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§ Université de Strasbourg, CNRS, IRMA UMR 7501, F-67000 Strasbourg, France

(e-mail: michel.coornaert@math.unistra.fr)

(Received 7 March 2017 and accepted in revised form 19 April 2017)

Abstract. Let X be a compact metrizable group and let 0 be a countable group acting on
X by continuous group automorphisms. We give sufficient conditions under which the
dynamical system (X, 0) is surjunctive, i.e. every injective continuous map τ : X→ X
commuting with the action of 0 is surjective.

1. Introduction
Consider a dynamical system (X, 0) consisting of a compact metrizable space X equipped
with a continuous action α of a countable group 0. This means that α is a group morphism
from 0 into the group of homeomorphisms of X . To simplify notation, let us write
α(γ )(x)= γ x for all γ ∈ 0 and x ∈ X . A map τ : X→ X is said to be 0-equivariant
if it commutes with the action of 0 on X , i.e. τ(γ x)= γ τ(x) for all γ ∈ 0 and x ∈ X .
Following the terminology introduced by Gottschalk in [10], we say that the dynamical
system (X, 0) is surjunctive if every injective 0-equivariant continuous map τ : X→ X
is surjective (and hence a homeomorphism).

There are several important classes of dynamical systems that are known to be
surjunctive.

First note that the dynamical system (X, 0) is surjunctive whenever the phase space X
is incompressible, i.e. there is no proper subset of X that is homeomorphic to X . This is,
for example, the case when X is a closed topological manifold (e.g. a compact Lie group)
by Brouwer’s invariance of domain.
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Another class of surjunctive dynamical systems is provided by the systems that satisfy
the descending chain condition. One says that the dynamical system (X, 0) satisfies the
descending chain condition (d.c.c.) if every decreasing sequence

X = X0 ⊃ X1 ⊃ X2 ⊃ · · ·

of 0-invariant closed subsets X i ⊂ X (i ∈ N) eventually stabilizes, i.e. there is an integer
k ≥ 0 such that X i = Xk for all i ≥ k. Indeed, suppose that (X, 0) satisfies the d.c.c. and
τ : X→ X is an injective 0-equivariant continuous map. By applying the d.c.c. to the
sequence

X = τ 0(X)⊃ τ(X)= τ 1(X)⊃ τ 2(X)⊃ · · · ,

we see that there is an integer k ≥ 0 such that τ k(X)= τ k+1(X). Since τ k is injective, this
implies X = τ(X), showing that τ is surjective. Note that a minimal dynamical system
(i.e. a system containing no proper invariant closed subsets) trivially satisfies the d.c.c.
Actually every 0-equivariant continuous map τ : X→ X is surjective when (X, 0) is
minimal. More generally, (X, 0) satisfies the d.c.c. if X contains only finitely many closed
0-invariant subsets or if every proper closed 0-invariant subset of X is finite.

There are also several classes of symbolic dynamical systems that are known to be
surjunctive. Let S be a compact metrizable space, called the alphabet or the space of
symbols. Given a countable group 0, the 0-shift on the alphabet S is the dynamical system
(S0, 0), where S0 = {x : 0→ S} is equipped with the product topology and the action
of 0 on S0 is given by the formula (γ x)(γ ′) := x(γ−1γ ′) for all γ, γ ′ ∈ 0 and x ∈ S0 .
These shift systems are not surjunctive in general. Indeed, suppose for example that the
alphabet space S is compressible (e.g. S is the closed unit interval [0, 1] ⊂ R, or the Cantor
set K ⊂ [0, 1], or the infinite-dimensional torus TN with T := U(1) the unit circle group)
and let ι : S→ S be an injective continuous map that is not surjective. Then the map
τ : S0→ S0 given by τ(x)(γ ) := ι(x(γ )), for all x ∈ S0 and γ ∈ 0, is clearly injective,
0-equivariant, and continuous. However, τ is not surjective since ι is not. Thus, the
shift system (S0, 0) is never surjunctive when the alphabet S is compressible. If M is
a closed topological manifold and the group 0 is residually finite, it was observed in [3,
Corollary 7.8] that the 0-shift (M0, 0) is surjunctive. On the other hand, it follows from
a deep theorem of Gromov [11] and Weiss [28] that, if 0 is a sofic group and S is a finite
discrete space, then the 0-shift (S0, 0) is surjunctive. Sofic groups form a wide class
of groups containing in particular all residually amenable groups but it is not known if the
Gromov–Weiss surjunctivity theorem remains valid for all groups (Gottschalk conjecture).
Actually, no example of a non-sofic group has yet been found although many experts in
the field do believe in the existence of non-sofic groups.

One says that a dynamical system (X, 0) is expansive if there exists a constant
δ = δ(X, 0, d) > 0 such that, for every pair of distinct points x, y ∈ X , there exists an
element γ = γ (x, y) ∈ 0 such that d(γ x, γ y)≥ δ. Here d denotes a compatible metric
on X . The fact that this definition does not depend on the choice of d follows from the
compactness of X . For instance, a shift system (S0, 0) is expansive if and only if the
alphabet S is finite.

Given a dynamical system (X, 0), a point x ∈ X is said to be 0-periodic if its 0-orbit
0x := {γ x : γ ∈ 0} ⊂ X is finite. In [4, Proposition 5.1], it was observed that if (X, 0)
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is an expansive dynamical system whose periodic points are dense in X , then (X, 0) is
surjunctive.

