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Coisotropic Submanifolds in b-symplectic
Geometry

Stephane Geudens, and Marco Zambon

Abstract. Westudy coisotropic submanifolds of b-symplecticmanifolds.Weprove that b-coisotropic

submanifolds (those transverse to the degeneracy locus) determine the b-symplectic structure in a

neighborhood, and provide a normal form theorem. �is extends Gotay’s theorem in symplectic

geometry. Further, we introduce strong b-coisotropic submanifolds and show that their coisotropic

quotient, which locally is always smooth, inherits a reduced b-symplectic structure.

Introduction

In symplectic geometry, an important and interesting class of submanifolds are
the coisotropic ones. �ey are the submanifolds C satisfying TCΩ ⊂ TC, where TCΩ

denotes the symplectic orthogonal of the tangent bundle TC. �ey arise, for instance,
as zero level sets of moment maps, and in mechanics as those submanifolds that
are given by first class constraints (see Dirac’s theory of constraints). �e notion of
coisotropic submanifolds extends to the wider realm of Poisson geometry, and it plays
an important role there too: for instance, a map is a Poisson morphism if and only if
its graph is coisotropic, and coisotropic submanifolds admit canonical quotients that
inherit a Poisson structure.

�e Poisson structures that are non-degenerate at every point are exactly the
symplectic ones. Relaxing the non-degeneracy condition slightly, one obtains Poisson
structures (M , Π) for which the top power ∧nΠ is transverse to the zero section of
the line bundle ∧2nTM (here dim(M) = 2n): they are called log-symplectic structures.
�ey are symplectic outside the vanishing set of ∧nΠ, a hypersurface that inherits
a codimension-one symplectic foliation. Log-symplectic structures are studied sys-
tematically by Guillemin, Miranda, and Pires in [11], and turn out to be equivalent
to b-symplectic structures. �e latter are defined on manifolds M with a choice of
codimension-one submanifold Z, as follows: they are non-degenerate sections ω of
∧2(bTM)∗ that are closed with respect to the de Rham differential, where bTM is
the b-tangent bundle (a Lie algebroid overM that encodes Z). In other words, they are
the analogue of symplectic forms if one replaces the tangent bundle with the b-tangent
bundle. Because of this, various phenomena in symplectic geometry have counterparts
for log-symplectic manifolds.
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738 S. Geudens and M. Zambon

�is paper is devoted to coisotropic submanifolds of log-symplectic manifolds.
We single out two classes, which we call b-coisotropic and strong b-coisotropic. We
prove that certain properties of coisotropic submanifolds in symplectic geometry—
properties which certainly do not carry over to arbitrary coisotropic submanifolds of
log-symplectic manifolds—do carry over to the above classes. Moreover, we show that
these classes of submanifolds enjoy some properties that are b-geometric enhance-
ments of well-known facts about coisotropic submanifolds in Poisson geometry. We
now elaborate on this.

Main Results. Let (M , Z ,ω) be a b-symplectic manifold, and denote by Π the
corresponding Poisson tensor on M. We consider two classes of submanifolds that
are coisotropic (in the sense of Poisson geometry) with respect to Π.

A submanifold ofM is called b-coisotropic if it is coisotropic and a b-submanifold
(i.e., transverse toZ). An equivalent characterization is the following: a b-submanifold
C such that (bTC)ω ⊂ bTC. �e latter formulation makes apparent that this notion is
very natural in b-symplectic geometry. Section 2 is devoted to the class of b-coisotropic
submanifolds.

We show that the b-conormal bundle of a b-coisotropic submanifold is a Lie
subalgebroid. We also show that for Poisson maps between log-symplectic mani-
folds compatible with the corresponding hypersurfaces, the graphs are b-coisotropic
submanifolds, once “li�ed” to a suitable blow-up [9]. Both of these statements are
b-geometric analogs of well-known facts about coisotropic submanifolds in Poisson
geometry. Next, in �eorem 2.13 we show that Gotay’s theorem in symplectic geom-
etry [8] extends to b-coisotropic submanifolds in b-symplectic geometry. �e main
consequence is a normal form theorem for the b-symplectic structure around such
submanifolds.

�eorem A neighborhood of a b-coisotropic submanifold C
i
↪ (M , Z ,ω) is b-

symplectomorphic to the following model:

(a neighborhood of the zero section in E∗, Ω),

where the vector bundle E ∶= ker(b i∗ω) denotes the kernel of the pullback of ω to C, and
Ω is a b-symplectic form that is constructed out of the pullback b i∗ω and is canonical
up to neighborhood equivalence (see equation (2.6) for the precise formula).

Such a normal form allows us to study effectively the deformation theory of C as
a coisotropic submanifold [7]. Another possible application is the construction of b-
symplectic manifolds using surgeries, as done, for instance, in [6, �eorem 6.1]. We
point out that in the special case of Lagrangian submanifolds, the above result is a
version of Weinstein’s tubular neighborhood theorem, and was already obtained by
Kirchhoff-Lukat [13, �eorem 5.18].

In Section 3, we consider the following subclass of the b-coisotropic submanifolds.
A submanifold C is called strong b-coisotropic if it is coisotropic and transverse to all
the symplectic leaves of (M , Π) it meets. We remark that Lagrangian submanifolds
intersecting the degeneracy hypersurface Z never satisfy this definition.

https://doi.org/10.4153/S0008414X20000140 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000140


Coisotropic Submanifolds in b-symplectic Geometry 739

�e main feature of strong b-coisotropic submanifolds is that the characteristic
distribution

D ∶= Π♯(TC0),

is regular, with rank equal to codim(C). Recall the following fact in Poisson geometry:
when the quotient of a coisotropic submanifold by its characteristic distribution is
a smooth manifold, then it inherits a Poisson structure, called the reduced Pois-
son structure. We show (see Proposition 3.6 for the full statement) the following
proposition.

Proposition Let C be a strong b-coisotropic submanifold of a b-symplectic manifold. If
the quotient C/D by the characteristic distribution is smooth, then the reduced Poisson
structure is again b-symplectic.

Instances of the above proposition arise when a connected Lie group acts on a
b-symplectic manifold with equivariant moment map, in the sense of Poisson geom-
etry, and C is the zero level set of the latter; see Corollary 3.10. At the end of the paper
we provide examples of b-symplectic quotients, and—by reversing the procedure—in
Corollary 3.16, we realize any b-symplectic structure on the 2-dimensional sphere as
such a quotient.

In order to state and prove these results, in Section 1 we collect some facts about
b-geometry. A few of them are new, to the best of our knowledge, and are of
independent interest.More specifically, in Lemma 1.10, we show that, while the anchor
mapof the b-tangent bundle does not admit a canonical splitting, distributions tangent
to Z do have a canonical li� to the b-tangent bundle. In Proposition 1.19, we provide a
version of the b-Moser theorem relative to a b-submanifold, which we could not find
elsewhere in the literature.

1 Background on b-geometry

In this section, we address the formalism of b-geometry, which originated from the
work of Melrose [18] in the context of manifolds with boundary. We review some of
themain concepts, including b-symplectic structures, and we prove some preliminary
results that will be used in the body of this paper.

1.1 b-manifolds and b-maps

We first introduce the objects and morphisms of the b-category, following [11].

Definition 1.1 A b-manifold is a pair (M , Z) consisting of a manifold M and a
codimension-one submanifold Z ⊂ M.

Given a b-manifold (M , Z), we denote by bX(M) the set of vector fields onM that
are tangent to Z. Note that bX(M) is a locally free C∞(M)-module, with generators

x1∂x1 , ∂x2 , . . . , ∂xn
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in a coordinate chart (x1 , . . . , xn) adapted to Z = {x1 = 0}. �anks to the Serre–Swan
theorem, these b-vector fields give rise to a vector bundle bTM.

Definition 1.2 Let (M , Z) be a b-manifold. �e b-tangent bundle bTM is the vector
bundle over M satisfying Γ(bTM) = bX(M).

�e natural inclusion bX(M) ⊂ X(M) induces a vector bundle map ρ∶ bTM →
TM, which is an isomorphism away from Z. Restricting to Z, we get a bundle epi-
morphism ρ∣Z ∶

bTM∣Z → TZ, which gives rise to a trivial line bundle L ∶= Ker(ρ∣Z).
Indeed, L is canonically trivialized by the normal b-vector field ξ ∈ Γ(L), which is
locally given by x∂x where x is any local defining function for Z. So at any point p ∈ Z,
we have a short exact sequence

(1.1)

but this sequence does not split canonically.
Since bX(M) is a Lie subalgebra of X(M), it inherits a natural Lie bracket [⋅, ⋅].

�e data (ρ, [⋅, ⋅]) endow bTM with a Lie algebroid structure. �e map ρ is called the
anchor of bTM.

Definition 1.3 Let (M , Z) be a b-manifold.�e b-cotangent bundle bT∗M is the dual
bundle of bTM.

In coordinates (x1 , . . . , xn) adapted to Z = {x1 = 0}, the b-cotangent bundle bT∗M
has local frame

dx1

x1
, dx2 , . . . , dxn .

We will denote the set Γ(∧k(bT∗M)) of Lie algebroid k-forms by bΩk(M), and
we refer to them as b-k-forms. �e space bΩ●(M) is endowed with the Lie algebroid
differential bd, which is determined by the fact that the restriction (bΩk(M), bd)→(Ωk(M/Z), d) is a chain map. Note that the anchor ρ induces an injective
map ρ∗∶Ωk(M)→ bΩk(M), which allows us to view honest de Rham forms as
b-forms.

Definition 1.4 Given b-manifolds (M1 , Z1) and (M2 , Z2), a b-map f ∶ (M1 , Z1)→(M2 , Z2) is a smoothmap f ∶M1 → M2 such that f is transverse to Z2 and f −1(Z2) = Z1.

Given a b-map f ∶ (M1 , Z1)→ (M2 , Z2), the usual pullback f ∗∶Ω●(M2)→
Ω●(M1) extends to an algebra morphism b f ∗∶ bΩ●(M2)→ bΩ●(M1); see [14, Proof
of Proposition 3.5.2]. �at is, we have a commutative diagram
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�is b-pullback has the expected properties; for instance, the assignment f ↦ b f ∗

is functorial, and the b-pullback b f ∗ commutes with the b-differential bd.
We can now define the Lie derivative of a b-form ω ∈ bΩk(M) in the direction of

a b-vector field X ∈ bX(M) by the usual formula

£Xω =
d

dt
∣t=0bρ∗t ω,

where the b-pullback is well defined, since the flow {ρt} of X consists of b-
diffeomorphisms. Cartan’s formula is still valid:

£Xω =
bd ιXω + ιXbdω.

