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We examine the fracture of a quasi-two-dimensional surfactant-laden aqueous foam
under an applied driving pressure, using a network modelling approach developed for
metallic foams by Stewart & Davis (J. Rheol., vol. 56, 2012, p. 543). In agreement
with experiments, we observe two distinct mechanisms of failure analogous to those
observed in a crystalline solid: a slow ductile mode when the driving pressure is
applied slowly, where the void propagates as bubbles interchange neighbours through
the T1 process; and a rapid brittle mode for faster application of pressures, where
the void advances by successive rupture of liquid films driven by Rayleigh–Taylor
instability. The simulations allow detailed insight into the mechanics of the fracturing
medium and the role of its microstructure. In particular, we examine the stress
distribution around the crack tip and investigate how brittle fracture localizes into a
single line of breakages. We also confirm that pre-existing microstructural defects can
alter the course of fracture.

Key words: fingering instability, foams, interfacial flows (free surface)

1. Introduction
Foam fracture has important consequences in applications such as metal foam

manufacture (Banhart 2001), foam flotation (Farrokhpay 2011) and oil recovery
(Farajzadeh et al. 2012). In addition, liquid foams are a useful macroscale analogue
of the microscopic structure of a crystalline solid (Bragg & Nye 1947; Gouldstone,
Van Vliet & Suresh 2001), exhibiting qualitatively similar features such as dislocations,
defects or grain boundaries. In foams, the processes of deformation, plasticity and
material failure on the bubble scale are accessible in detail to modelling. This
understanding can then be used to elucidate the underlying mechanisms of fracture
operating close to the crack tip and inform new microscopic models for failure of
crystalline solids. The importance of microscopic structure details near crack tips has
been the subject of many prominent studies (Buehler et al. 2007; Guozden, Jagla
& Marder 2010; Livne et al. 2010), but experimental data are hard to obtain. Foam
experiments provide systems with relatively easily accessible length and time scales.

† Email address for correspondence: peter.stewart@glasgow.ac.uk
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Studies with bubble rafts have addressed related questions to those introduced
above (Dollet & Graner 2007; Arciniaga, Kuo & Dennin 2011; Kuo & Dennin
2013), but here we consider a scenario with more systematic control of the applied
stress: the failure of a monolayer of foam bubbles between parallel plates (a
quasi-two-dimensional liquid foam), investigated experimentally by Hilgenfeldt, Arif
& Tsai (2008). The foam propagates forwards on the application of a net pressure
drop between its ends, while the leading edge is unstable to two different mechanisms
of fracture (Hilgenfeldt et al. 2008; Arif, Tsai & Hilgenfeldt 2010, 2012), analogous
to the failure mechanisms of a crystalline solid. For low rates of application of
driving pressure, a slow ductile mode is observed, where the void propagates as
bubbles around the leading edge of the void interchange neighbours through the T1
process (Hilgenfeldt et al. 2008); photos of the experiment are shown in figure 1(a,b).
For higher rates of applied driving pressure, a rapid brittle mode is initiated, where
the void propagates by successive rupture of liquid films due to Rayleigh–Taylor
instability on the receding gas–liquid interface, with the crack oriented approximately
parallel to the pressure gradient (Arif et al. 2010); this is shown in the photos in
figure 1(c,d). In a certain parameter regime, the crack speed gradually decreases as
it propagates, and the system eventually exhibits a brittle-to-ductile transition (Arif
et al. 2012). Brittle fracture is also observed when driving with a fixed flow rate;
for example, for an aqueous foam continuously inflated in the interior, the patterns
formed by instabilities on the leading edge of the crack qualitatively resemble patterns
driven by the Saffman–Taylor instability in viscous liquids (Ben Salem, Cantat &
Dollet 2013b).

Foam fracture is accessible to modelling, using elements of fluid dynamics, stability
theory and surface chemistry; the full model is summarized in § 2. In this paper we
examine the fracture of aqueous surfactant-laden foams using a network modelling
approach pioneered by Stewart & Davis (2012) (henceforth referred to as SD) (see
also Stewart & Davis 2013) developed for understanding molten metallic foams,
extending it to include three-dimensional deformations by tracking the out-of-plane
motion of the liquid films and incorporating an explicit criterion for Rayleigh–Taylor
instability in these films using the scaling laws derived by Stewart, Davis &
Hilgenfeldt (2013). In our formulation we trace the motion of the liquid structures in
the foam (bubble vertices, Plateau borders and liquid films) using governing equations
derived explicitly from the full equations: the modelling details are explicated in § 3,
but those readers more interested in the predictions can move directly to § 4. This
network modelling approach is similar in spirit to discrete approaches for studying
fracture in crystalline solids, such as molecular dynamics models for the motion
of individual atoms (see e.g. Holian & Ravelo 1995; Buehler, Abraham & Gao
2003) or discrete models tracing the motion of dislocations (see e.g. Weertman
1996; Deshpande, Needleman & Van der Giessen 2002). In § 4 we demonstrate how
our model exhibits both ductile and brittle fracture independently depending on the
system parameters and elucidates the stress distribution around the bubble crack in
both regimes. In § 5 we show the effects of pre-existing microstructural dislocation
defects on brittle crack propagation.

2. The model
We consider the dynamics of a monolayer of monodisperse soap bubbles confined

between two parallel plates a uniform distance b∗ apart, which are uniformly wetted
with a thin film of liquid. These bubbles are separated by very thin liquid films,
lamellae, which intersect the film lining the plates in regions known as horizontal
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(a) (b)

(c) (d )

FIGURE 1. (Colour online) Typical snapshots of the two modes of fracture in an aqueous
foam. (a,b) Two snapshots of ductile fracture spaced 0.06 s apart, where the red dashed
circle indicates a T1 transition happening on the ductile crack tip. (c,d) Two snapshots of
brittle fracture spaced 0.7 ms apart, where the red dashed ellipse indicates the breaking
lamella that marks the front of the crack tip. The experimental protocol is discussed at
length in Hilgenfeldt et al. (2008) and Arif et al. (2010, 2012). The scale bar in each
panel measures 2 mm.

Plateau borders (HPBs) and intersect each other in regions known as vertical Plateau
borders (VPBs) spanning the walls of the cell (see figure 2). In experiments, VPBs
have typically three surrounding lamellae, which can be shown to minimize the
surface energy of the system. HPBs and VPBs intersect on the plates in regions
of liquid known as Plateau border nodes (PBNs). We are concerned here with low
liquid fraction, where almost all the liquid in the foam is in the PBN, HPB and VPB
structures.

The liquid is assumed to be an incompressible Newtonian fluid of constant density
ρ, viscosity µ and surface tension γ ∗, whereas the gas is an inviscid compressible
Newtonian fluid. Furthermore, we ignore the effect of gravity and other external fields.

We assume that the bounding plates delineate a channel of constant width d∗, sealed
to the atmosphere along each long edge by two other pre-wetted plates, forming a
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HPB HPB

VPB VPB

L

(a) (b)

FIGURE 2. (Colour online) Close-up of the structure of a hexagonal gas bubble in
the foam: (a) experimental image of the foam, highlighting both HPBs and VPBs;
(b) corresponding set-up of the network model, including PBNs (filled circles), HPBs
(thick lines) and VPBs (thin lines).

Hele-Shaw cell geometry where the gas–liquid foam is quasi-two-dimensional. We
further assume that this Hele-Shaw cell is open at its ends, and the foam is supported
by prescribed upstream and downstream pressures, denoted as Pu and Pd, respectively.
In equilibrium, these pressures are equal, Pu = Pd = P̆.

In cross-section, the foam is initially arranged as an array of approximately
hexagonal bubbles of side length L, with small modifications at the ends to account
for the prescribed upstream and downstream pressures. Motion of the foam is driven
by the pressure drop 1P=Pu−Pd. This set-up mimics the experimental configuration
of Hilgenfeldt and coworkers (Hilgenfeldt et al. 2008; Arif et al. 2010, 2012).

2.1. Governing equations and non-dimensionalization

We scale lengths on L, velocities on U0 = (1P/ρ)1/2 and time on L/U0. Denoting
dimensional liquid and gas pressures as p∗ and P∗, respectively, we scale pressures
according to

p∗ = (1P)p, P∗ = (1P)P, (2.1a,b)

where dimensionless variables use the same symbol without the star; in particular,
p and P represent the liquid and gas pressures, respectively. This results in six
dimensionless groups,

γ = γ ∗

1PL
, R = ρU0L

µ
, P0 = P̆

1P
, d= d∗

L
, b= b∗

L
, hl = h∗l

L
, (2.2a−f )

denoting the surface-tension parameter, Reynolds number and the baseline bubble
pressurization, respectively, as well as the dimensionless Hele-Shaw cell width and
depth, and the dimensionless film thickness. It should be noted that this is a different
scaling to that used in Stewart et al. (2013), where lengths were scaled with respect
to the typical film thickness h∗l .

In the foam fracture experiments of Hilgenfeldt and coworkers, the dimensional
driving pressure ranges between several hundred and 3000 Pa, so the parameters γ
and R vary over wide ranges. We adopt parameters typical of experiments here, with
ρ = 1000 kg m−3, γ ∗ = 0.025 N m−1, 1P = 1000 Pa, µ = 10−3 Pa s, L = 2 mm
(typical side length of the bubbles) and h∗l = 1 µm (Arif et al. 2012), so that γ =
0.0125, R = 2000, P0 = 100 and hl = 5× 10−4. In this case the observed speeds of
ductile cracks are typically 10 cm s−1, while the observed speeds of brittle cracks are
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typically 10 m s−1. This parameter regime is treated in this paper (§ 4) and is the
same as that considered by Stewart et al. (2013). It should be noted that the baseline
pressure P0 appears explicitly in the ideal gas law (3.11) below.

