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SUMMARY
The paper presents a control scheme for simultaneous
control of position and force of robot manipulator in contact
with an elastodynamic environment. The control makes the
assumption that interaction force between the robot and
environment is adequately modeled by a second-order linear
model with constant coefficients, and its implementation
requires the knowledge of only boundary values of the
environment parameters. It is shown that, provided that
robot dynamics is exactly modeled, the scheme ensures
asymptotic convergence of errors along nominal trajectories
characterized by constant prescribed interaction forces and
constant prescribed velocities along the contact surface.

KEYWORDS: Robot control; Position-force control;
Lyapunov stability.

I. INTRODUCTION
Many robot tasks pose a requirement for regulating a
specified contact force between the robot and environment. A
common solution to this problem was hybrid position/force
control,1,2 where the space of task coordinates p is partitioned
into two subspaces, i.e. p = [x; y], dim x = nx, dim y = ny ,
and dim p = nx + ny = n (see Fig. 1). Then, the objective of
control is to provide tracking of prescribed nominal trajectory
x0, while simultaneously maintaining interaction forces fy ,
along directions y, at prescribed values f0

y .
A majority of works in hybrid position/force control

rely on assumption that the interaction force is a linear
function of deflection of the contact surface. This property
has been commonly utilized to develop independent or semi-
independent control for x and y coordinates. However, there
are applications characterized by significant elastodynamics
of the environment interacting with a robot3,4 for which the
simple spring model of the environment is inadequate. A
direct consequence of dynamic terms is coupling between
x and y subspaces. For such systems, hybrid position/force
control methods are not adequate anymore.

The problem of stabilization of robot manipulators in
contact with dynamic environment has been receiving
increased attention. Several model-based control schemes
have been proposed for simultaneous position-force control.5

However, their applicability has been severely limited by the
factors such as quality of the contact model and uncertainties
in its parameters.

In this paper, a new control scheme is proposed to
overcome the problem of uncertainty in the parameters
of a dynamic environment. The scheme consists of a
decoupling compensator of robot dynamics and a set of
simple position/force PID regulators in the task space.
Contrary to the schemes that rely on the assumption that
environment parameters are sufficiently accurately modeled,
the implementation of the proposed control requires only a
knowledge of boundary values of model parameters.

Despite of its simple structure, it is shown that, with an
adequate selection of PID gains, the proposed scheme ensures
asymptotic stability of a nominal trajectory characterized
by the constant velocity ẋ0 and constant interaction force
f0
y . Stability conditions are rigorously developed and it is

shown that the domain of attraction, for which asymptotic
convergence of errors is guaranteed, can be enlarged as
desired by increasing appropriately the PID gains.

II. MODEL OF ROBOT IN CONTACT WITH
DYNAMIC ENVIRONMENT
In the general case, dynamics of a rigid-body robot can be
represented in fixed reference task space by the model:

HR(p)p̈ + C(p, ṗ)ṗ + g(p) + f = τp (1)

where p is the vector of task coordinates, f is the cor-
responding vector of generalized interaction forces, and τp

is the vector of generalized driving forces. If we denote
a manipulator Jacobian as J(p), then driving forces τq

at manipulator joints are uniquely determined from the
equivalent driving forces τp in task coordinates as:

τq = JT (q)τp (2)

It is known that matrices HR(p) and C(p, ṗ) possess an
important structure that is used by many authors in control
design:

(i) Matrix of inertia HR(p) is symmetric, positive definite,
and bounded. Thus,

‖HR(p)‖ ≤ λmax[HR(p)] (3)

where λmax[HR(p)] is the maximum eigenvalue of
HR(p). Due to boundedness of the matrix of inertia,
λmax[HR(p)] represents some finite constant.
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Fig. 1. Simultaneous position-force control.