Dual to the b-pullback b f ∗, a b-map f ∶ (M1 , Z1)→ (M2 , Z2) induces a b-derivative
b f∗∶ bTM1 → bTM2, which is the uniquemorphism of vector bundles bTM1 → bTM2

that makes the following diagram commute [14, Proposition 3.5.2]:

(1.2)

At each point p ∈ M1, the derivative ( f∗)p and the b-derivative (b f∗)p have the
same rank, by the next result proved in [5].

Lemma 1.5 Let f ∶ (M1 , Z1)→ (M2 , Z2) be a b-map. �e anchor ρ1 of
bTM1 restricts

to an isomorphism (ρ1)p ∶Ker(b f∗)p → Ker( f∗)p for all p ∈ M1.

We finish this subsection by observing that, if a b-vector field can be pushed
forward by the derivative f∗ of a b-map f, then its li� to a section of the b-tangent
bundle can be pushed forward by the b-derivative b f∗.

Lemma 1.6 Let f ∶ (M1 , Z1)→ (M2 , Z2) be a surjective b-map, and let Y ∈ Γ(bTM1)
be such that Y ∶=ρ1(Y) pushes forward to some element W ∈ X(M2). �en b f∗(Y) is a
well-defined section of bTM2, and it equals the unique elementW ∈ Γ(bTM2) satisfying
ρ2(W) =W.

Proof Since f is a b-map, we have thatW ∈ X(M2) is tangent to Z2, so indeedW =
ρ2(W) for unique W ∈ Γ(bTM2). Now, first consider p ∈ M1/Z1. Commutativity of
the diagram (1.2) implies that

ρ2((b f∗)p(Y p)) = ( f∗)p(ρ1(Y p)) = ( f∗)p(Yp) =Wf (p) .

But we also have ρ2(W f (p)) =Wf (p), so that injectivity of ρ2 at f (p) ∈ M2/Z2

implies (b f∗)p(Y p) =W f (p). Next, we choose p ∈ Z1. Since f is a b-map, we can
take a (one-dimensional) slice S through p transverse to Z1, such that the restriction
f ∣S ∶ S → f (S) is a diffeomorphism. Since (b f∗)∣S is a vector bundle map covering
the diffeomorphism f ∣S , the expression (b f∗)∣S(Y ∣S) is well defined and smooth.
Moreover, it is equal to W ∣ f (S) on the dense subset f (S)/( f (S) ∩ Z2) ⊂ f (S), as we
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just proved. By continuity, the equality (b f∗) ∣S (Y ∣S) =W ∣ f (S) holds on all of f (S),
so that, in particular, (b f∗)p(Y p) =W f (p). �is concludes the proof. ∎

1.2 b-submanifolds

Given a b-manifold (M , Z), a submanifold C ⊂ M transverse to Z inherits a b-
manifold structure with distinguished hypersurface C ∩ Z. Such submanifolds are
therefore the natural subobjects in the b-category.

Definition 1.7 A b-submanifold C of a b-manifold (M , Z) is a submanifold C ⊂ M
that is transverse to Z.

Let C ⊂ (M , Z) be a b-submanifold. �e inclusion i∶ (C ,C ∩ Z)↪ (M , Z) of b-
manifolds induces a canonical map b i∗∶ bTC → bTM that is injective by Lemma 1.5.
�is allows us to view bTC as a Lie subalgebroid of bTM. In particular, we have the
following fact.

Lemma 1.8 If C ⊂ (M , Z) is a b-submanifold, then Lp ⊂
bTpC for all p ∈ C ∩ Z.

Proof Fixing some notation, we have anchor maps ρ̃∶ bTC → TC and ρ∶ bTM →
TM, and we put L̃ ∶= Ker(ρ̃∣C∩Z) and L = Ker(ρ∣Z) as before. If i∶ (C ,C ∩ Z)↪(M , Z) denotes the inclusion, then we get a commutative diagram with exact rows,
for points p ∈ C ∩ Z:

(1.3)

We obtain (b i∗)p(L̃p) = Lp : the inclusion “⊂” holds by the above diagram, and the

equality follows by dimension reasons, since (b i∗)p is injective. In particular, Lp is

contained in the image of (b i∗)p , as we wanted to show. ∎
�e notions of b-map and b-submanifold are compatible, as the next lemma

shows.

Lemma 1.9 Let f ∶ (M1 , Z1)→ (M2 , Z2) be a b-map, and assume that we have b-
submanifolds C1 ⊂ (M1 , Z1) and C2 ⊂ (M2 , Z2) such that f (C1) ⊂ C2.

(i) Restricting f gives a b-map

f ∣C1
∶ (C1 ,C1 ∩ Z1) Ð→ (C2 ,C2 ∩ Z2).

(ii) Further, (b f∗)∣bTC1
= b( f ∣C1

)∗.
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Proof (i) We first note that

( f ∣C1
)−1(C2 ∩ Z2) = C1 ∩ f −1(C2 ∩ Z2) = C1 ∩ f −1(C2) ∩ f −1(Z2)

= C1 ∩ f −1(C2) ∩ Z1 = C1 ∩ Z1 ,

since f is a b-map and C1 ⊂ f −1(C2). Next, choosing p ∈ C1 ∩ Z1, we have to show
that

( f∗)p(TpC1) + Tf (p)(C2 ∩ Z2) = Tf (p)C2 .(1.4)

We clearly have the inclusion “ ⊂”. For the reverse, we choose v ∈ Tf (p)C2. By
transversality f ⋔ Z2, we know that ( f∗)p(TpM1) + Tf (p)Z2 = Tf (p)M2. So we
have v = ( f∗)p(x) + y for some x ∈ TpM1 and y ∈ Tf (p)Z2. Next, since C1 ⋔ Z1,
we have TpC1 + TpZ1 = TpM1 so that x = x1 + x2 for some x1 ∈ TpC1 and x2 ∈
TpZ1. So we have

v = ( f∗)p(x1) + [( f∗)p(x2) + y].(1.5)

�e term in square brackets clearly lies in Tf (p)Z2, and being equal to v −( f∗)p(x1), it also lies in Tf (p)C2. So it lies in Tf (p)(C2 ∩ Z2), using the transver-
sality C2 ⋔ Z2. Hence, the decomposition (1.5) is as required in (1.4).

(ii) Denoting the inclusions i1∶ (C1 ,C1 ∩ Z1)↪ (M1 , Z1) and i2∶ (C2 ,C2 ∩ Z2)↪(M2 , Z2), we have f ○ i1 = i2 ○ f ∣C1
. Hence by functoriality, b f∗ ○ b(i1)∗ =

b(i2)∗ ○ b( f ∣C1
)∗, which implies the claim. ∎

1.3 Distributions on b-manifolds

We saw that the short exact sequence (1.1) does not split canonically. However, its
restriction to suitable distributions does split.

Lemma 1.10 Let (M , Z) be a b-manifold with anchor map ρ∶ bTM → TM.

(i) Given a distribution D on M that is tangent to Z, there exists a canonical splitting
σ ∶ D → bTM of the anchor ρ.

(ii) Let D denote the set of distributions on M tangent to Z, and let S consist of the
subbundles of bTM intersecting trivially ker(ρ).�en there is a bijection

DÐ→ S∶ D z→ σ(D),
where the splitting σ is as in (i) .�e inverse map reads D′ ↦ ρ(D′).

Proof (i) One checks that the inclusion Γ(D) ⊂ Γ(bTM) induces a well-defined
vector bundle map

σ ∶D Ð→ bTM∶ v z→ Xp ,

where X ∈ Γ(D) is any extension of v ∈ Dp .�is map σ satisfies ρ ○ σ = IdD , so in
particular ρ(σ(D)) = D.

(ii) We only have to show that if D′ is a subbundle of bTM intersecting trivially
ker(ρ), then σ(ρ(D′)) = D′. Denote D ∶= ρ(D′), a distribution on M tangent
to Z. �e canonical splitting σ ∶D → bTM is injective, and D and D′ have the
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same rank, hence it suffices to show that σ(D) ⊂ D′. If X is a section of D, then
X = ρ(Y) for unique Y ∈ Γ(D′). We get

ρ(σ(X)) = X = ρ(Y),
and since the anchor ρ is injective on sections, this implies that σ(X) = Y . ∎

Corollary 1.11 Let f ∶ (M1 , Z1)→ (M2 , Z2) be a b-map of constant rank. Notice that
Ker( f∗) is a distribution on M1 that is tangent to Z1. It satisfies

σ(Ker( f∗)) = Ker(b f∗),
where σ ∶Ker( f∗)→ bTM1 denotes the canonical splitting of the anchor ρ1.

Proof Under the bijection of Lemma 1.10(ii), Ker( f∗) corresponds to Ker(b f∗), as
a consequence of Lemma 1.5. ∎

1.4 Vector Bundles in the b-category

If (M , Z) is a b-manifold and π∶E → M a vector bundle, then (E , E∣Z) is naturally a b-
manifold and the projection π∶ (E , E∣Z)→ (M , Z) is a b-map. Along the zero section
M ⊂ E, the b-tangent bundle bTE splits canonically as follows.

Lemma 1.12 Let (M , Z) be a b-manifold and let π∶E → M be a vector bundle. �en
at points p ∈ M, we have a canonical decomposition

bTpE ≅
bTpM ⊕ Ep .

Proof Denote by VE ∶= Ker(π∗) the vertical bundle. By Corollary 1.11 there is a
canonical li� σ ∶VE ↪ bTE such that σ(VE) = Ker(bπ∗). So we get a short exact
sequence of vector bundles over E:

(1.6)

Here,

π∗(bTM) = {(e , v) ∈ E × bTM ∶ π(e) = pr(v)}
is the pullback of the vector bundle pr∶ bTM → M by π, and the surjective vector
bundle map

b̃π∗∶ bTE Ð→ π∗(bTM), (e , v)z→ [e , (bπ∗)e(v)]
is induced by the b-map π∶ (E , E∣Z)→ (M , Z).

Restricting (1.6) to the zero section M ⊂ E gives a short exact sequence of vector
bundles overM:

0Ð→ E ↪ bTE∣M bπ∗Ð→ bTM Ð→ 0.
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�is sequence splits canonically through the map b i∗∶ bTM → bTE∣M induced by the
inclusion i∶ (M , Z)↪ (E , E∣Z). ∎

�e following result makes use of the decomposition introduced in Lemma 1.12.

Lemma 1.13 (i) Let π∶ (E , E∣Z)→ (M , Z) be a vector bundle over the b-manifold(M , Z). Denote by ρ and ρ̃ the anchor maps of bTM and bTE respectively. Under
the decomposition of Lemma 1.12, we have that the map

ρ̃∣M ∶ bTE∣M ≅ bTM ⊕ E Ð→ TE∣M ≅ TM ⊕ E

equals ρ ⊕ IdE .
(ii) Consider a morphism φ of vector bundles over b-manifolds covering a b-map f:

(1.7)

�en φ is a b-map, and its b-derivative along the zero section

bφ∗∣M ∶ bTE1∣M ≅ bTM1 ⊕ E1 → bTE2∣M ≅ bTM2 ⊕ E2

equals b f∗ ⊕ φ.

