and all � ≥ �n, Pi does not
receive attention at stage � . Then ∀� ≥ �n∀	(|	| ≤ n → f�(	) = f�n (	)). If Pn+1
never receives attention after stage �n, then it will have received attention at most
finitely many times, and so (i) holds for Pn+1.
Suppose now Pn+1 receives attention at some stage � > �n and let �n+1 be the
least such � . Then by the construction, �n+1 = α + 1 for some α and T�n+1 ⊂ Tα .
But this implies that for all � ∈ 2n+1 and � > �n+1, f�n+1(�) = f�(�), proving
(ii) for all strings � of length n + 1. This also implies that Pn+1 does not require
attention after stage �n+1. Hence Pn+1 satisfies (i).
Note that (iii) follows immediately from (i) and (ii).

Claim 2.

(i) A is Σ12 \ Δ12 and uncountable.
(ii) A \⋂Bi∈B Bi is countable.

Proof of Claim 2. (i). To show that A is not Δ12, note thatA ⊂ L and hence thin
by Theorem 1.2. If A is Δ12, then 2

� \A = Bi for some Bi ∈ B, and this contradicts
the fact that A ∩ Bi �= ∅ by the construction.
By Claim 1, let α∞ < �1 be such that for all α > α∞, i ∈ � and all strings �, Pi
does not receive attention at stage α, and fα∞(�) = fα(�). Then Tα = Tα∞ . This
implies that [Tα∞ ] ∩ (L�1 \ Lα∞) ⊆ A. So A is uncountable.
(ii). Let Bi ∈ B. We claim that for each � of length i and T̃ �α∞ = {	 | 	 ∈
Tα∞ ∧ 	 is compatible with fα∞(�)}, [T̃ �α∞ ] ⊆ Bi . Otherwise, since Bi ∈ B, by
Corollary 3.5, there is a stage α ≥ α∞ such that for any � of length i , there is a
perfect tree T�α ⊆ T̃ �α∞ such that [T�α ] ⊆ Bi and T�α ∈ Lα+1 \ Lα . Then Pi receives
attention at stage α, a contradiction. Thus [Tα∞ ] ⊆ Bi and so [Tα∞ ] ⊆

⋂
Bi∈B Bi .
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Thus A \⋂Bi∈B Bi ⊆ Lα∞ and hence countable.
By Claim 2, A is an uncountable Σ12-set without any uncountable Δ

1
2-subset,

completing the proof of Lemma 3.6. �
Corollary 3.7. Assume that �L1 = �1 and there is a nonconstructible real. Then
there is a countable Σ12-set A ⊂ L such that A ∩⋂

B∈B B �= ∅.
Proof. We repeat the construction of the trees Tα in Lemma 3.6 but only put
countably many elements in Tα∞ intoA at stage α∞ and none after that stage. Then
it is immediate that A is a countable Σ12-set satisfying the lemma. �
In summary, we have the following theorem.

Theorem 3.8. Every uncountable Σ12-set has an uncountable Δ
1
2-set if and only if

either 2� ⊂ L or �L1 < �1.
We end this section with a strengthened version of Lemma 3.6.

Theorem 3.9. Assume �L1 = �1 and that there is a nonconstructible real. Then
there is an uncountable Σ12-set A with no uncountable Δ

1
2(x)-subset for any x ∈ L. In

fact, there is an uncountable Σ12-set A ⊂ L such that for any x ∈ L and any Σ12(x)-set
B with 2� \ B ⊂ L,4 |A \ B| ≤ ℵ0.
Proof. To see that the last statement in the theorem implies that A has no
uncountable Δ12(x)-subset for any x ∈ L, assume for the sake of contradiction that
C ⊂ A is a counterexample. Then B = 2� \ C is Δ12(x) and 2� \ B = C ⊂ L. But
then C = A \ B is at most countable.
Now note that the proof of Lemma 3.6 can be carried out uniformly within a
perfect tree T ∈ L relative to an oracle x. In other words, given a perfect tree
T ∈ L and a real x, we may T ⊕ x-effectively perform the construction in the
proof of Lemma 3.6 by replacing 2<� with T and working within [T ] to define A,
so that A is contained in

⋂
B∈B(x) B except at most countably many points, where

B(x) = {B | B is Σ12(x) ∧ 2� \ B is thin}. We will use this as the blueprint of the
construction below as x ranges all constructible reals.
Fix a Σ1(L�1 )-sequence of reals �x = {x�}�∈�1 such that �x is a cofinal increasing
chain of Turing degrees in L. For � < �1, let

B(x� ) = {B | B is Σ12(x�) ∧ 2� \ B is thin}.

Then for any x ∈ L, every Σ12(x) set is Σ12(x� ) for some � . We use an idea in Simpson
[11] as presented in Chong and Yu [2] to construct A. For any perfect tree T , we
use fT : 2<� → T to denote the canonical homeomorphism from 2� to [T ].
Define by induction a Σ1(L�1 )-collection of sets {I�}�<�1 of perfect trees such
that for � < � < �1,

(i) ∀S ∈ I�∃S0, S1 ∈ I�(S0 ⊂ S ∩ [fS(0)] ∧ S1 ⊂ S ∩ [fS(1)]), where fS :
2<� ∼= S is the canonical homeomorphism;

(ii) ∀S ∈ I�∃n∃{Si}i≤n ⊆ I�([S] ⊆
⋃
i≤n[Si ]), and

(iii) ∀S ∈ I�([S] ⊆
⋂
B∈B(x� )

B).

