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An inverted flag has its trailing edge clamped and exhibits dynamics distinct from
that of a conventional flag, whose leading edge is restrained. We perform nonlinear
simulations and a global stability analysis of the inverted-flag system for a range
of Reynolds numbers, flag masses and stiffnesses. Our global stability analysis is
based on a linearisation of the fully coupled fluid–structure system of equations. The
calculated equilibria are steady-state solutions of the fully coupled nonlinear equations.
By implementing this approach, we (i) explore the mechanisms that initiate flapping,
(ii) study the role of vorticity generation and vortex-induced vibration (VIV) in
large-amplitude flapping and (iii) characterise the chaotic flapping regime. For point
(i), we identify a deformed-equilibrium state and show through a global stability
analysis that the onset of small-deflection flapping – where the oscillation amplitude
is significantly smaller than in large-amplitude flapping – is due to a supercritical
Hopf bifurcation. For large-amplitude flapping, point (ii), we confirm the arguments
of Sader et al. (J. Fluid Mech., vol. 793, 2016a) that classical VIV exists when
the flag is sufficiently light with respect to the fluid. We also show that for heavier
flags, large-amplitude flapping persists (even for Reynolds numbers <50) and is
not classical VIV. Finally, with respect to point (iii), chaotic flapping has been
observed experimentally for Reynolds numbers of O(104), and here we show that
chaos also persists at a moderate Reynolds number of 200. We characterise this
chaotic regime and calculate its strange attractor, whose structure is controlled by the
above-mentioned deformed equilibria and is similar to a Lorenz attractor.

Key words: bifurcation, flow–structure interactions, instability

1. Introduction
Uniform flow past a conventional flag – where the flag is pinned or clamped at its

leading edge with respect to the oncoming flow – has been studied widely beginning

† Email address for correspondence: ajgoza@gmail.com
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 1. Time lapses of flag position for (a) the undeformed equilibrium, (b)
small-deflection stable, (c) small-deflection flapping, (d) large-amplitude flapping, (e)
chaotic flapping and ( f ) deflected-mode regimes. In all figures, the flag is clamped at
its right edge and the flow direction is from left to right.

with the early work of Taneda (1968) (see Shelley & Zhang (2011) for a recent
review). By contrast, studies of flow past an inverted flag, in which the flag is clamped
at its trailing edge, have only been reported recently. The inverted-flag system displays
a wide range of dynamical regimes (Kim et al. 2013; Gurugubelli & Jaiman 2015;
Ryu et al. 2015), many of which are depicted in figure 1. This figure is produced
from the numerical simulations described in § 2.

One of the dynamical regimes depicted is large-amplitude flapping (figure 1d),
which is associated with a larger strain energy than that of conventional flag
flapping. These large bending strains make the inverted-flag system a promising
candidate for energy harvesting technologies that convert strain energy to electricity,
e.g. by using piezoelectric materials. Shoele & Mittal (2016) studied this energy
harvesting potential in detail by performing numerical simulations of a fully coupled
fluid–structure–piezoelectric model.

Transitions between the various regimes in figure 1 depend on the Reynolds number
(Re), dimensionless mass ratio (Mρ) and dimensionless bending stiffness (KB), defined
as

Re=
ρf UL
µ

, Mρ =
ρsh
ρf L

, KB =
D

ρf U2L3
, (1.1a−c)

where ρf (ρs) is the fluid (structure) density, U is the free-stream velocity, L is the
flag length, µ is the shear viscosity of the fluid, h is the flag thickness and D =
Eh3/(12(1 − ν2) is the flexural rigidity of the flag (where E is Young’s modulus of
elasticity and ν is Poisson’s ratio). In experiments, regime transitions are triggered by
increasing the flow rate (Kim et al. 2013). This coincides with a decrease in KB and
an increase in Re for fixed Mρ , by virtue of (1.1). In contrast, numerical simulations
often decrease the flag’s stiffness at fixed Re and Mρ , which isolates the effect of
various parameters and facilitates comparison to previous numerical studies of flow-
induced vibration. In the remainder of the article all quantities are dimensionless, with
length scales, velocity scales and time scales non-dimensionalised by L, U and L/U,
respectively.

Simulations show that for moderate Reynolds numbers (.1000), a systematic
decrease in KB causes a change from a stable undeformed equilibrium state (figure 1a)
to a small-deflection stable state (figure 1b). This is followed by a transition to
small-deflection flapping (figure 1c), then to large-amplitude flapping (figure 1d) and
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finally to a deflected-mode regime (figure 1f ) (Gurugubelli & Jaiman 2015; Ryu et al.
2015). These simulations have been performed primarily for Mρ 6 O(1) (heavy fluid
loading), although Shoele & Mittal (2016) considered large values of Mρ .

The same regime transitions persist at higher Reynolds numbers, Re ∼ O(104),
except that the small-deflection stable and small-deflection flapping regimes discussed
above have not been observed in measurement. That is, the undeformed equilibrium
directly gives way to large-amplitude flapping (Kim et al. 2013). Moreover, Sader
et al. (2016a) experimentally identified a chaotic flapping regime (figure 1e) at these
higher Reynolds numbers that has yet to be reported using numerical simulations with
Re6O(1000). Note from figure 1 that chaotic flapping can be difficult to distinguish
from large-amplitude flapping from time-lapse images. We will discuss the differences
in more detail in subsequent sections.

At low Reynolds numbers (Re . 50), numerical simulations have shown that the
inverted flag’s dynamics can change significantly: no flapping occurs, with the only
observed regimes being the undeformed equilibrium and stable deflected states (Ryu
et al. 2015; Shoele & Mittal 2016). These simulations were performed over a wide
range of KB for only one value of Mρ , and the system’s dependence on these two
parameters remains an open question at these lower Reynolds numbers.

Several driving mechanisms of the various regimes illustrated in figure 1(a–f )
have been identified. The bifurcation from the undeformed equilibrium is caused
by a divergence instability (i.e. a ‘buckling’ instability where the hydrodynamic lift
balances the elastic restoring force of the flag – the instability is independent of Mρ).
This mechanism was originally suggested by Kim et al. (2013), and subsequently
found computationally (Gurugubelli & Jaiman 2015) and mathematically via a linear
stability analysis (Sader et al. 2016a).

For large-amplitude flapping, Sader et al. (2016a) used experiments and a scaling
analysis to argue that for a distinct set of parameters this regime is a vortex-induced
vibration (VIV); i.e. vortex shedding and flapping occur in synchrony, with flag
motion and fluid forces sharing the same dominant frequency (Khalak & Williamson
1999; Sarpkaya 2004). This definition of VIV shall henceforth be referred to as
‘classical VIV’ in this article. All other flapping regimes not associated with this
frequency synchronisation are characterised as not exhibiting classical VIV. We
specify these distinctions for clarity, since there is no single universally agreed-upon
definition for VIV. The primary role of vortex shedding in large-amplitude flapping
is further evidenced by the above-mentioned observation of Ryu et al. (2015) and
Shoele & Mittal (2016) that flapping does not occur below Re≈ 50 (for certain values
of Mρ). Despite these connections, Gurugubelli & Jaiman (2017) identified distinctions
between large-amplitude flapping and classical cylinder VIV by introducing a
splitter plate at the trailing edge of the flag. The authors found large-amplitude
flapping to persist despite the fact that the splitter plate removed interactions
between the counter-rotating vortices. Gurugubelli & Jaiman (2017) concluded
that the leading-edge vortex drives large-amplitude flapping, whereas by contrast
counter-rotating vortex interactions are essential for cylinder VIV. These investigations
were based on simulations for one value of Mρ , and relationships between vortex
dynamics and inverted-flag flapping at other mass ratios remain an open question.
Based on a scaling analysis, Sader et al. (2016a) predicted that classical VIV should
cease as the mass ratio, Mρ , increases – a prediction that is yet to be verified. (Note
that Sader et al. (2016a) worked in terms of the reciprocal of the present mass ratio.)

Finally, with respect to the deflected-mode regime, small-amplitude flapping about a
large mean-deflected position occurs. Shoele & Mittal (2016) showed that the flapping
frequency is identical to that of the vortex shedding caused by the flag’s bluffness.
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Re= 200:
Mρ Decreasing KB

0.05, 0.5 (light) UE → DE → SDF → LAF (classical VIV possible) → C → DM
5, 50 (heavy) UE → DE → SDF → LAF (not classical VIV) → DM

Re= 20:
Mρ Decreasing KB

0.05, 0.5 (light) UE → DE
5, 50 (heavy) UE → DE → SDF → LAF (not classical VIV) → DE

TABLE 1. Overview of regimes obtained by decreasing the stiffness (KB) for the mass
ratios (Mρ) and Reynolds numbers (Re) considered in this article. UE, undeformed
equilibrium; DE, deformed equilibrium; SDF, small-deflection flapping; LAF, large-
amplitude flapping; C, chaos; DM, deflected mode.

In this article, we use high-fidelity nonlinear simulations and a global linear
stability analysis to further characterise the regimes in figure 1 and explore their
driving physical mechanisms. We emphasise that our global stability analysis is based
on a linearisation of the fully coupled fluid–structure system of equations. Moreover,
the computed equilibria are steady-state solutions of the fully coupled nonlinear
equations described in § 2. Our results are presented for Reynolds numbers of 20 and
200, various values of KB and values of Mρ spanning four orders of magnitude.