Proof (i) Since M is a b-submanifold of (E , E∣Z), we have that bTM is a Lie
subalgebroid of bTE. In particular, ρ̃ and ρ agree on bTM. Next, we know that
ρ̃ takes E ⊂ bTE∣M isomorphically to E ⊂ TE∣M , thanks to Lemma 1.5 applied to
π. To see that ρ̃∣E = IdE , we choose v ∈ Ep and extend it to V ∈ Γ(VE). Denote
by σ ∶VE ↪ bTE the canonical splitting of ρ̃, as in the proof of Lemma 1.12. �en
ρ̃(v) = [ρ̃(σ(V))]p = Vp = v.

(ii) It is routine to check that φ is a b-map, so we only prove the second statement.
Taking the b-derivative of both sides of the equality π2 ○ φ = f ○ π1 at a point
p ∈ M1, we know that (bπ2)∗(bφ∗(E1)p) = b f∗((bπ1)∗(E1)p) = 0, since (E1)p =
Ker[(bπ1)∗]p . Hence, bφ∗(E1)p ⊂ Ker[(bπ2)∗] f (p) = (E2) f (p) by the proof of
Lemma 1.12. Using (i) and the diagram (1.2 ), we have a commutative diagram

(1.8)

It implies that
bφ∗∣(E1)p = φ∗∣(E1)p = φ∣(E1)p .

Finally, bφ∗∣bTM1
= b f∗ holds by Lemma 1.9(ii). ∎
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1.5 Log-symplectic and b-symplectic Structures

�e b-geometry formalism can be used to describe a certain class of Poisson struc-
tures, called log-symplectic structures. �ese can indeed be regarded as symplectic
structures on the b-tangent bundle.

Definition 1.14 A Poisson structure on a manifold M is a bivector field Π ∈ Γ(∧2TM)
such that the bracket { f , g} = Π(d f , dg) is a Lie bracket on C∞(M). Equivalently, the
bivector field Π must satisfy [Π, Π] = 0, where [⋅, ⋅] is the Schouten–Nijenhuis bracket
of multivector fields. A smooth map f ∶ (M1 , Π1)→ (M2 , Π2) is a Poisson map if the
pullback f ∗∶ (C∞(M2), {⋅, ⋅}2)→ (C∞(M1), {⋅, ⋅}1) is a Lie algebra homomorphism.

�e bivector Π induces a bundle map Π♯∶T∗M → TM by

⟨Π♯p(α), β⟩ = Πp(α, β) ∀α, β ∈ T∗p M ,

and the rank of Π at p ∈ M is defined to be the rank of the linear map Π♯p . Poisson

structures of full rank correspond with symplectic structures via ω↔ −Π−1.
For every f ∈ C∞(M), the operator { f , ⋅} is a derivation of C∞(M). �e corre-

sponding vector field X f = Π♯(d f ) is the Hamiltonian vector field of f. Any Poisson
manifold (M , Π) comes with a (singular) distribution Im(Π♯), generated by the
Hamiltonian vector fields. �is distribution is integrable (in the sense of Stefan–
Sussman), and each leaf O of the associated foliation has an induced symplectic
structure ωO ∶= −(Π∣O)−1.
Definition 1.15 A Poisson structure Π on a manifold M2n is called log-symplectic if
∧nΠ is transverse to the zero section of the line bundle ∧2nTM.

Note that a log-symplectic structure Π is of full rank everywhere, except at points
lying in the set Z ∶= (∧nΠ)−1(0), called the singular locus of Π. If Z is nonempty,
then it is a smooth hypersurface by the transversality condition, and we call Π
bona fide log-symplectic. In that case, Z is a Poisson submanifold of (M , Π) with an
induced Poisson structure that is regular of corank-one. If Z is empty, then Π defines
a symplectic structure onM.

Since log-symplectic structures come with a specified hypersurface, it seems plau-
sible that they have a b-geometric interpretation. As it turns out, log-symplectic
structures are exactly the symplectic structures of the b-category.

Definition 1.16 Ab-symplectic form on a b-manifold (M2n , Z) is a bd-closed and non-
degenerate b-two-form ω ∈ bΩ2(M).

Here, non-degeneracy means that the bundle map ω♭∶ bTM → bT∗M is an iso-
morphism, or equivalently that ∧nω is a nowhere vanishing element of bΩ2n(M).
Example 1.17 [11, Example 9] In analogy with the symplectic case, the b-
cotangent bundle bT∗M of a b-manifold (M , Z) is b-symplectic in a canonical
way. Note that (bT∗M , bT∗M∣Z) is naturally a b-manifold, and that the bundle

https://doi.org/10.4153/S0008414X20000140 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000140


Coisotropic Submanifolds in b-symplectic Geometry 747

projection π∶ (bT∗M , bT∗M∣Z)→ (M , Z) is a b-map. �e tautological b-one-form θ ∈
bΩ1(bT∗M) is defined by

θ ξ(v) = ⟨ξ, (bπ∗)ξ(v)⟩,
where ξ ∈ bT∗π(ξ)M and v ∈ bTξ(bT∗M). Its differential −bdθ is a b-symplectic form on
bT∗M. To see this, choose coordinates (x1 , . . . , xn) on M adapted to Z = {x1 = 0}, and
let (y1 , . . . , yn) denote the fiber coordinates on bT∗M with respect to the local frame{ dx1

x1
, dx2 , . . . , dxn}. �e tautological b-one form is then given by

θ = y1
dx1

x1
+

n∑
i=2

y idx i ,

with exterior derivative

−bdθ = dx1

x1
∧ dy1 +

n∑
i=2

dx i ∧ dy i .

A log-symplectic structure onMwith singular locusZ is nothing but a b-symplectic
structure on the b-manifold (M , Z); see [11, Proposition 20]. Indeed, given a b-
symplectic form ω on (M , Z), its negative inverse bΠ♯ ∶= −(ω♭)−1∶ bT∗M → bTM
defines a b-bivector field bΠ ∈ Γ(∧2(bTM)), and applying the anchor map ρ to it
yields a bivector field Π ∶= ρ(bΠ) ∈ Γ(∧2TM) that is log-symplectic with singular
locus Z. Conversely, a log-symplectic structure Π on M with singular locus Z li�s
uniquely under ρ to a non-degenerate b-bivector field bΠ, whose negative inverse
is a b-symplectic form on (M , Z). �ese processes are summarized in the following
diagram:

(1.9)

We will switch between the b-symplectic and the log-symplectic (i.e., Poisson)
viewpoint, depending on which one is the most convenient.

1.6 A Relative b-Moser Theorem

We will need a relative Moser theorem in the b-symplectic setting. First, we prove the
following b-geometric version of the relative Poincaré lemma [3, Proposition 6.8].

Lemma 1.18 Let (M , Z) be a b-manifold and let C ⊂ (M , Z) be a b-submanifold.
Denote the inclusion by i∶ (C ,C ∩ Z) ↪ (M , Z). If β ∈ bΩk(M) is bd-closed and b i∗β =
0, then there exist a neighborhood U of C and η ∈ bΩk−1(U) such that

{bdη = β∣U ,
η∣C = 0
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Proof We adapt the proof of [3, Proposition 6.8]. We first choose a suitable tubular
neighborhood of C that is compatible with the hypersurface Z. Due to transversality
C ⋔ Z, we can pick a complement V to TC in TM∣C such that Vp ⊂ TpZ for all
p ∈ C ∩ Z. Fix a Riemannian metric g for which Z ⊂ (M , g) is totally geodesic
(e.g.,[19, Lemma 6.8]). �e associated exponential map then establishes a
b-diffeomorphism between a neighborhood of C in (V ,V ∣C∩Z) and a neighborhood
of C in (M , Z).

Sowe canwork instead on the total space of π∶ (V ,V ∣C∩Z) → (C ,C ∩ Z). Consider
the retraction of V onto C given by r∶V × [0, 1]→ V ∶ (p, v , t)↦ (p, tv), and notice
that the rt are b-maps. �e associated time-dependent vector field Xt is given by
Xt(p, v) = 1

t
v, which is a b-vector field that vanishes along C. It follows that we get

a well-defined b-de Rham homotopy operator

I∶ bΩk(V)Ð→ bΩk−1(V)∶ α z→ ∫ 1

0

br∗t (ιX t
α)dt,

which satisfies

br∗1 α − br∗0α =
bdI(α) + I(bdα).(1.10)

Since r1 = Id and r0 = i ○ π, formula (1.10) gives β = bdI(β). Now set η ∶= I(β). ∎
Proposition 1.19 (Relative b-Moser �eorem). Let (M , Z) be a b-manifold and let
C ⊂ (M , Z) be a b-submanifold. If ω0 and ω1 are b-symplectic forms on (M , Z) such
that ω0∣C = ω1∣C , then there exists a b-diffeomorphism φ between neighborhoods of C
such that φ∣C = Id and bφ∗ω1 = ω0.

Proof Consider the convex combination ωt ∶= ω0 + t(ω1 − ω0) for t ∈ [0, 1]. �ere
exists a neighborhood U of C such that ωt is non-degenerate on U for all t ∈ [0, 1].
ShrinkingU if necessary, Lemma 1.18 yields η ∈ bΩ1(U) such that ω1 − ω0 =

bdη and
η∣C = 0. As in the usual Moser trick, it now suffices to solve the equation

ιX t
ωt + η = 0

for Xt ∈
bX(U), which is possible by non-degeneracy of ωt . �e b-vector fields Xt

thus obtained vanish along C, since η∣C = 0. Further shrinking U if necessary, we
can integrate the Xt to an isotopy {ϕt}t∈[0,1] defined on U. Note that the ϕt are b-
diffeomorphisms that restrict to the identity on C. By the usual Moser argument, we
have bϕ1

∗ω1 = ω0, so setting φ ∶= ϕ1 finishes the proof. ∎
Remark 1.20 We learnt from Ralph Klaasse that the work in progress [15] contains
a version of Proposition 1.19 that holds in the more general setting of symplectic Lie
algebroids.

2 b-coisotropic Submanifolds and the b-Gotay Theorem

�is section is devoted to coisotropic submanifolds of b-symplectic manifolds that
are transverse to the degeneracy hypersurface. �e main result is �eorem 2.13, a
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b-symplectic version of Gotay’s theorem, which implies a normal form statement
around such submanifolds. �is can be used, for instance, to study the deformation
theory of b-coisotropic submanifolds [7].

2.1 b-coisotropic Submanifolds

In this subsection, we introduce b-coisotropic submanifolds and discuss some of their
main features. First, recall the definition of a coisotropic submanifold in Poisson
geometry.