Note that satisfying the d.c.c. is a hereditary property, in the sense that every subsystem
of a dynamical system satisfying the d.c.c. satisfies it as well. Expansivity is also hereditary
but surjunctivity and density of periodic points are not. Consider for example the Z-shift
({0, 1}Z, Z) on the alphabet with two elements 0 and 1, and the closed Z-invariant subset
6 ⊂ {0, 1}Z consisting of all bi-infinite sequences of 0s and 1s with at most one chain of
1s. Then the continuous map τ : 6→6 given by

τ(x)(n)=

{
1 if (x(n), x(n + 1))= (0, 1),

x(n) otherwise,

is clearly injective and commutes with the shift. However, τ is not surjective since a
sequence of 0s and 1s, where 1 appears exactly once, is in 6 but not in the image of τ .
Thus, the subsystem (6, Z) is not surjunctive. On the other hand, periodic sequences are
dense in {0, 1}Z while the only periodic sequences in 6 are the two constant ones. This
example also shows that an expansive dynamical system may fail to be surjunctive.

An algebraic dynamical system is a dynamical system of the form (X, 0), where X
is a compact metrizable topological group and 0 is a countable group acting on X by
continuous group automorphisms. Observe that if S is a compact metrizable group, then
the 0-shift (S0, 0) is an algebraic dynamical system for every countable group 0.

Algebraic dynamical systems have been intensively studied in recent decades (see the
monograph [23], the survey [17], and the references therein). As was already observed
by Halmos [13] in the particular case 0 = Z, they provide a large supply of interesting
examples for ergodic theory. When the phase space X of an algebraic dynamical system
(X, 0) is abelian, the action of 0 on X induces a Z[0]-module structure on X , where
Z[0] denotes the integral group ring of 0. The Pontryagin dual X̂ of X , which is a
countable discrete abelian group, is then endowed with a dual Z[0]-module structure.
This yields a one-to-one correspondence between the class of algebraic dynamical systems
with abelian phase space and the class of countable Z[0]-modules. This correspondence
has been fruitfully used by translating topological properties of these systems into
algebraic properties of the associated dual Z[0]-module especially in the case 0 = Zd (see
e.g. [5, 14, 17, 23]) and revealed in particular amazing connections between the theory of
algebraic dynamical systems and number theory.

The goal of the present paper is to give a series of sufficient conditions for an algebraic
dynamical system to be surjunctive. The first of our results is the following.

THEOREM 1.1. Let X be a compact metrizable group equipped with an action of a
countable group 0 by continuous group automorphisms. Suppose that X is connected
with finite topological dimension and that the action of 0 on X is expansive. Then the
dynamical system (X, 0) is surjunctive.

Remark 1.2. By a result of Lam [15, Theorem 3.2], if a compact connected metrizable
group X admits an expansive action of a countable group 0 by continuous group
automorphisms, then X is necessarily abelian. Thus, every group X that satisfies the
hypotheses of Theorem 1.1 must be abelian. Finite-dimensional connected metrizable
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abelian groups are often called solenoids in the literature. They include all finite-
dimensional tori Tn but also groups that are not Lie such as the 2-adic solenoid, which
is the projective limit of an infinite sequence of circles, where each circle is wrapped twice
around its predecessor. By Pontryagin duality, solenoids are in one-to-one correspondence
with finite-rank torsion-free abelian groups (see, e.g., [21] and §2.3 below).

Our second result is the following.

THEOREM 1.3. Let X be a (possibly non-abelian) compact metrizable group equipped
with an action of Zd by continuous group automorphisms. Suppose that the action of Zd

on X is expansive. Then the dynamical system (X, Zd) is surjunctive.

As every shift over a finite alphabet is expansive and any subsystem of an expansive
system is itself expansive, an immediate consequence of Theorem 1.3 is the following.

COROLLARY 1.4. Let S be a (possibly non-abelian) finite discrete group and let X ⊂ SZd

be a closed subgroup that is invariant under the Zd -shift. Then the algebraic dynamical
system (X, Zd), where the action of Zd on X is the one induced by restriction of the Zd -
shift, is surjunctive. �

One says that an algebraic dynamical system (X, 0) satisfies the algebraic descending
chain condition (a.d.c.c.) if every decreasing sequence

X = X0 ⊃ X1 ⊃ X2 ⊃ · · ·

of 0-invariant closed subgroups X i ⊂ X (i ∈ N) eventually stabilizes. In the case where X
is abelian, this condition is equivalent to the fact that its Pontryagin dual X̂ is Noetherian as
a Z[0]-module. By a result of Kitchens and Schmidt [14, Theorem 5.2], every expansive
algebraic dynamical system (X, Zd) satisfies the a.d.c.c. On the other hand, if X is any
infinite compact Lie group, then the Zd -shift on XZd

satisfies the a.d.c.c. [14, Theorem 3.2]
without being expansive. Our next result is the following.

THEOREM 1.5. Let X be a compact metrizable abelian group equipped with an action of
Zd by continuous group automorphisms. Suppose that (X, Zd) satisfies the a.d.c.c. Then
the dynamical system (X, Zd) is surjunctive.

If (X, 0) is an algebraic dynamical system, then the Haar probability measure λX on X
is 0-invariant, i.e. λX (γ A)= λX (A) for every measurable subset A ⊂ X (this immediately
follows from the uniqueness of the Haar measure). One says that (X, 0) is mixing if

lim
γ→∞

λX (A1 ∩ γ A2)= λX (A1) · λX (A2) (1.1)

for all measurable subsets A1, A2 ⊂ X (here ∞ denotes the point at infinity in the one-
point compactification of the discrete group 0). For example, the 0-shift (S0, 0) is mixing
for any compact metrizable group S and any countable group 0 (just observe that (1.1) is
obvious when A1, A2 ⊂ S0 are cylinders).