The specific goals of this study are to (i) study the mechanisms responsible for the
onset of small-deflection flapping, (ii) probe the role of vorticity generation (including
vortex shedding) and VIV in large-amplitude flapping and (iii) investigate whether
chaotic flapping occurs at moderate-to-low Reynolds numbers, Re = 200 (§ 3) and
Re= 20 (§ 4). Regarding (i), we demonstrate in §§ 3.1 and 4.1 that for both Reynolds
numbers (Re= 20 and 200) the small-deflection stable state is an equilibrium of the
fully coupled fluid–structure system. The subsequent transition from the deformed
equilibrium to small-deflection flapping (figure 1c), as the bending stiffness decreases,
is then shown through a global stability analysis to be a supercritical Hopf bifurcation
(§§ 3.2 and 4.2).

For point (ii), we show in § 3.3 that for Mρ < O(1) and Re = 200, classical VIV
can occur in the form of large-amplitude flapping. Classical VIV does not occur for
large values of Mρ at Re = 200 (§ 3.3) or for any mass ratio at Re = 20 (§ 4.3),
confirming the predictions of Sader et al. (2016a) based on a scaling analysis. Yet, for
both Reynolds numbers, heavy flags (large Mρ) are shown to undergo large-amplitude
flapping despite the absence of classical VIV. The mechanisms driving flapping when
classical VIV is not present are explored in §§ 3.3 and 4.3.

Finally, with respect to (iii), we confirm in § 3.4 that chaotic flapping occurs at
Re= 200 for sufficiently light flags (Mρ <O(1)), and demonstrate that the structure of
the associated strange attractor is controlled by a combination of the large-amplitude
and deflected-mode regimes. Chaos does not occur for heavy flags (Mρ > O(1)) at
Re= 200 or for any mass ratio considered at Re= 20. Thus, chaos is associated with
parameters for which classical VIV flapping occurs, and we discuss the relationship
between classical VIV and chaos below. Our main conclusions with regard to the
regimes of flapping are summarised in table 1.

In what follows, we have restricted our analysis to two-dimensional (2-D) flow
and flag deformation. As mentioned above, many similarities exist between the 3-D
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experiments of Kim et al. (2013) and 2-D simulations of Gurugubelli & Jaiman
(2015), Ryu et al. (2015) and Shoele & Mittal (2016). This suggests that features
of the 2-D dynamics persist in three dimensions, although Sader, Huertas-Cerdeira &
Gharib (2016b) demonstrated that substantial differences occur for low aspect ratio
flags. Further exploration of three-dimensional effects awaits future studies.

2. Numerical methods: nonlinear solver and global stability analysis
Our nonlinear simulations use the immersed-boundary method of Goza & Colonius

(2017). The method treats the fluid with the 2-D Navier–Stokes equations, and the 2-D
flag with the geometrically nonlinear Euler–Bernoulli beam equation. The method is
strongly coupled (i.e. it accounts for the nonlinear coupling between the flag and the
fluid), and therefore allows for arbitrarily large flag displacements and rotations. We
have validated our method against a variety of test problems involving conventional
and inverted flags (Goza & Colonius 2017). The global stability analysis is based on
a linearisation of the nonlinear, fully coupled flow–structure interaction system, and
therefore reveals instability-driving mechanisms in both the flag and the fluid.

In what follows, we review the nonlinear solver (see Goza & Colonius (2017) for
more details) and derive the linearised equations. We then describe the global mode
solution approach, the procedure used to compute equilibria of the flow–flag system,
and the grid spacing and domain size used for our simulations.

2.1. Nonlinear solver
We define the fluid domain as Ω and the flag surface as Γ . We let x denote the
Eulerian coordinate representing a position in space, and χ(θ, t) be the Lagrangian
coordinate attached to the body Γ (θ is a variable that parametrises the surface). The
dimensionless governing equations are written as

∂u
∂t
=−u · ∇u−∇p+

1
Re
∇

2u+
∫
Γ

f (χ(θ, t))δ(χ(θ, t)− x) dθ, (2.1)

∇ · u= 0, (2.2)
ρs

ρf

∂2χ

∂t2
=

1
ρf U2
∇ · σ + g(χ)− f (χ), (2.3)∫

Ω

u(x)δ(x− χ(θ, t)) dx=
∂χ(θ, t)
∂t

. (2.4)

In the above, equation (2.1) expresses the Navier–Stokes equations in an immersed-
boundary formulation, equation (2.2) is the continuity equation for the fluid,
equation (2.3) represents the structural equations governing the motion of the flag (g
is a body force term), and (2.4) is the no-slip boundary condition enforcing that the
fluid velocity matches the flag velocity on the flag surface. Note that f represents the
effect from the flag surface stresses on the fluid, and is present in both (2.1) and (2.3)
since by Newton’s third law its negative imparts the fluid stresses on the flag surface
(Goza & Colonius 2017). In (2.3), the time derivative is a Lagrangian derivative and
the stress tensor is the Cauchy tensor in terms of the deformed flag configuration.

The fluid equations are spatially discretised with the immersed-boundary discrete-
streamfunction formulation of Colonius & Taira (2008), which removes the pressure
and eliminates the continuity equation. The flag equations are treated with a finite-
element corotational formulation (Criesfield 1991). The spatially discrete, temporally
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continuous equations written as a first-order system of differential–algebraic equations
are

CTC ṡ=−CTN (s)+
1

Re
CTLCs− CTET(χ)f , (2.5)

M ζ̇ =−R(χ)+Q(g+W (χ)f ), (2.6)
χ̇ = ζ , (2.7)

0= E(χ)Cs− ζ , (2.8)

where χ and f are discrete analogues to their continuous counterparts, s is the discrete
streamfunction, ζ is the flag velocity and all other variables are defined below.

Equation (2.5) represents the Navier–Stokes equations written in a discrete-stream-
function formulation, equation (2.6) is the geometrically nonlinear Euler–Bernoulli
beam equation, equation (2.7) matches the time derivative of the flag position to the
flag velocity and (2.8) is the interface constraint that the fluid and flag must satisfy
the no-slip boundary condition on the flag surface.

In (2.5)–(2.8), C and CT are discrete curl operators that mimic ∇ × (·); N (s)
is a discretisation of the advection operator u · ∇u written in terms of the discrete
streamfunction (Colonius & Taira 2008); L is a discrete Laplacian associated with
the viscous diffusion term; ETf is a ‘smearing’ operator (arising from the immersed-
boundary treatment) that applies the surface stresses from the flag onto the fluid; M
is a mass matrix associated with the flag’s inertia; R(χ) is the internal stress within
the flag; Qg is a body force term (e.g. gravity); and QW f is the stress imposed on
the flag from the fluid.

Equation (2.5) is discretised in time using an Adams–Bashforth AB2 scheme for
the convective term and a second-order Crank–Nicolson scheme for the diffusive term.
The flag equations (2.6)–(2.7) are discretised using an implicit Newmark scheme. The
method is strongly coupled, so the constraint equation (2.8) is exactly enforced at each
time step including the present one.

A novel feature of our method is the efficient iterative procedure used to
treat the nonlinear coupling between the flag and fluid. Many methods use a
block-Gauss–Seidel iterative procedure, which converges slowly (or not at all) for
light structures (Tian et al. 2014). Other methods use a Newton–Raphson scheme,
which exhibits fast convergence behaviour but requires the solution of linear systems
involving large Jacobian matrices (Degroote, Bathe & Vierendeels 2009). Our method
employs the latter approach, but we use a block-LU factorisation of the Jacobian
matrix to restrict all iterations to subsystems whose dimensions scale with the number
of discretisation points on the flag, rather than on the entire flow domain. Thus, our
algorithm inherits the fast convergence behaviour of Newton–Raphson methods while
substantially reducing the cost of performing an iteration.

2.2. Linearised equations and global modes

For ease of notation, we define the state vector y = [s, ζ , χ , f ]T and let r(y) be
the right-hand side of (2.5)–(2.8). We write the state as y = yb + yp, where yb =

[sb, ζb, χb, f b]
T is a base state and yp = [sp, ζp, χp, f p]

T is a perturbation. Plugging
this expression for y into (2.5)–(2.8), Taylor-expanding about yb and retaining only
first-order terms in the perturbation variables gives the linearised equations

Bẏp = A(yb)yp, (2.9)
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where

B=

CTC
M

I
0

 , A( yb)=

Jss 0 −Jχs
−CTET

0 0 −K + Jχχ QW
0 I 0 0

EC −I Jχc 0


y=yb

(2.10a,b)

and the remaining sub-blocks of the Jacobian matrix A are given in index notation as

Jss
ik =−(C

TC)2ik − CT
ij
∂Nj

∂sk
, (2.11)

Jχs
ik = CT

ij

∂ET
jl

∂χk
(f b)l, (2.12)

Jχχik =Qij
∂W jl

∂χk
(f b)l, (2.13)

Jχc
ik =

∂E ij

∂χk
Cjl(sb)l. (2.14)

Note that we used Bẏb = r(yb) in arriving at the linearised equations (2.9).
Global modes are eigenvectors v of the generalised eigenvalue problem Av = λBv,

where λ is the corresponding eigenvalue. We build and store A and B sparsely
and solve the generalised eigenvalue problem using an implicitly restarted Arnoldi
algorithm (see Lehoucq, Sorensen & Yang (1998) for more details). More details for
how the eigenvalue problem is constructed and solved are provided in appendix A.