Definition 2.1 Let (M , Π) be a Poissonmanifold with associated Poisson bracket {⋅, ⋅}.
A submanifold C ⊂ M is coisotropic if the following equivalent conditions hold:

(i) Π♯(TC0) ⊂ TC, where TC0 ⊂ T∗M∣C denotes the annihilator of TC.
(ii) {IC , IC} ⊂ IC , where IC ∶= { f ∈ C∞(M) ∶ f ∣C = 0} denotes the vanishing ideal

of C.
(iii) TpC ∩ TpO is a coisotropic subspace of the symplectic vector space(TpO,−(Π∣O)−1p ) for all p ∈ C, where O denotes the symplectic leaf through

p.

�esingular distributionΠ♯(TC0) onC appearing above is called the characteristic
distribution. If Π = −ω−1 is symplectic, the coisotropicity condition becomes TCω ⊂
TC.

Definition 2.2 Let (M , Z ,ω) be a b-symplectic manifold, and denote by Π the
corresponding Poisson bivector field on M. A submanifold C of M is called b-coisotropic
if it is coisotropic with respect to Π and a b-submanifold (i.e., transverse to Z).

Remark 2.3 A b-coisotropic submanifold Cn ⊂ (M2n , Z , Π) of middle dimension is
necessarily Lagrangian; i.e., TpC ∩ TpO is a Lagrangian subspace of the symplectic vector
space (TpO,−(Π∣O)−1p ) for all p ∈ C, where O denotes the symplectic leaf through p.
Indeed, at points away from Z there is nothing to prove. At points p ∈ C ∩ Z, we have

dim(TpC ∩ TpO) ≤ dim(TpC ∩ TpZ) = n − 1,
where the last equality follows from transversality C ⋔ Z. On the other hand, TpC ∩
TpO is at least (n − 1)-dimensional, being a coisotropic subspace of the (2n − 2)-
dimensional symplectic vector space TpO. Hence, dim(TpC ∩ TpO) = n − 1, which
proves the claim.

Definition 2.2 can be rephrased in terms of the b-symplectic formω: a b-coisotropic
submanifold is precisely a b-submanifold C such that (bTC)ω ⊂ bTC.

Proposition 2.4 Let C be a b-submanifold of a b-symplectic manifold (M , Z ,ω). �en
C is coisotropic if and only if (bTC)ω ⊂ bTC.

Notice that the latter condition states that bTC is a coisotropic subbundle of the
symplectic vector bundle (bTM∣C ,ω∣C).
Proof If C is coisotropic, then at points of C ∩ (M/Z), we have that TCω ⊂
TC, i.e., (bTC)ω ⊂ bTC. By continuity, this inclusion of subbundles holds at all
points of C. Conversely, if this inclusion holds on C, it follows that C ∩ (M/Z) is
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coisotropic in M/Z, and using characterization (ii) in Definition 2.1, we see that C
is coisotropic inM. ∎

We give an alternative description of the characteristic distribution of a
b-coisotropic submanifold.

Lemma 2.5 Let C be any b-submanifold of a b-symplectic manifold (M , Z ,ω), and let
ρ∶ bTM → TM denote the anchor of bTM so that Π = ρ(−ω−1) is the Poisson bivector
corresponding with ω. �en

ρ((bTC)ω) = Π♯(TC0).(2.1)

Proof At points p ∈ C/(C ∩ Z), equality (2.1) holds by symplectic linear algebra. So
let p ∈ C ∩ Z. Denote by bΠ ∶= −ω−1 ∈ Γ(∧2(bTM)) the li� of Π as a b-bivector field.
Note that

(bTpC)ωp = (ω♭p)−1((bTpC)0) = bΠ♯((bTpC)0),(2.2)

where the annihilator is taken in bT∗p M. We now assert:

Claim. (bTpC)0 = ρ∗p(TpC
0).

To prove the claim, we first note that the dimensions of both sides agree, since

Ker(ρ∗p) ∩ TpC
0 = Im(ρp)0 ∩ TpC

0 = TpZ
0 ∩ TpC

0 = (TpZ + TpC)0 = {0},
where the last equality holds by transversality C ⋔ Z. Now it is enough to show that
the inclusion “⊃” holds, which is clearly the case, since ρp(bTpC) ⊂ TpC. �is proves
the claim.

We thus obtain

ρp((bTpC)ωp) = (ρp ○ bΠ♯p ○ ρ∗p)(TpC
0) = Π♯p(TpC

0),
where in the first equality we used (2.2), and the claim just proved, and in the second,
we used the diagram (1.9). ∎

A general fact in Poisson geometry is that the conormal bundle of any coisotropic
submanifold is a Lie subalgebroid of the cotangent Lie algebroid. We now show that
the b-geometry version of this fact holds for b-coisotropic submanifolds.

Proposition 2.6 Let (M , Z ,ω) be a b-symplectic manifold with corresponding Poisson
bivector field Π. Recall that bT∗M is a Lie algebroid (endowed with the Lie bracket
induced by bΠ), fitting in the diagram of Lie algebroids (1.9). Let C be a b-coisotropic
submanifold.

(i) (bTC)○ is a Lie subalgebroid of bT∗M.
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(ii) (bTC)○ fits in the following diagram of Lie subalgebroids of the diagram (1.9):

(2.3)

Proof Diagram (2.3) is a diagram of vector subbundles of diagram (1.9), by the claim
in the proof of Lemma 2.5 and by equation (2.2).

For (i), since the morphism bΠ♯ in diagram (1.9) is an isomorphism of Lie
algebroids, it suffices to show that (bTC)ω is a Lie subalgebroid of bTM. Since (bTC)ω
is the kernel of the closed b-2-form b i∗ω, a standard Cartan calculus computation
shows that this is indeed the case. It is well known that TC○ and TC are also Lie
subalgebroids, proving (ii). ∎

2.2 Examples of b-coisotropic Submanifolds

We now exhibit some examples of b-coisotropic submanifolds. �e main result of
this subsection is Proposition 2.8, which shows that graphs of suitable Poisson maps
between log-symplectic manifolds give rise to b-coisotropic submanifolds, once li�ed
to a certain blow-up.

Examples 2.7 (i) Given a log-symplectic manifold (M , Z , Π), any hypersurface of M
transverse to Z is b-coisotropic.

(ii) Let (M , Ω) be a symplectic manifold, whose non-degenerate Poisson structure we
denote ΠM ∶= −Ω−1, and let (N , ΠN) be a log-symplectic manifold with singular
locus Z. �en (M × N , ΠM −ΠN) is log-symplectic with singular locus M × Z.
Given a Poisson map ϕ∶ (M , ΠM)→ (N , ΠN) transverse to Z, we have that
Graph(ϕ) ⊂ (M × N , ΠM −ΠN) is b-coisotropic. As a concrete example, consider
for instance

ϕ∶ (R4 ,
2∑
i=1

∂x i
∧ ∂y i)Ð→ (R2 , x∂x ∧ ∂y) ∶,

(x1 , y1 , x2 , y2)z→ (y1 , x2 − x1 y1).(2.4)

We will now prove Proposition 2.8. We start recalling some facts from [9, §2.1].
Given a manifold M and a closed submanifold L of codimension at least 2, one can
construct a newmanifold by replacingLwith the projectivization of its normal bundle.
�e resulting manifold BlL(M), the real projective blow-up ofM along L, comes with
a map

p∶BlL(M)Ð→ M ,

which restricts to a diffeomorphism BlL(M)/p−1(L)→ M/L. Further, let S ⊂ M be
a submanifold that intersects L cleanly; i.e., S ∩ L is a submanifold with T(S ∩ L) =
TS ∩ TL. �en S can be “li�ed” to a submanifold of BlL(M), namely the closure of
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the inverse image of S/L under p:

S ∶= p−1(S/L).
Now let (M i , Z i , Π i) be log-symplectic manifolds for i = 1, 2. �e product M1 ×

M2 is not log-symplectic in general,1 but [20], [9, §2.2]

X ∶= BlZ1×Z2
(M1 ×M2)/(M1 × Z2 ∪ Z1 ×M2)(2.5)

is log-symplectic with singular locus the exceptional divisor p−1(Z1 × Z2), and the
blow-down map p∶X → M1 × M̂2 is Poisson, where M̂2 denotes (M2 ,−Π2).
Proposition 2.8 Let f ∶ (M1 , Z1 , Π1)→ (M2 , Z2 , Π2) be a Poisson map with f (Z1) ⊂
Z2. �en

graph( f )
is a b-coisotropic submanifold of the log-symplectic manifold X defined in (2.5).

Proof �e intersection graph( f ) ∩ Z1 × Z2 is clean, since it coincides with
graph( f ∣Z1

) thanks to the assumption f (Z1) ⊂ Z2. Hence, graph( f ) can be “li�ed”
to X.

�e resulting submanifold graph( f ) is coisotropic: graph( f ) is coisotropic in
M1 × M̂2, because f is a Poisson map, so p−1(graph( f )/Z1 × Z2) is coisotropic in X
(since p is a Poisson diffeomorphism away from the exceptional divisor), and the same
holds for its closure.

To finish the proof, we have to show that graph( f ) is transverse to the exceptional
divisor E ∶= p−1(Z1 × Z2). Let (x(1)i ) be local coordinates onM1 such that Z1 = {x(1)1 =

0}, and similarly, let (x(2)j ) be local coordinates onM2 such that Z2 = {x(2)1 = 0}.�en

(x(1)i , f ∗(x(2)j ) − x(2)j )
are local coordinates on M1 ×M2 that are adapted graph( f ), but also to

(Z1 × Z2) = {x(1)1 = 0, f
∗(x(2)1 ) − x(2)1 = 0},

due to the hypothesis f (Z1) ⊂ Z2. Hence, we can apply Lemma 2.9, which yields the
desired transversality. ∎

�e proof of Proposition 2.8 uses the following statement, for which we could not
find a reference in the literature.

1However, it fits in a slight generalization of the notion of log-symplectic structure used in this note:
indeed (M1 × Z2) ∪ (Z1 ×M2) is a normal crossing divisor, and vector fields tangent to it give rise to a
Lie algebroid to which the Poisson structure on M1 × M̂2 li�s in a non-degenerate way (we thank Aldo
Witte for pointing this out to us). One can check that if f ∶M1 → M2 is a Poisson map transverse to Z2 ,
then graph( f ) intersects transversely both M1 × Z2 and Z1 ×M2 . �is statement generalizes Example
2.7(ii) and can be viewed as an analogue of Proposition 2.8.
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Lemma 2.9 Let m, n be non-negative integers. Consider Rn+m with standard coordi-
nates x1 , . . . , xn , y1 , . . . , ym , and the subspaces

Z ∶={0} ×Rm ,

S ∶=(Rk × {0}) × (Rl × {0}),
where k ≤ n and l ≤ m.�en, in the blow-up BlZ(Rn+m), the submanifold S interesects
transversely the exceptional divisor E.

