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Merging of two or more plumes arranged
around a circle
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A model is presented of merging turbulent plumes from sources evenly spaced
around a horizontal circle in a quiescent, unstratified background. This follows the
previously developed method of (i) identifying the boundaries of interacting plumes
with velocity-potential contours of line sinks and (ii) closing the generalised plume
equations with an entrainment assumption based on the integrated flux across the
plume boundaries. It includes the simplest case of two merging plumes, as well
as being applicable to plume flows in restricted corner configurations. The model
is shown to display the expected limiting behaviour for the source plumes and the
merged plume. Consideration of the plume fluxes in the merging region leads to
a revision of the entrainment assumption. The resulting revised model compares
satisfactorily with previous estimates of volume flux in two merging plumes.

Key words: convection, plumes/thermals

1. Introduction
Many studies of naturally ventilated spaces have followed upon the important work

of Linden, Lane-Serff & Smeed (1990). These have often dealt with turbulent plume
flow in a man-made enclosure. However the interactions of plumes with other plumes
and with boundaries, which often occur in such spaces, are still not fully understood.
In this context, Rooney (2015) proposed that symmetric plume interactions may
emulate plume–boundary interactions, in the sense of the method of images. This
idea allows both types of flow to be modelled in a single framework. The method
was applied by Rooney (2015) to plume flow in a restricting channel.

Here, the model is extended to look at plume sources evenly spaced around a
circle, with flow in the direction normal to the plane of the circle. This includes the
simplest case of two interacting plumes. Under the method of images, this model
also represents plume interaction with a wall and, if the symmetry is not broken, the
case of a plume in a corner of angle 2π/n where n is the number of plumes. The
study of these flows is highly relevant to the building ventilation problem as well as
to numerous other applications, for example fire safety (Babrauskas 1980) and the
melting of ice shelves (Kimura et al. 2014).

Several previous studies have examined the problem of merging plumes. Davidson,
Papps & Wood (1994) modelled buoyant jet merging in a long row of sources
by simply superimposing the velocity distributions of each jet without considering
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Merging of two or more plumes 713

interaction effects. Kaye & Linden (2004) subsequently proposed a model for the case
of two plumes from point sources, in which the plumes retained circular cross-sections
up to the point of merging, and plume interaction was modelled through deflection
of the plume axes by mutual entrainment. This model obtained a prediction for the
merging height, defined as the height at which the buoyancy distribution no longer
has two separate maxima. Beyond the merging point, the flow was then modelled as a
single axisymmetric plume. The predicted merging height was somewhat greater than
that observed in accompanying experiments, a result attributed in part to sensitivity
of the model to the plume entrainment constant. Cenedese & Linden (2014) extended
this model with the introduction of an intermediate region where the plumes overlap
but are not yet fully merged. The model predictions compared favourably with
measurements of the volume flux (inferred from interface movement) in two merging
plumes obtained from ‘filling-box’ experiments, although these results are also
sensitive to the entrainment constant, as will be discussed later.

Other integral models have been developed on similar principles to the works
already discussed. For example, Yannopoulos (2010) modelled groups of buoyant jets
with an integral approach which included the superposition of concentration profiles,
and closed the model with the assumption of linear plume growth. This predicted a
merging height for two plumes approximately twice the distance observed by Kaye
& Linden (2004). Circular arrays of multiple buoyant jets were also modelled by Lai
& Lee (2012) using a semi-analytical approach. Like the other models described, this
did not allow for the distortion of individual plume cross-sections, but did represent
the field external to the jets as an irrotational flow based on a distribution of point
sinks.

A Lagrangian model of plume rise was used by Alessandrini, Ferrero & Anfossi
(2013) to simulate the flow from two plume sources aligned along a constant
horizontal wind. In this approach, an unknown drag coefficient is the equivalent
of the entrainment constant of Eulerian modelling. This method was used to predict
concentration fields in plume dispersion, and in this case produced a smoothly
evolving prediction of rise height in the merging plume. However, it is unclear
whether implementation of a virtual plume origin was also required. Such flows have
also been simulated using finite element methods (e.g. Mokhtarzadeh-Dehghan, König
& Robins 2006). Compared to either of these methods, the integral approach taken
here is potentially less computationally expensive.

Following Rooney (2015), the present model is constructed by first considering
the velocity potential and entrainment of a circular group of line sinks (§ 2). The
contours of velocity potential are the template for the growth of the plume–ambient
boundary as the plume area increases with height. In § 3 an interacting-plume model
is developed based on this. The integration of this model is discussed in §§ 4 and 5
then proposes a refinement of the model based on the balance of plume fluxes in the
merging region. In § 6 the two-plume case is compared with the measurements of
Cenedese & Linden (2014) in the merging region, and finally § 7 gives a concluding
summary and discussion.