We introduce a Cartesian coordinate system, (x, y, z) representing the coordinate
along the channel width (06 x6 d), the channel length (the direction of driving) and
the channel depth (−b/26 z6 b/2), respectively. The applied pressure difference, and
the general direction of crack propagation, will be in the positive y direction.

Flow in the liquid phase is governed by the Navier–Stokes equations. Writing
the liquid velocity field as u(x, t) and the liquid pressure as p(x, t), these take the
dimensionless form

∇ · u= 0, ut + (u · ∇)u=−∇p+R−1∇2u. (2.3a,b)

We denote the corresponding liquid stress tensor and rate-of-strain tensor as

σ =−pI + 2R−1E, E = 1
2 [∇u+ (∇u)T], (2.3c)

respectively. For gas–liquid interfaces along g(x, t) = 0, with corresponding unit
vectors normal and tangential to the interface denoted as n̂ and t̂, respectively, we
apply the kinematic condition,

dg
dt
= 0 (g= 0), (2.3d)

and enforce continuity of normal stress in the form

−p+ P+ 2R−1n̂ · E · n̂= γK (g= 0), (2.3e)

where K is the curvature of the interface and P is the gas pressure in the bubble
adjacent to the free surface. Furthermore, we assume that the interfaces are free of
tangential stress in the form

n̂ · E · t̂= 0 (g= 0). (2.3f )

This approximation should hold for the purpose of modelling the experiments
(Hilgenfeldt et al. 2008; Arif et al. 2010, 2012), in which an abundance of detergent
was used as a surfactant, mobilizing the gas–liquid interfaces and avoiding strong
Marangoni stresses (Stebe, Lin & Maldarelli 1991; Stebe & Maldarelli 1994; Wang,
Papageorgiou & Maldarelli 1999; Fuerstman et al. 2007; Le Merrer et al. 2015).

3. Network model
The system of equations described above involves two interacting fluid phases

evolving over several length scales. Full numerical simulations of this system become
prohibitively expensive for a large number of bubbles, so, to make progress in
understanding the dynamics, we reduce to a network model in a manner similar to
SD.

Each PBN is mapped to a single point in space, where its mass is assumed to act
(shown as filled circles in figure 3); these nodes move dynamically across the plates
driven by surface-tension forces (§ 3.1). HPBs are dragged across the plate by the
motion of the attached PBNs (§ 3.2) as well as being driven by pressure drops, while
VPBs deform according to the pressure drop across the free surfaces and so can be
modelled as lines joining the nodes. Each liquid lamellar sheet is then bounded by
four Plateau borders, two HPBs and two VPBs (§ 3.2.2).

We also assume motion is symmetric in the midline z=0 (suppressing shear-induced
stretching of VPBs), so the dynamics of the network can be captured by following
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FIGURE 3. (Colour online) Plateau border nodes (PBNs): (a) three-dimensional sketch of
a trijunction PBN of side length ap and height H in the interior of the foam (M = 3,
N = 3); (b) cross-section of an interior trijunction PBN in the plane of the plates (M= 3,
N = 3); (c) three-dimensional sketch of a sidewall PBN of side length ap and height H
(M = 3, N = 2); (d) cross-section of a sidewall PBN in the plane of the plates (M = 3,
N=2). The solid curves in (a,b) represent the curved PBN surface, and the straight dashed
lines represent the enclosing tetrahedron.

only the motion of the nodes and borders on the lower plate (z = −b/2), and the
system is then analogous to the set-up in SD.

3.1. Plateau border nodes

Consider a PBN of volume Vp and total perimeter Lp as it makes contact with the
liquid film on the plates, as sketched in figure 3(a). In a similar manner to SD, we
assume that this PBN can be represented by a single point on the lower plate, xp

moving with velocity up. In general, this PBN has M gas–liquid interfaces and N
surrounding HPBs. In equilibrium, each of these gas–liquid interfaces has equal radius
of curvature in both directions, denoted as ap. Away from equilibrium, the interfacial
curvatures will necessarily be different, but, as shown in appendix A, we can express
the final governing equations in terms of ap alone.
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Denoting the driving force (in the plane of the plate cross-section sketched in
figure 3b) on each gas–liquid interface as Fpm (m= 1, . . . ,M), we pose a model for
node motion as a volume-averaged form of (2.3a,b), expressed as

dxp

dt
= up, (3.1a)

d
dt
(Vpup)=

M∑
m=1

Fpm − γ 1/3R−2/3LpK|up|2/3êp, (3.1b)

where êp is a unit vector in the direction of up, and the form of the viscous drag term
follows from the calculation of Cantat (2013), where K is a numerical coefficient. A
justification of this model is presented in appendix A.

If M = 3 and N = 3, as is the case for all ordinary PBNs in the interior of the
foam domain, the driving force Fpm (m= 1, 2, 3) is proportional to the angle swept
out between the two adjoining HPBs, which we denote as φm1 6φ6φm2 (m= 1, 2, 3),
as shown in figure 3(b) (where the angle φ is measured relative to the x axis), in the
form

Fpm =− 2
3 apγ [x̂ sin φ − ŷ cos φ]φm2

φm1
(m= 1, 2, 3). (3.2a)

A detailed justification of this force model is presented in appendix A; note that Fpm

(m= 1, 2, 3) has been scaled on 1PL2. An alternative way of obtaining (3.2a) is to
denote the outward-pointing tangent to the two HPBs surrounding interface m as tm1

and tm2 (m= 1, 2, 3) (see figure 3b), and write

Fpm = 2
3 apγ (tm1 + tm2) (m= 1, 2, 3). (3.2b)

We approximate ap by representing the PBN as a regular tetrahedron of side length
ap, so that its volume and perimeter on the plates take the forms

Vp =
a3

p

6
√

2
, Lp = 3ap. (3.2c,d)

In this network model, we assume that the volume of liquid in the PBN is unchanged
by motion of the surrounding HPBs in the elongation limit of SD. The opposite limit,
termed extrusion by SD, where the HPB exchanges mass with the PBN to maintain
a constant HPB cross-sectional area, cannot accommodate the significant elongation
of the HPB required in ductile fracture, as the fluid drains completely from the two
surrounding PBNs.

Conversely, consider M= 2 and N = 3, where the PBN is adjacent to a sidewall of
the Hele-Shaw cell (on x= 0 or x= d); a sketch of a PBN adjacent to x= 0 is shown
in figure 3(c). The total driving force in the plane of the plates has a component in
the ŷ direction only and takes the form (see figure 3d)

ŷ ·
2∑

m=1

Fpm = γ ap sin α, (3.3a)

where α is the deflection of the PBN from the x̂ axis (see figure 3 and also
appendix A for more details). We approximate ap by representing the PBN as
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half a square pyramid of side length ap, so that its volume and perimeter as it makes
contact with the plates take the form

Vp =
a3

p

6
√

2
, Lp = 4ap. (3.3b,c)

Here Lp measures the PBN perimeter on both the base and sidewall. Hence, the drag
force for PBNs along the walls of the plate is a factor of 4/3 larger than for trijunction
PBNs in the interior due to the longer perimeter in contact with the plates.

Following a film rupture (discussed below in § 3.2.2), it is sometimes convenient
to retain the redundant PBN in the calculation, as the formation of HPBs that sweep
out angles greater than π (larger than a semicircle) can cause numerical difficulties.
A sketch of the redundant PBN geometry is given in SD (figure 11). We denote this
case M = 2 and N = 2, and model its motion analogously to (3.1a),

dxp

dt
= up, (3.4a)

V2
dup

dt
=

2∑
m=1

Fpm −K2|up|2/3êp, (3.4b)

where êp is a unit vector in the direction of up and the constants V2 and K2 are
chosen so that the motion of the redundant node is always strongly overdamped (the
simulation employs V2 = 10−5γH and K2 = 0.01γH, proportional to γH as Fpm is
proportional to γH, but is not sensitive to the precise values). We model the driving
force as dependent only on the difference in the angles swept out on either side of
the two adjoining HPBs, denoted as 1φm (m= 1, 2), respectively,

Fpm = γH(−1)m1φmê12 (m= 1, 2), (3.4c)

where ê12 is a unit vector in the direction parallel to the line that originates at the
node and bisects the angle 1φ1. This type of force is discussed in more detail by SD.
In the limit where both 1φ1 and 1φ2 are close to π, then∑

m

Fpm = 2γH(t1 + t2), (3.4d)

where t1 and t2 are tangent vectors pointing away from the node along the two
adjoining HPBs.

If any two trijunction PBNs (M = 3, N = 3) come within a fixed distance D= 2ap,
we implement a T1 transition as a vertex rearrangement in the manner described in
SD. However, if a trijunction PBN comes within D of the PBNs on the sidewalls
of the cell (M = 2, N = 3 located along x= 0 or x= d), we do not implement a T1
transition but instead hold the x coordinate of the trijunction PBN fixed, so that, when
a PBN reaches the wall, it remains at the wall for the remainder of the simulation.
This assumption is used to minimize interactions with the sidewalls, and does not
influence the dynamics of fracture significantly (see discussion regarding figure 6 in
§ 4.2 below). Lastly, if any redundant PBN (M = 2, N = 2) comes within D of a
trijunction node, then the redundant node is simply removed from the calculation and
its mass added to that of the trijunction node.
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Liquid layer
on plates

Liquid 
film

x y

z z

x

y

(a) (b) (c)

FIGURE 4. (Colour online) Horizontal Plateau borders (HPBs): (a) three-dimensional
sketch of HPB geometry; (b) cross-section through the HPB midpoint in the plane normal
to the gas–liquid interfaces; (c) cross-section through HPB in the plane of the plates.