4Actually, as the referee pointed out, 2� \ B ⊂ L can be replaced with “2� \ B is thin”.
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The requirements to satisfy are

P� : ∀S ∈ I�(S ⊆
⋂

B∈B(x� )

B).

Construction: Let I0 = {2<�}. At stage α, let �α be the least � ≤ α such thatI�
is undefined.
Case 1. �α = � + 1 for some � . Then for each S ∈ I� , let S0, S1 be the <L-
least pair of perfect trees such that S0 ⊂ S ∩ [fS(0)] and S1 ⊂ S ∩ [fS(1)]. Let
S0, S1 ∈ I�+1.
Case 2. �α is a limit ordinal. Let {�i}i<� be the <L-least increasing �-sequence
of ordinals with limit �α . For � < �α , let i� be the least i such that � ≤ �i . For any
S ∈ I� , by inductive hypothesis, it is not difficult to see that there is a <L-least
fusion sequence {S�}�∈2<� such that
• S∅ = S;
• (∀n)(∀� ∈ 2n+1)(S� ∈ I�i�+n );

• (∀n)(∀� ∈ 2n)(S��0 ⊂ S� ∩ [fS(��0)] ∧ S��1 ⊂ S ∩ [fS(��1)]).
Let T =

⋂
n<�

⋃
�∈2n S� . Put T ∩ [fT (0)] and T ∩ [fT (1)] into I�α .

Now for any � ≤ �α and each T ∈ I� , we perform the construction as in Lemma
3.6 up to stage α. More precisely, we attempt to trim T to a tree S where [S] ⊆ B
for all B ∈ B(x� ). During the process, once an action is taken on the least � ≤ �α
with a T ∈ I� to meet requirement P� , we put each real in [S] ∩ Lα into A, and
initialize all the parameters associated with each � ′ > � and go to the next stage.
This completes the construction at stage α.
The Σ1(L)-definability of A in the construction ensures that it is an uncountable
Σ12-set. As in the proof of Claim 1 in Lemma 3.6, for any � , I� will stabilize after
a countable ordinal stage α� , i.e., no new trees are added to I� and no more
trimming of trees inI� takes place. By induction on � < �1, it follows that by stage
�1 properties (i)–(iii) and P� , for � < �1, are satisfied. Since (by construction)
I� is countable for each � at any stage, it means that at most countably many
reals are put into A at stage � . Then by (ii), (iii), and the discussion above, after
stage α� , we only enumerate reals in

⋂
B∈B(x� )

B into A. Hence A \⋂B∈B(x� )
B is

countable. �

§4. An anti-basis theorem forΠ12-sets. H. Friedman observed that if every real is
constructible, then every nonempty Π12-set contains a Π

1
2-singleton. Harrington [4]

showed that the conclusion fails if 2� �⊂ L: If there is a nonconstructible real, then
there is a perfect Π12-set containing no Π

1
2-singleton. We apply the method of the

previous section to obtain the following stronger result.

Theorem 4.1. If there is a nonconstructible real, then there is a perfect Π12-set A
with no thinΠ12-subset.

Proof. LetB be as defined in Section 3.
Construction: Fix a recursive enumeration {Bi}i∈� of Σ12-sets. We construct a
Σ12-set A such that

2� \
⋂

B∈B

B ⊆ A.
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Assume that B0 = 2�. At stage 0, let T0 = 2<� and f0 = id : 2<� → 2<� . We
declare that requirement 0, and no other requirement, receives attention at stage 0.
Stage α + 1. Let fα : 2<� ∼= Tα . Search for an i such that requirement i requires
attention, i.e., either it has not received attention previously, or was injured at stage
α, and such that for each � ∈ 2i , there is a perfect tree

T�α ⊆ {	 | 	 ∈ Tα ∧ 	 is compatible with fα(�)}
in Lα and [T�α ] ⊆ Bi . Let iα+1 be the least such i . Define Tα+1 =

⋃
�∈2i T

�
α for

� ∈ 2iα+1 . Enumerate all the reals not in [Tα+1] into A and declare iα+1 to have
received attention. Let fiα+1 : 2

<� ∼= Tα+1 be the canonical homeomorphism. For
i > iα+1, requirement i is declared to be injured. If iα+1 does not exist, letTα+1 = Tα
and fα+1 = fα and go to the next stage.
If α is a limit ordinal, then as in Lemma 3.6, each requirement is injured at most
finitely many times before stageα. For i ∈ � and� ∈ 2i , letfα(�) = lim�→αf�(�).
Let Tα be the image of 2<� under fα and proceed to the next stage.
This completes the construction of A. By the construction, A is a Σ12-set. As in
the proof of Lemma 3.6, there is a stage α0 such that for all α ≥ α0, Tα = Tα0 . Thus
[Tα0 ] = 2

�\A is a perfectΠ12-set. By the construction, it is clear that [Tα0 ] ⊆
⋂
B∈B B

and so 2� \⋂B∈B B ⊆ 2� \ [Tα0 ] = A. �

We end this paper with two questions.

Question 4.2. Suppose that there is a nonconstructible real and�L1 = �1. Is there
a nonemptyΠ12-set A with no thinΠ

1
2(x)-subset for any x ∈ L?

Question 4.3. Let n > 1. When does a nonthin Σ12n-set contain a Δ
1
2n-perfect

subset? When does an uncountable Σ12n-set contain an uncountable Δ
1
2n-subset?
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