2. Sinks in a circle
2.1. Complex potential

The complex potential of a line sink of strength −m(z) at the origin is

Ω =− m
2π

ln Z, (2.1)

where Z = x+ iy= reiθ .
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714 G. G. Rooney

Kaye & Linden (2004) used line sinks to represent the entrainment/attraction field of
two interacting plumes (see also Taylor (1958) and Turner (1973, § 6.1.1)). Extending
this, the potential due to n equal line sinks, equally spaced around a circle of radius
R, can be represented as

Ω =− m
2π

ln(Z′n − 1)− m
2π

ln Rn +Π, (2.2)

where Z′= x/R+ iy/R and Π is an arbitrary constant. The positions of the line sinks
in Z′-space are those of the nth roots of unity. An diagram of the system is given in
figure 1.

It is convenient to work with (2.2) in polar coordinates (ρ, θ), in which Z′ = ρeiθ

and ρ= r/R. It is also sufficient to consider only the sector containing unity, −π/n6
θ 6π/n.

The velocity components u and v may be obtained from the complex derivative,
dΩ/dZ = u− iv. In this case,

dΩ
dZ
= 1

R
dΩ
dZ′

= − m
2πR

(
nZ′n−1

Z′n − 1

)
= − m

2πR
n ρn−1[(ρn cos θ − cos(n− 1)θ)− i(ρn sin θ + sin(n− 1)θ)]

ρ2n − 2ρn cos nθ + 1
. (2.3)

The flow speed is given by q= |dΩ/dZ|, hence

q2 = m2

4π2R2

n2ρ2n−2

ρ2n − 2ρn cos nθ + 1
. (2.4)

Contours of equal velocity potential are given by |Z′n− 1| = k, where k is constant.
This simplifies to

ρ2n − 2ρn cos nθ + 1= k2. (2.5)

Hence

ρ = (cos nθ ± (k2 − sin2 nθ)1/2)1/n, (2.6)

the negative square root being applicable for k< 1, or alternatively

θ =±1
n

cos−1

(
ρ2n + 1− k2

2ρn

)
. (2.7)

A set of contours for the example of n= 4 is plotted in figure 2.
Differentiating (2.5) gives

dρ
dθ
= ρ sin nθ

cos nθ − ρn
. (2.8)

Thus the maximum radial extent of each contour is at θ = 0,

ρmax = (k+ 1)1/n. (2.9)
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A
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FIGURE 1. (a) A diagram of the situation considered, in the case n= 4. Cartesian (x, y)
coordinates of the plume sources are marked around the notional circle of radius R. The
analysis describes the flow from the source at (R,0), within the sector bounded by vertical
planes of symmetry (indicated in outline by dashed lines). A is the horizontal plume area
in this sector, w is the vertical plume velocity and E is the sector flux of entrained fluid
across the plume–ambient boundary. All these are height dependent. A further illustration
of the system, based on the results of the model presented herein, is given in figure 7.
(b–e) Positions of plume sources around the circle in the cases 2 6 n 6 5.

The angular position of the minimum contour radius depends on the value of k, being
at θ = 0 for k< 1, at θ =±π/n for k> 1 and undefined (at the origin) for k= 1. Its
value is

ρmin =
{
(1− k)1/n, k 6 1
(k− 1)1/n, k> 1.

(2.10)

Thus in Z′-space, for small values of k the contours approach circles centred at (1, 0)
with radius k/n, and for large values of k they approach circles centred at (0, 0) with
radius k1/n. In Z-space these radii will then be Rk/n and Rk1/n, respectively.

For k 6 1, the contours do not span the full angular range of the sector. The
positions of the limits (ρlim, θlim) will be given by dθ/dρ = 0, hence (2.8) gives
ρlim

n = cos nθlim. Substituting into (2.5) gives the position of the angular limits to be

ρlim = (1− k2)1/2n, (2.11)

±θlim =±1
n

sin−1 k, (2.12)

and hence the maximum closed-contour extent is −π/2n 6 θ 6π/2n for k= 1.
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FIGURE 2. Contours of velocity potential in the sector of Z′-space containing unity, for
n=4. The contours ‘expand’ from the point (1, 0) to correspond with values of k from the
set {0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99, 1.0, 1.01, 1.05, 1.1, 1.2, 1.5, 2.0, 5.0, 10.0, 15.0},
see (2.6). The solid and dotted parts of the closed contours (k 6 1) indicate the positive
and negative square roots in (2.6) respectively. The k= 1 contour extends to the origin.

2.2. Flow speed on contours
From (2.4) and (2.5) the flow speed on (and orthogonal to) contours is

q= m
2πR

nρn−1

k
. (2.13)

The flow speed qe at the maximum radial extent (on the line of symmetry θ = 0) may
be obtained from (2.9) and (2.13),

2πRqe

m
= n(k+ 1)(n−1)/n

k
, (2.14)

so that the flow speed at any point on the plume boundary may be given relative to
the speed at the point (ρmax, 0) by

q
qe
= ρn−1

(k+ 1)(n−1)/n
. (2.15)

Hence q 6 qe at all points on a contour.