3.2. Horizontal Plateau borders and films
Consider an HPB of volume Vh(t) and total arclength Sh sketched in figure 4. We
assume that this HPB is spatially uniform with constant cross-sectional area Ah and
with uniform curvature κh(t) in the plane of the plate. A cross-section through this
structure is illustrated in figure 4(b). In equilibrium, we assume that the out-of-plane
radii of curvature of both interfaces are ah. In general, the out-of-plane radii of
curvature are different, but, as shown in appendix B, we can express the final
equations in terms of ah alone.

This HPB is dragged across the liquid layer lining the plates by the motion of the
surrounding nodes, denoted xp1 and xp2, but also experiences a local pressure drop
between the two adjacent bubbles, denoted 1Pl, which causes additional deflection
to the HPB curvature. We denote the midpoint of the straight line between the two
adjoining PBNs on the lower plate as xh0 = (xp1 + xp2)/2 and hence denote the HPB
midpoint in the laboratory frame as xh = xh0 + xhn̂h, where n̂h is the unit vector
normal to (xp1 − xp2) in the plane of the plate (cf. appendix B). Here we compute
the curvature of the HPB in the plane of the plates from the deflection xh using

κh = sgn(xh)

(
L2

h

8|xh| +
|xh|
2

)−1

, (3.5)

where Lh= |xp1− xp2|. This equation follows from simple geometry, where 1/κh is the
radius of the circular segment, with Lh as its chord length and xh as its height.

In § 3.2.2 we also track the deflection of the centre of the lamella from the
projection of the centre of the HPB onto the midplane of the channel, which we
denote as xl, as shown in figure 4.

The equations of motion for the HPB will, in general, contain inertial terms that
are important in our modelling of the brittle regime of fracture. In the ductile regime,
however, we find that inertia is negligible throughout, so that the computations can
be significantly sped up by a simplified version using a quasi-static model for HPB
bending, which we discuss first. It should be noted that our assumption of uniform
HPB curvature is restrictive for fast-moving systems: simulations of the viscous froth
model obtain highly non-uniform HPBs (Green et al. 2006, 2009; Grassia et al. 2008).
However, tracking these non-uniform structures is extremely expensive numerically
and the assumption of uniform curvature is used here for tractability.
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3.2.1. Ductile HPB model
In the ductile regime, we consider a quasi-static model for the HPB curvature that

neglects the out-of-plane motion of the films entirely (xl=0 in figure 4). In this model
the in-plane HPB curvature, κh, instantaneously balances the applied pressure drop
according to the Young–Laplace law,

1Pl = 2γ κh, (3.6)

similar to SD. As demonstrated below, the time scales for HPB motion in ductile
fracture are never fast enough to inject significant inertial effects into this force
balance. This formulation also ignores viscous effects in the HPB.

3.2.2. Brittle HPB and film model
In the regime of much faster brittle fracture, HPBs near the crack will experience

rapid acceleration, and inertial terms become important. We consider a dynamic model
for the evolution of the HPB midpoint in the form of a scalar equation,

n̂h ·
d
dt

(
Vh

dxh

dt

)
= Lh

(
ah
(1Pl − 2γ κh)

cos β
+ 2γ sin β

)
− γ 1/3R−2/3LhKn̂h · êh

∣∣∣∣dxh

dt

∣∣∣∣2/3 , (3.7)

where êh is a unit vector in the direction of ẋh, β is the angle that the tangent to
the lamella attached to the HPB makes with the horizontal plate (see figure 4) and
κh is as defined in (3.5). This equation is justified in appendix B. Equation (3.6) is a
fixed point of (3.7) with β = 0. Note that, in this bending model appropriate for the
brittle regime, we assume that the arclength of the HPB can be approximated by the
straight-line distance between the two end points (Sh ≈ Lh) and we neglect the time
rate of change of the unit normal n̂h as subdominant effects. The first term on the
right-hand side represents the driving force due to the applied pressure drop across
the HPB, while the second represents the drag force as the HPB is pulled across the
precursor film by the motion of the PBNs attached at both ends and follows from
Cantat (2013).

In the brittle regime, we also consider the out-of-plane motion of the liquid films
attached to the HPBs spanning between the plates. A liquid lamella of uniform
thickness hl � 1 and surface area Al = Lhb is attached to two HPBs both with
midline curvature κh (due to symmetry, see figure 4b) and with out-of-plane curvature
κp. In a similar manner to the HPBs, we capture the out-of plane deformation by
considering the deflection of the lamellar midpoint relative to xl0 = xh + (b/2)ẑ,
such that xl = xl0 + n̂hxl (cf. figure 4 and appendix B). The scalar equation for this
out-of-plane displacement is then

n̂h ·
d
dt

(
Alhl

dxl

dt

)
= Al(1Pl − 2γ (κh + κp))− AlKl

hlR
n̂h ·

dxl

dt
, (3.8a)

where Kl is a constant representing the internal viscous damping in the film as it
elongates, this damping being linearly proportional to the velocity of the out-of-plane
deflection in the frame of the plates. This drag force also accounts for the resistance
in the VPBs along two edges of the lamellar sheet. For simplicity, we assume that
the thickness of the film, hl, remains constant throughout its motion. The curvature
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of the liquid lamella can be calculated approximately from its end points xp1 and xp2
and midpoint xl as

κp = sgn(xl)

(
b2

8|xl| +
|xl|
2

)−1

. (3.8b)

In this formulation the deflection of the film centre from the HPB midpoint is small,
where −b/2 6 xl 6 b/2. Note that in the ductile regime the net driving force on the
liquid film midline is always identically zero due to (3.6), so the films remain uniform
in the out-of-plane direction, and equations like (3.8) are not needed.

As a liquid lamella is accelerated by the driving pressure, its gas–liquid interfaces
can become unstable via the Rayleigh–Taylor mechanism. For example, Keller &
Kolodner (1954) considered the stability of a long (two-dimensional) liquid film
of ideal fluid (without surfactant) with initially flat interfaces as it is uniformly
accelerated by an applied driving pressure. Expressing their results in our notation,
the interfaces are long-wavelength unstable when the perturbation wavelength exceeds
the critical value λc,

λc = 2π

(
hlγ

1Ps

)1/2

, (3.9a)

where 1Ps is a measure of the excess pressure across the film. In our case we
calculate 1Ps =1Pl − 2γ (κh + κp). In Stewart et al. (2013) the stability calculation
is generalized to a long thin viscous sheet with parameter values pertinent to the
experiments of Arif et al. (2012), demonstrating that in this case the Rayleigh–Taylor
instability is well approximated by the inviscid limit (hlR� 1), where the maximal
growth rate σm from Keller & Kolodner (1954) can be approximated for γ /hl � 1
as

σm =
{
(2hlγ )

−1/21Ps, Lh > λc,
0, Lh < λc.

(3.9b)

Similar Rayleigh–Taylor growth laws were also used by Bremond & Villermaux
(2005) to explain bursting of accelerated soap films in a shock tube. To capture film
breakage, we assign an initial small perturbation η to the lamellar thickness with
initial value η(0)= η0� hl. We estimate a lower bound for η0 by considering thermal
effects alone, equating the energy scale kBT of thermal fluctuations to the additional
surface energy obtained by deforming a film interface. This computation results in an
estimated dimensional perturbation of ≈0.8 nm, and we therefore adopt a numerical
value of the same order of magnitude, η0= 0.001hl. For computational simplicity, we
assume that the stability calculation of Keller & Kolodner (1954) (for an unbounded
film) can be used to approximate the growth of Rayleigh–Taylor instability in these
foam lamellae when the critical wavelength for instability is less than the length
of the film. Hence, the fastest perturbation growth occurs at the rate σm (given by
(3.9b)), so that

dη
dt
= σmη−Ks(η− η0), η> η0. (3.10)

We have here modified the growth of the perturbation by a damping term, taking
into account that the films between bubbles do not remain uniform flat sheets (with
perturbations) in a driven foam, but show considerable, fast deformation of their
outline, which leads to additional friction that will tend to counteract the perturbation
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growth. We assign Ks as a constant damping parameter, active when η grows beyond
η0 because the same acceleration that deforms the film also drives the perturbation. In
cases where Ks >σm, the damping will overwhelm the growth of the perturbation and
the film will remain stable, and hence never rupture. But in the brittle simulations
below (§§ 4.3 and 5), we focus on a parameter regime where at least some of the
films are unstable. The film is modelled to rupture when the perturbation η becomes
equal to the lamellar thickness hl. In this formulation the film thickness is assumed
to remain fixed, although in practice the thickness will decrease slightly as the film
midline is deflected. In the simulations below we highlight that this deflection is
very small during brittle fracture, so this assumption of constant thickness does not
influence the results significantly. This formulation also prohibits Rayleigh–Taylor
instability during ductile fracture, where 1Ps is always uniformly zero through (3.6).

3.3. Post-rupture rearrangement
Following the rupture of a liquid film, the now-redundant PBNs (M = 2, N = 2)
on either side must rearrange due to a surface-tension force, eventually ‘dissolving’
into new HPBs formed from merging the other two HPBs previously attached to
either node. In the brittle fracture experiments of Arif et al. (2010, 2012), it is
observed that this post-rupture rearrangement occurs very rapidly, with the new HPBs
becoming uniformly curved on a time scale comparable to that between successive
film breakages. For simplicity, we therefore impose that the rearrangement occurs
instantaneously, with the two pairs of HPBs combined together into new HPBs with
uniform curvatures that exactly balance the pressure drops between the respective
bubble and the crack opening with no out-of-plane deformation. The new HPB
curvature is determined using a Newton–Raphson method, where the pressure in
the off-crack bubble is calculated at each step based on the volume of the bubble
using (3.11) below. Furthermore, we reset the new film perturbation to its initial
value, since any accumulated growth of the instability will be washed out by the rapid
rearrangement of liquid. It should be noted that in rare cases a newly rearranged HPB
can adopt an equilibrium curvature greater than a semicircle, inducing an ambiguity
in the area of the corresponding segment. In this case we retain the redundant
node at the midpoint of the newly formed HPB, and in the simulations we use the
overdamped model (3.4) to evolve this point.