One says that a countable group 0 satisfies the `2-zero-divisor conjecture if the space
`2(0) of square-summable complex-valued functions on 0 is torsion-free as a C[0]-
module (see §3 below). Linnell [18, Theorem 2] proved that every torsion-free elementary

https://doi.org/10.1017/etds.2017.41 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2017.41


608 S. Bhattacharya et al

amenable group satisfies the `2-zero-divisor conjecture. We recall that the class of
elementary amenable groups is the smallest class of groups which contains all abelian
and all finite groups and is closed under extensions and directed unions. We shall prove
the following.

THEOREM 1.6. Let X be a compact connected metrizable abelian group equipped with
an action of a countable group 0 by continuous group automorphisms. Suppose that the
following conditions hold:
(i) 0 satisfies the `2-zero-divisor conjecture (e.g. 0 is elementary amenable and torsion-

free);
(ii) (X, 0) is mixing;
(iii) X̂ is a Noetherian torsion Z[0]-module.
Then the dynamical system (X, 0) is surjunctive.

Finally, we shall establish the following.

THEOREM 1.7. Let X be a compact connected metrizable abelian group equipped with
an action of a countable group 0 by continuous group automorphisms. Suppose that the
following conditions are satisfied:
(i) 0 is torsion-free and either polycyclic-by-finite or abelian;
(ii) (X, 0) is mixing;
(iii) X̂ is a finitely generated torsion Z[0]-module.
Then the dynamical system (X, 0) is surjunctive.

The paper is organized as follows. Section 2 introduces the notation and collects some
background material and preliminaries. In §3, we establish a topological rigidity result
for algebraic actions of groups 0 that satisfy the `2-zero-divisor conjecture. This rigidity
result, which is of independent interest, is contained in [2, Theorem 1.1] for 0 = Zd and
is used in the proof of Theorems 1.6 and 1.7 above. Section 4 is devoted to the proof of
all the theorems stated in the introduction. The final section discusses some examples and
open questions.

2. Background material and preliminary results
2.1. Notation. We write C for the complex numbers, R for the reals, T := {z ∈ C : |z|
= 1} for the unit circle group, and N for the set of non-negative integers.

Depending on the context, multiplicative or additive notation is used for groups. We
prefer additive notation for abelian groups except for the circle group T for which we shall
adopt multiplicative notation.

All group actions considered in this paper are on the left. If 0 is a group acting on sets
X and Y , one says that a map f : X→ Y is 0-equivariant if f (γ x)= γ f (x) for all γ ∈ 0
and x ∈ X .

2.2. Affine maps. Let X, Y be topological groups and let f : X→ Y be a map. One
says that f is an affine map if there is a continuous group morphism a : X→ Y and an
element b ∈ Y such that

f (x)= a(x) · b for all x ∈ X. (2.1)
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This amounts to saying that there exists a continuous group morphism c : X→ Y and an
element d ∈ Y such that f (x)= d · c(x) for all x ∈ X (write a(x) · b = b · (b−1a(x)b) and
d · c(x)= (dc(x)d−1) · d).

PROPOSITION 2.1. Let X be a compact metrizable group equipped with an action of a
countable group 0 by continuous group automorphisms. Suppose that (X, 0) satisfies the
a.d.c.c. Then every injective 0-equivariant affine map f : X→ X is surjective.

Proof. The proof is analogous to the one given in the introduction for the surjunctivity of
dynamical systems satisfying the d.c.c. More specifically, let f : X→ X be an affine map.
Let a : X→ X be a continuous group endomorphism and b ∈ X as in (2.1). Observe that
f is injective (respectively surjective) if and only if a is injective (respectively surjective),
and that f is 0-equivariant if and only if a is 0-equivariant and b is fixed by 0. Suppose
that f is 0-equivariant. By applying the a.d.c.c. to the sequence of closed 0-invariant
subgroups

X = a0(X)⊃ a(X)= a1(X)⊃ a2(X)⊃ · · · ,

we see that there is an integer k ≥ 0 such that ak(X)= ak+1(X). Now if f is injective,
then a and hence ak are also injective, so that we get X = a(X). This implies that a and
hence f are surjective. �

An algebraic dynamical system (X, 0) is said to be topologically rigid if every 0-
equivariant continuous map τ : X→ X is affine. As an immediate consequence of
Proposition 2.1, we get the following.

COROLLARY 2.2. Let X be a compact metrizable group equipped with an action of
a countable group 0 by continuous group automorphisms. Suppose that (X, 0) is
topologically rigid and satisfies the a.d.c.c. Then (X, 0) is surjunctive. �

2.3. Pontryagin duality. We use the monograph of Morris [21] as a general reference
for Pontryagin duality.

By an lca group, we mean an abelian topological group that is locally compact
and Hausdorff. Let X be an lca group. A continuous group morphism χ : X→ T is
called a character of X . The set X̂ of all characters of X , equipped with pointwise
multiplication and the topology of uniform convergence on compact sets, is an lca
group [21, Theorem 10], called the character group or Pontryagin dual of X . The
celebrated Pontryagin–van Kampen duality theorem (see [21, Theorem 23]) asserts that
the evaluation map ι : X→ ̂̂X , defined by ι(x)(χ) := χ(x) for all x ∈ X and χ ∈ X̂ , yields
an isomorphism of topological groups between X and its bidual ̂̂X . This can be used to
identify any lca group with its bidual. The space X is compact (respectively discrete,
respectively metrizable, respectively σ -compact) if and only if X̂ is discrete (respectively
compact, respectively σ -compact, respectively metrizable) (see [21, Theorems 12 and 19]).
In particular, X is compact and metrizable if and only if X̂ is discrete and countable. When
X is compact, X is connected if and only if X̂ is a torsion-free group (i.e. has no non-trivial
elements of finite order) [21, Corollary 4 in Ch. 7]. When X is compact and connected, the
topological dimension of X is equal to the rank of X̂ (see [21, Theorem 34]). Here the rank
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of an abelian group is defined as being the maximal cardinality of a linearly independent
subset.