(ii) Matrix C(p, ṗ) is bounded in p and linearly dependent
on ṗ, that is:

‖C(p, ṗ)‖ ≤ KC‖ṗ‖ (4)

for some finite KC .
(iii) With a proper choice of C(p, ṗ),

d

dt
{HR(p)} = C(p, ṗ) + CT (p, ṗ) (5)

With sufficient degree of generality, the force of interaction
f can be analyzed by employing the second-order nonlinear
model:4

f = M(p, ṗ)p̈ + L(p, ṗ) (6)

where M(p, ṗ) and L(p, ṗ) are nonlinear matrix functions
of p, ṗ. However, in many practical situations, (6) can be
simplified to:

fx = fx(ẋ, fy) (7)

fy = Mÿ + Bẏ + K(y − ye) for fy ≥ 0 (8)

where f = [fx ; fy] and fx(ẋ, fy) is a nonlinear vector function
of ẋ, fy .

In this work, (7, 8) is considered as the model of the
contact force. Furthermore, all parameters M, B, K, ye

are assumed constant, whereas the matrices M, B, K are
assumed in diagonal form, that is,

M = diag(mj ), B = diag(bj ), K = diag(kj )

for j = 1, . . . , ny .

III. CONTROL ALGORITHM
The algorithm is intended for applications where the
objective is to keep both the interaction force fy and velocity
ẋ at constant prescribed values, i.e.

ẋ0(t) = const (9)

f0
y (t) = const, ẏ0(t) = 0 (10)

With the proposed scheme, driving forces in task space are
generated as:

τp = Ĉ(p, ṗ)ṗ0 + ĝ(p) + �τp (11)

where Ĉ(p, ṗ) and ĝ(p) are estimates of corresponding
matrices in model (1), ṗ0 = [ẋ0; 0] is the nominal velocity,
and:

�τp = [�τx ; �τy] (12)

are PID regulators in position-controlled and force-controlled
directions:

�τx = fx − KDx�ẋ − KPx�x − KIx

∫
�x dt (13)

�τy = f0
y − KDy�ẏ − KPy�ŷ − KIy

∫
�fy dt (14)

with errors defined as:

�x = x − x0; �ẋ = ẋ − ẋ0

�ŷ = y − ŷ0; �ẏ = ẏ − ẏ0 = ẏ

�fy = fy − f0
y

Gain matrices in (13, 14) are assumed constant and diagonal,
i.e.

KDx = diag(KDxi), KPx = diag(KPxi),

KIx = diag(KIxi)

for i = 1, . . . , nx , and:

KDy = diag(KDyj), KPy = diag(KPyj),

KIy = diag(KIyj)

for j = 1, . . . , ny .
Note that the component fx of interaction force is simply

compensated in (11), whereas (12) incorporates a reference
force f0

y and integral of force error �fy . Note also that
(12) employs the estimate �ŷ of the position error. This
is inevitably since the reference position y0:

y0 = K−1f0
y + ye (15)

depends on static characteristics of the model (8) and is
generally unknown. Thus, approximate reference position
ŷ0 is computed from estimated static parameters as:

ŷ0 = K̂−1f0
y + ŷe (16)

IV. STABILITY ANALYSIS
Assume that manipulator dynamics is exactly compensated
by (11), i.e.

Ĉ(p, ṗ) = C(p, ṗ), ĝ(p) = g(p)
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Then the control (11–14), combined with manipulator
dynamics (1), yields the closed-loop system:

HR(p)�p̈ + C(p, ṗ)�ṗ

+
[

KDx�ẋ + KPx�x + KIx
∫

�x dt

KDy�ẏ + KPy�ŷ + �fy + KIy
∫

�fy dt

]
= 0

(17)

By introducing:

K̃Dy = KDy + KIyM + B (18)

K̃Py = KPy + KIyB + K (19)

σ x = �x + 2K−1
Px KIx

∫
�x dt (20)