3.4. Gas bubbles
We compute the pressure in bubble j (j is a global index spanning all the bubbles in
the foam) using the polytropic equation of state,

PjV
γg
j = P0Vγg

j0 , (3.11)

where Pj and Vj are the pressure and current volume of bubble j and V0j its initial
volume, and γg is a constant; γg = 1 is the isothermal limit, considered for ductile
simulations reported in § 4.2, while γg = 7/5 is the adiabatic limit for air, considered
for the brittle simulations reported in § 4.3. In this latter case, the fast dynamical time
scales in bubbles near the crack tip necessitate the adiabatic approximation, while it
introduces no great error for bubbles farther away. In our model we calculate the
total volume of a bubble from the locations of the points of each constituent PBN
and the curvature of each surrounding HPB and liquid lamella, in a similar manner
to SD. As the time scales of either fracture mode are short compared to those of
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diffusive coarsening (Hilgenfeldt, Koehler & Stone 2001; Koehler, Hilgenfeldt & Stone
2001), we assume that gas does not diffuse between the bubbles across the liquid
films. The driving pressure upstream is assumed constant throughout, ignoring the
small changes in the mass of gas in the upstream region that occur as a bubble is
absorbed into the crack through a film rupture. It should be noted that, while (3.11)
does not explicitly enforce incompressibility of the bubbles, the large baseline pressure
means that changes in volume during motion remain very small.

3.5. Deviatoric stress
Beyond the pressure distribution in the foam, we can explore other stress components
in the model. We estimate the microscopic stress tensor (per bubble) following the
method outlined by Edwards & Grinev (1999) for disordered granular arrays. For the
gas bubble with index j, with nj surrounding PBNs and HPBs/films, we denote xj

as the geometric centre of the nj surrounding PBNs located at xjs (s = 1, . . . , nj)
and construct the displacement of each vertex relative to xj as rs = xjs − xj (s =
1, . . . , nj). At each PBN we then compute the surface-tension force (3.2a) acting
along the HPB/film that does not form an edge of bubble j, represented as f s =
[2γ cosφs, 2γ sinφs, 0] when the tangent to the HPB/film at the PBN is oriented at an
angle φs relative to the unit vector in the x direction, denoted x̂. Following Edwards
& Grinev (1999) we then compute the components of the microscopic stress tensor
for bubble j in the form

Σ
j
αβ =

1
2
(T j

αβ + T j
βα), T j

αβ =
1
Aj

nj∑
s=1

fsαrsβ . (3.12)

Note that the moments have been normalized on Aj, the area of the bubble j in the
plane of the plates. When the foam is in equilibrium, we expect T j to be symmetric,
but slight deviations due to dynamical effects require the symmetrization of Σ j. In the
results below we consider the deviatoric stress per bubble,

Sj =Σ j − 1
2 Tr(Σ j). (3.13)

We compute the principal stresses λj
1 and λj

2 and their corresponding principal
directions using the eigenvalues and eigenvectors of Sj. In the results below, we
consider the change in these principal stresses during foam fracture and illustrate
them as a map across the entire foam. We do not use this approach to compute the
stress in the bubbles adjacent to the rigid sidewalls since the force adhering the PBN
to the wall is not accounted for explicitly in the model. In addition, we compute the
maximum deviatoric stress exerted on each bubble,

S
j =
√
−det(Sj)> 0, (3.14)

as a global measure of elastic stress associated with volume-conserving deformations
(or nearly volume-conserving ones). Another approach for understanding the elastic
stress distribution would be to construct a texture tensor for the deforming foam
(Aubouy et al. 2003), but this is not considered here.
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3.6. Numerical method
The temporal evolution of the network-model structure is accomplished by
simultaneous numerical solution of equations (3.1a) (with forces given by (3.2a)
and (3.3a)), (3.6) and (3.11) in the ductile case; and of equations (3.1a) (with forces
given by (3.2a) and (3.3a)), (3.4a) (with forces given by (3.4c)), (3.7), (3.8), (3.10)
and (3.11) in the brittle case.

The numerical method employs solver ode15s in MATLAB, using event tracking in
a manner similar to SD. In particular, events of interest include T1 transitions when
any two nodes come within the distance D� 1, or film rupture when the perturbation
to the lamellar interface becomes equal to the film thickness.

4. Results
4.1. Equilibrium configuration

In simulations, we employ parameter values comparable to those in the experiments
of Arif et al. (2012), with surface-tension parameter γ = 0.0125, Reynolds number
R = 2000, baseline bubble pressurization P0 = 100 and dimensionless channel width
b= 0.5. For bubbles in the interior, the initial volume of gas is chosen to correspond
to a regular hexagon of side length 1, Vj0= 3b

√
3/2; and for bubbles on the sidewalls,

we have V0 = 5b
√

3/4. Also, in agreement with the typical experimental foam liquid
fractions of 0.5 %–2 %, we choose the initial HPB and PBN radii of curvature as ah=
0.1 and ap = 2ah = 0.2, respectively, and set the initial thickness of the lamellae as
hl = 5× 10−4. We also set the threshold for topological transition as D= 2ah = 0.2.

We consider an initial configuration composed of 191 hexagonal bubbles in
a domain 11 bubbles wide and between 16 to 18 bubbles long with a spatial
inhomogeneity (or notch) on the leading edge of the foam which is off-centre
between the two sides of the channel. The notch is inspired by experiments, where
the localized injection of air into the foam leads to an initially inhomogeneous driving,
favouring crack initiation at a certain x coordinate varying from run to run. As in
experiment, we find that a notch helps the crack attain a stable propagation over a
shorter time.

We begin by computing a static equilibrium of the system, where all the VPBs
and films are perpendicular to the plates, displayed in figure 5(a). The corresponding
gas pressure distribution in the bubbles is shown in figure 5(b), alongside the spatial
distribution of the gas pressure along the midline of the channel (x = d/2). The
corresponding maximal deviatoric stress in the initial configuration is shown in
figure 5(c); note the non-zero stress values in the non-hexagonal bubbles along the
leading and trailing edges of the foam.

Having established an equilibrium configuration, we apply a driving pressure to the
foam (assuming that all structures in the foam are initially at rest) by incrementing the
pressure in the upstream bubble by one (dimensionless) unit, which causes the entire
foam to propagate forwards and the bubbles on the upstream leading edge to rearrange
by deforming the Plateau borders and the lamellar sheets. The driving pressure is
increased linearly over a ramping time interval tR according to

Pu =
{

P0 + t/tR (0 6 t 6 tR),

P0 + 1 (t> tR).
(4.1)

Note that a difference in ramping time is the main distinction between ductile and
brittle crack propagation in the foam experiments (Hilgenfeldt et al. 2008; Arif et al.
2010). As in fracture of metals capable of brittle and ductile crack propagation, the
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FIGURE 5. (Colour online) Initial conditions for the foam simulations using P0= 100 and
γ = 0.0125: (a) geometry of the foam; (b) pressure distribution in the bubbles (subtracting
the baseline pressure P0); (c) maximal deviatoric stress in the bubbles. The cross in each
bubble illustrates the principal directions of deviatoric stress.

distinguishing control parameter is the rate of applied stress (Hirsch & Roberts 1997),
with large rates (small tR) leading to brittle and small rates (large tR) leading to ductile
failure. We now consider the propagation of ductile (§ 4.2) and brittle (§ 4.3) fracture
through the foam.

4.2. Ductile fracture
In the ductile fracture experiments, the driving pressure increases slowly (tR = 100).
Also, the eventual ductile crack (analogous to the finger of a Saffman–Taylor
instability (cf. Saffman 1986; Ben-Amar & Poire 1999)) represents a region of
increased pressure whose difference from the ambient pressure decays uniformly
throughout the medium in front of the crack tip. Thus, the expected pressure
distribution in the foam during ductile crack propagation has a linear profile with
constant pressure drop per bubble. In order to choose a pressure drop per bubble
consistent with the experimental situation, where the length of the foam is typically
100 bubbles, our simulations for foams of 16–18 bubble length must therefore have a
correspondingly smaller pressure drop 1Pd with 0<1Pd 6 1. Thus, we replace (4.1)
by the modified ramping protocol

Pu =
{

P0 +1Pd t/tR (0 6 t 6 tR),

P0 +1Pd (t> tR).
(4.2)
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FIGURE 6. (Colour online) Ductile fracture of an aqueous foam for γ =0.0125, R=2000,
K = 4.94, D= 2āh and P0 = 100 with γh = 1 (isothermal). (a–c) Snapshots of the tip of
the ductile crack at three approximately equally spaced time intervals. (d) The location of
T1 events relative to the position yf (the y coordinate of the most advanced node at the
crack tip) in the time interval 225 6 t 6 275, distinguishing those T1s that occur on the
crack tip (filled circles) from those in the interior of the foam (crosses). (e) The crack tip
position yf , where the open circles indicate the times of panels (a–c). (f ) Snapshot of the
entire foam at the time point labelled (c).
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To simulate ductile fracture, we apply the pressure ramping 1Pd = 0.15 units
(0.009375 per bubble) slowly over tR = 100. We employ the quasi-static model
for HPB bending described in § 3.2.1 and use the PBN damping parameter K = 4.94,
consistent with the predictions of Cantat (2013) in the limit of zero tangential stress
on the gas–liquid interfaces, based on the earlier work of Bretherton (1961) for a
closely fitting bubble moving in a capillary tube. The scaling laws elucidated by this
work were verified experimentally for low propagation speeds by Dollet & Cantat
(2010). The other damping coefficients are not needed in the ductile case.