2.3. Flux and area integrals

The line element d` is defined by d`2 = dr2 + r2 dθ 2, or in dimensionless form

d`′2 = dρ2 + ρ2dθ 2. (2.16)

Given the orthogonality of streamlines and velocity-potential contours, the volume flux
per unit height E across any velocity-potential contour C is then

E=
∫

C
q d`= m

2π

n
k

∫
C
ρn−1 d`′. (2.17)
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Merging of two or more plumes 717

For this configuration of a finite number of line sinks, it can be shown (see
appendix A) that E = m, independent of n or k. Thus the entrainment flux for
one sector is simply m.

The area element is dA= r dr dθ . For k> 1 the sector area A enclosed by a contour
can be obtained as

A
R2
= A′ = 1

2

∫ π/n

−π/n
ρ+2 dθ, (2.18)

where ρ± refer to the different solutions of (2.6). For k 6 1 it is simpler to calculate
the area within a closed contour as

A′ = 2
∫ ρmax

ρmin

θ+ρ dρ, (2.19)

where θ± refer to the different solutions of (2.7), and 2θ+ = θ+ − θ−.

3. Plumes in a circle
3.1. Merging-plume model

The generalised plume equations in an unstratified environment are (Rooney 2015)

A
d
dz

(
1
2

w2

)
= Ag′ −wE, (3.1a)

d
dz
(Aw)= E, (3.1b)

where w is the top-hat vertical velocity, g′ is the reduced gravity and the conserved
buoyancy flux in one sector is B=Awg′. The properties of velocity-potential contours,
which are flow orthogonal and connect points at which equal pressure impulse is
required to bring about the external irrotational flow field (Batchelor 1967, § 6.10),
make them good candidates for defining the time-mean outline of interacting plumes
at various stages of development (Rooney 2015). In addition, a closing entrainment
assumption is required. The simplest assumption is

qe = αw. (3.2)

This matches the single-plume equivalents for small and large k, when the entrainment
velocity is uniform on the plume boundary at any given height (and will be assessed
further in § 5). From (2.14), (3.2) implies

(E=)m= αwRfe, (3.3)

where α ≈ 0.1 is the entrainment constant, and

fe = 2πk
n(k+ 1)(n−1)/n

−→


2πk1/n

n
, k� 1

2πk
n
, k� 1.

(3.4)

As expected, Rfe tends to 2π times the plume radius in the limit of small k and tends
to 2π/n times the plume radius in the limit of large k.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

27
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.272


718 G. G. Rooney

Equations (3.1) may be recast in terms of w and the volume flux V = Aw, instead
of w and A. Combining this with non-dimensionalisation using the buoyancy flux B
and a source length scale x0 (to be specified further in § 4),

w= α−1/3B1/3x−1/3
0 w̄, V = α−1/3B1/3x5/3

0 V̄, z= α−1x0 z̄, (3.5a−c)

yields the dimensionless plume equations

dw̄
dz̄
= 1

w̄V̄
− R̄w̄2

V̄
fe,

dV̄
dz̄
= R̄w̄fe, (3.6a,b)

where R̄ = R/x0. The non-dimensionalisation (3.5) then also implies that V̄/w̄ =
x−2

0 A= Ā.
The model of two merging plumes developed by Kaye & Linden (2004) assumed

that each plume maintained a circular cross-section without distortion. Mutual
plume attraction was included in that model, which had the effect of approximately
accounting for plume distortion. This feature reduced the predicted merging distance
to a value more in accord with observations. The observations and model simulations
of merging-plume concentrations presented by Kaye & Linden (2004, figure 13) and
Lai & Lee (2012, figure 9a) indicate, however, that the actual deflection of the plume
centres may be quite small. In addition, it should be noted that the present model,
like that of Kaye & Linden (2004), has a stagnation point between the plumes, so
that distortion effects are mainly caused by restricted entrainment rather than the
entrainment of one plume by another. For these reasons, plume distortion is taken to
be the main mechanism of plume interaction, and it will be assumed that dR/dz= 0.
It may also be noted that with this model, to take the case of two plumes as an
example, each plume originates at ρ = 1, but at the point of merging (k = 1) it
occupies the interval 0 6 ρ 6

√
2. Thus to an observer, the plume centre may appear

to have been deflected ‘inward’ to approximately ρ = 0.7 by this point.
Equations (3.6) can then be solved numerically to model plume merging in this

configuration. The solution requires the use of an inverting technique to recover k from
the value of A′ (= Ā/R̄2).