Proof We have

BlZ(Rn+m) = {((x , y), [x]) ∶ x ∈ Rn/{0}, y ∈ Rm} ⊂ Rn+m ×RPn−1 ,

where [⋅] denotes the class in projective space. Notice that by taking the closure, we
are adding exactly the exceptional divisor

E = {0} ×Rm ×RPn−1 .

We have

S = {((x1 , 0, y1 , 0), [(x1 , 0)]) ∶ x1 ∈ Rk/{0}, y1 ∈ Rl}.
By taking the closure we are adding exactly

{0} × (Rl × {0}) ×RPk−1 = S ∩ E .
For every point p ∈ S ∩ E there is a curve of the form

γ∶ t z→ ((tx1 , 0, y1 , 0), [(x1 , 0)])
lying in S with γ(0) = p, and clearly d

dt
∣0γ(t) ∉ TpE. Since

d
dt
∣0γ(t) ∈ TpS and E has

codimension 1, we obtain TpE + TpS = TpBlZ(Rn+m). ∎

Remark 2.10 One can show that for any pair of submanifolds L and S intersecting
cleanly, around any point of the intersection there exist local coordinates of the ambient
manifold M that are simultaneously adapted to both submanifolds. Lemma 2.9 then

implies that, with the notation of the beginning of this subsection, S intersects the
hypersurface p−1(L) of BlL(M) transversely.

2.3 b-coisotropic Embeddings and the b-Gotay Theorem

If C
i↪ (M , Z ,ω) is b-coisotropic, then Proposition 2.4 implies that (C ,C ∩ Z ,b i∗ω)

is b-presymplectic; i.e., the b-two-form b i∗ω ∈ bΩ2(C) is closed of constant rank.
Conversely, in this subsection, we prove that any b-presymplectic manifold embeds
b-coisotropically into a b-symplectic manifold, which is unique up to neighborhood
equivalence. In other words, we show a version of Gotay’s theorem for b-coisotropic
submanifolds. For Lagrangian submanifolds, this becomes a version of Weinstein’s
tubular neighborhood theorem, which was obtained in [13, �eorem 5.18].
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As a consequence, a b-coisotropic submanifold C ⊂ (M , Z ,ω) determines ω (up
to b-symplectomorphism) in a neighborhood of C. Notice that arbitrary coisotropic
submanifolds of the log-symplectic manifold (M , Z , Π) do not satisfy this property:
for instance, Z is a coisotropic (even Poisson) submanifold, and by [11], the additional
data consisting of a certain element of H1

Π(Z) is necessary in order to determine the
b-symplectic structure in a neighborhood of Z.

Definition 2.11 A b-presymplectic form on a b-manifold is a b-two-form, which is
closed and of constant rank.

Definition 2.12 Let (M1 , Z1 ,ω) be a b-manifold endowed with a b-presymplectic
form ω ∈ bΩ2(M1). A b-coisotropic embedding of M1 into a b-symplectic manifold(M2 , Z2 , Ω) is a b-map ϕ∶ (M1 , Z1)→ (M2 , Z2) such that ϕ is an embedding and

(i) bϕ∗Ω = ω;
(ii) ϕ(M1) is b-coisotropic in (M2 , Z2 , Ω).

We will prove the following Gotay theorem in the b-symplectic setting.

�eorem 2.13 (�e b-Gotay theorem). Let (C , ZC ,ωC) be a b-manifold with a
b-presymplectic form ωC ∈

bΩ2(C). We then have the following:

(a) C embeds b-coisotropically into a b-symplectic manifold;
(b) the embedding is unique up to b-symplectomorphism in a tubular neighborhood of

C, fixing C pointwise.

We divide the proof of �eorem 2.13 into several steps. We roughly follow the
reasoning from the symplectic case presented in [8]. We start by constructing a b-
symplectic thickening of the b-presymplecticmanifoldC, fromwhich�eorem2.13(a)
will follow.

Proposition 2.14 Denote by E the vector bundle Ker(ωC) ⊂ bTC. �en there is a b-
symplectic structure ΩG on a neighborhood of the zero section C ⊂ E∗.

Proof Fix a complement G to E in bTC, and let j∶E∗ ↪ bT∗C be the induced inclu-
sion. It is clear that j(E∗) = G0. Since both the bundle projection π∶ (E∗ , E∗∣ZC

)→(C , ZC) and the inclusion j∶ (E∗ , E∗∣ZC
)→ (bT∗C , bT∗C∣ZC

) are b-maps, we can
define a b-two-form ΩG on (E∗ , E∗∣ZC

) by
ΩG ∶= bπ∗ωC + b j∗ωcan .(2.6)

Here, ωcan denotes the canonical b-symplectic form on bT∗C as in Example 1.17,
and the subscript G is used to stress that the definition depends on the choice of
complement G.

We want to show that ΩG is b-symplectic on a neighborhood of C ⊂ (E∗ , E∗∣ZC
).

As ΩG is clearly b-closed, it suffices to prove that ΩG is non-degenerate at points p ∈ C.
We claim that under the decomposition

bTp(bT∗C) ≅ bTpC ⊕ bT∗p C ,
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of Lemma 1.12, the canonical b-symplectic form is the usual pairing

(ωcan)p(v + α,w + β) = ⟨v , β⟩ − ⟨w , α⟩.(2.7)

�is claim can be checked writing in cotangent coordinates ωcan =
dx1
x1
∧ dy1 +

∑n
i=2 dx i ∧ dy i , and noticing that y i is a linear coordinate on each fiber bT∗p C, i.e.,

y i ∈ (bT∗p C)∗ ≅ bTpC.
Consider now the decomposition

bTpE
∗ ≅ bTpC ⊕ E∗p = Ep ⊕Gp ⊕ E∗p(2.8)

given by Lemma 1.12. Using Lemma 1.13(ii), we have (b j∗)p = Id bTpC ⊕ j∣E∗p . Hence,
under decomposition (2.8), we have

(b j∗ωcan)p(v +w + α, x + y + β) = (ωcan)p(v +w + j(α), x + y + j(β))
= ⟨v +w , j(β)⟩ − ⟨x + y, j(α)⟩
= ⟨v , j(β)⟩ − ⟨x , j(α)⟩,

using the above claim and recalling that j(E∗p) = G0
p . In matrix notation,

(2.9)

for some matrix A of full rank. Similarly, we have (bπ∗)p = Id bTpC ⊕ 0, applying
Lemma 1.13(ii) to π (regarded as a vector bundle map). �erefore, under (2.8), we get

(bπ∗ωC)p(v +w + α, x + y + β) = (ωC)p(v +w , x + y)
so that we get a matrix representation of the form

(2.10)

where we also use that E = Ker(ωC). Note that the matrix B in (2.10) is of full rank,
since the restriction of (ωC)p to Gp is non-degenerate. Combining (2.9) and (2.10),
we have that

(2.11)

which is of maximal rank.�erefore, ΩG is non-degenerate at points p ∈ C ⊂ E∗.∎
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Proof Proof of �eorem 2.13(a). We show that the inclusion (C , ZC ,ωC) i↪(E∗ , E∗∣ZC
, ΩG) is indeed a b-coisotropic embedding; i.e.,

(i) b i∗ΩG = ωC ;
(ii) bTCΩG ⊂ bTC.

We have b i∗ΩG =
b(π ○ i)∗ωC + b( j ○ i)∗ωcan = ωC + b( j ○ i)∗ωcan. Note that j ○ i is

the inclusion of C into bT∗C, so that b( j ○ i)∗ωcan = 0, since C is b-Lagrangian in(bT∗C ,ωcan). �is proves (i).
To check (ii), we let p ∈ C and choose v +w + α ∈ Ep ⊕Gp ⊕ E∗p ≅

bTpE
∗ lying in

bTpC
ΩG . Let x ∈ Ep ⊂

bTpC be arbitrary. �anks to (2.11), we then have

0 = (ΩG)p(x , v +w + α) = (ΩG)p(x , α),
which forces that α = 0 due to non-degeneracy of (ΩG)p on Ep × E∗p . Hence, v +w +
α = v +w lies in Ep ⊕Gp =

bTpC, as desired. ∎
�e uniqueness statement of �eorem 2.13(b) is an immediate consequence of the

following proposition, to which we devote the rest of this subsection.

Proposition 2.15 Let (M , Z ,ω) be a b-symplectic manifold and let C be a b-coisotropic
submanifold, with induced b-presymplectic form ωC ∈

bΩ2(C). Let E ∶= Ker(ωC) and
fix a splitting bTC = E ⊕G.�en there is a b-symplectomorphism τ between a neighbor-
hood of C ⊂ (M , Z ,ω) and a neighborhood of C ⊂ (E∗ , E∗∣C∩Z , ΩG), with τ∣C = IdC .
Proof Since ω∣G×G is non-degenerate, we have a decomposition bTM∣C = G ⊕Gω

as symplectic vector bundles. Note that E is a Lagrangian subbundle of (Gω ,ω), since
Eω ∩Gω = (E ⊕G)ω = bTCω = bTCω ∩ bTC = E .(2.12)

We fix a Lagrangian complement V to E in (Gω ,ω), i.e., Gω = E ⊕ V .
�e idea of the proof is to construct a b-diffeomorphismbetween neighborhoods of

C inM and E∗—obtained as a composition of b-diffeomorphisms to a neighborhood
in V—whose b-derivative at points of C pulls back ΩG to ω, and then apply a Moser
argument.

We start by establishing a b-geometry version of the tubular neighborhood theo-
rem, in which V plays the role of the normal bundle to C.

Claim 2.16 �ere is a b-diffeomorphism ϕ between a neighborhood of C in(V ,V ∣C∩Z) and a neighborhood of C in (M , Z), satisfying bϕ∗∣ C = Id bTM∣C .

We will construct this map in two steps:

V Ð→
(1)

ρ(V) Ð→
(2)

M .

Step 1. Let ρ∶ bTM → TM denote the anchor map of bTM and notice that its
restriction to V is injective. To see this, recall the decomposition

bTM∣C = G ⊕Gω = G ⊕ E ⊕ V = bTC ⊕ V(2.13)
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and the fact that Ker(ρ∣C) ⊂ bTC by Lemma 1.8, so that Ker(ρ) intersects V trivially.
As such, we get a b-diffeomorphism ρ∶ (V ,V ∣C∩Z) → (ρ(V), ρ(V)∣C∩Z).
Step 2.�e distribution ρ(V) is complementary to TC, i.e.,

TM∣C = TC ⊕ ρ(V).
Indeed, by Step 1, we have at any point p ∈ C,

dim(TpM) = dim(TpC) + dim(Vp) = dim(TpC) + dim(ρ(Vp)),
and moreover, if v ∈ Vp is such that ρ(v) ∈ TpC, then v ∈ bTpC ∩ Vp = {0}. Now
fix a Riemannian metric g on M such that Z ⊂ (M , g) is totally geodesic (e.g., [19,
Lemma 6.8]). �e corresponding exponential map expg takes a neighborhood of

C ⊂ ρ(V) diffeomorphically onto a neighborhood of C ⊂ M. Moreover, the fibers
of ρ(V) over C ∩ Z are mapped into Z, since ρ(Vp) ∈ TpZ for p ∈ C ∩ Z and Z
is totally geodesic. �erefore, the map2 expg ∶ (ρ(V), ρ(V)∣C∩Z) → (M , Z) is a b-
diffeomorphism between neighborhoods of C.