In figure 6(a–c) we show three snapshots of the crack tip during a ductile fracture
at approximately equally spaced time intervals (cf. figure 6e). The full profile of
the foam at t = 350 (corresponding to figure 6c) is also shown in figure 6(f ). As
the driving pressure is applied to the foam, the HPBs on the leading edge adjust
their curvatures (figure 6a), altering the angles swept out around the adjacent PBNs,
permitting a net driving force on those nodes in the direction of driving. As the foam
advances, the initial imperfection on the leading edge is expanded and undergoes
several T1 transitions in the bulk as a ductile crack forms (figure 6b,c). The positions
of these T1 events in the time interval 2256 t 6 275 (between (b) and (c)) are shown
in figure 6(d), with the y coordinates given relative to the y position of the crack tip
yf . We observe 24 T1s in this interval (five on the tip of the crack), a number that
is consistent with the geometric requirement of repositioning the bubbles initially in
front of the crack towards its sides. The crack, with a width of ≈9 units, advances
approximately 6.3 units during this time interval relative to the most upstream point
on the leading edge of the foam, so that an area of ≈57 units has to be swept clear
of bubbles by T1 transitions. Given that a regular hexagonal bubble has an area of
3
√

3/2, this corresponds to approximately 22 bubbles. In figure 6(e) we show the
position y= yf of the farthest-advanced leading-edge PBN as a function of time. The
length of the ductile crack increases continuously and its speed of propagation during
its interval of uniform lengthening translates into ≈0.1 m s−1, consistent with ductile
crack propagation speeds measured in experiment (Hilgenfeldt et al. 2008; Arif et al.
2010). The corresponding y position of the midpoints of the bubbles marked as A
and B (figure 6f ) are also shown for comparison. These illustrate how bubbles that
become entrained in the crack-tip advance are then left behind as the tip passes (but
the foam is still translating as a whole). In the example of figure 6, the foam exhibits
a total of 135 T1 events before the lamellae and HPBs along the trailing edge (i.e. the
edge of the foam along which it meets the ambient pressure at the downstream end)
of the foam become so distorted that they bulge outside the domain (t ≈ 365); the
simulation is halted at this point. These dynamics of ductile fracture are in qualitative
agreement with the experiments of Arif et al. (2010, 2012). Early in the simulation
the crack tip approaches very close to the rigid wall, where our assumption that
the edge films cannot undergo T1 transitions results in somewhat elongated HPBs
along the sidewall (figure 6f ). However, at later times the crack becomes confined to
the centre of the channel (figure 6c,f ) and the lengths of the films attached to the
sidewalls are always much longer than the T1 threshold in the vicinity of the crack
tip. This effect would be further suppressed in wider computational domains, but this
is not considered in the present study.

Figure 7(a,b) presents a colour map of the corresponding gas pressure distribution
for the entire foam at the two snapshots in figure 6(a,c). To the right of each panel
we also plot the pressure distribution averaged across the x coordinate. As expected,
we observe a linear pressure in the bubbles ahead of the crack tip, with the pressure
decreasing from P0 + 1Pd to P0. Conversely, the bubbles behind the crack tip are
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FIGURE 7. (Colour online) Gas pressure and maximal deviatoric stress for the ductile
fracture example shown in figure 6. Colour maps of: (a) pressure distribution in the foam
at point (a) labelled on figure 6(e) (subtracting the baseline pressure P0); (b) pressure
distribution at point (c) in figure 6(e) (subtracting the baseline pressure P0); (c) maximal
deviatoric stress distribution at point (a) labelled on figure 6(e); (d) maximal deviatoric
stress distribution at point (c) in figure 6(e). In (c,d) the lines represent the magnitude and
direction of the principal elastic stresses. To the right of each panel we further illustrate
the distribution of the gas pressure (a,b) and maximal deviatoric stress (c,d) averaged over
the x coordinate, denoted with an overbar.
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in approximate equilibrium with the driving pressure (P0 + 1Pd). As expected, the
pressure variations in figure 7(a,b) are much greater than in the initial configuration
shown in figure 5(b). The distribution of maximum deviatoric stress S

j
in the foam

during ductile fracture is shown in figure 7(c,d) at the same time intervals, along with
plots of S

j
averaged in the x direction (ahead of the crack only). We observe a zone

of stress concentration ahead of the tip with an extent of approximately five bubbles.
For longer distances ahead of the tip, the stress profile relaxes to a plateau value
determined by the friction against the sidewalls. Near the downstream end of the foam,
the stress rises sharply, corresponding to the deformations in bubbles accommodating
the boundary of the foam.

As the ductile fracture propagates through the foam, the surrounding bubbles
are distorted by the motion of the crack tip before subsequently relaxing back to
equilibrium shapes once the tip has progressed sufficiently far downstream. These
dynamical deformations are accessible in full detail to our modelling. In figure 8
we consider the elastic stresses induced by this deformation for a particular bubble
highlighted with an asterisk in figure 6(a) (using the methodology described in
§ 3.5). In figure 8(a–c) we illustrate the direction and magnitude of the principal
elastic stresses in the bubble of interest and those surrounding it at the three times
indicated in figure 6(e), computed from (3.12). Positive (negative) principal stresses
indicating elongation (compression) in that direction are shown as thick (thin) lines.
In figure 8(d), we record the pressure in the bubble of interest. Its dynamics is
largely dominated by the overall pressurization of the foam, with an approximately
linear increase as the driving pressure is applied according to (4.2), and a settling to
an equilibrium pressure comparable to the applied upstream pressure for long times.
But prominent features are also present at two times when the bubble is involved in
T1 transitions as the crack tip passing close by necessitates rearrangements, firstly
gaining an extra edge (t ≈ 152.6), then losing one (t ≈ 219.6). Gaining (losing)
an edge leads to a decrease (increase) in bubble pressure, in agreement with von
Neumann’s law. Such microstructural features are much more prominent when the
maximum shear stress is probed: figure 8(e,f ) shows the absolute difference between
the principal elastic stresses λ1,2 as a function of time. On top of a gradual buildup
and subsequent relaxation of elastic stress as the crack tip passes, we notice a rich
structure that, in a single bubble, reflects much of the plastic deformations occurring
in its vicinity. Aside from the two T1s that this bubble is directly involved in, the
close-up in figure 8(f ) shows that smaller features in the principal stress difference
correlate perfectly with the times of T1 events occurring within 6 length units of
the bubble centre (each marked with an ×). This figure illustrates that T1 transitions
normally serve to relax deviatoric stresses on a bubble by making it closer to isotropic,
although the magnitude and duration of this relaxation can vary widely depending on
where the T1 takes place.

4.3. Brittle fracture
To simulate brittle fracture of the foam, we apply the pressure ramping (4.1) quickly
over a short time interval tR = 0.1. In this case we solve the dynamic model for
the HPB rearrangement (3.7) and the motion of the attached liquid films (3.8), as
detailed in § 3.2.2. The rapid motion of liquid elements in the vicinity of a brittle
crack tip gives rise to more sources of dissipation, and potentially more complicated
fluid flows (boundary layers, flow separation, etc.), than the Bretherton-like motion
captured by these equations (which assumes Stokes flow). However, in the absence
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FIGURE 8. Stress induced for the ductile fracture simulation shown in figure 6 in a
bubble to the side of the main crack, labelled with an asterisk in figure 6(a). (a–c) These
three snapshots of the bubble of interest display the approximately equally spaced times
marked (a)–(c) on figure 6(e). The lines represent the magnitude and direction of the
principal elastic stresses (thick lines represent extension, thin lines compression). (d) The
corresponding gas pressure in the bubble of interest. (e) The absolute difference between
the principal elastic stresses in the bubble of interest. (f ) Close-up of (e) for the time
interval 200 6 t 6 260, where the points marked with a cross correspond to a T1 event
occurring within 6 length units of the bubble centre. In (d,e) the times of T1 events
involving the bubble of interest are highlighted by arrows.
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of a better, more quantitative approximation, we continue to use the value K = 4.94
from Cantat (2013) and used in § 4.2. Furthermore we set the out-of-plane damping
on the film motion to Kl = 0.5. To incorporate breakage of films by the Rayleigh–
Taylor mechanism, we utilize the approximate perturbation growth rate (3.9b) (Keller
& Kolodner 1954) and impose a modest damping on the growth of the perturbation,
Ks = 15. A value of this order avoids unrealistically long ‘ringing’ of destabilizing
film oscillations, which are absent in experiments (Arif et al. 2010, 2012), whilst too
large damping will prevent all crack propagation.

In figure 9(a–c) are shown three snapshots of brittle fracture at approximately
equally spaced time intervals. Correspondingly, in figure 9(d–f ) we illustrate the
same snapshots but instead shade the films according to their net (dimensionless)
acceleration 1Ps/hl, where heavier shading represents larger acceleration. As the
driving pressure is applied, all the films on the leading edge of the foam experience
large driving pressures (much greater than the Laplace–Young pressure) and are
accelerated forwards, meaning that they are susceptible to Rayleigh–Taylor instability.
The perturbation grows most quickly in the film directly ahead of the inhomogeneity
(notch) on the leading edge of the foam, promoting its rupture ahead of the others.
This film breakage enlarges the notch into a crack along the line of driving, which
we henceforth refer to as the primary crack (figure 9a). Several other films along
the leading edge also rupture, forming a number of secondary cracks. However,
as elucidated below, a combination of perturbation damping and pressure changes
around the crack tip (driven by the post-rupture rearrangement) eventually suppresses
the elongation of the side cracks (figure 9c) and the void localizes to a single line
of breakages along the main crack in direct agreement with the experiments of Arif
et al. (2010) and Arif et al. (2012). The parameter Kl (appearing in (3.8)) plays an
important role in localizing the brittle fracture into a single line of breakages: if
chosen too small, the pressure changes ahead of the crack quickly suppress fracture
propagation, whereas if chosen too large, a number of secondary cracks propagate in
the foam at close to the speed of the main crack.