3.2. Near- and far-field limits
In the far-field limit (k� 1),

αwRfe→ 2παwRk1/n

n
, (3.7a)

V
w
= A→ πR2k2/n

n
, (3.7b)

since, as indicated above, the area tends to that of a sector of a circle with radius
Rk1/n. Hence the plume equations (3.1) tend to

d
dz
(Vw)= B

w
,

dV
dz
= 2α

(π

n

)1/2
V1/2w1/2. (3.8a,b)

From these, the far-field similarity solution is therefore

w= 5
6

(
9
10

)1/3

π−1/3α−2/3(nB)1/3z−1/3, (3.9a)

V = 1
n

6
5

(
9
10

)1/3

π2/3α4/3(nB)1/3z5/3. (3.9b)
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Merging of two or more plumes 719

Equation (3.9b) shows that the sum of the sector volume fluxes equals the volume
flux from a single source of strength nB in this limit. Cenedese & Linden (2014)
have introduced the concept of ‘effective entrainment’ with a parameter αeff which
depends on height, to relate the volume flux in merged plumes to that from the same
number of isolated plumes. In the present framework, this is the same as comparing
the volume flux in one sector with that for a single-plume system, n= 1. From (3.9b)
and following Cenedese & Linden (2014),

αeff /α = (V/V(n=1))
3/4

→ n−1/2, k� 1. (3.10)

Plume merging thus has a large effect on the eventual volume flux in the far field.
Using the non-dimensionalisation (3.5), the similarity solution (3.9) becomes

w̄= 5
6

(
9

10

)1/3 ( n
π

)1/3
z̄−1/3, V̄ = 6

5

(
9
10

)1/3 ( n
π

)−2/3
z̄5/3. (3.11a,b)

Similarly, in the near-field limit (k� 1) recall that the area approaches that of a circle
of radius Rk/n, and so

αwRfe→ 2παwRk
n

, (3.12a)

V
w
= A→π

(
Rk
n

)2

. (3.12b)

Thus the plume equations (3.1) tend to

d
dz
(Vw)= B

w
,

dV
dz
= 2απ1/2V1/2w1/2. (3.13a,b)

The near-field similarity solution is thus the same as that for the far field, but with
n= 1 substituted.

3.3. Flux-balance parameters
For small values of k, each plume is expected to be approximately axisymmetric.
In this case, the flux-balance parameter describing the departure from the plume
similarity solution in the near-source region is

Γ (z)= 5
8π1/2α

BV2

M5/2
= 5

8π1/2
Ā−1/2w̄−3, (3.14)

(Hunt & Kaye 2005) where M=Vw is the plume momentum flux. The plume source
condition is denoted Γ0 = Γ (0). Γ = 1 for a single plume in which the fluxes are in
balance with the similarity solution (a so-called pure plume), while Γ → 1 as z→∞
for a single plume with non-pure source conditions i.e. Γ (0) 6= 1.

When the plumes merge, then the sector fluxes B, V and M represent only a fraction
1/n of the total plume fluxes, and so the flux-balance parameter for the merged-plume
system is given by

Γm(z)= n1/2Γ (z). (3.15)
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720 G. G. Rooney

It is thus expected that Γm→ 1 as z→∞. Since Γm is simply a multiple of Γ , its
value can be evaluated even before the merging point. In the near field it may be
interpreted as a property of the system of n plumes rather than of the merged plume.

As indicated above, a single plume from a pure source should remain pure
throughout its trajectory, since it will continue to satisfy the plume similarity solution
at all points. For one plume in the merging system however, even if it has a source
condition of Γ0 = 1 it has been shown above that it will eventually depart from the
single-plume similarity solution. Nonetheless, if the plumes which merge are pure at
the source (Γ0 = 1), then the function

fm = Sk+ n1/2

Sk+ Γm
, (3.16)

where S is an arbitrary coefficient, will tend to unity in both the limits k� 1 and
k� 1.

4. Numerical solution

Equations (3.6) were integrated in the range 0.001 6 z̄ 6 5.0 using the fourth-order
Runge–Kutta method with step size 1z̄= 0.001.

Initial conditions for the numerical solution were generated by first choosing a small
value of k (here 0.1) and hence the corresponding value of Ā. The choice of Γ0 then
sets the initial value of w̄ using (3.14), and hence also V̄ . Here, the pure-plume initial
condition of Γ0= 1 was considered, as well the forced-plume initial condition of Γ0=
0.5. It can be seen from (3.14) that this latter condition corresponds to a plume source
with an initial momentum flux approximately 30 % greater than the equivalent for a
pure plume.

Thus far, x0 has not been specified relative to the other length scales in the problem.
Following the approach of previous studies, x0 is now taken to be the diameter of the
circle on which the sources are placed, so that the value of R̄ becomes 0.5.

For k = 0.1, the initial radius b0 of each plume source at the first model level
z̄1 = 0.001 is given approximately by the limiting value at small values of k,
i.e. b0 = 0.1R/n, and hence 2b0/x0 = 0.1/n (since R = x0/2). If the pure-plume
similarity solution for radius b = 6αz/5 (Morton, Taylor & Turner 1956) is used to
estimate the displacement in the negative z direction of the virtual origin z̄vn for the
source plumes, then

z̄vn + z̄1 ≈ 5
6

(
0.05

n

)
. (4.1)

Hence z̄vn≈ 0.042n−1− 0.001. Thus z̄vn≈ 0.02 for the important case n= 2. It should
be emphasised that this is the virtual origin correction for the individual plumes in the
near field, and hence for the numerical solution. It is not the appropriate virtual origin
correction for modelling analytically the far-field flow in terms of a single plume.