Let X be an lca group and Y ⊂ X a closed subgroup. Then the set

Ann(Y ) := {χ ∈ X̂ : χ(y)= 1 for all y ∈ Y }

is a closed subgroup of X̂ , called the annihilator of Y . After identifying X with its bidual,
one has Ann(Ann(Y ))= Y [21, Proposition 38]. Moreover, as topological groups, Ŷ is
canonically isomorphic to X̂/ Ann(Y ) and Ann(Y ) is canonically isomorphic to X̂/Y (see
[21, Theorem 27]).

Let X, Y be lca groups and f : X→ Y a continuous group morphism. The map
f̂ : Ŷ → X̂ , defined by f̂ (χ) := χ ◦ f for all χ ∈ Ŷ is a continuous group morphism,
called the dual of f . After identifying X and Y with their biduals, we have that ̂̂f = f . If
f is surjective, then f̂ is injective. On the other hand, if f is both injective and open, then
f̂ is surjective. As a consequence, if X and Y are either both compact or both discrete, then
f is injective (respectively surjective) if and only if f̂ is surjective (respectively injective)
[21, Proposition 30].

PROPOSITION 2.3. Let X, Y be lca groups and f : X→ Y a continuous map. Then f is
a group morphism if and only if ξ ◦ f ∈ X̂ for all ξ ∈ Ŷ .

Proof. The necessity is obvious since the composite of two continuous group morphisms
is also a continuous group morphism. Conversely, suppose that ξ ◦ f ∈ X̂ for all ξ ∈ Ŷ .
Then, we have that

ξ( f (x1 + x2))= ξ ◦ f (x1 + x2)= ξ ◦ f (x1) · ξ ◦ f (x2)= ξ( f (x1)+ f (x2))

for all x1, x2 ∈ X and ξ ∈ Ŷ . As it follows from the Pontryagin–van Kampen duality
theorem that characters separate points in Y , we deduce that f (x1 + x2)= f (x1)+ f (x2).
This shows that f is a group morphism. �

COROLLARY 2.4. Let X, Y be lca groups and f : X→ Y a continuous map. Then f is
affine if and only if ξ ◦ f is affine for every ξ ∈ Ŷ .

Proof. This immediately follows from Proposition 2.3 after observing that f is affine if
and only if f − f (0X ) is a group morphism. �

2.4. Fourier transform. Let X be a compact metrizable abelian group with Haar
measure µ normalized by µ(X)= 1. Recall that its Pontryagin dual X̂ is a discrete
countable abelian group. Let L2(X) := L2(X, µ) denote the Hilbert space of (equivalence
classes of) complex-valued functions on X that are square-integrable with respect to µ.
The inner product on L2(X) is given by

〈h1, h2〉 =

∫
X

h1(x)h2(x) dµ(x)

for all h1, h2 ∈ L2(X). Note that there is a natural inclusion X̂ ⊂ L2(X) since T⊂ C.
Actually X̂ is a Hilbert basis of L2(X) (this is a particular case of the Peter–Weyl theorem,
see e.g. [27, §§21–22] and [9, Ch. XI, §26]).
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Let `2(X̂) denote the Hilbert space of square-summable complex-valued functions on
X̂ . Thus `2(X̂)= L2(X̂ , ν), where ν is the counting measure on X̂ . A Hilbert basis for
`2(X̂) is given by the family (eχ )χ∈X̂ , where eχ ∈ `2(X̂) is the map that takes the value 1
at χ and 0 everywhere else.

Since X̂ is a Hilbert basis of L2(X), there is a unique unitary isomorphism
FX : L2(X)→ `2(X̂), called the Fourier transform, that satisfies FX (χ)= eχ for all
χ ∈ X̂ . Given h ∈ L2(X), one has

(FX (h))(χ) := 〈h, χ〉

for all χ ∈ X̂ and FX (h) is called the Fourier transform of h.
Suppose now that X is equipped with an action of a countable group 0 by continuous

group automorphisms. Then there is a unitary action of 0 on L2(X) given by

(γ h)(x) := h(γ−1x)

for all γ ∈ 0, h ∈ L2(X), and x ∈ X . Note that X̂ is a 0-invariant subset of L2(X). The
action of 0 on X̂ also induces a unitary action of 0 on `2(X̂) given by

(γ k)(χ) := k(γ−1χ)

for all γ ∈ 0, k ∈ `2(X̂), and χ ∈ X̂ . Observe that γ eχ = eγχ for all γ ∈ 0 and χ ∈ X̂ .
This shows in particular that the Fourier transform FX : L2(X)→ `2(X̂) is 0-equivariant.
Finally, note that these various actions of 0 induce a Z[0]-module structure on X and X̂
and a C[0]-module structure on L2(X) and `2(X̂). The Fourier transform FX is a C[0]-
module isomorphism from L2(X) onto `2(X̂).