We now show that ϕ ∶= expg ○ρ∶V → M has the claimed property.�at is, we show

that [b(expg ○ρ)∗]∣C is the identity map on bTV ∣C ≅ bTC ⊕ V = bTM∣C , by checking
that it acts as the identity on sections. We will need the commutative diagram

(2.14)

which implicitly uses Lemma 1.13(i). We will also use that for all q ∈ C the ordinary
derivative reads

[(expg ○ρ)∗]q ∶TqV ≅ TqC ⊕ Vq Ð→ TqM = TqC ⊕ ρ(Vq)
w + v z→ w + ρ(v).(2.15)

For a section X + Y ∈ Γ(bTC ⊕ V), we now compute

ρ[b(expg ○ρ)∗(X + Y)] = (expg ○ρ)∗(ρ(X) + Y)
= ρ(X) + ρ(Y)
= ρ(X + Y),

using (2.14) in the first equality and (2.15) in the second. Since the anchor ρ is injective
on sections, this implies that b(expg ○ρ)∗(X + Y) = X + Y , as desired. Claim 2.16 is
proved.

Next, the map

ψ∶V Ð→ E∗ , v z→ −ιvω∣E

2Alternatively, one can apply [2, Example 3.3.9, pp. 88–89] (see also [21, �eorem 2]).
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is an isomorphism of vector bundles covering IdC , whence a b-diffeomorphism
between the total spaces ( For the injectivity, note that ιvω∣E = 0 implies that
v ∈ Eω ∩Gω = E as in (2.12), so that v ∈ V ∩ E = {0}). �e composition ψ ○
ϕ−1∶ (M , Z)→ (E∗ , E∗∣C∩Z) is a b-diffeomorphism between neighborhoods of C,
with (ψ ○ ϕ−1)∣C = IdC .
Claim 2.17 �is b-diffeomorphism satisfies [b(ψ ○ ϕ−1)∗ΩG]∣ C = ω∣ C .

As before, let π∶E∗ → C denote the bundle projection, and let j∶E∗ ↪ bT∗C be the
inclusion induced by the splitting bTC = E ⊕G. Since ψ∶V → E∗ is a vector bundle
morphism covering IdC , by Lemma 1.13(ii), we have that

bψ∗∣C ∶ bTV ∣C ≅ bTC ⊕ V Ð→ bTE∗∣C ≅ bTC ⊕ E∗

equals Id bTC ⊕ ψ. Furthermore, bϕ∗∣C = Id bTM∣C by Claim 2.16. �erefore, for p ∈ C

and x i + v i ∈ bTpC ⊕ Vp =
bTpM, we have

[b(ψ ○ ϕ−1)∗ΩG]p(x1 + v1 , x2 + v2) = (ΩG)p(x1 + ψ(v1), x2 + ψ(v2)).(2.16)

Recalling equation (2.6) and applying Lemma 1.13(ii) as in the proof of Proposition
2.14, we expand the right-hand side of (2.16) as follows:

(ΩG)p(x1 + ψ(v1), x2 + ψ(v2)) = ωp(x1 , x2) + (ωcan)p(x1 + j(ψ(v1)), x2 + j(ψ(v2)))
= ωp(x1 , x2) + ⟨x1 , j(ψ(v2))⟩ − ⟨x2 , j(ψ(v1))⟩
= ωp(x1 , x2) + ⟨e1 ,ψ(v2)⟩ − ⟨e2 ,ψ(v1)⟩
= ωp(x1 , x2) + ωp(e1 , v2) + ωp(v1 , e2)
= ωp(x1 + v1 , x2 + v2),

using equation (2.7) in the second equality, writing x i = e i + g i ∈ Ep ⊕Gp =
bTpC,

and using in the last equality thatV is a Lagrangian subbundle of (Gω ,ω).�is finishes
the proof of Claim 2.17.

Applying Proposition 1.19 (relative b-Moser) yields a b-diffeomorphism σ , defined
on a neighborhood ofC ⊂ (M , Z), such that bσ∗(b(ψ ○ ϕ−1)∗ΩG) = ω and σ ∣C = IdC .
So setting τ ∶= ψ ○ ϕ−1 ○ σ finishes the proof. ∎

3 Strong b-coisotropic Submanifolds and b-symplectic Reduction

We consider a subclass of b-coisotropic submanifolds in b-symplectic manifolds,
namely, the coisotropic submanifolds that are transverse to the symplectic leaves they
meet.�emain observation is that their characteristic distribution has constant rank,
and the quotient (whenever smooth) by this distribution inherits a b-symplectic form
(Proposition 3.6).
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3.1 Strong b-coisotropic Submanifolds

In Subsection 2.1, we have seen that a b-coisotropic submanifoldC ⊂ (M , Z ,ω) comes
with a characteristic distribution

D ∶= ρ(bTCω) = Π♯(TC0).
In general,D fails to be regular. To forceD to have a constant rank, we have to impose
a condition on C that is stronger than b-coisotropicity.

Definition 3.1 A submanifold C of a log-symplecticmanifold (M , Z , Π) is called strong
b-coisotropic if it is coisotropic (with respect to Π) and transverse to all the symplectic
leaves of (M , Π) it meets.

To justify this definition, we note that

Π♯p ∣TpC0 is injective⇔ Ker(Π♯p) ∩ TpC
0 = {0}

⇔ TpO
0 ∩ TpC

0 = {0}
⇔ (TpO + TpC)0 = {0}
⇔ TpO + TpC = TpM ,(3.1)

where O denotes the symplectic leaf through p. �e last equation is exactly the
transversality condition of Definition 3.1. Consequently, we have the following propo-
sition.

Proposition 3.2 Let C ⊂ (M , Z , Π) be a coisotropic submanifold. �en C is strong b-
coisotropic if and only if the characteristic distribution of C is regular, with rank equal
to codim(C).

Lemma 2.5 immediately implies the following corollary.

Corollary 3.3 Let C ⊂ (M , Z ,ω) be strong b-coisotropic. �en its characteris-
tic distribution is tangent to Z, and corresponds to bTCω under the bijection of
Lemma 1.10 (ii).

Remark 3.4 If C is a strong b-coisotropic submanifold of (M2n , Z , Π) intersecting Z,
then necessarily dim(C) ≥ n + 1. Indeed, if O denotes the symplectic leaf through p ∈
C ∩ Z, then we have

dim(C) = dim(TpO + TpC) + dim(TpO ∩ TpC) − dim(O)
= dim(TpO ∩ TpC) + 2
≥ n + 1,

where the last inequality holds, since TpO ∩ TpC is a coisotropic subspace of the(2n − 2)-dimensional vector space TpO. Alternatively, one can observe that a middle-

dimensional b-coisotropic submanifold Cn ⊂ (M2n , Z ,ω) is b-Lagrangian (i.e., bTCω =
bTC). Its characteristic distribution satisfies
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dim(Dp) = { dim(C) − 1 if p ∈ C ∩ Z ,
dim(C) else,

so that C cannot be strong b-coisotropic whenever it intersects Z, due to
Proposition 3.2.

3.2 Coisotropic Reduction in b-symplectic Geometry

In this subsection we adapt coisotropic reduction to the b-symplectic category. It is
well known that, given a coisotropic submanifold C of a Poisson manifold M, its
quotient C by the characteristic distribution is again a Poisson manifold, provided
it is smooth. More precisely, the vanishing ideal IC is a Poisson subalgebra of(C∞(M), {⋅, ⋅}), and denoting byN(IC) ∶= { f ∈ C∞(M) ∶ { f , IC} ⊂ IC} its Poisson
normalizer, we have that N(IC)/IC is a Poisson algebra. As an algebra, it is canoni-
cally isomorphic to the algebra of smooth functions on the quotient C, so it endows
the latter with a Poisson structure, called the reduced Poisson structure.

Remark 3.5 When the Poisson structure onM is non-degenerate, i.e., corresponds to a
symplectic form ω ∈ Ω2(M), the reduced Poisson structure on C is also non-degenerate.
Indeed [22], it corresponds to the symplectic form ωred on C obtained by symplectic
coisotropic reduction, i.e., the unique one that satisfies q∗ωred = i

∗ω, where q∶ C → C
is the projection, and i∶ C → M is the inclusion.

Proposition 3.6 (Coisotropic reduction). Let C be a strong b-coisotropic submanifold
of a b-symplectic manifold (M , Z ,ω, Π). �en D ∶= Π♯(TC0) is a (constant rank)
involutive distribution on C. Assume that C ∶= C/D has a smooth manifold structure,
such that the projection q∶C → C is a submersion. �en C inherits a b-symplectic
structure Ω, determined by

bq∗Ω = b i∗ω,(3.2)

where i∶C ↪ M is the inclusion. Its corresponding log-symplectic structure is exactly the
reduced Poisson structure on C obtained from Π.