The results for n = 2 are plotted as the dashed lines in figure 3. The near- and
far-field similarity solutions are also shown (dotted, see § 3.2), and are approached by
the model solution at small and large z̄, respectively. The numerical solutions include
the correction z̄vn for the near-field virtual origin, which greatly improves the similarity
scaling at small z̄.
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FIGURE 3. Solutions for w̄ (a) and V̄ (b) from the original model (dashed) and the revised
model (solid), for the case n= 2. The dotted lines show the near- and far-field similarity
solutions, at lower and higher ranges of z̄+ z̄vn, respectively.

From (3.11) it can be seen that, in the far field, the horizontal plume length scale Ā1/2 =
(V̄/w̄)1/2 increases linearly with z̄, i.e. the far-field plume is straight sided. The dimension-
less far-field virtual origin z̄vf may thus be calculated by fitting a straight line to the graph of
z̄ against (V̄/w̄)1/2 for data in the far field (taken here as 3 < z̄ 6 5), and extrapolating back
to the intersect with the z̄-axis. Figure 4 shows examples of this procedure. The results for
the first few values of n, as well as the height of first contact, are given in table 1. The height
of first contact is that at which k=1, when the velocity-potential contour defining the sector
plume boundary reaches the origin, see figure 2. The model prediction of the distance to the
position of first contact for two plumes is z̄ = 0.31 which is comparable (∼90 %) to that of
Cenedese & Linden (2014).
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FIGURE 4. Determination of the far-field virtual origin z̄vf for the case n = 2, with the
original (a) and revised (b) models. The dotted lines show the data from the model
integration, and the solid lines show straight line fits to the data between 3 < z̄ 6 5.
Extrapolation of the fit backward to the z̄ axis provides the value of z̄vf . Note that the
axis intersect in (a) is ‘in front of’ the plume origin, so z̄vf is negative for this case in
table 1, and vice versa for (b). Equivalent plots for other values of n are similar to those
shown.

n 2 3 4 5
Model Original Revised Original Revised Original Revised Original Revised

z̄vf −0.11 0.19 −0.08 0.25 −0.06 0.22 −0.05 0.20
z̄ at k= 1 0.31 0.28 0.28 0.23 0.27 0.21 0.26 0.20

TABLE 1. Predictions for the offset behind the actual origin of the far-field virtual origin,
and for the point of first contact (k = 1), in the original and revised model formulations.
Results are presented for different numbers of plumes n. The data include small corrections
for the near-field virtual origin z̄vn, obtained from (4.1).

5. Behaviour in the merging region
5.1. Evolution of Γm

In the limit of k� 1 the plumes may be assumed to influence each other relatively
little, and in the limit of k� 1 the merged plume should be similar to the far field
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2.0

FIGURE 5. Behaviour of the flux-balance parameter Γm in the case n = 2, for different
values of the single-plume source parameter Γ0 and different entrainment models. The
initial integration condition is either Γ0= 1 or Γ0= 0.5, corresponding to pure or slightly
forced individual plumes, respectively. The initial values of Γm are then 21/2Γ0 in both
cases. The colours correspond to ‘simple’ entrainment (black), and enhanced merging
entrainment with S= 1 (green) or S= 0.1 (yellow).

of a plume from a single source. Model behaviour in these limits is thus quite tightly
constrained to emulate the well-described single-plume model, and it has been shown
in § 3 that these limits are represented satisfactorily (see also figure 3).

In the merging region, plume behaviour is less well understood, and consequently
there is less available guidance to constrain aspects of the model such as entrainment.
The simplest entrainment assumption (3.2) assumes that the entrainment velocity at
the outer plume boundary on the line of symmetry θ = 0, denoted qe, should be
proportional to the top-hat vertical velocity w. The implications of this assumption in
the merging region may be assessed by examining the evolution of the flux-balance
parameter Γm. Recall from § 3 that it is expected that

Γm −→
{

1, k� 1
n1/2Γ, k� 1.

(5.1)

Figure 5 shows the evolution of Γm in the case n = 2. The black lines show the
behaviour of the model with the entrainment assumption (3.2), and two different
initial conditions of Γ0 equal to 1 or 0.5. In the early part of the model evolution
(approximately z̄6 0.1), the plumes have not yet merged. The pure-plume run (Γ0= 1)
maintains a value close to Γm = 21/2 while the forced-plume run (Γ0 = 0.5) begins to
tend towards this value. As the plumes increasingly influence each other, the value of
Γm begins to reduce and finally tends (z̄� 1) to the appropriate merged-plume value
of 1.

However, the trajectory of Γm from one limit to the other shows a pronounced
‘dip’ to forced-plume (<1) values in the merging region (approximately 0.1 6 z̄ 6 1).
The implication of this dip is that the plume entrainment is relatively low in the
merging region, allowing the plume to accelerate rather than tend smoothly to the final
limit. This may also be observed in figure 3(a), where the simple entrainment model
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(dashed line) climbs above the far-field similarity solution (dotted line) before tending
back down to it for larger values of z̄. As has been emphasised above, there is little
detailed observational data on the merging region to constrain the model, nonetheless
this large departure from monotonicity is surprising, and indicates that the simple
entrainment assumption may need modification.