The corresponding position of the crack tip y= yf (t) is displayed in figure 10. As
expected from the dynamics, the primary crack elongates in discrete steps, where
the open circles correspond to the snapshots shown in figure 9. Very quickly, the
intra-breakage time becomes very nearly constant and the crack speed uniform
(figure 10). This indicates that the crack propagates steadily with a mechanical
environment around the crack tip that translates faithfully along the crack path every
time a film is broken. We estimate this speed of propagation by calculating the
slope of the stepwise structure, as shown by the dashed triangle on figure 10. In
dimensional units, the corresponding fracture speed is ≈40 m s−1, consistent with the
order of magnitude of the speeds experimentally observed Arif et al. (2010, 2012).

Figure 11 further underlines the strongly localized character of the brittle crack
tip. Figure 11(a,b) shows two snapshots of the entire foam (at the points labelled
(a,b) in figure 10), with the bubble pressure distribution colour-coded, along with
x-averaged pressure profiles. As the primary crack advances, the increase in pressure
is transmitted through the structure, with the transition between the initial pressure
(≈P0) and the driving pressure (P0 + 1) taking place in a narrow boundary layer
(figure 11a,b) of approximately five bubbles width. Note also how the pressure
isolines tend to follow the regular lattice of the foam, indicating that microstructure
is important for the details of this pressure wave transported at the speed of the brittle
crack tip. This is a striking illustration and confirmation of the finding Arif et al.
(2010, 2012) that brittle cracks in foams are supersonic (cf. Guozden et al. 2010),
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FIGURE 9. (Colour online) Brittle fracture of an aqueous foam for γ = 0.0125, P0 = 100
and R = 2000 using K = 4.94, Kl = 0.5 and Ks = 15 while γh = 7/5 (adiabatic), with
the pressure ramped linearly according to (4.1). (a–c) Three snapshots of the foam at
approximately equally spaced time intervals, highlighted on figure 10 with open circles.
Crosses indicate the position xl for each film in the plane z = 0. (d–f ) Colour maps of
the films, where the shading corresponds to the local film acceleration (heavier shading
corresponds to larger acceleration).
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FIGURE 10. Length of the main brittle crack as a function of time for γ = 0.0125,
P0 = 100, R = 2000 and Ks = 15, where the open circles correspond to the snapshots
highlighted in figure 9.

outrunning relaxation of stress and pressure in the bulk of the foam and constantly
re-establishing a localized stress distribution around their tips.

By contrast, figure 11(c,d) illustrates, by a colour plot of the maximum deviatoric
stress and its x-averaged magnitude at the same time points, that bubble deformation
caused by crack propagation is exclusively confined to the boundaries of the foam
and of the newly generated crack. This confirms the brittle character of this type of
material failure. A static signature of increased deviatoric stress can be seen towards
the upstream boundary of the foam, but it remains unchanged until the brittle crack
has reached that boundary, again confirming the supersonic character of propagation.
It is interesting to note that, even far upstream of the crack tip, the aftermath of the
passing crack leaves a significant amount of noise in the x-averaged deviatoric stress
(correlated with the tips of secondary cracks, figure 11c,d).

The detailed simulation developed here gives further insight into the microscopic
mechanism of successive film rupture by which the brittle crack elongates. In figure 12
we focus attention on a small region of the foam in and around the main brittle crack.
Six snapshots of the propagation are shown in figure 12(a–f ) at the six time points
labelled with open circles in figure 12(h) (shown just before rupture occurs), while
in figure 12(g) we plot the gas pressure in the three bubbles labelled A–C in the
line of driving as a function of time and the corresponding temporal growth of
the perturbation in the six rupturing films labelled (i)–(vi) (figure 12h). It can be
appreciated that the instabilities of successive films are proceeding simultaneously
and reach the critical perturbation strength at regular time intervals that, when
converted to dimensional quantities, are approximately 80 µs, close to experimentally
measured values (Arif et al. 2010). Also in agreement with those experiments, the
final, greatest increase of perturbation growth in a given film occurs after the film
directly behind has ruptured (observe how the dotted lines indicating these ruptures
in figure 12(h) occur simultaneously with the kinks in the curves indicating abruptly
increased acceleration).

Figure 12(i), by comparison, plots the gas pressures in the two bubbles labelled D
and E to the right of the main crack, with the corresponding temporal growth of the
perturbation in the film labelled (vii) between them shown in figure 12(j). The pressure
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FIGURE 11. (Colour online) Gas pressure and maximal deviatoric stress for the brittle
fracture example shown in figure 9. Colour maps of: (a) pressure distribution in the foam
at point (a) of figure 10(a) (subtracting the baseline pressure P0); (b) pressure distribution
at point (b) in figure 10(a) (subtracting the baseline pressure P0); (c,d) maximal deviatoric
stress distributions at these same time points, respectively. In panels (c,d) the lines
represent the magnitude and direction of the principal elastic stresses. To the right of each
panel we further illustrate the distribution of the gas pressure (a,b) or maximal elastic
stress (c,d) averaged over the x coordinate, denoted with an overbar.
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FIGURE 12. Brittle fracture propagates by successive film rupture. (a–f ) Six snapshots of
the foam in the line of driving. (g) Pressure in the bubbles labelled A–C in (a) along the
line of driving. (h) Perturbation dynamics in the films labelled (i)–(vi) in (a) in the line
of driving; circles indicate points of rupture while dotted lines indicate the times of panels
(a–f ) at the instant before rupture occurs. (i) Pressure in the bubbles labelled D and E
to the right of the main crack; note that the pressure spikes arising due to instantaneous
rearrangement of the HPBs induce an increase in bubble pressure. (j) Perturbation growth
in the film labelled (v) to the right of the main crack; this film does not rupture. Crosses
in (a–f ) indicate the position xl for each film in the plane z= 0.
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in these bubbles shows characteristic peak signatures when the neighbouring bubbles
suffer a film breakage and the fluid from the rupture rearranges. For example, the
pressure in bubble D rises quickly once film (ii) has ruptured (figure 12i), which drives
a large acceleration of film (vii) (figure 12j), causing the perturbation in this film
to grow. However, the pressure difference is suppressed once film (iii) has ruptured,
the perturbation in film (v) is damped out and the film remains intact. This intricate
interplay of pressures and accelerations shows that the local environment of every
bubble and every film is important for its fate during fracture.

5. Brittle fracture close to a microstructural defect

Our network model elucidates the role of microstructural elements in setting the
direction and speed of foam fracture in a regular hexagonal array, in qualitative
and semi-quantitative agreement with the experiments. Given the importance of the
precise arrangement and orientation of the microstructure, our model can be further
interrogated for the effects of irregularities in the foam. An important question
of practical relevance is how propagating brittle cracks interact with structures of
pre-existing disorder in the fracture path (Shilo et al. 2002; Sherman & Be’ery
2004). To this end, we introduce topological defects in the foam structure described
in figure 5 by enforcing two T1 transitions in two non-neighbouring films directly
ahead of the initial notch in the line of driving and then allow the system to find
a new static equilibrium. The resulting structure has two dislocation defects (two
pairs of bubbles with seven and five sides). Assuming that all the bubbles have an
equal mass results in two very short HPBs in the new equilibrium, joining the seven-
and six-sided bubbles. To overcome this effect, we increase (decrease) the mass in
the seven-sided (five-sided) bubbles by 20 % and recompute the static configuration,
shown in figure 13(a) along with the corresponding bubble pressure distribution
(figure 13b) and the maximal deviatoric stress in the foam (figure 13c). Note that
the presence of defects imposes significant static pressure differences in and around
their locations, consistent with what can be expected from von Neumann’s law (von
Neumann 1952). They also lead to bubble deformations comparable to those near the
initial notch (figure 13c). The applied pressure differences of a brittle fracture are,
however, much larger than these static imprints (cf. figure 12). Note that the maximal
deviatoric stress in the pentagonal bubbles is quite small, as these smaller-volume
bubbles with higher internal pressures can attain isotropic regular shapes: the pressure
difference between the small bubble and any of its neighbours is typically larger than
the pressure differences between the neighbours themselves.

We consider brittle fracture of the initial defect configuration shown in figure 13(b)
using the same ramping protocol (4.1) with tR = 0.1. In figure 14 we illustrate six
snapshots as the brittle crack propagates through the foam close to the defect at
the six time points labelled with open circles in figure 14(h) (shown just before
rupture occurs). The brittle fracture initiates as a straight line of film breakages
in the direction of driving originating at the notch similar to figure 9 (figure 14a).
Upon encountering the first defect (film (i), figure 14b), the crack has now reached
a seven-sided bubble ahead with a lower gas pressure than all those around, so the
crack propagates into this bubble and remains approximately straight (figure 14b).
In a similar manner, the crack propagates by rupturing film (ii) into the irregular
hexagonal bubble directly ahead, between defects (figure 14c). Next, the crack now
encounters a five-sided bubble (second defect) directly ahead, which has a larger
pressure than those in the bubbles to either side, so that the next film to rupture
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FIGURE 13. (Colour online) Initial configuration for a pair of dislocation defects in the
foam structure directly ahead of the line of driving for P0=100 and γ =0.0125. The mass
of gas in the seven-sided (five-sided) bubbles has been increased (decreased) by 20 %:
(a) initial structure of the foam; (b) colour plot of the global pressure distribution in the
foam (subtracting the baseline pressure P0); (c) colour plot of the maximum deviatoric
stress in the foam.