In the results below, 1 × 10−10 was used as the tolerance for convergence of the
computed eigenvalues and eigenvectors. Global eigenfunctions are unique to a scalar
multiple, and were scaled to unit norm, ‖y‖2 = 1.

2.3. Equilibrium computations
Undeformed and deformed equilibria are steady-state solutions to the fully coupled
equations (2.5)–(2.8) with all time derivate terms set to zero; i.e. these equilibria
satisfy 0= r(y), where y= [s, ζ , χ , f ]T is the state vector and r(y) is the right-hand
side of (2.5)–(2.8). This is a nonlinear algebraic system of equations that we solve
using a Newton–Raphson method. With this method, the kth guess for the base state,
y(k), is updated as y(k+1)

= y(k) +1y, where

1y=−(A(y(k)))−1r(y(k)). (2.15)

Note that the Jacobian matrix A in (2.15) is the same matrix as in (2.10) evaluated
at y= y(k).

The guess for the state y is updated until the residual at the current guess is less
than a desired threshold (i.e. until ‖r(y(k))‖2/‖y(k)‖2 < ε). In the results shown below
we used ε = 1× 10−6.

2.4. Domain size and grid resolution
The flow equations are treated using a multidomain approach: the finest grid surrounds
the body and grids of increasing coarseness are used at progressively larger distances
(Colonius & Taira 2008). In all computations below, the domain size of the finest
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sub-domain is [−0.2, 1.8]× [−1.1, 1.1] and the total domain size is [−15.04, 16.64]×
[−17.44, 17.44]. The grid spacing on the finest domain is h = 0.01 and the grid
spacing for the flag is 1s = 0.02. For computations involving time marching, the
time step is 1t = 0.001, which gives a maximum Courant–Friedrichs–Lewy number
of approximately 0.15. Appendix B contains a convergence study that demonstrates
the suitability of these parameters.

3. Dynamics for Re= 200

3.1. Bifurcation diagrams and general observations
This section contains an overview of the various regimes that are studied in detail in
§§ 3.2–3.5. As part of this overview, we use bifurcation diagrams that illustrate the
equilibria (and their stability) along with the flapping dynamics. We give a generic
version of these bifurcation diagrams in figure 2 that summarises the upcoming
diagrams. The leading-edge transverse displacement (tip deflection, δtip) is plotted
versus the flag flexibility (1/KB) for a particular choice of Re and Mρ . The generic
diagram in figure 2 demonstrates that with decreasing KB (moving left to right on the
diagram), the system transitions from the undeformed equilibrium to a stable deformed
equilibrium. Following this, the system bifurcates to small-deflection flapping, then
large-amplitude flapping (chaotic flapping can also occur in this regime depending on
Mρ), and finally to the deflected-mode regime.

Figure 3 shows bifurcation diagrams at four different mass ratios, Mρ , for
Re= 200. Each plot gives the transverse leading-edge displacement (tip deflection, δtip,
non-dimensionalised by the flag length L) as a function of the reciprocal dimensionless
stiffness (1/KB). Solid lines represent stable equilibria, and dashed lines correspond to
unstable equilibria. Information for unsteady regimes is conveyed through the markers.
A set of markers at a given stiffness corresponds to tip deflection values from a single
nonlinear simulation at moments when the tip velocity is zero (i.e. when the flag
changes direction at the tip). From a dynamical systems perspective, the markers
correspond to zero-tip-velocity Poincaré sections of a velocity-displacement phase
portrait of the leading edge. For clarity, appendix C provides further explanation
of how the set of markers was obtained at 1/KB ≈ 6 for the Mρ = 0.05 bifurcation
diagram.

All nonlinear simulations were started with the flag in its undeflected position
and the flow impulsively started at its free-stream value. A small body force was
introduced at an early time to trigger any instabilities in the system. All simulations
contain a minimum of 15 flapping cycles except for the chaotic flapping regime,
where a minimum of 55 cycles were used. To avoid representing transient behaviour
in the figures, we omit the first several flapping cycles in the diagrams.

To illustrate the meaning of the markers in figure 3 further, consider 1/KB ≈ 4
for Mρ = 0.5. The system enters into large-amplitude limit-cycle flapping with a
fixed amplitude of ≈±0.8, and the bifurcation diagram reflects this with a marker at
these peak tip displacements, which are the only tip displacement values where the
tip velocity is zero. Note that there are actually several markers superimposed onto
one another at this stiffness since multiple flapping periods were used to plot these
diagrams, though only one marker is visible because of the limit-cycle behaviour
exhibited. As another example, the bifurcation diagram at 1/KB ≈ 6 for Mρ = 0.05
depicts chaotic flapping. Many markers are visible at this stiffness because the flag
changes direction at several different values of δtip. The merit of using zero-tip-velocity
Poincaré sections for the bifurcation diagrams is seen through chaotic flapping: these
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Large-amplitude flapping

Unstable undeformed equilibrium

Unstable deformed
equilibrium

Stable undeformed
equilibrium

Stable deformed
equilibrium

Small-deflection
deformed flapping

Deflected-mode

T
ip

 d
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p
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FIGURE 2. (Colour online) A schematic bifurcation diagram that summarises the results
obtained for the various parameters considered in this study. Equilibria are presented by
lines (——, stable equilibria; – –, unstable equilibria). The lines with the double arrows
indicate regimes where flapping occurs, with the top and bottom lines representing the
peak-to-peak flapping amplitude.

Poincaré sections demonstrate the variety of transverse locations where the flag
changes direction – a fact not captured through, for example, plotting the peak-to-peak
flapping amplitudes at a given stiffness.

The bifurcation diagrams in figure 3 depict the undeformed equilibrium (I),
deformed equilibrium (II), small-deflection flapping (III), large-amplitude flapping
(IV), deflected mode (VI) and chaotic flapping (V) regimes. In small-deflection
flapping, the flag moves about the upward deflected equilibrium. There is a
corresponding deformed equilibrium with a negative flag deflection, and different
initial conditions would result in flapping about this equilibrium. We refrain from
plotting this behaviour to avoid confusion with large-amplitude flapping. Note
that many of these regimes exhibit hysteresis. For example, Kim et al. (2013)
demonstrated that large-amplitude flapping can be extended to higher stiffnesses by
decreasing KB while the system is in large-amplitude flapping. We do not investigate
this behaviour in the present work.

We now explore the change in behaviour as the flag stiffness, KB, is reduced.
The undeformed equilibrium becomes unstable with decreasing stiffness due to a
divergence instability, i.e. flag buckling, with the critical stiffness for this instability
being independent of the mass ratio (Kim et al. 2013; Gurugubelli & Jaiman 2015;
Sader et al. 2016a).

We see from figure 3 that following this instability the flag transitions to a steady
deflected position (regime II). This deflected steady-state regime was first observed by
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FIGURE 3. (Colour online) Bifurcation diagrams of inverted-flag dynamics at Re = 200
that show leading-edge transverse displacement (tip deflection, δtip) versus inverse stiffness
(1/KB). I, undeformed equilibrium; II, deformed equilibrium; III, small-deflection flapping;
IV, large-amplitude flapping; V, chaotic flapping; VI, deflected mode. See the main text
for a description of the various lines and markers and details on how the diagrams were
constructed.

Ryu et al. (2015), Gurugubelli & Jaiman (2015), and we note here that it represents
a deformed-equilibrium state; i.e. in the notation of § 2 it satisfies the steady-state
equations r(y) = 0. (Because the deformed equilibrium is a steady-state solution, it
does not depend on flag inertia, and thus its associated tip deflection at a given
stiffness does not depend on the mass ratio, Mρ .) With decreasing stiffness, the
deformed equilibrium is associated with an increasingly large tip deflection, and
transitions from stable (regime II) to unstable (regimes III–VI). When the deformed
equilibrium state is unstable, flapping occurs. Figure 4 provides illustrations of
deformed equilibria (some of which are unstable) for various stiffnesses. Gurugubelli
& Jaiman (2015) identified a deflected equilibrium using a force and moment balance
on the flag, with the fluid modelled as an empirical forcing term. Using this model,
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FIGURE 4. (Colour online) Vorticity contours for equilibrium states of the flow–inverted-
flag system at Re= 200. From (a) to (b), KB = 0.5, 0.35, 0.22, 0.11. The three rightmost
equilibria are unstable for all masses considered. Contours are in 18 increments from −5
to 5.

the deflected equilibrium was not found for regimes II–V, and was instead observed
to appear at approximately the same stiffness value for which the deflected-mode state
(regime VI) was seen in the nonlinear simulations. The authors concluded from this
that the bifurcation to the deflected-mode regime occurs because of the appearance
of the deflected equilibrium. By contrast, computing the equilibria from the fully
coupled equations (2.5)–(2.8) demonstrates that the deflected equilibrium first appears
in regime II as a stable solution following the divergence instability of the undeformed
equilibrium (regime I), and persists as an unstable equilibrium through the various
flapping regimes – including the deflected-mode state. The existence of an unstable
deflected equilibrium is consistent with the experimental observations of Sader et al.
(2016a) at much higher Reynolds numbers, where a deflected equilibrium was found
by introducing structural damping to negate the effects of unsteadiness in the flow.