σ y = �y + 2K̃−1
Py

·
[

KIy

(∫
�fy dt − M�ẏ − B�y

)
− KPy�y0

]
(21)

where M, B, K are matrices of the environment model (8),
�y0 is the error in reference position:

�y0 = ŷ0 − y0 (22)

and by accounting that, due to linearity of interaction force
(8),

�fy = M�ÿ + B�ẏ + K�y for fy ≥ 0 (23)

the closed-loop system (17) is transformed to:

[HR(p) + diag(O, M)]�p̈ + C(p, ṗ)�ṗ

+




KDx�ẋ + 1

2
KPx�x + 1

2
KPxσ x

KDy�ẏ + 1

2
K̃Py�y + 1

2
K̃Pyσ y


 = 0 (24)

With the additional substitutions:

σ = [σ x ; σ y] (25)

H(p) = HR(p) + diag(O, M) (26)

KD = diag(KDx, K̃Dy) (27)

KP = diag(KPx, K̃Py) (28)

(24) is further simplified to:

H(p)�p̈ + C(p, ṗ)�ṗ + KD�ṗ + 1

2
KP �p + 1

2
KP σ = 0

(29)

It is readily seen that �p = 0, �ṗ = 0 implies σ = 0.
Therefore, a trivial solution of (29) is determined by the
condition �p = 0, �ṗ = 0.

Now, we may assert the following statement on the stability
of the control:

There exist a continuous range of control parameters
KDx, KPx, KIx, KDy, KPy, KIy for which the trivial solution
�p = 0, �ṗ = 0, σ = 0 of the closed-loop system (29) is
asymptotically stable in the sense of Lyapunov when t →
+∞. Furthermore, the domain of attraction of the trivial
solution can be made arbitrarily large by a proper choice of
control parameters.

To prove the statement and investigate conditions for
asymptotic stability, consider the following scalar function:

V (p, �p, �ṗ, σ ) = 1

2
�ṗT H(p)�ṗ + 1

4
�pT KP �p

+ 1

4
σ T KP σ + 2�pT DH(p)�ṗ

(30)

where D is a constant diagonal matrix:

D = K−1
P KI (31)

and:

KI = diag(KPx, KIyK) (32)

From the assumption that M is positive and diagonal, it
follows that matrix H(p) in (29) is positive definite, bounded,
and:

λmax[H(p)] ≤ λmax[HR(p)] + λmax(M)

= λmax[HR(p)] + max
j=1,...ny

mj (33)

where λmax[H(p)] > 0 denotes the maximum eigenvalue of
the equivalent matrix of inertia H(p).

It is readily verified that V (·) is continuous in p, �p, �ṗ, σ

and V (p, 0, 0, 0) ≡ 0. Furthermore, since:

�ṗT H(p)�ṗ = [H(p)�ṗ]T H−1(p)[H(p)�ṗ]

≥ λ−1
max[H(p)] · ‖H(p)�ṗ‖2

and:

�pT DH(p)�ṗ ≥ −Dmax · ‖�p‖ · ‖H(p)�ṗ‖

where:

Dmax = max

{
max

i

KIxi

KPxi
, max

j

KIyjkj

KPyj + KIyjbj + kj

}
(34)

for i = 1, . . . , nx, j = 1, . . . , ny , the following lower bound
of V is established:

V ≥ 1

2
zT

1

[
1
2KP min −2Dmax

−2Dmax λ−1
max[H(p)]

]
z1 + 1

4
KP min‖σ‖2

(35)
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where:

z1 = [‖�p‖; ‖H(p)�ṗ‖]

and:

KP min = min
{

min
i

KPxi, min
j

KPxj + KIyjbj + kj

}
(36)

Thus, V is positive definite in ‖�p‖, ‖H(p)�ṗ‖, ‖σ‖
provided that:

KP min > 8D2
max · λmax[H(p)] (37)

Since:

KP min > min
{

min
i

KPxi, min
j

KPyj + kj

}
(38)