2.5. The van Kampen lifting theorem. Given topological abelian groups X and K , we
denote by C(X, K ) the set of all continuous maps h : X→ K and by C0(X, K ) the subset
of C(X, K ) consisting of all h ∈ C(X, K ) such that h(0X )= 0K . We shall need the
following result, due to van Kampen [24] (see also [2, 26]).

THEOREM 2.5. (van Kampen’s lifting theorem) Let X be a compact connected metrizable
abelian group and q ∈ C(X, T). Then there exist unique elements tq ∈ T, χq ∈ X̂ , and
hq ∈ C0(X, R) such that

q(x)= tqχq(x)e2π ihq (x), (2.2)

for all x ∈ X. �

Note that C(X, T) (respectively C0(X, R)) is an abelian group for pointwise
multiplication (respectively pointwise addition). When X is endowed with an action of
a countable group 0 by continuous group automorphisms, 0 acts by group automorphisms
on C(X, T) (respectively C0(X, R)) by (γ f )(x) := f (γ−1x) for all x ∈ X and
f ∈ C(X, T) (respectively f ∈ C0(X, R)). This gives a Z[0]-module structure on
C(X, T) and C0(X, R). We shall use the following fact.

LEMMA 2.6. Let X be a compact connected metrizable abelian group equipped with an
action of a countable group 0 by continuous group automorphisms. Then the map from
C(X, T) into C0(X, R) given by q 7→ hq , where hq is defined by (2.2), is a Z[0]-module
morphism.
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Proof. Let q, q ′ ∈ C(X, T) and γ ∈ 0. Then (2.2) gives us, for all x ∈ X ,

q(x)= tqχq(x)e2π ihq (x) and q ′(x)= tq ′χq ′(x)e
2π ihq′ (x).

Therefore

(qq ′)(x)= q(x)q ′(x)= tqχq(x)e2π ihq (x)tq ′χq ′(x)e
2π ihq′ (x)

= tq tq ′(χqχq ′)(x)e
2π i(hq+hq′ )(x),

and

(γ q)(x)= q(γ−1x)= tqχq(γ
−1x)e2π ihq (γ

−1x)
= tq(γ χq)(x)e2π i(γ hq )(x).

By applying the uniqueness part of the van Kampen theorem, we deduce that
hqq ′ = hq + hq ′ and hγ q = γ hq . This shows that the map h 7→ hq is a Z[0]-module
morphism. �

2.6. The `2-zero-divisor conjecture. Let 0 be a countable group. Denote by C[0] the
group algebra of 0 over C. We recall that C[0] is the vector space of finitely supported
maps f : 0→ C with the convolution product defined by

( f g)(γ ) :=
∑

γ1,γ2∈0:
γ1γ2=γ

f (γ1)g(γ2) (2.3)

for all f, g ∈ C[0] and γ ∈ 0.
Let `2(0) denote the Hilbert space of square-summable maps k : 0→ C. We equip

`2(0) with the regular representation of 0, i.e. the unitary action of 0 given by

(γ k)(γ ′)= k(γ−1γ ′)

for all k ∈ `2(0) and γ, γ ′ ∈ 0. This defines a C[0]-module structure on `2(0) which
extends the C[0]-module structure on the ring C[0] ⊂ `2(0) viewed as a left-module over
itself.

One says that 0 satisfies Kaplansky’s zero-divisor conjecture (over C) if the ring C[0]
has no zero-divisors (see [22, Ch. 13]). This amounts to saying that C[0] is torsion-free as
a C[0]-module. One says that 0 satisfies the `2-zero-divisor conjecture if `2(0) is torsion-
free as a C[0]-module [19, Conjecture 8.1]. Clearly 0 satisfies the zero-divisor conjecture
if it satisfies the `2-zero-divisor conjecture. Note that if γ ∈ 0 has finite order n ≥ 2, then
1− γ is a two-sided zero-divisor in C[0] since

(1− γ )(1+ γ + · · · + γ n−1)= (1+ γ + · · · + γ n−1)(1− γ )= 0.

Consequently, every group that satisfies the zero-divisor conjecture must be torsion-free.

2.7. Mixing actions. Let X be a compact metrizable abelian group with normalized
Haar measure µ.

If 0 is a countable group acting by continuous group automorphisms on X , it is known
that (X, 0) is mixing if and only if

lim
γ→∞
〈γ f, g〉 = 〈 f, 1〉 · 〈1, g〉, (2.4)

for all f, g ∈ L2(X). Here 1 ∈ X̂ ⊂ L2(X) is the trivial character of X . The following
result is an immediate consequence of [23, Theorem 1.6] (see also [17, Proposition 4.1]).
We include a proof for the convenience of the reader.
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LEMMA 2.7. Let X be a compact metrizable abelian group equipped with an action of
a countable group 0 by continuous group automorphisms. Suppose that (X, 0) is mixing
and that the group 0 is torsion-free. Let χ be a non-trivial character of X. Then the orbital
map from 0 into X̂ given by γ 7→ γχ is injective. In other words, the stabilizer of χ in 0
is trivial.

Proof. As X̂ is a Hilbert basis of L2(X), we have that

〈χ, χ〉 = 1 and 〈χ, 1〉 = 0.

Let γ ∈ 0 with γ 6= 10 . Since 0 is torsion-free, γ has infinite order and hence γ n tends to
infinity as |n| →∞. Thus, taking f = χ and g = 1 in (2.4), we get

lim
|n|→∞

〈γ nχ, χ〉 = 〈χ, 1〉 · 〈1, χ〉 = 0.