is not film (vi) directly ahead, but film (iii) adjoining the seven-sided bubble to the
left of the crack tip, since this is the site of greatest pressure difference (figure 14d).
Upon engulfing this seven-sided bubble, the crack then propagates regularly forwards
in a straight line of ruptures, with film breakage into the bubble directly ahead of
the crack tip where the pressure difference across the film is greatest (figure 14e,f,
films (iv) and (v)). Slightly later, there is an additional side breakage of film (vii) to
the right of the five-sided bubble as shown in figure 15(c). Similar side breakages
are often observed in the experiments of Arif et al. (2010). In figure 14(g) we plot
the pressures in the bubbles labelled A and D in figure 14(a), while figure 14(h)
depicts the corresponding growth of the perturbation in each of the films (i)–(v) in
figure 14(a). Also, in figure 14(i) we plot the pressures in the bubbles labelled B
and C in figure 14(a), while figure 14(j) depicts the corresponding growth of the
perturbation in the films labelled (vi) and (vii) in figure 14(a). Notably, film (vi)
undergoes instability almost in parallel with film (iii), but its perturbation amplitude
is reset through the fluid rearrangement after the rupture of film (iii) and never gets
close to rupture again. It is noteworthy that the distribution of deviatoric stress in
the initial structure (figure 13c) prefigures the deviation of the crack path. Selective
localized displacements of brittle cracks encountering defects have been described in
experimental metal fracture from fracture surface data (Shilo et al. 2002; Sherman &
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FIGURE 14. Brittle fracture around a pair of dislocations for γ = 0.0125, P0 = 100 and
R = 2000 using K= 4.94, Kl= 0.5 and Ks= 15 for pressure ramped linearly according to
(4.1). (a–f ) Six snapshots of the foam in the line of driving. (g) Pressure in the bubbles
labelled A and D in (a). (h) Perturbation in the films labelled (i)–(v) in (a) (the sixth,
unlabelled, trace corresponds to the film directly ahead of (v), not shown on panels (a–f )),
where open circles and dotted lines indicate the times of panels (a–f ) at the instant before
rupture occurs. (i) Pressure in the bubbles labelled B and C in (a). (j) Perturbation in the
films labelled (v) and (vi). Crosses in (a–f ) indicate the position xl for each film in the
plane z= 0.
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FIGURE 15. (Colour online) Snapshots of the gas pressure distribution in the defective
foam structure with two dislocations (subtracting the baseline pressure P0). All parameters
are as in figure 14. The same overall pattern of pressure in brittle fracture as for a regular
foam persists, but shifts position by one bubble width upon encountering the defects.

Be’ery 2004); in our model, the microscopic details of the analogous process can be
studied.

Examining the global pressure distribution across the foam as the crack propagates
through the defective region, we see in figure 15 that the localized drop-off of pressure
in front of the crack tip persists as in the case of the regular foam, including the
orientation of the pressure isolines along the main symmetry lines of the foam.
However, the entire pressure pattern shifts with the position change of the crack tip.
Thus, encounters of the fracture with this type of defect influence crack propagation
(and can lead to a minimal retardation of effective speed in the y direction), but are
not prone to change the overall pattern of fracture.

6. Discussion
We have constructed a large-scale network model to explore the fracture of

an aqueous foam monolayer by an applied driving pressure. Asymptotic ordinary
differential equation models were developed for the dynamics of each liquid structure
in the foam, i.e. the horizontal and vertical Plateau borders and their intersection
at Plateau border nodes as well as the liquid lamellae spanning between the plates.
These reduced models are coupled to an ideal gas law in the bubbles and constraints
on T1 transitions when any two PBNs come within a fixed distance, in addition
to scaling laws for the growth of Raleigh–Taylor instability in the liquid lamellae
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as they are accelerated forwards. This model exploits the observation that for low
liquid fractions the HPBs and VPBs are typically long and thin. For slow non-inertial
motion, a reduced model is used for the PBN to simplify and save computational
effort, neglecting the interfacial curvature in the out-of-plane direction.

It should be stressed that the model includes descriptions of physical phenomena on
many different length and time scales, from the microseconds of film instability to the
seconds of pressure ramping and ductile crack propagation. The modular approach,
and the advantages of combining integral properties into geometrically simplified
elements, leads to an efficient multiscale formalism that allows for exploration of the
rich behaviour observed in experiment, but without the limitations to experimental
microstructure preparation.

The model is successful in reproducing and quantifying the two experimentally
observed modes of fracture, selected depending on the rate of applied stress (the
rise time of applied pressure). When the pressure driving is applied slowly, our
model predicts the propagation of a crack via a ductile fracture, where the void
enlarges by successive T1 transitions as bubbles surrounding the crack interchange
neighbours (figure 6). When viewed at length scales much larger than the size
of individual bubbles, this mode of propagation can be understood as a fingering
instability (Saffman 1986; Zocchi et al. 1987) in a viscoelastic medium (Ro & Homsy
1995; Ben-Amar & Poire 1999). Similar dynamics are also exhibited as a large single
bubble propagates through a monodisperse foam (Cantat & Delannay 2003, 2005).
The present model, however, allows for detailed tracking of the deformations and
displacements of individual bubbles, and thus for an evaluation of the role of the
microstructural make-up of the foam. It therefore gives access to a novel type of
fingering study in media with discrete domain structure.

The developing ductile crack settles into a finger with a width that is a finite
fraction of the channel width, and displays a propagation speed consistent with the
experiments of Hilgenfeldt et al. (2008) when using comparable parameters to those
experiments. The model also shows rapid development of the expected linear pressure
profile in the entire foam in front of the crack tip. Beyond such foam-scale measures,
the simulations yield detailed information on the geometry of individual bubbles
and the inferred stress on the bubbles. We demonstrate that T1 transitions in which
bubbles participate, as well as other T1 transitions nearby, leave distinctive traces in
the stress and strain of the bubbles, superimposed on the longer-time dynamics as
the bubble repositions itself relative to the passing crack tip.

By contrast, when the pressure driving is applied rapidly, our model instead predicts
the propagation of a crack by a brittle fracture, where the void enlarges by successive
rupture of liquid films in a line parallel to the applied pressure gradient (figure 9). The
simulations show a well-defined localized stress concentration at the tip of this crack
that stably propagates at a speed much higher than that of the ductile fracture. This
speed is again consistent with that observed in experiment (Arif et al. 2010, 2012),
while the pressure in front of the crack tip now drops to the ambient pressure within
a thin layer forwards of the crack tip (this layer has a width of a few bubble lengths).
This shows that, as was postulated in (Arif et al. 2010, 2012), the stress field does
not propagate through the entire foam, but is slaved to the dynamics of the crack tip,
where a Rayleigh–Taylor instability sets the time scale of successive film breakage,
and thus of fracture speed. The deviatoric stress in bubbles around the propagating
brittle crack is very localized (in keeping with the fracture characterization as brittle),
and the brittle crack settles very quickly into a consistent, constant-speed propagation.
Deformation signals do not propagate into the bulk of the foam ahead of the crack,
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and the fracture can therefore be termed supersonic. This model could potentially
be used to elucidate the mechanisms of brittle-to-ductile transition (observed in the
experiments of Arif et al. (2012)) by systematically changing tR, but this will be left
for future study.

Given the extreme localization of stress in the brittle mode, and the high selectivity
with which the next film to break is determined as the film straight ahead of the
current crack tip, it is natural to ask for modifications in the crack propagation
caused by frozen defects in the initial foam structure. Our model allows for versatile
exploration of this question, and we have shown here that dislocation defects indeed
deflect the crack tip (consistent with experiments), as the static pressure variations
around the defect are sufficient to alter the sequence of film breakages from that in
a completely ordered foam. The film straight ahead of the fracture tip is now not
necessarily the most unstable one, as the crack preferentially seeks passage through
bubbles with a larger number of neighbours, which possess lower static pressure. The
result is a displacement of the crack tip, with no lasting or larger-scale disturbance of
the propagation mode or the accompanying pressure field, which quickly readjust. The
versatility and generality of our model allows for a detailed discussion of the role of
microstructure and defects in brittle and ductile fracture, which will be the focus of a
future publication, including a systematic study of defect orientation and density. In
addition, this model allows examination of the role of interfacial boundary conditions
in the propagation and suppression of fracture, as investigated experimentally by
Ben Salem, Cantat & Dollet (2013a) in a slightly different geometry, where they
found that incompressible interfaces result in significantly slower propagation and
fracture of the foam compared to mobile interfaces. Such studies will be of use
not just as a general model system for crack propagation in heterogeneous media,
but directly for applications where film breakage and fracture of foam are crucial
phenomena, such as foam flotation or secondary oil recovery.
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Appendix A. Plateau border nodes
Consider a PBN on the wall of the domain (M= 2, N = 3, as shown in figure 3c).

We assume that the outer shape of the PBN can be approximated as half of a square
pyramid of side length ap, height H = ap/

√
2 and volume Vp = 1/(6

√
2)a3

p.
Having determined the height and volume, we now turn to computing the forces.

In the plane of the plate we enforce that each pair of gas–liquid interfaces must meet
tangentially at the same point along the tangent to the adjoining HPB (see PBN cross-
section in figure 3d).