Proof We know that D has constant rank, by Proposition 3.2. As for involutivity,
first note that D is generated by Hamiltonians Xh ∣ C of functions h ∈ IC . On such
generators, we have

[Xh1
∣C , Xh2

∣C] = [Xh1
, Xh2
]∣C = X{h1 ,h2}∣C ,

where {h1 , h2} ∈ IC due to coisotropicity of C. Hence, D is involutive.
�e quotient C ∩ Z ∶= (C ∩ Z)/D is a smooth submanifold of C, since for every

slice S inC transverse toD, the intersection S ∩ Z is a smooth slice in C ∩ Z transverse
to D. �e leaf space (C ,C ∩ Z) is a b-manifold, and the projection q ∶ (C ,C ∩ Z)→(C ,C ∩ Z) is a b-map. For p ∈ C, we have an exact sequence

0Ð→ Dp ↪ TpC
(q∗)pÐ→ Tq(p)C Ð→ 0,
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which corresponds with an exact sequence on the level of b-tangent spaces

0Ð→ (bTpC)ωp ↪ bTpC
(bq∗)pÐ→ bTq(p)C Ð→ 0.(3.3)

To see this, consider the canonical splitting σ ∶D → bTC of the anchor ρ∶ bTC → TC,
as constructed in Lemma 1.10(i), and notice that

Ker((bq∗))p = σ(Ker(q∗)p) = σ(Dp) = (bTpC)ωp ,

where the first equality holds by Corollary 1.11 and the third by Corollary 3.3.
Since q is a surjective submersion, it admits sections; hence, for every sufficiently

small open subset U ⊂ C, there is a submanifold S ⊂ C transverse to D such that
q∣S ∶ S → U is a diffeomorphism. At points p ∈ S, we have

bTpC = (bTpC)ωp ⊕ bTpS

due to sequence (3.3). �is implies that b i∗SωC is a b-symplectic form on S, where
iS ∶ S ↪ C is the inclusion and ωC is the restriction of ω to C. Denote by τ∶U →
S the inverse of q∣S ∶ S → U . �en Ω ∶= bτ∗(b i∗SωC) is b-symplectic on U. Away
from C ∩ Z, this b-2-form agrees with the symplectic form obtained by symplectic
coisotropic reduction from ω∣M/Z . Denote by −Ω−1 the non-degenerate b-bivector

on U corresponding to Ω. Away from C ∩ Z, the log-symplectic structure ρ(−Ω−1)
agrees with the reduced Poisson structure, by Remark 3.5. By continuity, the same is
true on the whole ofU. AsU was arbitrary, the reduced Poisson structure on C is log-
symplectic, and the above reasoning shows that the corresponding b-symplectic form
satisfies equation (3.2). ∎
Examples 3.7 (i) Let i∶B ↪ (M , Z) be a b-submanifold. A quick check in coordinates

shows3 that bT∗M∣B is strong b-coisotropic in bT∗M. Its quotient bT∗M∣B is canon-
ically b-symplectomorphic to bT∗B. To see this, consider the surjective submersion

φ∶ bT∗M∣B Ð→ bT∗B∶ αp z→ (b i∗)∗pαp

and notice that the fibers of φ coincide with the leaves of the characteristic distri-
bution on bT∗M∣B . So we get a b-diffeomorphism φ∶ bT∗M∣B → bT∗B. To see that
this is in fact a b-symplectomorphism, we note that the tautological b-one-forms on
bT∗M and bT∗B are related by

bφ∗θB =
b j∗θM ,(3.4)

where j∶b T∗M∣B ↪ bT∗M is the inclusion. Recall that the b-symplectic form Ω
on bT∗M∣B is determined by the relation bq∗Ω = b j∗ωM , where q∶b T∗M∣B →
bT∗M∣B is the projection (cf. (3.2)). Hence to conclude that φ is b-symplectic, we

have to show that bq∗(bφ∗ωB) = b j∗ωM . But this is immediate from (3.4) since
φ ○ q = φ.

3�e converse is also true. If bT∗M∣B is strong b-coisotropic in bT∗M, then bT∗M∣B is transverse
to bT∗M∣Z , which implies that B is transverse to Z, i.e., that B is a b-submanifold.
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(ii) Given a b-manifold (M , Z), let K be a distribution on M tangent to Z. �anks to
Lemma 1.10(i), we can view K as a subbundle σ(K) of bTM. Its annihilator σ(K)0
is strong b-coisotropic in bT∗M, and the quotient σ(K)0 is bT∗(M/K), whenever
M/K is smooth. We give a proof of this fact in the particular case of a Hamiltonian
group action; see Corollary 3.13.

3.3 Moment Map Reduction in b-symplectic Geometry

Recall that, given an action of a Lie groupG on a Poisson manifold (M , Π), amoment
map is a Poisson map J∶M → g∗ satisfying

Π♯(dJx) = vx ∀x ∈ g.(3.5)

Here, Jx ∶M → R∶ p ↦ ⟨J(p), x⟩ is the x-component of J, the vector field vx is the
infinitesimal generator of the action corresponding with x ∈ g, i.e.,

vx(p) = d

dt
∣t=0 exp(−tx) ⋅ p,

and g∗ is endowed with its canonical Lie-Poisson structure [4, Section 3]. A G-
equivariant map J∶M → g∗ satisfying (3.5) is automatically Poisson [23, Proposition
7.30].

In view of Proposition 3.6, we recall a general fact about equivariantmomentmaps.

Lemma3.8 LetG be a Lie group acting on aPoissonmanifold (M , Π)with equivariant
moment map J∶M → g∗. Assume the action is free on J−1(0). �en

(i) J−1(0) is a coisotropic submanifold of (M , Π);
(ii) J−1(0) is transverse to all symplectic leaves of (M , Π) it meets;
(iii) the characteristic distribution Π♯(T(J−1(0))0) on J−1(0) coincides with the tan-

gent distribution to the orbits of G ↷ J−1(0).
Remark 3.9 (i) When (M , Π) is a log-symplectic manifold, Lemma 3.8 implies that
the level set J−1(0) is a strong b-coisotropic submanifold.

(ii)WhenG a torus, there is amore flexible notion of momentmap [12, Definition 22]
for log-symplectic manifolds. �e smooth level sets of such moment maps are not strong
b-coisotropic submanifolds in general. Indeed, they can even fail to be transverse to the
degeneracy locus Z (see [12, Example 23] for an instance where Z itself is such a level set).

For the sake of for completeness, we provide a proof of Lemma 3.8. Items (i)
and (iii) also follow from well-known facts in symplectic geometry, by restrict-
ing the G-action to each symplectic leaf (whenever G is connected) and using
item (ii).

Proof (i) We show that 0 is a regular value of J. Choosing p ∈ J−1(0), it is enough
to prove that the restriction dp J ∶ Im(Π♯p) ⊂ TpM → g∗ is surjective. To this end,

assume that ξ ∈ g annihilates dp J(Im(Π♯p)). We then get for all α ∈ T∗p M that

⟨α, (vξ)p⟩ = ⟨α, Π♯p(dp J
ξ)⟩ = −⟨dp J

ξ , Π♯p(α)⟩ = −⟨dp J(Π♯p(α)), ξ⟩ = 0,
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and therefore (vξ)p = 0. Since the action G ↷ J−1(0) is free, this implies that
ξ = 0. It follows that dp J(Im(Π♯p)) = g∗, so 0 is indeed a regular value of J. In

particular, J−1(0) is a submanifold of M. �e coisotropicity of J−1(0) follows
since it is the preimage of a symplectic leaf {0} ⊂ g∗ under a Poisson map.

(ii) Let O denote the symplectic leaf through p ∈ J−1(0). By the computation (3.1),
it suffices to prove that Π♯p ∣[Tp J−1(0)]0 is injective. Since 0 is a regular value, this

annihilator is given by [Tp J
−1(0)]0 = {dp J

x ∶ x ∈ g}.Wenowhave a composition
of maps

gÐ→ [Tp J
−1(0)]0 Ð→ Π♯p([Tp J

−1(0)]0)
x z→ dp J

x z→ Π♯p(dp J
x) = (vx)p ,

that is injective by freeness ofG ↷ J−1(0). In particular, Π♯p ∣[Tp J−1(0)]0 is injective.
(iii) We have

Π♯p([Tp J
−1(0)]0) = {Π♯p(dp J

x) ∶ x ∈ g} = {(vx)p ∶ x ∈ g},
which is exactly the tangent space of the G-orbit through p. ∎

Combining Proposition 3.6 with Lemma 3.8, we obtain a moment map reduction
statement in the b-symplectic category. �e case G = S1 was addressed in [10, Propo-
sition 7.8].

Corollary 3.10Moment map reduction Consider an action of a connected Lie group
G on a b-symplectic manifold (M , Z , Π) with equivariant moment map J∶M → g∗.
Assume the action is free and proper on J−1(0). �en J−1(0) is a strong b-coisotropic
submanifold, and its reduction J−1(0)/G is b-symplectic.

Remark 3.11 �e fact that J−1(0)/G is b-symplectic follows already from [16, �eorem
3.11], taking A = bTM there. (�e hypothesis made there, that (J∗)x ○ ρx ∶ bTxM → g∗

has contant rank for all x ∈ J−1(0), is satisfied, since J−1(0) is transverse to Z). In that
reference, the authors developed a reduction theory for level sets of arbitrary regular
values µ ∈ g∗ satisfying the constant rank hypothesis; their statement is thusmore general
than the reduction statement in our Corollary 3.10.

3.3.1 Exact b-symplectic Forms

As a particular case of the previous construction, we consider the b-symplectic analog
of a well-known fact in symplectic geometry. Recall that, if a Lie group G acts on an
exact symplectic manifold (M ,−dθ) and θ is invariant under the action, then J∶M →
g∗ defined by

Jx = −ιvx θ(3.6)

is an equivariant moment map for the action (in the sense of (3.5)). For a proof, see,
for instance, [1, �eorem 4.2.10]. A similar result holds in b-symplectic geometry.
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Lemma 3.12 Exact b-symplectic forms Suppose (M , Z) is a b-manifold with exact
b-symplectic form ω = −bdθ. If ϕ∶G ×M → M is a Lie group action preserving Z and
θ ∈ bΩ1(M), then an equivariant moment map J∶M → g∗ is given by Jx = −ιVx

θ. Here,
Vx ∈ Γ(bTM) is the li� of the infinitesimal generator vx ∈ Γ(TM) under the anchor ρ.
Proof Clearly, J∶M → g∗ is a smooth map. Restricting the action to the symplectic
manifold (M/Z ,ω∣M/Z), we know that G ↷ (M/Z ,−dθ∣M/Z) admits a moment map
given by J∣M/Z . Hence, the equality Π♯(dJx) = vx holds on the dense subsetM/Z, and
as both sides are smooth on M, it holds on the whole of M. Similarly, since J∣M/Z is
equivariant, it follows that J itself is equivariant. ∎

An example of Corollary 3.10 and Lemma 3.12 is b-cotangent bundle reduction. Let
us recall the picture in symplectic geometry: given an actionG ↷ M, its cotangent li�
G ↷ (T∗M ,−dθcan) preserves the tautological one-form θcan and therefore it comes
with an equivariant moment map J∶T∗M → g∗ given by (3.6):

⟨J(αq), x⟩ = −⟨αq , vx(q)⟩.
Here, vx is the infinitesimal generator of G ↷ M corresponding with x ∈ g. If
the action G ↷ M is free and proper, then symplectic reduction gives J−1(0)/G ≅
T∗(M/G). Indeed, in some detail, there is a well-defined map

φ∶ J−1(0) Ð→ T∗(M/G), αq z→ α̃pr(q),

where pr∶M → M/G denotes the projection and

α̃pr(q)∶Tpr(q)(M/G) ≅ TqM

Tq(G ⋅ q) → R, [v]z→ αq(v).
Since the fibers of φ coincide with the orbits of G ↷ J−1(0), there is an induced
bijection φ∶ J−1(0)/G → T∗(M/G), which is in fact a symplectomorphism (see [17,
�eorem 2.2.2]).