This implies γχ 6= χ since otherwise we would have 〈γ nχ, χ〉 = 〈χ, χ〉 = 1 for all n. �

PROPOSITION 2.8. Let X be a compact metrizable abelian group equipped with an action
of a countable group 0 by continuous group automorphisms. Suppose that the group 0
is torsion-free and that the dynamical system (X, 0) is mixing. Let χ be a non-trivial
character of X. For k ∈ `2(X̂), define a map kχ : 0→ C by setting

kχ (γ ) := k(γ χ) (2.5)

for all γ ∈ 0. Then the following hold:
(i) kχ ∈ `2(0) for all k ∈ `2(X̂);
(ii) the map from `2(X̂) to `2(0) given by k 7→ kχ is a C[0]-module morphism.

Proof. Let k ∈ `2(X̂). It follows from Lemma 2.7 that the map γ 7→ γχ is injective. As a
consequence, we have that∑

γ∈0

|kχ (γ )|2 =
∑
γ∈0

|k(γ χ)|2 ≤
∑
χ ′∈X̂

|k(χ ′)|2 <∞.

This shows (i).
On the other hand, for all γ, γ ′ ∈ 0, we have that

(γ k)χ (γ ′)= (γ k)(γ ′χ)= k(γ−1γ ′χ)= kχ (γ−1γ ′)= (γ kχ )(γ ′).

This shows that (γ k)χ = γ kχ . Therefore the map k 7→ kχ is 0-equivariant and (ii) follows
by linearity. �

3. Topological rigidity and the `2-zero-divisor conjecture
The goal of this section is to establish the following rigidity result.

THEOREM 3.1. Let X and Y be compact connected metrizable abelian groups equipped
with an action of a countable group 0 by continuous group automorphisms. Suppose that
the following conditions hold:
(i) 0 satisfies the `2-zero-divisor conjecture;
(ii) (X, 0) is mixing;
(iii) Ŷ is a torsion Z[0]-module.
Then every 0-equivariant continuous map f : X→ Y is affine.
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Remark 3.2. In the particular case 0 = Zd , Theorem 3.1 can be deduced from [2,
Theorem 1.1].

Remark 3.3. When Y is a compact metrizable abelian group and 0 is a countable amenable
group acting on Y by continuous group automorphisms, it is known (see [6, Theorem 2.2])
that the topological entropy of (Y, 0) coincides with its measure-theoretic entropy with
respect to the Haar measure on Y . Furthermore, when 0 = Zd and Ŷ is finitely generated
as a Z[0]-module, it is shown in [2, Lemma 2.2] that (Y, 0) has finite topological entropy
if and only if Ŷ is a torsion Z[0]-module. When 0 is a general countable amenable group,
it is still true that Ŷ is a torsion Z[0]-module if (Y, 0) has finite topological entropy.
Indeed, if χ ∈ Ŷ has no Z[0]-torsion, then the cyclic Z[0]-submodule M ⊂ Ŷ generated
by χ is isomorphic to Z[0]. Thus (M̂, 0) is conjugate to the 0-shift on T0 and hence has
infinite topological entropy. As (M̂, 0) is a factor of (Y, 0), this implies that (Y, 0) has
infinite topological entropy as well.

For the proof of Theorem 3.1, we shall use the following auxiliary result.

LEMMA 3.4. Let X be a compact metrizable abelian group equipped with an action of
a countable group 0 by continuous group automorphisms. We equip C0(X, C) with the
C[0]-module structure induced by the inclusion C0(X, C)⊂ L2(X). Suppose that the
group 0 satisfies the `2-zero-divisor conjecture and that (X, 0) is mixing. Then C0(X, C)
is torsion-free as a C[0]-module.

Proof. Let h ∈ C0(X, C) such that ph = 0 for some non-zero element p ∈ C[0]. We
want to show that h = 0. As remarked above, h ∈ L2(X). As the Fourier transform
FX : L2(X)→ `2(X̂) is a C[0]-module morphism, we have that

pFX (h)= FX (ph)= FX (0)= 0.

Now fix a non-trivial character χ of X and consider the element (FX (h))χ ∈ `2(0) defined
as in (2.5). Using the fact that the map from `2(X̂) to `2(0) given by k 7→ kχ is a C[0]-
module morphism (see Proposition 2.8(ii)), we get

p((FX (h))χ )= (pFX (h))χ = 0χ = 0.

Since 0 satisfies the `2-zero-divisor conjecture and p 6= 0, this implies that (FX (h))χ = 0.
We deduce that (FX (h))(χ)= ((FX (h))χ )(10)= 0. As χ was an arbitrary non-trivial
character of X , it follows that h is a constant. But h(0X )= 0 since h ∈ C0(X, C).
Therefore h = 0. �

Proof of Theorem 3.1. Let f : X→ Y be a 0-equivariant continuous map. We want to
prove that f is affine. By Corollary 2.4, it is enough to show that ξ ◦ f is affine for every
character ξ of Y . So let us fix some character ξ ∈ Ŷ and consider the map ξ ◦ f ∈ C(X, T).
By the van Kampen lifting theorem (see Theorem 2.5), there exist t ∈ T, χ ∈ X̂ , and h ∈
C0(X, R) such that

ξ ◦ f (x)= tχ(x)e2π ih(x) (3.1)

for all x ∈ X .
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On the other hand, since Ŷ is a torsion Z[0]-module, there is a non-zero element p ∈
Z[0] such that pξ = 0.

As f is 0-equivariant, we have, for all γ ∈ 0 and x ∈ X ,

(γ (ξ ◦ f ))(x)= ξ( f (γ−1x))= ξ(γ−1 f (x))= ((γ ξ) ◦ f )(x).