Figure 3 shows that as stiffness is decreased and the deformed equilibrium becomes
unstable, flapping ensues. Initially (regime III), this flapping is of small amplitude,
with oscillation amplitudes that are smaller than the equilibrium deflection – we refer
to this regime as small-deflection flapping. Following small-deflection flapping, light
flags (corresponding to small values of Mρ) transition from large-amplitude flapping
(regime IV) to chaotic flapping (regime V), and finally the deflected-mode state
(regime VI). Heavy flags exhibit the same transitions after small-deflection flapping
except that chaos does not occur. The various regimes and their transitions will
be explored in further detail in subsequent sections. As context for the subsequent
discussions of the flapping regimes, figure 5 gives the peak flapping frequency for the
various regimes where flapping occurs (note that chaotic flapping is characterised by
a spectrum of frequencies – the figure shows all frequency components containing a
minimum of 20 % of the power spectral density). The subsequent sections will refer
to the frequency plots in figure 5 (and the bifurcation diagrams in figure 3) where
relevant.

3.2. Small-deflection flapping
Table 2 demonstrates that the transition to small-deflection flapping occurs via a
supercritical Hopf bifurcation of the deformed equilibrium; i.e. for all four mass
ratios (Mρ), the onset of flapping is associated with the transition to instability of a
complex-conjugate pair of eigenvectors, leading to oscillatory (time-dependent) motion.
Table 2 also shows that the leading mode accurately captures the flapping frequency
observed in the nonlinear simulations near this stability boundary where flapping
amplitudes remain small. Note that for all mass ratios considered, small-deflection

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

72
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.728


Global modes and nonlinear analysis of inverted-flag flapping 323

2 4 6 8 10 12 2 4 6 8 10 12

0.1

0.2

0.3

0.4

0

0.5

0.1

0.2

0.3

0.4

0

0.5

III

III III

IIIII

II II

II

I IV VI

I IV V VI I IV V VI

I IV VI

Pe
ak

 f
re

qu
en

cy
Pe

ak
 f

re
qu

en
cy

(a) (b)

(c) (d )

FIGURE 5. (Colour online) Markers: peak flapping frequency at Re = 200 for the
parameters corresponding to the bifurcation diagrams shown in figure 3; ——, natural
frequency scaling of a sheet accounting for added mass contributions from an inviscid
fluid, as derived in Shen, Chakraborty & Sader (2016); – –, bluff-body shedding frequency
(= 0.2/Lp, where Lp is the projected length of the flag to the flow defined using the
maximum tip deflection at a given stiffness).

flapping is associated with a low dimensionless frequency (Strouhal number) that is
not indicative of classical VIV behaviour: using the maximal tip displacement as the
normalising length scale, the largest Strouhal number over all masses is 0.02 (� 0.2,
the typical value for classical VIV). The absence of classical VIV is further evidenced
by the fact that shedding of distinct vortices, as in the von Kármán vortex street,
at each oscillation period of the flag is not evident – Gurugubelli & Jaiman (2015)
demonstrated that the leading-edge vortex formed during small-deflection flapping
remains attached throughout the flapping process. This behaviour is also shown in
figure 6, which provides snapshots of a flapping period for Mρ = 0.5, KB = 0.41 (i.e.
in the small-deflection flapping regime). To explore the mechanism responsible for
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FIGURE 6. (Colour online) Vorticity contours at four snapshots of a flapping period of a
flag in small-deflection flapping. The figures were obtained from a nonlinear simulation
with Re= 200,Mρ = 0.5,KB = 0.41. Contours are in 18 increments from −5 to 5.

Mρ KB Leading mode Peak frequency of
Growth rate Frequency nonlinear simulation

0.05 0.415 −0.0021 0.110 N/A (stable equilibrium)
0.05 0.41 0.0052 0.110 0.108
0.5 0.42 −0.0031 0.104 N/A (stable equilibrium)
0.5 0.415 0.0073 0.103 0.101
5 0.425 −0.0014 0.073 N/A (stable equilibrium)
5 0.42 0.0039 0.072 0.071
50 0.435 −0.0022 0.028 N/A (stable equilibrium)
50 0.43 0.0045 0.027 0.028

TABLE 2. Growth rate and frequency of the leading global mode of the deformed
equilibrium compared with nonlinear behaviour for parameters near the onset of
small-deflection flapping.

the onset of small-deflection flapping, we investigate the leading global mode in what
follows.

Figures 7 and 8 show the leading mode of the deformed equilibrium near the
critical stiffness values where bifurcation occurs for Mρ = 0.5 and Mρ = 5, respectively.
The similarities between the figures suggest that the same underlying mechanism is
responsible for the onset of small-deflection flapping at these different mass ratios.
The mode is decomposed into real and imaginary parts, which highlights the time
dependence of the vortex motion. Note that the left panels of figures 7 and 8 appear
to indicate vortex shedding, but the global modes are the difference between the
complete flow field and the base flow (for small times before nonlinearities take
effect). As such, an interpretation of the total flow field in terms of vortex shedding
cannot be deduced from these figures. Vortex shedding is not evident in figure 6.

In both figures 7 and 8, the vortical structures are most pronounced near the flag
and decay in strength downstream of the flag. This demonstrates the importance of
the flag in driving flapping motion in this regime. This is in contrast to the deformed-
mode regime described in § 3.5, which is driven by vortex shedding that is triggered
by a flow instability (cf. figure 17); the strength of individual vortices far downstream
of the flag in figure 17 is notable compared with that of figures 7 and 8. As the
flag mass increases, the oscillation frequency of small-deflection flapping decreases
(cf. figure 5). This coincides with vorticity formation over longer time scales that
manifests itself in the form of elongated wake structures (cf. figures 7 and 8).

3.3. Large-amplitude flapping
Decreasing stiffness in the small-deflection flapping regime is associated with an
increasingly unstable leading mode (see table 3) and a corresponding increase in
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FIGURE 7. (Colour online) Real (a,b) and imaginary (c,d) parts of vorticity (a,c) and
flag displacement (b,d) of the leading global mode of the deformed equilibrium for
Mρ = 0.5, KB = 0.41 and Re = 200 (corresponding to small-deflection flapping). Vorticity
contours are in 20 increments from −0.05 to 0.05. For visual clarity, the flag is plotted
in the deformed-equilibrium state in (a,c) and in the perturbed state (with the equilibrium
subtracted) in (b,d).
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FIGURE 8. (Colour online) Real (a,b) and imaginary (c,d) parts of vorticity (a,c) and
flag displacement (b,d) of the leading global mode of the deformed equilibrium for
Mρ = 5, KB = 0.41 and Re = 200 (corresponding to small-deflection flapping). Vorticity
contours are in 20 increments from −0.2 to 0.2. For visual clarity, the flag is plotted in
the deformed-equilibrium state in (a,c) and in the perturbed state (with the equilibrium
subtracted) in (b,d).

flapping amplitude. Eventually, the amplitude is sufficiently large for the flag to reach
past the centreline (δtip = 0) position, and large-amplitude flapping ensues.

At this Reynolds number of Re= 200, the large-amplitude behaviour is associated
with sufficient bluffness to the flow that vortex shedding occurs. The resulting
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KB Leading mode growth rate

0.41 0.022
0.38 0.123
0.35 0.250
0.33 0.313

TABLE 3. Growth rate of the leading global mode of the deformed equilibrium for Mρ = 0.5
for stiffnesses in the small-deflection flapping and large-amplitude flapping regimes.

dynamics is dependent on flag mass, and we therefore consider it separately in what
follows.

3.3.1. Light flags: potential for classical VIV, and breakdown of classical VIV as a
route to chaos

For sufficiently light flags (Mρ 6 0.5 in our study), large-amplitude flapping was
shown to correspond to specific vortex-shedding patterns (Gurugubelli & Jaiman 2015;
Ryu et al. 2015; Shoele & Mittal 2016), and Sader et al. (2016a) used experiments
and a scaling analysis to argue that classical VIV could occur. We explain here the
previously observed shedding patterns in connection to classical VIV. We show that
for a range of stiffnesses (2.5 . 1/KB . 3.8) the P + P shedding pattern occurs and
the system exhibits classical VIV behaviour. With decreasing stiffness (3.8 . 1/KB .
4.4), however, there is a breakdown in classical VIV and a corresponding change in
shedding behaviour that serves as a precursor to the chaotic regime discussed in § 3.4.