5.2. Modified entrainment assumption
The simplest entrainment assumption, namely a constant value of α, has been
observed to work well for pure plumes in both axisymmetric and two-dimensional
configurations (Turner 1969). It has, however, required modification to reconcile
models with data in many non-pure or transitional regimes. This is usually achieved
through the dependence of α on a dimensionless parameter. These regimes include
forced plumes (Wang & Law 2002), non-Boussinesq plumes (Rooney & Linden
1996) and turbulent fountains with a viscosity differing from that of the environment
(Campbell & Turner 1985). The physical or dynamical reasons for these observed
dependencies are still a subject of debate and research (e.g. Ezzamel, Salizzoni &
Hunt 2015; van Reeuwijk & Craske 2015). For the case of plumes merging in a line,
Rooney (2015) obtained good first-order agreement with experimental data without
varying α. In that work, however, the possibility of developing the merging-plume
model further by relating the value of α to a transitional parameter (such as the plume
boundary curvature) was raised, should better experimental data become available. In
the present case, some detailed data have been presented recently by Cenedese &
Linden (2014).

If the plume is in some sense self-regulating, as the evolution of Γ for a single
plume with arbitrary source conditions would suggest, then it is natural to modify the
merging entrainment based on the value of Γm. This may be achieved using a function
such as fm (3.16) to scale the entrainment constant. This function tends to unity in the
limit of large k, and also in the limit of small k for pure initial plumes. Thus the near-
and far-field similarity behaviour is preserved. It also has Γm in the denominator, thus
will regulate the merging by increasing entrainment when Γm is lower and vice versa.
The modified entrainment assumption then becomes

qe = αfmw. (5.2)

At this stage, the form of the function and the value of S are otherwise arbitrary, but
may be assessed by comparison with previous model behaviour and (in § 6, following)
with the available observations.

To compare the modified model with the simple entrainment model, figure 5 also
shows the behaviour of Γm in the modified case for values of S= 1 (green lines) and
S= 0.1 (yellow lines). For S= 1, the far-field evolution only slightly dips below the
Γm = 1 line, while for S= 0.1 the far-field values remain above Γm = 1. In this latter
case the behaviour for pure initial plumes, while not entirely monotonic, no longer
oscillates around the far-field pure-plume solution. This behaviour is probably more
to be expected than that of the simple entrainment model. The results from the rest
of this section will be based on the revised model with S= 0.1, Γ0 = 1.

Figure 6 compares the effective entrainment in the two models according to (3.10),
with the simple model dashed and the revised model solid black. it also shows
the effective entrainment from the piecewise merging model of Cenedese & Linden
(2014) in red. The piecewise model does not reduce plume entrainment below the
merging region however, outside this region, the revised entrainment model produces
an effective entrainment closer to that of Cenedese & Linden (2014).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

27
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.272


Merging of two or more plumes 725

0 0.2 0.4 0.6 0.8 1.0 1.2

 0.5

1.0

1.5

2.0

FIGURE 6. Effective entrainment of two merging plumes compared to that of two isolated
plumes, see (3.10) and the accompanying text. The flux ratio from the simple model is
dashed, and that from the revised model is solid black. The piecewise model of Cenedese
& Linden (2014, equation (2.12)) is shown in red for comparison. The vertical dotted line
indicates the value of 2−1/2, to which all the two-plume models tend in the far field.

The numerical solution of the model with the modified entrainment assumption is
shown by the black solid lines in figure 3. It can be seen that w̄ and V̄ now evolve
from the single-plume to the merged-plume values without overshooting the merged-
plume similarity solution. In the far field, the modified model has a greater volume
flux and lower vertical velocity than the original. The merging of three plumes using
this model is illustrated in figure 7.

The far-field virtual origin z̄vf and the height of first contact obtained from the
modified model are given alongside those from the original model formulation in
table 1. The change of z̄vf to positive values, i.e. positions behind the plume origin,
is a result of the increased volume flux due to the greater merging entrainment. For
two plumes, the model of Kaye & Linden (2004) predicted a value of zvf /x0 = 1.4,
and their experiments showed agreement with this. The revised n = 2 prediction of
z̄vf = 0.19, with a value of α = 0.12 (Cenedese & Linden 2014, discussed further
in the next section), would imply zvf /x0 ≈ 1.6, which is then comparable with the
experimental value of Kaye & Linden (2004).

The revised model for two plumes reduces the height of first contact (z̄= 0.28) to
approximately 80 % of that of the model of Cenedese & Linden (2014). Nonetheless,
the distances remain of a similar magnitude. It may also be noted that this distance
shows indications of being lower in some other modelling or experimental studies
e.g. Lai & Lee (2012, figure 9a) and Kaye & Linden (2004, figure 13).