Dmax < max
{

max
i

KIxi/KPxi, max
j

KIyj

}
(39)

the condition (37) can always be satisfied by selecting suffi-
ciently large proportional gains and/or small integral gains.
Besides, Dmax does not increase when proportional
gains increase. Therefore, for sufficiently high values of the
gains,

V ≥ 1

4

(
KP min − K0

P min

) · ‖�p‖2 (40)

where:

K0
P min = 8D2

maxλmax[H(p)] (41)

The total time derivative of V is given by:

V̇ = �ṗT H(p)�p̈ + 1

2
�ṗT [C(p, ṗ) + CT (p, ṗ)]�ṗ

+ 1

2
�ṗT KP �p + 1

2
· σ̇ T KP σ + 2�pT DH(p)�p̈

+ 2�pT D[C(p, ṗ) + CT (p, ṗ)]�ṗ + 2�ṗT DH(p)�ṗ

Since M is constant, from (5, 26) it follows:

Ḣ(p) = C(p, ṗ) + CT (p, ṗ)

Besides, from the construction of σ = [σ x ; σ y], it is easily
verified that:

σ̇ = �ṗ + 2D�p

Therefore,

V̇ = �ṗT

[
H(p)�p̈ + C(p, ṗ)�ṗ + 1

2
KP �p + 1

2
KP σ

]

+ 2�pT D
[

H(p)�p̈ + C(p, ṗ)�ṗ + 1

2
KP σ

]

+ 2�ṗT C(p, ṗ)D�p + 2�ṗT DH(p)�ṗ

The time derivative of V along (29) is:

V̇ = −�ṗT [KD − 2DH(p)]�ṗ − �pT KI�p

− 2�ṗT [KD − C(p, ṗ)]D�p

Since, from (4),

‖C(p, ṗ)‖ ≤ KC‖�ṗ‖ + KC‖ṗ0‖

the following upper bound of V̇ is obtained:

V̇ ≤ − {KD min − 2Dmaxλmax[H(p)]} · ‖�ṗ‖2

−KImin‖�p‖2 + 2Dmax
{
KD max + KC‖ṗ0‖} · ‖�p‖

· ‖�ṗ‖ + 2DmaxKC‖�p‖ · ‖�ṗ‖2 (42)

where:

KD min = min

{
min

i
KDxi, min

j
KDyj + KIyjmj + bj

}
(43)

KD max = max

{
max

i
KDxi, max

j
KDyj + KIyjmj + bj

}
(44)

KImin = min

{
min

i
KIxi, min

j
KIyjkj

}
(45)

Equivalently,

V̇ ≤ −zT
2 Wz2 + 2DmaxKC‖�p‖ · ‖�ṗ‖2 (46)

where:

z2 = [‖�p‖; ‖�ṗ‖]

W =
[

KD min − 2Dmaxλmax(H) −Dmax(KD max + KC‖ṗ0‖)

−Dmax(KD max + KC‖ṗ0‖) KImin

]

It is seen that the matrix W is positive definite for:

KImin{KD min − 2Dmaxλmax[H(p)]}
> D2

max{KD max + KC‖ṗ0‖}2 (47)

If (47) is satisfied, then the minimum eigenvalue of W is
λmin(W) > 0. By taking into account the inequality (40), the
total time derivative of V along (29) is:

V̇ ≤ −λmin(W)‖z2‖2 + 2DmaxKC‖�p‖ · ‖�ṗ‖2

≤ −λmin(W)‖z2‖2 + 2DmaxKC

√
2V√

KP min − K0
P min

‖�ṗ‖2

≤ −λmin(W)‖�p‖2

−

λmin(W) − 2DmaxKC

√
2V√

KP min − K0
P min


 ‖�ṗ‖2
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Therefore, V̇ < 0 as long as the above expression in curly
braces is negative. Thus, we may conclude that the scalar
function V , defined by (30), is a Lyapunov function of the
second kind provided that control gains meet the conditions
(37) and (47). Equivalently, the closed-loop system is
asymptotically stable along the trajectory (9,10). The domain
of attraction is:

V < λ2
min(W)

KP min − K0
P min

8D2
maxK

2
C

= λ2
min(W) · λmax(H)

K2
C

(
KP min

K0
P min

− 1

)

and it can be increased at will by increasing λmin(W) and the
ratio KP min/K

0
P min.

It remains to demonstrate that inequalities (37) and (47),
indeed, always have a range of solutions. To this end, assume
that control gains in (13–14) are taken in the form:

KPxi = KPyj = α2KP 0

KDxi = KDyj = α2KD0

KIxi = αK2
P 0

/
KD0

KIyj = 1

α
KP 0

/
KD0

for i = 1, . . . , nx, j = 1, . . . , ny and some constant α > 0.
Then, from the definitions (34, 36, 43–45), we have:

KP min > α2KP 0

KD min > α2KD0

KD max = α2KD0 + 1

α

KP 0

KD0
mmax + bmax

Dmax <
1

α

KP 0

KD0

KImin >
1

α

KP 0

KD0
· min(α2KP 0, kmin)

where mmax, bmax, kmin are the bounds of the corresponding
coefficients in the model of the contact force (8), i.e.

mmax = max
j

mj , bmax = max
j

bj , kmin = min
j

kj

Now, the stability conditions (37, 47) become:

α4 K2
D0

KP 0
> 8λmax(H) (48)

{
α3 K2

D0

KP 0
− 2λmax(H)

}
· min(α2KP 0, kmin)

>

{
α2KD0 + 1

α

KP 0

KD0
mmax + bmax + KC‖ṗ0‖

}2

(49)

and it is seen that (48,49) can always be satisfied by selecting
a sufficiently large α.

V. CONCLUDING REMARKS
This paper was concentrated on the proof of stability of
the proposed control scheme. Nonetheless, there was no
attempt to analyze the influence of the control gains on the
quality of the control. Yet, it was shown that stable responses
can be achieved by a range of control gains, and very
broad guidelines were established for selecting the actual
values of the gains. Further work in this direction is desired.
Particularly, one may expect that better performances could
be achieved if nonlinear gains were employed, i.e. the gains
that were dependent on the current position of the closed-loop
system in the error space.

The proof of stability implicitly rely on the assumption
that a manipulator is always in contact with the environment.
Actually, from the proof it follows that, with sufficiently
small initial position and velocity errors, the errors remain
bounded, and thus the error in interaction force is bounded as
well. Consequently, the assumption of the permanent contact
is valid for a sufficiently large nominal force f0

y , although its
magnitude was not quantified in this work.

A weak point of the scheme is its dependence on the
estimates of matrices in the robot model (1), particularly
the dependence on the matrix C(p, ṗ). However, from (11),
the influence of C(p, ṗ) on the control signal increase with
ṗ0 and it could be neglected with sufficiently small nominal
velocities.

The applicability of the scheme is limited to tasks where
the goal is the maintenance of constant or semi-constant
forces and velocities in task space. This constraint is not too
strong, since many practical tasks fall in this category. As a
payoff, the scheme is advantageous for such tasks because it
offers a firm proof of stability.

References
1. M. H. Raibert and J. J. Craig, “Hybrid Position/Force Control

of Manipulators”, J. Dyn. Syst., Meas., and Control 103, No. 2,
126–133 (1981).

2. R. Volpe and P. Khosla, “A Theoretical and Experimental
Investigation of Explicit Force Control Strategies for
Manipulators”, IEEE Trans. Automatic Control 38, No. 11,
1634–1650 (1993).

3. H. C. An and M. J. Hollerbach, “The Role of Dynamic Models
in Cartesian Force Control of Manipulators”, Int. J. Robotic
Research 8, No. 4, 51–62 (1989).
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