To illustrate the synchronisation of vortex shedding and flapping in the classical VIV
regime (2.5 . 1/KB . 3.8), we show snapshots from a half-period of large-amplitude
flapping for Mρ = 0.05, 0.5 in figure 9. Note that despite an order of magnitude
change in mass ratio, the vortex-shedding patterns in the two rows of the figure are
similar: when the flag reaches its peak amplitude the leading-edge vortex formed
during the upstroke grows (a,e); as the flag begins its downstroke the leading-edge
vortex is released and a trailing-edge vortex forms (b, f ); the vortices grow in size
as the flag reaches its centreline position (c,g); while the leading- and trailing-edge
vortices advect downstream to form a P vortex pair (see Williamson & Roshko
(1988) for a description of this vortex characterisation), a leading-edge vortex forms
as the flag continues its downstroke (d,h). When the flag reaches its peak position,
an analogous process to the one just described occurs during the upstroke (with
oppositely signed vorticity). To confirm that this regime corresponds to classical VIV,
we show in figure 10 time traces of the coefficient of lift and tip displacement for
Mρ = 0.05, 0.5. The lift and tip displacement are synchronised, and therefore satisfy
the definition of VIV (Khalak & Williamson 1999; Sarpkaya 2004); see § 1.

Ryu et al. (2015) showed that there are other possible vortex shedding patterns in
large-amplitude flapping for light flags, i.e. for small mass ratios, Mρ . We demonstrate
here that these new patterns (occurring for 3.8 . 1/KB . 4.4) correspond to a
breakdown in classical VIV behaviour. One pattern identified by Ryu et al. (2015)
is the 2P + 2P pattern, which occurs for Mρ = 0.5 and KB = 0.23 (corresponding to
the rightmost set of markers in region IV of the bifurcation diagram in figure 3b).
This pattern is shown in figure 11. Figure 12 illustrates the corresponding coefficient
of lift and tip displacement for this set of parameters. From this figure, a disruption
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FIGURE 9. (Colour online) Vorticity contours at four snapshots of a flapping period of a
flag in large-amplitude flapping for Mρ = 0.05 (a) and Mρ = 0.5 (b). The other parameters
were Re= 200,KB = 0.32. Contours are in 18 increments from −5 to 5.
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FIGURE 10. Tip displacement (——) and coefficient of lift (— · —) for an inverted flag
in large-amplitude flapping with Re= 200, KB = 0.32.

of the underlying periodic flapping motion (occurring over 51 . t . 58) is evident
where the lift and tip displacements desynchronise. This departure from limit-cycle
behaviour can also be seen from the bifurcation diagrams in figure 3(a,b), as there
are multiple markers at a given stiffness in the range 3.8 . 1/KB . 4.4.

The potential for large-amplitude flapping with and without classical VIV is
indicative of the dominant role of fluid convection, relative to the structure, in the
dynamics of light flags (small Mρ) in large-amplitude flapping. Over a range of
stiffnesses (2.5 . 1/KB . 3.8), the natural frequency of the sheet is sufficiently close
to that of the bluff-body wake instability that the two synchronise to form a classical
VIV; see Sader et al. (2016a). The entire system progresses in limit-cycle dynamics
at a uniform frequency. From the frequency plots in figure 5(a,b), the frequency can
be seen to be near a Strouhal number of 0.2 when normalised using the projected
length of the flag to the flow at the peak flapping amplitude. With decreasing stiffness,
however, the flapping frequency decreases (see figure 5) and vortex shedding can no
longer synchronise with flapping. This disruption to classical VIV is associated with
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FIGURE 11. (Colour online) Vorticity contours at four snapshots of a flapping period of
a flag in large-amplitude flapping for Re= 200, Mρ = 0.5, and KB= 0.23. Contours are in
18 increments from −5 to 5.
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FIGURE 12. Tip displacement (——) and coefficient of lift (— · —) for an inverted flag
in large-amplitude flapping with Re= 200, Mρ = 0.5, and KB = 0.23.

a breakdown in limit-cycle dynamics (i.e. aperiodicity) and additional vortices shed
per cycle – this provides a route to chaotic flapping (as will be discussed in more
detail in § 3.4). By contrast, fluid convection is less important in setting the dynamics
for heavy flags, as discussed in the next subsection.

3.3.2. Heavy flags: not classical VIV
We now examine large-amplitude flapping for large mass ratios (Mρ = 5, 50). As

was seen for lighter flags, various shedding patterns can be obtained at these mass
ratios for different stiffnesses. However, there are no values of stiffness for which
these heavy flags undergo classical VIV. Rather than catalogue all possible shedding
patterns, we consider characteristic examples at the stiffness of KB= 0.32 to facilitate
our discussion.

Figure 13 shows a half-cycle of flapping for Mρ = 5, 50. The Mρ = 5 case
(figure 13a–d) is seen to lead to a P + S wake structure per half-cycle. For Mρ = 50
(figure 13e–h), even more vortices are shed during the downstroke: the first leading-
and trailing-edge vortices are shed when the flag is still near its peak amplitude (e);
the flag begins its downstroke and another leading- and trailing-edge vortex pair are
formed ( f ); as the flag nears its centreline position, a third leading-edge vortex forms
(g); this leading-edge vortex combines with a newly formed trailing-edge vortex
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FIGURE 13. (Colour online) Vorticity contours at four snapshots of a flapping period of
a flag in large-amplitude flapping for Mρ = 5 (a) and Mρ = 50 (b). The other parameters
were Re= 200,KB = 0.32. Contours are in 18 increments from −5 to 5.
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FIGURE 14. Tip displacement (——) and coefficient of lift (— · —) for an inverted flag
in large-amplitude flapping with Re= 200, KB = 0.32.

during the downstroke phase to form a third pair that is advected downstream; at the
end of the downstroke phase, new vortices form at the leading and trailing edge as
the flag reaches its peak amplitude (h).

The disparate time scales between vortex shedding and flapping is illustrated further
through time traces of the coefficient of lift and tip displacement (see figure 14). For
both mass ratios, the dominant frequency of the coefficient of lift is higher than that of
the tip displacement. Moreover, for Mρ = 50 there is a departure from periodicity that
can be observed in figure 14 (and is reflected in the bifurcation diagram in figure 3d).
These observations reflect that heavy flags do not undergo classical VIV – a result
predicted by Sader et al. (2016a) through a scaling analysis.

For Mρ = 5, it is clear from figure 14 that the lift coefficient has a subdominant
frequency at the dominant flag-flapping frequency. Thus, it is possible that the
large-amplitude response is a result of synchronisation between flapping and a
higher-harmonic response in the fluid. This relation between the dominant flapping
motion and a higher-harmonic fluid response could also be occurring for Mρ = 50,
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although the observed aperiodicity in the system could be reflective of ‘galloping-type’
lift mechanism. Future work could further investigate the mechanisms driving flapping
when classical VIV is absent.

While the specific relationship between vortex shedding and flapping in this regime
remains an open question, the frequency plots in figure 5(c,d) provides insight into the
physics. The plots show that the frequency scaling is similar to the (linear) natural
frequency of a sheet in an inviscid fluid (solid curves). This natural frequency is
computed using the theory of Shen et al. (2016), which accounts for added mass of
the fluid (though for these high mass ratios this effect is negligible and the natural
frequency is nearly identical to that in a vacuum). There is a downward shift between
the flapping frequency and the natural frequency prediction of Shen et al. (2016),
although this is expected because the latter does not account for viscosity, which
would lower the natural frequency. These results show that large-amplitude flapping
is structure-dominated for large mass ratios, as expected.

3.4. Chaotic flapping
For sufficiently light flags (Mρ 6 0.5 in our studies), large-amplitude flapping
(region IV in figure 3) bifurcates to chaotic flapping (region V) before entering
into deflected-mode flapping (region VI). Figure 15 shows that the time traces of
both the transverse and streamwise tip displacement are aperiodic and associated with
broadband frequency content (note that we use ηtip(t) to denote the streamwise tip
displacement in the figure).

To demonstrate mathematically that this behaviour is chaotic, we compute the
Lyapunov exponent of the system using the time-delay method of Wolf et al. (1985).
The method uses a time-delay procedure from a small subset of the full state to
reconstruct a higher-dimensional state space, and provides an approximation of the
distance, d(t), of two trajectories starting close to one another at an initial time t0
in this higher-dimensional state space. In this work, a ten-dimensional reconstruction
is made from time information of the transverse velocity-displacement data. The
same approach was used by Connell & Yue (2007) to identify chaotic flapping of
conventional flags. The evolution of the distance d(t) is written as

d(t)= d(t0)eγ (t−t0), (3.1)

where γ is the Lyapunov exponent that represents the departure or convergence of the
two trajectories. A zero value of γ corresponds to a stationary state where the system
is in limit cycle behaviour; a positive value of γ corresponds to divergence of the
two trajectories, and thus to chaotic flapping. Table 4 shows the Lyapunov exponent
computed for various values of Mρ and KB. For large-amplitude and deflected-mode
flapping, the exponent is approximately zero (∼ of order 10−3), coincident with limit-
cycle flapping. In the chaotic regime that occurs at stiffnesses between large-amplitude
and deflected-mode flapping, the exponent is positive and larger by over an order of
magnitude (∼ of order 0.1), indicative of a transition to chaotic behaviour in this
regime.