6. Merging-plume volume flux

In this section, the volume-flux predictions of the models for the case n = 2
are compared with that inferred from observations of a ‘filling-box’ experiment by
Cenedese & Linden (2014). In that experiment, two salt water sources discharged into
a tank of fresh water, creating a layer of salt water at the bottom of the tank, see
figure 8. Each source produced a buoyancy flux B, and the initially separate plumes
eventually merged into one.
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FIGURE 7. An illustration of the merging of three plumes, obtained with the modified
model. The numerical solution gives the mapping between z̄ and k, and thus the locus
of the plume boundary at any height, from (2.6). To help with visualisation, the plume
system is shaded according to the height z̄ in the range between 0 and 1, and shaded
contours are also projected onto the bottom plane.

z

h

Sources Overflow

FIGURE 8. The experiment of Cenedese & Linden (2014), in which salt water plumes
from two sources at the same height produce a depth-dependent volume flux Q. This fills a
tank of fresh water by displacement. The fresh–salty interface is at depth h(t). The plumes
are observed to touch at depth zT and zε denotes a position very close to the source.
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The analysis of Cenedese & Linden (2014) must first be outlined. This proceeds
by relating the interface position h to the total salt-plume volume flux Q (z= h) and
the horizontal area of the tank interior Ai (where z is the vertical coordinate measured
downward from the source level),

Q(h)=−Ai
∂h
∂t
, (6.1)

and the area of the interface occupied by the plumes is assumed small enough to be
neglected. If the plumes are observed to touch at some (constant) level zT , then the
time taken for the interface to reach zT from some arbitrary point (z, t) is obtained
from

tT − t
Ai
=
∫ z

zT

dz∗

Q
, (6.2)

where tT is the time at which zT is reached. Using the dimensionless time coordinate

τ = tT − t

Aix
−2/3
0 B−1/3

, (6.3)

then (6.2) becomes

τ =
∫ z̄

z̄T

dz̄∗

α2/3Q̄
, (6.4)

where Q and z have been non-dimensionalised as in (3.5). Cenedese & Linden (2014)
use the value of z̄T = 0.35 as predicted by their piecewise merging model.

For n plumes, Q̄= nV̄ so that, from (3.11b) and the following discussion,

Q̄→


n

6
5

(
9
10

)1/3 ( n
π

)−2/3
(z̄+ z̄vf )

5/3, k� 1

n
6
5

(
9
10

)1/3

π2/3z̄5/3, k� 1,

(6.5)

where z̄vf is the appropriate virtual origin for the far field, and the near-field virtual
origin is neglected. Thus for n= 2

τ ≈


3

24/3

(
6
5

(
9
10

)1/3
π2/3α2/3

)−1
((z̄T + z̄vf )

−2/3 − (z̄+ z̄vf )
−2/3), z> zT

3
4

(
6
5

(
9
10

)1/3
π2/3α2/3

)−1
(z̄−2/3

T − z̄−2/3), z< zT .

(6.6)

Equation (6.6) is essentially the τ–z̄ relationship derived by Cenedese & Linden
(2014), but neglecting the separate linear fit in the merging region. For the purposes
of the present comparison, it provides a close fit to the non-dimensionalised data
from that study, upon using the value z̄vf = 0.12.

The time taken for the interface to travel from zT to almost the plume origin is
given by

1τ = tε − tT

Ai x−2/3
0 B−1/3

=
∫ z̄T

z̄ε

dz̄∗

α2/3Q̄
, (6.7)
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where (zε, tε) is the event arbitrarily close to the plume source. To compare the
numerical solution with the results of Cenedese & Linden (2014), z̄ε can be taken as
z̄1 = 0.001 and also z̄T = 0.35, and hence τ is calculated from the model solution as

τ =
∫ z̄

z̄1

dz̄∗

α2/3Q̄
−1τ. (6.8)

One possible effect neglected by this analysis is additional entrainment into the
lower layer which may occur when the plume passes through the interface (Cetegen,
Zukoski & Kubota 1984). If this is significant, then the interface movement may
reflect a greater volume flux than that in the underlying plume flow.

Figure 9 shows results plotted in (τ , z̄)-space. It should be noted that this way of
presenting the results is quite sensitive to the values of α and z̄vf . Cenedese & Linden
(2014) do not state their measured value of α but their plot of dimensionless data is
consistent with a value of α≈ 0.12. The far-field similarity solution (6.6, z> zT), with
z̄vf = 0.12, is the red line in the region τ > 0. The near-field similarity solution (6.6,
z< zT) is the magenta line in the region τ < 0. These lines, plotted using α= 0.12, are
a good fit to the scaled experimental data in the plotting range shown. The model with
the simple entrainment assumption (3.2) and assuming Γ0 = 1, α= 0.12, is shown as
the black dashed line, which does not appear to follow the data at larger values of z̄.
For the model with the modified entrainment assumption (5.2), a range of solutions
is shown by the grey shaded region, covering the likely range of uncertainty in the
model and experiments, i.e. 0.10 6 α 6 0.14, 0.5 6 Γ0 6 1, 0.1 6 S 6 1. This region
is bounded by the green and yellow lines, which correspond to parameter values of
(α = 0.10, Γ0 = 1, S = 1) and (α = 0.14, Γ0 = 0.5, S = 0.1), respectively. For the
second of these, the analysis of Hunt & Kaye (2001) indicates that the near-field
virtual origin should be increased slightly to z̄vn≈ 0.03. The small radius of the plume
source relative to the domain size means that virtual origin corrections are also small,
so that in general the offset by z̄vn does not greatly affect the positions of the curves
in this plot.