For simplicity (and tractability), we neglect the interfacial curvature in the out-of-
plane direction and assume that in each horizontal cross-section of the PBN the two
gas–liquid interfaces have constant radius of curvature apm (m= 1, . . . ,M) that varies
linearly in the z coordinate. This assumption facilitates a simple method to estimate
the coefficient of the restoring force on the PBN due to surface tension. However,
this assumption has no influence on the additional terms that arise in the force model
below (see (A 5) and (A 6)) that must be neglected to prevent violation of Plateau’s
laws when the foam is in static equilibrium. Since the interface is uniformly sloped in
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the z direction, we calculate the corresponding angle of inclination θ of the tetrahedral
interface relative to the z axis. For the PBN on the lower plate (z=−b/2) this takes
the form cos θ = sin θ = 1/

√
2. In each cross-section we parametrize the circular arc of

interface m using the coordinate φm such that φm1 6 φm 6 φm2 (m= 1, . . . ,M), where
φm = 0 is along the x axis, so that the curvature radius of each gas–liquid interface
takes the form

apm = ap cos θ tan
(

1
2
(φm2 − φm1)

)
H − 1

2 b− z
H

,

(
m= 1, . . . ,M,−1

2
b 6 z 6 H − 1

2
b
)
. (A 1)

The corresponding outward-pointing unit normal to each interface takes the form

n̂pm = (cos φm cos θ, sin φm cos θ, sin θ) (m= 1, . . . ,M). (A 2)

We consider the pressure on each gas–liquid interface (2.3e), which assuming γ �
R−1 is well approximated by

pm = Pm − γ

apm
(m= 1, . . . ,M). (A 3)

Integrating, we obtain the total force exerted on the gas–liquid interface. For a PBN
on the lower plate (z=−b/2) this takes the form

F̃pm =
∫ φm2

φm1

∫ H−b/2

−b/2

(
Pm − γ

apm

)
n̂pmapm dz dφm (m= 1, . . . ,M). (A 4)

Since the PBN always remains attached to the plates, we ignore the component in the
ẑ direction (and drop the tilde), and so denote the planar component of this force as
Fpm (m= 1, . . . ,M).

In this case it emerges that we can express φm2 and φm1 (m= 1, 2) in terms of the
deflection of the adjoining HPB from the x̂ direction, denoted by α in figure 3(d),
where α > 0 corresponds to a PBN that is deflected in the positive y direction. For
example for a PBN on the sidewall at x= 0, as in figure 3(b,d), we can express φ11=
π/2 + α, φ12 = π, φ21 = π and φ22 = 3π/2 + α. The total force on the PBN in the
direction along y is

ŷ ·
2∑

m=1

Fpm =
a2

p

4
√

2

(P1 − P2)

cos α
+ apγ sin α. (A 5)

The first term on the right-hand side of (A 5) involves the net pressure difference
between the bubbles on either side of the HPB. However, retaining this term violates
Plateau’s law in the initial static equilibrium: the HPBs joining to the wall are no
longer perpendicular to the wall, especially at the upstream and downstream ends of
the foam, where there are appreciable pressure differences between bubbles. Hence,
for consistency in this network model formulation, we formally neglect terms of O(a2

p)
to obtain the force model (3.3a) at leading order. The neglect of this term is discussed
further below (A 6).
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Analogously, we consider a trijunction PBN (M = 3, N = 3) as described in § 3.1
and depicted in figure 4(a,b). In this case the outer shape of the PBN is approximated
as a regular tetrahedron of side length ap and height H=√2/3 ap with corresponding
volume Vp = 1/(6

√
2)a3

p (figure 3a). We again neglect the interfacial curvature in the
out-of-plane direction and enforce that each pair of gas–liquid interfaces must meet
tangentially at the same point along the tangent to the adjoining HPB (see cross-
section in figure 3b). We parametrize each circular arc of interface m (in the plane
of the plates) using the coordinate φm such that φm1 6 φm 6 φm2 (m= 1, . . . ,M), so
that the radius of curvature of each interface is given by (A 1) and the corresponding
outward-pointing normal by (A 2). In this case the corresponding angle of inclination
θ of the tetrahedral interface relative to the z axis fulfills cos θ =√2/

√
3 and sin θ =

1/
√

3.
The pressure on each gas–liquid interface is given by (A 3), so the total force on

each interface in the plane of the plates is given by

Fpm = 2ap

3

(
apm

2
√

3
Pm − γ

)
[x̂ sin φm − ŷ cos φm]φm2

φm1
(m= 1, . . . ,M). (A 6)

However, as in (A 5), this force contains a contribution from a term reflecting the net
pressure difference between the adjacent bubbles, which must be neglected for the
force balance to be consistent with Plateau’s law, resulting in the force term (3.2a).
This additional term also appears in the entirely two-dimensional system of Cantat
(2013) and is not a consequence of our assumption of linear variation of the PBN
curvature in the out-of-plane direction. Neglecting this component seems reasonable
in the ductile regime reported in § 4.2, but in the brittle regime this extra term could
be significant around the tip of the crack. To confirm that its neglect is reasonable,
we have repeated the simulations reported in § 4.3 while including this extra term and
have found that its inclusion results in no qualitative and little quantitative difference
to the behaviour. We are therefore satisfied that neglecting this contribution to the
driving force is not influencing our results significantly.

In addition, there are two contributions to the viscous drag on the PBN as it moves.
Most importantly, there is a drag force due to the precursor liquid layer on the plates
which originates from the matching region between the PBN and the liquid film on
the plate. The viscous shear force per unit length for a spatially extended PBN moving
at speed U can be written in the compact form

K
γ 1/3

R2/3
U2/3, (A 7)

where K is an O(1) constant that depends on the tangential stress condition on the
gas–liquid interface. In the very viscous limit this constant can be calculated explicitly:
for example, imposing no-tangential stress on the interfaces results in K=4.94 (Cantat
2013). For simplicity, we assume that this form of the drag term also applies to our
finite PBN structures, where we approximate the total viscous drag as it moves across
the plates using (A 7) integrated around the outer perimeter of the PBN in contact with
the liquid layer on the plate. We recognize that the constant K may vary depending
on the geometry between sidewall PBN (M= 2, N= 3) and a trijunction PBN (M= 3,
N = 3), as well as on the local surfactant concentration, but for simplicity in the
simulations reported in § 4 we assume K = 4.94 across all the PBN structures (and
indeed the HPBs discussed in appendix B below). There is an additional drag force
due to internal viscous dissipation in the node, but this contribution is O(R−1) (recall
R = 2000 in experiments) and can be neglected in comparison to (A 7).
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Appendix B. Horizontal Plateau borders

Consider the HPB of volume Vh discussed in § 3.1 and shown in figure 4(a), where
the two HPB gas–liquid interfaces (indexed with m = 1, 2) are uniformly curved in
both directions (see cross-sections in figure 4b,c). When the adjoining liquid lamella
is perpendicular to the plates, these interfaces have constant radius of curvature ah.
In general, we parametrize each gas–liquid interface using polar coordinates with
constant radius 1/|κh| and angle φm in the plane of the plate (φm1 6 φm 6 φm2, where
φm is measured anticlockwise relative to the x axis, m = 1, 2), and constant radius
ahm and angle θm in the plane normal to the plate (θm1 6 θm 6 θm2, where θm is
measured anticlockwise from the z axis, m= 1, 2). To leading order, the curvatures of
the interfaces in the plane of the plate must be identical, denoted κh(t) and defined
in (3.5), while the curvatures of these HPB interfaces in the out-of-plane direction
are denoted ahm (m= 1, 2), where

ahm = ah tan( 1
2π− 1

2(θm2 − θm1)) (m= 1, 2). (B 1)

When the attached film is perpendicular to the plates, ah1=ah2=ah. The corresponding
normal to interface m takes the form

n̂hm(θm, φm)= (cos φm sin θm, sin φm sin θm, cos θm) (m= 1, 2). (B 2)

For γ �R−1, the liquid pressure on each interface follows from the normal stress
condition (2.3e), in the form

pm = Pm − γ
(

1
ahm
+ κh

)
(m= 1, 2), (B 3)

where we have enforced that the gas–liquid interfaces intersect on the tangent to the
HPB as it passes through the PBN (see figure 4). We compute the force exerted across
each HPB interface by integrating over the gas–liquid interface,

F̃hm =
∫ φm2

φm1

∫ θm2

θm1

(
Pm − γ

(
1

ahm
+ κh

))
n̂hm

ahm

|κh| dθm dφm (m= 1, 2). (B 4)

Denoting the deflection of the tangent to the adjoining lamella as the angle β (where
β > 0 represents a deflection in the positive xh direction), the angles φm1 and φm2 can
then be expressed in terms of β. For example, for the HPB shown in figure 4(b), we
can express θ11 = π, θ12 = 3π/2 − β, θ21 = π/2 − β and θ22 = π. Hence, we obtain
the total driving force on the HPB (neglecting the component in the ẑ direction and
dropping the tilde) in terms of β (substituting (B 1)) as

2∑
m=1

Fhm = Lh

(
ah
(1Pl − 2γ κh)

cos β
+ 2γ sin β

)
n̂h, (B 5)

where 1Pl = P1 − P2.
In the ductile regime, we assume that the film does not bend significantly in the

out-of-plane direction (β = 0) and the net force on HPB is uniformly zero, so we can
compute the HPB curvature from (3.6) obtained by enforcing that (B 5) is identically
zero. Conversely, in the brittle regime, we conduct a force balance about the geometric
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centre of the HPB (denoted xh). The drag force per unit length takes a form identical
to (A 7) as derived by Cantat (2013), so the balance of linear momentum on the HPB
takes the approximate form

d
dt

(
Vh

dxh

dt

)
= Lh

(
ah
(1Pl − 2γ κh)

cos β
+ 2γ sin β

)
n̂h − LhK

γ 1/3

R2/3
êh

∣∣∣∣dxh

dt

∣∣∣∣2/3 , (B 6)

where êh is a unit vector in the direction of ẋh. Taking the component of (B 6) in the
direction of n̂h (the unit normal to the HPB midline introduced in § 3.2), we obtain
a scalar governing equation for the deflection of the HPB midline in the form (3.7).
Note that in this model we neglect the time dependence of the unit normal n̂h.

Note that, if the HPB equation (B 6) is dominated by the balance between the
capillary term 2Lhγ sin(β) and the drag term, and likewise if the film out-of-plane
motion (3.8a) is dominated by the Young–Laplace term 1Pl = 2γ (κh + κp), then it is
possible to derive a version of the viscous froth model (Grassia et al. 2008).
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