To elucidate the nature of chaotic flapping, we show in figure 16 phase portraits of
tip velocity versus tip displacement for inverted flags in the large-amplitude flapping,
chaotic flapping, and deflected-mode regimes. The figures demonstrate that the chaotic
flapping phase portrait contains both the large periodic orbit of large-amplitude
flapping and the small-amplitude large-deflection periodic orbit of deflected-mode
flapping. Thus, the chaotic attractor contains features of both large-amplitude flapping
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FIGURE 15. (a,c) Tip displacement as a function of time in the transverse (a,b) and
streamwise (c,d) directions; (b,d) corresponding spectral density computations (computed
over the time window t ∈ [20, 500]). All plots correspond to a flag in the chaotic flapping
regime, with Mρ = 0.05,KB = 0.17, Re= 200.

Mρ KB Lyapunov exponent (γ ) Flapping regime

0.05 0.35 −0.0012 Large-amplitude flapping (region IV)
0.05 0.17 0.068 Chaotic flapping (region V)
0.05 0.08 −0.0023 Deflected mode (region VI)
0.5 0.35 −0.0015 Large-amplitude flapping (region IV)
0.5 0.17 0.059 Chaotic flapping (region V)
0.5 0.08 0.0009 Deflected mode (region VI)

TABLE 4. Lyapunov exponents for different flapping regimes. For each regime, the
corresponding region from the bifurcation diagram of figure 3 is indicated in parentheses.

and the deflected mode – both of which are unstable in this regime. The chaotic nature
of the regime is associated with the apparent randomness in switching between these
two orbits and a sensitive dependence on initial conditions (see above).
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FIGURE 16. Tip-velocity displacement phase portraits for Mρ = 0.05 and KB = 0.32 (a),
KB = 0.17 (b) and KB = 0.11 (c).

The bifurcation diagrams in figure 3 demonstrate that increasing the mass ratio
reduces the chaotic behaviour. In moving from Mρ = 0.05 to Mρ = 0.5, there were
certain stiffnesses within the chaotic flapping regime that exhibited periodic flapping
instead of chaotic flapping (see figure 3). This may be an artefact of only running the
simulations for finite time, but the absence of chaotic flapping over a minimum of 55
flapping periods for certain stiffnesses at Mρ = 0.5 speaks to the effect of increasing
flag inertia on reducing the chaotic behaviour. It could be that islands of periodicity
exist within the chaotic regime, as has been observed for other unrelated dynamical
systems (Strogatz 1994). For the heavier flag cases of Mρ = 5, 50, chaotic flapping
is not observed in any of the simulations. Thus, chaotic flapping appears to only be
associated with mass ratios (Mρ) for which classical VIV flapping occurs.

The relationship between chaotic flapping and classical VIV can be understood
from the results of § 3.3. We first consider light flags (Mρ < 1) in the large-amplitude
flapping regime. Decreasing the stiffness reduces the resonant frequency of the flag.
This increases the disparity between the natural frequency of vortex shedding (if
lock-on were not present) and the flag’s resonant frequency. When this discrepancy
increases further, the lock-on phenomenon is disrupted. This causes the flag to spend
considerable time near the deflected mode, which at this point is only weakly unstable
– a small decrease in stiffness causes a transition to the deflected-mode state. Such
weakly unstable behaviour of the deflected-mode regime is evident in figure 15 (and
in figure 11 of Sader et al. (2016a)). This mechanism is what leads to a sensitive
dependence on initial conditions, i.e. chaos.

In contrast, heavy flags (Mρ > 1) do not exhibit classical VIV. The vortex-shedding
frequency is much higher than the natural resonant frequency of the flag, and lock-on
is not favoured. Thus, a mechanism for disruption of classical VIV is not possible
since classical VIV is absent to begin with for heavy flags.

Note also the distinction between chaotic flapping of inverted flags and conventional
flags. Connell & Yue (2007) demonstrated that for conventional flags the mass ratio
controls chaos, which arises once this parameter becomes sufficiently high because
of the increased flag inertia. By contrast, for inverted flags chaos occurs due to the
combined effects of disparity between the natural vortex shedding frequency and
resonant frequency of the flag, and a weakly unstable deflected-mode state. Chaos
therefore serves as a precursor to behaviour that evolves entirely on a stable attractor
(the deflected-mode regime, discussed in the next section), as stiffness is further
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Mρ Leading mode frequency

0.05 0.205
0.5 0.205
5 0.205
50 0.205

TABLE 5. Frequency of the leading global mode of the deformed equilibrium for
KB = 0.12 and four different masses. All cases correspond to the deflected-mode regime.

reduced. This occurrence of chaos as an intermediate state before a new regime is
observed in other dynamical systems, including the Lorenz system.

3.5. Deflected-mode regime
For low stiffnesses the system transitions to a large-deflection state about which
small-amplitude flapping occurs; i.e. the amplitude is much smaller than the deflection
magnitude of the deformed equilibrium. As seen in figure 3, this flapping is not
centred about the deformed-equilibrium position: the mean and equilibrium states are
different.

The nature of flapping in this regime is qualitatively distinct from that of small-
deflection flapping (region III of figure 3) and large-amplitude flapping (region IV of
figure 3). Shoele & Mittal (2016) observed that when the flapping frequency is scaled
by the free-stream velocity and mean tip amplitude (i.e. the mean projected length
to the flow), it agrees well with the usual 0.2 value found for vortex shedding past
bluff bodies (Roshko 1954). They used this finding to argue that the bluff-body wake
instability is responsible for the small-amplitude flapping in this regime.

The global stability analysis of the deformed equilibrium confirms this previous
conclusion. Figure 17 shows that the least damped mode is characterised by a
vortical structure in the wake of the flag similar to the leading mode of a rigid
stationary cylinder (Barkley 2006). (The analogous mode to the leading global mode
for small-deflection flapping and large-amplitude flapping is also unstable in the
deflected-mode regime, but is associated with a smaller growth rate.) Because vortex
shedding drives the instability in the rigid cylinder, this indicates that the same
destabilising mechanism exists here in the deflected mode of an inverted flag. This is
in contrast to the leading mode found for small-deflection flapping and large-amplitude
flapping, whose vortical structure decays in strength with distance from the flag (see
the discussion in § 3.2). Moreover, as seen in table 5, the flapping frequency of
this leading mode is independent of mass ratio (Mρ). This is also distinct from the
mass-dependent flapping frequency of the least damped mode for the previously
discussed regimes. The similar vortical structure of the mode to other bluff-body
flows and the independence of the structural parameters on the modal frequency
demonstrate that the leading instability is associated with vortex shedding.

The presence of vortex shedding in this deflected-mode regime is also the cause
of the difference between the mean and equilibrium flapping positions. Vortex
shedding leads to an increase in the mean lift and drag forces on the flag compared
with the equilibrium state (which is devoid of vortex shedding; cf. figure 4). To
demonstrate this increase in fluid forces, we ran a simulation with the flag fixed in
the deformed-equilibrium position corresponding to KB = 0.1. With the flag fixed in
this position, the bluffness of the body causes the flow to enter limit-cycle vortex
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FIGURE 17. (Colour online) Real (a,b) and imaginary (c,d) parts of vorticity (a,c) and
flag displacement (b,d) of the leading global mode of the deformed equilibrium for Mρ =

0.5, KB = 0.12 and Re = 200. Vorticity contours are in 20 increments from −0.2 to 0.2.
The eigenvectors are identical for Mρ = 0.05, 0.5, and 50.

shedding with a mean lift and drag of 0.356 and 0.583, respectively. By contrast, for
the same stiffness of KB = 0.1, when the fully coupled system is in the deformed
equilibrium and vortex shedding is absent, the lift and drag forces are 0.192 and
0.344, respectively. The increase in mean forces causes a corresponding increase in
flag deflection, and thus in the nonlinear simulations flapping occurs about a mean
position that is raised from the equilibrium state. There are potential connections
between the mean-deflected position of the flag and the experimentally observed
equilibrium of Sader et al. (2016a) found at Re = O(10 000). The latter equilibrium
was shown to be unstable in the large-amplitude flapping regime (region IV of
figure 3) and stable in the deflected-mode regime (region VI of figure 3), and
was found to be characterised by a continuous increase in tip deflection (with
decreasing KB). The relationship between the experimentally observed equilibrium
(which was only observed in the presence of externally applied damping) and the
mean-deflection state of these lower Reynolds number simulations presents an area
for future investigation.

4. Dynamics for Re= 20

4.1. Bifurcation diagrams and general observations
Previous numerical simulations of Ryu et al. (2015) and Shoele & Mittal (2016)
demonstrated the absence of flapping for flags with Mρ 6O(1) and Re< 50. We now
consider Re= 20 to investigate the stability and dynamics of the inverted-flag system
below this previously identified critical Reynolds number. Figure 18 gives bifurcation
diagrams of the inverted-flag system at four different mass ratios. These figures were
plotted as described in § 3. As with Re= 200, a minimum of fifteen flapping cycles
were used to convey flapping information on the diagrams. The bifurcation diagrams
reveal four distinct regimes: a stable undeformed equilibrium (I), a stable deformed
equilibrium (II), small-deflection flapping (III) and large-amplitude flapping (IV).
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FIGURE 18. (Colour online) Bifurcation diagrams of inverted-flag dynamics at Re = 20
that show leading-edge transverse displacement (tip deflection, δtip) versus inverse stiffness
(1/KB). I, undeformed equilibrium; II, deformed equilibrium; III, small-deflection flapping;
IV, large-amplitude flapping. See the main text for a description of the various lines and
markers and details on how the diagrams were constructed.