Corollary 3.13 Group actions on b-cotangent bundles Given a b-manifold (M , Z)
and a connected Lie group G, assume that ϕ∶G ×M → M is a free and proper action
that preserves Z. Denote by Φ∶G × bT∗M → bT∗M the b-cotangent li� of this action,
that is

⟨Φg(αq), v⟩ = ⟨αq , [b(ϕg−1)∗]ϕg(q)
v⟩

for αq ∈
bT∗q M and v ∈ bTϕg(q)M. Note that the action Φ is also free and proper, and

that it preserves the hypersurface bT∗M∣Z . �e action Φ has a canonical equivariant
moment map J, and J−1(0)/G is canonically b-symplectomorphic to bT∗(M/G).
Proof Denote the infinitesimal generators of ϕ by vx = ρM(Vx) ∈ X(M) and those
of Φ by vx = ρ(bT∗M)(V x) ∈ X(bT∗M), where x ∈ g. One checks that they are related
via

π∗(vx) = vx ,(3.7)

where π∶ bT∗M → M denotes the projection. Since the action Φ preserves the tauto-
logical b-one form θ ∈ bΩ1(bT∗M), Lemma 3.12 gives an equivariant moment map
J∶ bT∗M → g∗ defined by Jx = −ιV x

θ. Explicitly, one has
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−⟨J(ξp), x⟩ = (ιV x
θ)(ξp) = θ ξp(V x)ξp = ⟨ξp , (bπ∗)ξp(V x)ξp⟩

= ⟨ξp , (Vx)p⟩,(3.8)

where the last equality uses (3.7) and Lemma 1.6. Denoting by K the tangent dis-
tribution to the orbits of G ↷ M and by σ ∶K ↪ bTM the splitting of the anchor
ρM ∶ bTM → TM obtained via Lemma 1.10(i), equality (3.8) shows that

J−1(0) = σ(K)0 .(3.9)

We now perform a reduction on J−1(0) as in Corollary 3.10. Because the projection
map pr∶ (M , Z)→ (M/G , Z/G) is a b-submersion with kernel Ker(pr∗) = K, Corol-
lary 1.11 implies that Ker(b pr∗) = σ(K), and therefore

bTpr(q)(M/G) ≅
bTqM

σ(Kq) .(3.10)

It is now clear from (3.9) and (3.10) that b-covectors in J−1(0) descend to M/G; i.e.,
we get a well-defined map

φ∶ J−1(0)Ð→ bT∗(M/G), αq z→ α̃pr(q),

where

α̃pr(q)∶ bTpr(q)(M/G) ≅
bTqM

σ(Kq) Ð→ R, [v]z→ αq(v).
It is easy to check that φ is a surjective submersion with connected fibers. From
symplectic geometry, we know that the fibers of φ and the orbits of the G-action
G ↷ J−1(0) coincide on the open dense subset J−1(0)/(J−1(0) ∩ bT∗M∣Z) of J−1(0).
By continuity, the corresponding tangent distributionsmust agree on all of J−1(0), and
so the same holds for the foliations integrating them. �erefore, the map φ descends
to a smooth bijective b-map

φ∶ J−1(0)/G Ð→ bT∗(M/G).
Being a bijective submersion between manifolds of the same dimension, φ is a
diffeomorphism. �e restriction of φ to the complement of (J−1(0) ∩ bT∗M∣Z)/G,
endowed with the symplectic structure obtained by symplectic (i.e., coisotropic)
reduction, is a symplectomorphism onto its image. Hence, by Proposition 3.6, φ is
a b-symplectomorphism. ∎

3.3.2 Circle Bundles

We find examples for Proposition 3.6 and Corollary 3.10 by “reverse engineering”.

Proposition 3.14 Let (N ,ω) be a b-symplectic manifold, which for simplicity we
assume to be compact. Let q∶C → N be a principal S1-bundle, with connection θ ∈
Ω1(C). Denote by σ ∈ Ω2(N) the closed 2-form satisfying dθ = q∗σ .
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(i) �e following is a is b-symplectic manifold:

(C × I, ω̃ ∶= dt ∧ p∗θ + (t − 1)p∗q∗σ + b p∗ bq∗ω).
Here, I is an interval around 1 with coordinate t, and p∶C × I → C the projection.

(ii) C × {1} is a strong b-coisotropic submanifold, and the reduced b-symplectic mani-
fold (as in Proposition 3.6) is isomorphic to (N ,ω).
Wemake a few observations about ω̃.�e summand of ω̃ containing σ is necessary

to ensure that ω̃ is bd-closed. In the special case that C is the trivial S1-bundle N × S1,
choosing θ = dρ for ρ the angle “coordinate” on S1 (so σ = 0), the above lemmadelivers
the product of the b-symplectic manifold (N ,ω) and of the symplectic manifold (I ×
S1 , dt ∧ θ).

In the special case that ω equals the closed 2-form σ , we have ω̃ = d(tp∗θ), which
can be interpreted as the prequantization of σ when the latter is symplectic.

Remark 3.15 By the above proposition, we actually recover (N ,ω) by moment map
reduction, as in Corollary 3.10. Indeed, S1 acts on C × I (trivially on the second factor)
preserving the b-symplectic form ω̃ (since θ is S1-invariant). An equivariant moment
map is J(x , t) = t − 1; hence, C × {1} = J−1(0).
Proof (i) To check that ω̃ is bd-closed, notice that its first two summands can be

written as d(tp∗θ) − p∗q∗σ , which is closed, since σ is closed.
For every real number t sufficiently close to 1, (t − 1)σ + ω is a b-symplectic form
on N, so its n-th power (where dim(N) = 2n) is a nowhere-vanishing element of
bΩ2n(N).�is implies that ω̃n+1 is a nowhere-vanishing element of bΩ2(n+1)(C ×
I), shrinking I if necessary. Hence, ω̃ is b-symplectic.

(ii) Denote by Z ⊂ N the singular hypersurface of ω. �en the singular hypersurface
of ω̃ is p−1(q−1(Z)) ⊂ C × I, which is transverse toC × {1}.�erefore, the latter is
a b-submanifold and is coisotropic, since it has codimension one. If i∶C × {1}→
C × I denotes the inclusion, then we have b i∗ω̃ = bq∗ω. One consequence is that
bT(C × {1})ω̃ = ker(b i∗ω̃) = ker(bq∗). Applying the anchor ρ, we obtain that the
characteristic distribution ρ(bT(C × {1})ω̃) of C × {1} is given by ker(q∗). Since
the latter has constant rank one, by Proposition 3.2, we conclude that C × {1} is
a strong b-coisotropic submanifold. A second consequence is that the reduced
b-symplectic manifold is isomorphic to (N ,ω). ∎
A concrete instance of the construction of Proposition 3.14 is the following.

Corollary 3.16 Let h be any smooth function on CP1 that vanishes transversely along
a hypersurface. On C

2, consider the differential forms Ω ∶= i(dz1 ∧ dz̄1 + dz2 ∧ dz̄2)
(twice the standard symplectic form) and α ∶= z̄1dz1 + z̄2dz2, and denote the radius
by r.

1. In a neighborhood of the unit sphere S3, the following is a b-symplectic form:

ω̃ =
1

r2
( − 1 + 1

P∗h
)( − i

r2
(α ∧ ᾱ) +Ω) +Ω,(3.11)

where P∶C2/{0}→ CP1 is the projection.
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2. �eunit sphere S3 is a strong b-coisotropic submanifold, and the reduced b-symplectic
manifold is (CP1 , 1

h
σ) where σ is twice the Fubini-Study symplectic form.

Remark 3.17 �e diagonal action of S1 on the above neighborhood of the unit sphere
S3 in C

2 preserves ω̃ and has moment map given by v ↦ ∥v∥2 − 1. �is follows from
Remark 3.15 and the proof below.

Proof On R
4 = C2, we consider the 1-form θ̃ = ∑2

j=1 x jdy j − y jdx j . Notice that we

have d θ̃ = 2∑2
j=1 dx j ∧ dy j = Ω. Consider the unit sphere S3. Let q∶ S3 → CP1 be the

principal bundle given by the diagonal action of U(1) (the Hopf fibration). �en θ ∶=
i∗θ̃ is a connection 1-form on S3, where i is the inclusion. �en dθ = q∗σ , where σ is
the symplectic form on CP1 obtained from Ω by coisotropic reduction. Consider the

b-symplectic form ω ∶= 1
h
σ on CP1. Applying Proposition 3.14 to S3 × I p→ S3

q→ CP1

yields a b-symplectic form ω̃ on S3 × I, defined by

ω̃ = dt ∧ p∗θ + (t − 1 + 1

p∗q∗h
)p∗q∗σ .(3.12)

We now make ω̃ more explicit. Denote by p′∶C2/{0}→ S3 the projection v ↦
v/∥v∥, let r denote the radius function v ↦ ∥v∥. �en p′∗(θ) = θ̃/r2, since the Euler
vector field E satisfies ιE θ̃ = 0 and LE(θ̃/r2) = 0. Hence, using q∗σ = dθ and d θ̃ = Ω
we obtain

p′∗q∗σ = d(θ̃/r2) = 1

r2
( − 2dr

r
∧ θ̃ +Ω).

Using θ̃ = I(α) and r2 = z1 z̄1 + z2 z̄2 we get −2 dr
r
∧ θ̃ = − i

r2
(α ∧ ᾱ). If we now use the

identification (a, t)↦√ta between S3 × I and a neighborhood of S3 inC2 (so t = r2),
then expression (3.12) becomes (3.11). ∎
Remark 3.18 We show directly from its definition (3.12) that ω̃ satisfies the transver-
sality condition required for b-symplectic forms. As (− i

r2
(α ∧ ᾱ) +Ω)∧2 vanishes, one

obtains ω̃∧2 = −2(1 − 1
r2
+ 1

r2
1

P∗h
)dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2. �e dual 4-vector field is thus

transverse to the zero section, in a neighborhood of the unit sphere S3.

Example 3.19 We display an example of a function h on CP1 that vanishes on the
circle RP1 ⊂ CP1. �e function g ∶= I(z̄1z2) = x1 y2 − y1x2 on S3 is U(1)-invariant,
hence descends to a function h on CP1, which is readily seen to vanish exactly on RP1.
It vanishes linearly there: using homogeneous the coordinate w ∶= z2/z1 on the open

subset {[z1 ∶ z2] ∶ z1 ≠ 0} of CP1, we have4 h = I(w)
1+∣w∣2

, which vanishes with non-zero

derivative on {I(w) = 0}. Since g is quadratic, we have p′∗g = g/r2, hence the coefficient
1
r2
(−1 + 1

P∗h
) in equation (3.11) reads

(− 1

r2
+ 1

I(z̄1z2)) .

4To see this, first notice that on S3 we have z̄1z2 = (z̄1z2)/(z̄1z1 + z̄2z2), and then divide numerator
and denominator by z̄1z1 .
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