This shows that γ (ξ ◦ f )= (γ ξ) ◦ f . By linearity, one has more generally r(ξ ◦ f )=
(rξ) ◦ f for all r ∈ Z[0].

We deduce that p(ξ ◦ f )= 0.
By applying Lemma 2.6, we deduce that ph = 0. It follows that h = 0 by Lemma 3.4.

Formula (3.1) now becomes

ξ ◦ f (x)= tχ(x) for all x ∈ X.

This shows that the map ξ ◦ f is affine and completes the proof. �

As an immediate consequence of Theorem 3.1, we get the following.

COROLLARY 3.5. Let X be a compact connected metrizable abelian group equipped with
an action of a countable group 0 by continuous group automorphisms. Suppose that the
following conditions hold:
(i) 0 satisfies the `2-zero-divisor conjecture;
(ii) (X, 0) is mixing;
(iii) X̂ is a torsion Z[0]-module.
Then the algebraic dynamical system (X, 0) is topologically rigid. �

4. Proofs
In this section, we provide the proofs of the statements presented in the introduction. For
the proof of Theorem 1.1, we shall use the following result.

LEMMA 4.1. Let X be a compact connected metrizable abelian group with finite
topological dimension. Then every injective continuous group endomorphism of X is
surjective.

Proof. Let a : X→ X be an injective continuous group morphism and let n denote the
topological dimension of X . Then the Pontryagin dual X̂ of X is a discrete torsion-
free group with rank n. Therefore V := X̂ ⊗Z Q is an n-dimensional Q-vector space
and X̂ embeds as a subgroup of V via the map χ 7→ χ ⊗Z 1. Furthermore, the dual
endomorphism â uniquely extends to a Q-linear map

âQ := a ⊗Z IdQ : V → V .

The injectivity of a implies the surjectivity of â (see [21, Proposition 30]) and hence the
surjectivity of âQ. Since every surjective endomorphism of a finite-dimensional vector
space is injective, it follows that âQ is injective. As â is the restriction of âQ to X̂ , we
deduce that â is itself injective and therefore we conclude that a = ̂̂a is surjective. �
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Proof of Theorem 1.1. As pointed out in the introduction, the group X is abelian by [15,
Theorem 3.2]. Let τ : X→ X be an injective 0-equivariant continuous map. It follows
from a rigidity result of Bhattacharya [1, Corollary 1] that τ is an affine map. Therefore,
there exists a continuous group endomorphism a : X→ X and an element b ∈ X such that
τ(x)= a(x)+ b for all x ∈ X . The injectivity of τ implies that of a. Applying Lemma 4.1,
we deduce that a is surjective. This implies that τ is surjective as well. �

Proof of Theorem 1.3. It follows from a result of Kitchens and Schmidt [14, Corollary 7.4]
that, under theses hypotheses, the Zd -periodic points are dense in X . On the other hand, as
already mentioned in the introduction, it is known [4, Proposition 5.1] that every expansive
dynamical system admitting a dense set of periodic points is surjunctive. �

Proof of Theorem 1.5. Let us set 0 := Zd and let τ : X→ X be an injective 0-equivariant
continuous map. Let 3⊂ 0 be a subgroup of finite index and denote by X (3)⊂ X
the closed subgroup consisting of all the points of X that are fixed by 3. Observe that
X (3) is 0-invariant since 0 is abelian. As a Z[0]-module, the Pontryagin dual X̂ (3) is a
quotient of X̂ . On the other hand, since (X, 0) satisfies the a.d.c.c. by our hypotheses, the
Z[0]-module X̂ is Noetherian and hence finitely generated. Therefore, X̂ (3) is a finitely
generated Z[0]-module. As 3 is of finite index in 0, we deduce that X̂ (3) is also finitely
generated as a Z[3]-module. This is the same as saying that X̂ (3) is a finitely generated
abelian group since the action of3 on X (3) is trivial. It follows that there exist an integer
k ≥ 0 and a finite abelian group F such that the group X̂ (3) is isomorphic to Zk

× F . By
dualizing, we deduce that X (3) is homeomorphic to Tk

× F . Now, τ is 0-equivariant
so that τ(X (3))⊂ X (3). As τ is injective and Tk

× F is incompressible, it follows that
τ(X (3))= X (3). Since the union of the sets X (3), as 3 varies over all finite index
subgroups of 0 = Zd , is dense by [14, Theorem 7.2] (see also [23, Theorem 11.2]), we
conclude that the map τ is surjective. �

Proof of Theorem 1.6. The algebraic dynamical system (X, 0) is topologically rigid by
Corollary 3.5 and satisfies the a.d.c.c. since X̂ is assumed to be Noetherian as a Z[0]-
module. Therefore, (X, 0) is surjunctive by Corollary 2.2. �

Proof of Theorem 1.7. Suppose first that 0 is polycyclic-by-finite. Then 0 is solvable-by-
finite and hence elementary amenable. On the other hand, the integral group ring Z[0] is
Noetherian (see [12, 22]). As X̂ is finitely generated as a Z[0]-module, it follows that X̂
is Noetherian. Thus (X, 0) is surjunctive by Theorem 1.6.