While many of the same bifurcations found at Re= 200 remain for Re= 20, there
are also distinctions between them that are visible through the bifurcation diagrams.
First, consistent with the observations of Ryu et al. (2015) and Shoele & Mittal
(2016), we do not find flapping for light flags (Mρ 6 0.5). This demonstrates the
stabilising effect of viscosity for inverted-flag dynamics. However, heavy flags with
Mρ = 5, 50 are found to undergo both small-deflection flapping and large-amplitude
flapping. We discuss the mechanisms behind this flapping behaviour in subsequent
sections. Second, the deflected-mode state no longer exhibits flapping at this lower
Reynolds number, and is instead a true stable equilibrium of the fully coupled
fluid–structure equations of motion. Finally, chaotic flapping does not occur for any
of the considered values of Mρ at this lower Reynolds number.
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FIGURE 19. (Colour online) Vorticity contours for equilibrium states of the inverted-flag
system at Re= 20. From (a) to (d), KB= 0.5, 0.41, 0.35, 0.2. The two rightmost equilibria
are unstable for Mρ = 5, 50. Contours are in 18 increments from −5 to 5.
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FIGURE 20. (Colour online) Markers: peak flapping frequency at Re = 20 for the
parameters corresponding to the bifurcation diagrams shown in figure 18; ——, natural
frequency scaling of a sheet accounting for added mass contributions from an inviscid
fluid, as derived in Shen et al. (2016).

As was seen for Re= 200, the divergence instability of the undeformed equilibrium
(caused by decreasing KB) leads to a stable deformed equilibrium (region II in
figure 18) that is independent of the mass ratio, Mρ . This follows from the fact that
the deformed equilibria are steady-state solutions and therefore do not depend on flag
inertia. The deformed equilibria for Re= 20 are shown in figure 19.

As stiffness is decreased, light flags remain in this (stable) deformed equilibrium
regime: no flapping occurs at this Reynolds number for Mρ = 0.05, 0.5. Moreover,
since the equilibrium states do not depend on flag inertia, their bifurcation diagrams
are identical. By contrast, with decreasing stiffness heavy flags transition from the
deformed equilibrium to (respectively) small-deflection flapping and large-amplitude
flapping before returning at even lower stiffnesses to a stable deformed equilibrium;
the amplitude jumps abruptly at this latter transition. We show in figure 20 the peak
flapping frequency for the parameters corresponding to the bifurcation diagrams in
figure 18. We will refer to this frequency figure in subsequent sections, as appropriate.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

72
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.728


Global modes and nonlinear analysis of inverted-flag flapping 337

Mρ KB Leading mode Peak frequency of
Growth rate Frequency nonlinear simulation

5 0.374 −0.0061 0.083 N/A (stable equilibrium)
5 0.371 0.0039 0.082 0.080
50 0.40 −0.003 0.031 N/A (stable equilibrium)
50 0.397 0.001 0.030 0.030

TABLE 6. Growth rate and frequency of the leading global mode of the deformed
equilibrium compared with nonlinear behaviour for parameters near the onset of
small-deflection flapping.

4.2. Small-deflection flapping
We show in table 6 that the transition from the (stable) deformed equilibrium to
small-deflection flapping is associated with the least damped global mode of the
deformed equilibrium becoming unstable. Thus, as was seen for Re = 200, small-
deflection flapping is a supercritical Hopf bifurcation of the deformed-equilibrium
state. Table 6 also shows that the corresponding eigenvalue accurately predicts the
flapping frequency of the nonlinear simulations near the stability boundary. Note
that flapping in this regime is not a classical VIV – the markers in region III of
the frequency plots (figure 20) are significantly smaller than the expected value for
vortex shedding of 0.2.

To illustrate the vortical regions and flag shapes associated with this instability at
this lower Reynolds number of Re= 20, we plot the real and imaginary parts of the
leading global mode near the critical stiffness for Mρ = 5 in figure 21 (the plot is
similar for Mρ = 50). Flag motion is associated with four vortical structures near the
flag surface.

We emphasise that a linear stability analysis of the undeformed equilibrium state is
associated with a zero-frequency (non-flapping) unstable mode; it is therefore distinct
from the flapping behaviour observed in the nonlinear simulations. This establishes
that the divergence instability derived by Sader et al. (2016a) for inviscid fluids
persists at lower Reynolds numbers. The undeformed-equilibrium state is unstable
during flapping.

Figure 22 shows the leading global mode of the undeformed equilibrium (note that
the leading mode of the undeformed equilibrium is purely real). The mode has a
deflected flag shape and set of vortical structures that are similar to the real part of
the leading mode of the deformed equilibrium. A noticeable distinction between the
two, however, is that the vortical structures of the undeformed-equilibrium mode are
symmetric about the equilibrium flag position while those of the deformed-equilibrium
mode are not (and the latter occur at non-zero frequency).

4.3. Large-amplitude flapping
We now consider the transition from small-deflection flapping to large-amplitude
flapping. Large-amplitude flapping is observed only for large mass ratios at this
smaller Reynolds number. We first explore the mechanism behind this observation.

At small mass ratios, unsteady inertia of the fluid dominates inertia in the flag.
As such, the flow dynamics are not strongly perturbed by the flag. In contrast,
at high mass ratios the fluid exerts a weak effect – the system dynamics are
structure-dominated. This behaviour is borne out in figure 20, where the flapping
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FIGURE 21. (Colour online) Real (a,b) and imaginary (c,d) parts of vorticity (a,c) and
flag displacement (b,d) of the leading global mode of the deformed equilibrium for Mρ =

5,KB = 0.37 and Re= 20. Vorticity contours are in 20 increments from −0.05 to 0.05.
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FIGURE 22. (Colour online) Real part of vorticity (a) and flag displacement (b) of the
leading global mode of the undeformed equilibrium for Mρ = 5, KB = 0.37 and Re= 20.
Vorticity contours are in 20 increments from −0.05 to 0.05.

frequency is comparable to that of the natural frequency of the flag (in an inviscid
fluid). Note that there is a downward shift in the flapping frequency due to the effect
of viscosity. This effect is expected (Sader 1998), and is demonstrated further in
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FIGURE 23. (Colour online) Flapping frequency for various Reynolds numbers: ——,
natural frequency of a flag in the inviscid limit accounting for added mass (obtained using
the method of (Shen et al. 2016)); filled markers, peak flapping frequency for Re= 200;
open markers, peak flapping frequency for Re= 20.

figure 23: with increasing viscosity the effects of added mass are enhanced, and
hence flapping frequency decreases.

Viscosity (shear stress) is known to stabilise vortex formation behind a bluff body.
This leads to the extinction of periodic vortex shedding for Re < 47 behind a rigid
cylinder. However, motion of the structure can relax these stabilising shear stresses,
leading to unsteadiness in vortex formation (and shedding) for Re< 47. This physics
underlies the sub-critical VIV observed in elastic cylinders at high Mρ (Mittal &
Singh 2005), i.e. in the structure-dominated regime. Similarly, stabilising viscous
stresses at low Re are relaxed in the inverted-flag system, provided Mρ is large.
While vortex shedding is not observed in the inverted-flag system at this sub-critical
Reynolds number (see figure 24), flapping ensues nonetheless. This suggests that
vortex formation is again destabilised at high Mρ and low Re (as for sub-critical VIV
of elastic cylinders), leading to vibration of the structure. In contrast to sub-critical
VIV of elastic cylinders, however, the Strouhal number is much smaller than 0.2.
This indicates that the natural frequency of unsteadiness in vorticity formation (due
to flow convection) is much higher than the flag’s resonant frequency (which sets the
vibration frequency at large Mρ). This is identical to the observation for Re= 200 at
large Mρ (see § 3.3.2), and can therefore be classified as not classical VIV.

4.4. Large-deflection equilibrium (deflected-mode regime)
A continued decrease in stiffness leads to a bifurcation from large-amplitude
flapping back to a stable deformed equilibrium with large deflection. This transition
corresponds to the re-stabilisation of the leading global mode (e.g. for Mρ = 5,
KB = 0.17 the growth rate of the leading mode is −0.032). Note that this deflected-
mode state is distinct from that found at the higher Reynolds numbers, Re = 200,
where the flag undergoes small-amplitude oscillations driven by vortex shedding
(Sader et al. 2016a; Shoele & Mittal 2016). Since vortex shedding is absent at
Re = 20, the deflected-mode regime is a formal equilibrium of the fully coupled
equations of motion.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

72
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.728


340 A. Goza, T. Colonius and J. E. Sader

10 2 3 4 5 10 2 3 4 5 10 2 3 4 5 10 2 3 4 5

0

–1.5

1.5

3.0

–3.0

x x x x

y

(a) (b) (c) (d )

FIGURE 24. (Colour online) Vorticity contours at four snapshots of a flapping period of
a flag in large-amplitude flapping for Re= 20, Mρ = 5, and KB= 0.26. Contours are in 18
increments from −5 to 5.