It appears from figure 9 that the experimental data can be matched by the model
from the parameter values considered, although they are at one end of the parameter
range. This may be due in part to the possible effect of extra interfacial entrainment,
mentioned above.

7. Conclusion

The preceding sections have developed a model to represent merging of a circular
array of plumes. This model yields the correct similarity behaviour in the near and
far fields, and includes continuously varying plume entrainment and boundary shape
from the plume source to the far-field flow.

The formulation of the model has included plume distortion as the main process
of plume interaction in the merging region. It has been shown that this is sufficient
to represent the drawing together of plumes within a distance from the source
comparable to previous observations. Plume distortion removes the ‘cusp’ in
merging-plume cross-sections which is a feature of overlapping-axisymmetric plume
models. It also ensures that the irrotational entrainment field is self-consistent and
normal to the plume boundary at all points.

Consideration of the flux-balance parameter Γm has been used to highlight the
tendency of the simplest entrainment assumption to insufficiently decelerate the
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FIGURE 9. Comparison of model output with the experimental data of Cenedese & Linden
(2014). The red and magenta lines are integrations of the far- and near-field similarity
solutions, respectively ((6.6), taking z̄vf = 0.12 in the former), and also indicate the
trajectory of the scaled experimental data. The dashed black line shows the original model
with the default parameter settings. The grey shading shows the range of revised model
results over the parameter ranges considered, with the green and yellow lines indicating
model results at the range limits (explained in the text).

merging plumes. It has also allowed the formulation of a revised merging entrainment
assumption which regulates this behaviour. The revised model has been shown to
yield results which compare satisfactorily with inferred estimates of volume flux
in the merging zone of two plumes, within the ranges of experimental and model
uncertainty.

Finally, a remark may be made concerning the application to a plume in a corner
of arbitrary angle. It is expected that corners of size 2π/n where n is non-integer may
be described approximately by interpolating the integer results in table 1, for example.
It is interesting to note that the velocity potential from (2.2) may be plotted for non-
integer n, and varies smoothly in the sector containing unity. However, a discontinuity
appears along the negative real axis, since the potential field is now periodic on an
interval no longer equal to 2π. This indicates that the plume-analogous configuration
for non-integer cases is yet to be fully understood.

Appendix A. Entrainment-flux integrals
The flux E across a contour C is (2.17),

E=
∫

C
q d`= mI

2π
, (A 1)

where

I =
∫

C

2πR q
m

d`′ = n
k

∫
C
ρn−1 d`′. (A 2)
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For contour integration, it is useful to express dρ/dθ in terms of either ρ or θ only.
From (2.5) and its simplifications (2.6) and (2.7), (2.8) becomes

dρ
dθ
= ρ(4ρ2n − (ρ2n + 1− k2)2)1/2

1− ρ2n − k2

= ∓sin nθ(cos nθ ± (k2 − sin2 nθ)1/2)1/n

(k2 − sin2 nθ)1/2
. (A 3)

Now from (2.16),

d`′2 =
(

1+ ρ2

(
dθ
dρ

)2
)

dρ2

=
((

dρ
dθ

)2

+ ρ2

)
dθ 2, (A 4)

and so using (2.6) and (A 3),

d`′ = 2kρn

(4ρ2n − (ρ2n + 1− k2)2)1/2
dρ

= k(cos nθ ± (k2 − sin2 nθ)1/2)1/n

(k2 − sin2 nθ)1/2
dθ. (A 5)

For open contours (k> 1), again using (2.6), the entrainment flux is then an angular
integral over the whole sector,

I = n
∫ π/n

−π/n

cos nθ + (k2 − sin2 nθ)1/2

(k2 − sin2 nθ)1/2
dθ = 2π. (A 6)

For closed contours (k6 1), one half of the flux may be obtained as a radial integral,

I
2
= 2n

∫ ρmax

ρmin

ρ2n−1

(4ρ2n − (ρ2n + 1− k2)2)1/2
dρ. (A 7)

Making the substitution χ = ρ2n + 1− k2 produces

I = 2
∫ 2+2k

2−2k

dχ
(−χ 2 + 4χ + 4k2 − 4)1/2

= 2
[
−sin−1

(
4− 2χ

4k

)]2+2k

2−2k

= 2π. (A 8)

Hence E=m in all cases, which is perhaps not unexpected.
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