Suppose now that 0 is abelian. Let f : X→ X be an injective 0-equivariant continuous
map. Since every abelian group is elementary amenable, we deduce from Theorem 3.1 that
f is affine. Thus, there exists a continuous group morphism a : X→ X and an element
b ∈ X such that f (x)= a(x)+ b for all x ∈ X . Observe that a is injective since f is.
Consequently, its dual â is a surjective endomorphism of the Z[0]-module X̂ . Now, by
a theorem of Vasconcelos [25, Proposition 1.2] (see also [20, Theorem 2.4] for a proof
based on Nakayama’s lemma), it is known that if R is a commutative ring, then every
surjective endomorphism of a finitely generated R-module is injective. Since the ring
Z[0] is commutative, it follows that â is injective and hence that a = ̂̂a is surjective. This
implies that f itself is surjective. �
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5. Examples and concluding remarks
Example 5.1. Consider the infinite-dimensional torus X := TN. The map a : X→ X ,
given by a(x)(0) := 0 and a(x)(n) := x(n − 1) for all x ∈ X and n ≥ 1, is a continuous
injective group endomorphism of X that is not surjective (this shows that the hypothesis
that X is finite-dimensional cannot be removed from Lemma 4.1). Then, for any countable
group 0, the 0-shift (X0, 0) yields an example of a non-surjunctive mixing algebraic
dynamical system whose phase space is connected and abelian.

Example 5.2. Let p be any prime and take X := Zp, the group of p-adic integers. Then
X is a 0-dimensional compact metrizable abelian group. The map a : X→ X , defined
by a(x) := px for all x ∈ X , is an injective continuous group endomorphism of X that is
not surjective (this shows that the hypothesis that X is connected cannot be removed from
Lemma 4.1). For any countable group 0, the 0-shift (X0, 0) yields an example of a non-
surjunctive mixing algebraic dynamical system whose phase space is 0-dimensional and
abelian.

Remark 5.3. Suppose that 0 is a countable residually finite group and S a compact
metrizable space. Then periodic points for the 0-shift are dense in S0 . Indeed, let x ∈ S0

and N ⊂ S0 a neighborhood of x . By definition of the product topology, there is a finite set
�⊂ 0 such that N contains all y ∈ S0 that satisfy y|� = x |�. Since 0 is residually finite,
we can find a finite index subgroup 3 of 0 such that no two distinct elements of � belong
to the same right coset of 3. Consequently, we can find a complete set of representatives
R ⊂ 0 for the right cosets of 3 such that �⊂ R. Then the point y ∈ S0 , defined by
y(λr) := x(r) for all λ ∈3 and r ∈ R, is in N . On the other hand, y is periodic since it
is fixed by 3. This proves that periodic points are dense in S0 . Using the two previous
Examples, we deduce that for any countable residually finite group 0 (e.g. 0 = Zd ), there
exist mixing algebraic dynamical systems (X, 0) with a dense set of periodic points and
X connected (respectively 0-dimensional) that are not surjunctive.

Example 5.4. (Principal algebraic actions) Let 0 be a countable group and let f ∈ Z[0].
Consider the cyclic left Z[0]-module M f := Z[0]/Z[0] f obtained by quotienting the
integral group ring Z[0] by the principal left ideal generated by f and let X f denote
the Pontryagin dual of M f . Recall that X f is the set of all characters x : M f → T with
the topology of pointwise convergence and that there is a continuous action of 0 on X f

satisfying (γ x)(m)= x(γ−1m) for all γ ∈ 0, x ∈ X f , and m ∈ M f . Observe that X f is
the closed shift-invariant subset of T0 given by

X f =

{
x ∈ T0 :

∑
γ∈0

f (γ ′γ )x(γ )= 0 for all γ ′ ∈ 0
}

(here we identify the unit circle T with R/Z). One says that (X f , 0) is the principal
algebraic dynamical system associated with f (see, e.g., [7, 8, 17]). There are several
cases where we can say that the algebraic dynamical system (X f , 0) is surjunctive.

Suppose first that 0 = Zd . Then Z[0] can be identified with the ring Rd :=

Z[u1, u−1
1 , . . . , ud , u−1

d ] of Laurent polynomials with integral coefficients on d
commuting indeterminates. Since the ring Rd is Noetherian, the algebraic dynamical
system (X f , 0) satisfies the a.d.c.c. so that it is surjunctive for every f ∈ Rd by
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Theorem 1.5. For f = 1+ u1 + u2 ∈ R2, we get the connected Ledrappier subshift, which
is mixing but not expansive (see [16, Example 5.6], [23]).

Take again an arbitrary countable group 0. Then the vector space `1(0) of all complex-
valued summable functions on 0 is a Banach algebra under the convolution product (see
formula (2.3)) containing Z[0] as a subring. Suppose from now on that f ∈ Z[0] is
invertible in `1(0) (this is for example the case when f is lopsided, i.e. there exists
an element γ0 ∈ 0 such that | f (γ0)|>

∑
γ 6=γ0
| f (γ )|, see [17]). Then it is known that

(X f , 0) is expansive [7, Theorem 3.2]. If in addition 0 is residually finite (e.g. finitely
generated nilpotent or, more generally, polycyclic-by-finite), then the periodic points are
dense in X f by the first assertion in [17, Proposition 8.4] (note that the hypothesis that
0 is amenable is not needed for the proof therein), so that (X f , 0) is surjunctive by [4,
Proposition 5.1]. On the other hand, the fact that f is invertible in `1(0) also implies
that (X f , 0) is mixing (see [17, Proposition 4.6]). As M f is a torsion Z[0]-module as
soon as f 6= 0, we deduce from Theorem 1.7 that (X f , 0) is surjunctive whenever X f is
connected and 0 is a torsion-free abelian group (e.g. 0 =Q).

It would be interesting to find examples of algebraic dynamical systems that are
expansive or that satisfy the a.d.c.c. but are not surjunctive.
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