5. Conclusions

We used 2-D high-fidelity nonlinear simulations and a global linear stability analysis
of inverted-flag flapping to (i) investigate the physical mechanisms responsible for the
onset of flapping, (ii) study the role of vortex shedding in large-amplitude flapping and
(iii) further characterise various regime bifurcations that were previously identified and
explored (Kim et al. 2013; Gurugubelli & Jaiman 2015; Ryu et al. 2015; Shoele &
Mittal 2016; Sader et al. 2016a; Gurugubelli & Jaiman 2017). We performed studies
at Re = 20 and 200 for a wide range of KB and over a four orders of magnitude
range of Mρ . The following statics/dynamics of the inverted flag were observed with
a systematic decrease in flag stiffness:

Deflected equilibrium above divergence. We demonstrated that for all mass ratios
and Reynolds numbers considered, a stationary deflected state exists that is a formal
equilibrium of the fully coupled equations. This deflected state persists as an unstable
steady state even when flapping occurs. A similar deformed equilibrium was found at
Re=O(30 000) by Sader et al. (2016a) through the addition of damping; establishing
similarities between these findings is an area for future work.

Small-deflection flapping. The deformed equilibrium becomes unstable and
transitions to small-deflection flapping with decreasing stiffness (KB). This occurred
at Re= 200 for all mass ratios considered and at Re= 20 for heavy flags (Mρ >O(1))
only. This flapping transition was shown to be initiated by a supercritical Hopf
bifurcation of the deformed-equilibrium state (i.e. a complex-conjugate set of
eigenvectors becomes unstable). For all parameters that exhibited this small-deflection
flapping regime, the leading mode and ensuing nonlinear behaviour appear to be
devoid of vortex shedding and have a flapping frequency that is not commensurate
with classical VIV behaviour; i.e. the Strouhal number is much smaller than 0.2.

Large-amplitude flapping. Light flags (Mρ < O(1)) at Re = 200 exhibit classical
VIV behaviour in which vortex shedding and flag motion are synchronised at
the same frequency. This coincides with the arguments of Sader et al. (2016a)
based on experimental measurements and a scaling analysis. As the stiffness
KB is decreased, the natural frequency of the flag decreases below the natural
vortex-shedding frequency, and disruption of classical VIV occurs. By contrast,
heavy flags (Mρ > O(1)) at Re = 200 do not exhibit classical VIV behaviour – also
consistent with the scaling analysis of Sader et al. (2016a). Vortex shedding occurs
at a higher frequency than the natural flag frequency. Strikingly, large-amplitude
flapping also occurs for heavy flags at Re= 20, and (as with heavy flags at Re= 200)
is not a classical VIV. This sub-critical behaviour is due to relaxation of (viscous)
shear stresses in this structure-dominated regime (at high Mρ), which then allows
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unsteadiness in vorticity generation to ensue. No flapping was observed for flags
in the fluid-dominated regime of Mρ < O(1) at Re = 20, in agreement with the
simulations of Ryu et al. (2015) and Shoele & Mittal (2016).

Deflected mode. For Re = 200 we used a global stability analysis to confirm the
argument of Shoele & Mittal (2016) that this regime is driven by the canonical
bluff-body wake instability. For all masses considered, the leading mode has vortical
structures similar to the leading global mode found in canonical bluff bodies (Barkley
2006) and a flapping frequency commensurate with the St ∼ 0.2 bluff-body scaling
(Roshko 1954). We also showed that the deflected mode does not exhibit flapping
at any mass ratio for Re= 20, and the system is instead in a stable large-deflection
equilibrium state.

Chaotic flapping. We confirmed the existence of chaotic flapping for light flags
at Re = 200 and characterised its onset as the destabilisation of classical VIV in
large-amplitude flapping of light flags. We also demonstrated that the chaotic attractor
involves switching between the unstable large-amplitude and deflected-mode states.
The experimental identification of chaotic flapping by Sader et al. (2016a) at Reynolds
numbers O(10 000) indicates that chaos is possible over a wide range of fluid inertia.
No chaotic flapping was observed at Re= 200 for Mρ > O(1) or at Re= 20 for any
of the mass ratios considered.
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Appendix A. Details of the global stability solver
We provide here more details for how the eigenvalue problem associated with (2.9)

and (2.10) is solved. The matrices A and B are built and stored sparsely and solved
using the built-in eigs command in MATLAB, which performs an implementation of
the implicitly restarted Arnoldi algorithm (Lehoucq et al. 1998). We focus here on
the construction of submatrices Jχs, Jχχ and Jχc. All other submatrices of A and B
are described in Goza & Colonius (2017), and the reader is referred to that article for
more details.

We describe Jχs in detail below; the formation of Jχχ and Jχc are analogous.
The primary challenge in constructing Jχs lies in the fact that the ∂ET

jl/∂χk term
corresponds to a third-rank tensor. This third-rank tensor need not be built directly,
however, as the kth column of Jχs is

CT ∂E

∂χk
f b. (A 1)

We moreover approximated the ∂E/∂χk term with a first-order finite difference
scheme in this work (note that this is consistent with the overall accuracy of the
numerical method), so that Jχs may be constructed columnwise, with the kth column
computed as

CT

[
ET(χb + εek)− ET(χb)

ε

]
f b, (A 2)
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Grid 1x 1t Smallest sub-domain size Total domain size

1 0.02 0.002 [−0.2, 1.8] × [−1.1, 1.1] [−15.04, 16.64] × [−17.44, 17.44]
2 0.015 0.0016 [−0.2, 1.8] × [−1.1, 1.1] [−15.04, 16.64] × [−17.44, 17.44]
3∗ 0.01 0.001 [−0.2, 1.8] × [−1.1, 1.1] [−15.04, 16.64] × [−17.44, 17.44]
4 0.0075 0.00008 [−0.2, 2.8] × [−1.5, 1.5] [−22.58, 25.18] × [−23.88, 23.88]

TABLE 7. Parameters used for grid-convergence study. 1x, grid spacing on finest
sub-domain; 1t, time step. Grid 3 was used to obtain the results presented throughout
the manuscript.

Grid Peak amplitude Frequency

1 ±0.79 0.178
2 ±0.80 0.179
3∗ ±0.81 0.180
4 ±0.80 0.181

TABLE 8. Peak amplitude and flapping frequency associated with limit-cycle flapping of
an inverted flag for Re= 200,Mρ = 0.5, and KB = 0.35, as obtained using grids 1–4.

where ek is the kth unit vector with zero values in all entries except for the kth, and
ε is a real scalar with ε� 1. We used ε = 10−5 in our studies, but noticed negligible
differences in the results for 10−6 6 ε 6 10−3.

Appendix B. Grid convergence study
We give here the details of a grid convergence study of the nonlinear solver for

Re= 200,Mρ = 0.5,KB= 0.35. For these parameters the flag enters limit-cycle flapping
of fixed amplitude and frequency. The details of the grid spacing on the finest sub-
domain (1x), time step (1t), smallest sub-domain size and total domain size are
provided in table 7. In all cases, the grid spacing on the flag was set to be twice
that of the grid spacing on the finest domain.

Grid 4 was used as the fine-grid solution to determine grid convergence. Figure 25
shows the normalised L∞-norm of the discrepancy in the flag displacement between
the coarse- and fine-grid solutions at t= 5 (i.e. εh≡‖χh−χf‖∞/‖χf‖∞, where χf and
χh denote the flag displacement computed with the fine and coarse grids, respectively).
The plot illustrates the expected first-order convergence rate and demonstrates the good
agreement between the solutions obtained with grids 3 and 4. To further indicate the
grid-converged nature of the results, we show in table 8 the peak amplitude and
frequency associated with the limit-cycle behaviour, as computed using grids 1–4.
Note that even grid 1 yields a fairly accurate representation of the time-averaged
behaviour of the system.

The immersed-boundary method of Goza & Colonius (2017) used in this work
intrinsically satisfies the no-slip boundary at each point along the flag to within a
prescribed tolerance (e.g. the slip magnitude at each discrete flag point was less than
10−9 in all simulations).

Appendix C. Building bifurcation diagrams
For clarity, we describe further how the set of markers corresponding to

1/KB ≈ 6 was obtained for the Re = 200, Mρ = 0.05 bifurcation diagram. This
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FIGURE 25. Normalised L∞-norm of the discrepancy in the flag displacement between
the coarse- and fine-grid solutions at t= 5 (x): - - -, first-order convergence rate.
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FIGURE 26. (Colour online) An illustration that describes the steps used to populate the
markers at 1/KB ≈ 6 for the Mρ = 0.05, Re= 200 bifurcation diagram.

discussion is facilitated through figure 26. From a simulation for Re= 200, Mρ = 0.05,
and 1/KB≈6, a phase portrait (figure 26a) of tip velocity (δ̇tip) versus tip displacement
(δtip) was constructed based off of time traces of those quantities. Note that initial
transients were removed, and the phase portrait was obtained using only information
after the first five flapping cycles. A zero-tip-velocity Poincaré section was then
obtained by taking a horizontal cross-section of the curve in figure 26(a). The points
of the phase portrait that intersect this zero-velocity slice were then used to populate
the bifurcation diagram at 1/KB ≈ 6. This procedure was repeated at all other values
of 1/KB for which there are markers.
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