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SUMMARY
We present a new algorithm for fine motion planning in
geometrically complex situations. Geometrically complex
situations have complex robot and environment geometry,
crowded environments, narrow passages and tight fits. They
require complex robot motions with coupled degrees of
freedom. The algorithm constructs a path by incrementally
building a graph of linearized convex configuration space
cells and solving a series of linear optimization problems
with varying objective functions. Its advantages are that it
better exploits the local geometry of narrow passages in
configuration space, and that its complexity does not
significantly increase as the clearance of narrow passages
decreases. We demonstrate the algorithm on examples
which other planners could not solve.

KEYWORDS: Motion planning; Crowded environments; Config-
uration space; Robot motions.

1. INTRODUCTION
Effectively planning the motion of objects in geometrically
complex environments is of great practical importance for
many tasks and domains. Geometrically complex environ-
ments are charaterized by complex robot and obstacle
geometry forming a crowded environment requiring fine,
coupled motions to navigate through narrow openings and
tight passages (Figure 1). In robotics, this is necessary for
maneuvering robots through cluttered environments. In
manufacturing, it is necessary to determine manipulation
and assembly operations of parts into tight spaces, such as
mounting the oil filter in a car engine. In computer graphics,
it is necessary to realistically navigate, animate, and
manipulate complex scenes, such as a virtual refinery,
without having to manually specify many key frames.1

Many geometrically complex problems in other applica-
tions, such as molecular biology2 and medicine3,4 also
require effective motion planning algorithms.

This paper presents a novel algorithm, for motion
planning in geometrically complex planar environments.5

The algorithm, which is an extension of the EXTRACT
algorithm,3 plans the robot motion by incrementally build-
ing a graph of linearized convex configuration space cells
encoding the contact constraints between the robot and the
fixed obstacles. Path search proceeds in A* fashion by
moving to neighboring configuration space cells and solving
a series of linear optimization problems with varying
objective functions. This method, which better reflects the
local geometry of narrow passages, is potentially more
effective than randomized search or collision detection. It is
also resolution sound and complete. We demonstrate the
algorithm on several tight-fit examples which other planners
could not solve.

2. PREVIOUS WORK
Global motion planning strategies, which construct a cell
partition or a road-map of the configuration space and then
search it for a path, are impractical for geometrically
complex situations because of the high cost of computing
the full configuration space. The complexity cannot be
easily reduced by approximating or abstracting the config-
uration space because of the tight fit and narrow clearances
between objects. Techniques such as planning in low-
dimensional configuration space projections6 or exploiting
the object’s geometric regularities7 are not applicable. Local
motion planning strategies directly search for a path,
performing the necessary geometric computations that
guarantee non-interference as the search progresses. Such
strategies depend on the efficiency of the geometric
computations and the effectiveness of the search strategy.

Fig. 1. Tight fit bullet moving on a feeder track.
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Existing local search methods emphasize search effective-
ness and are only applicable to problems with simple to
moderately complex geometry.8–12 The chance of randomly
finding a free configuration is very small, and hierarchical
collision detection13,14 are ineffective in tight fit situations.

Several recent planners explicitly address geometrically
complex situations. Benchetrit’s algorithm13 hierarchically
searches and decomposes configuration space cells in A*
fashion, using a Manhattan distance metric in the evaluation
function. To test for free cells and configurations, the
planner relies on a collision detection algorithm that uses a
hierarchical bounding box representation and local trans-
formations. The algorithm can solving problem with many
geometric features, but has difficulties in solving tight fit
situations (Section 5.1).

Chang and Li’s15,16 algorithm is based on randomized
potential field path planning. It uses adaptive multi-
resolution search and a fast collision detection algorithm. To
escape local minima, it performs a preset number of random
walks followed by gradient motion. It relies on user-defined
constrained volumes to limit the search space. The algo-
rithm is demonstrated on testing the accessibility of a part in
a complex arrangement of pipes, and on inserting a part in
a turbine. It took hours to produce results on a two-
processor SGI Reality Engine and occasionally failed
altogether due to its probabilistic nature.

Hsu et al.9,10 use randomized networks that limit the space
explored for new interference-free configurations to a small
area around the current configuration. The space is explored
incrementally and more efficiently. The notion of expensive
configuration space is defined as a space in which it is
improbable to randomly find free configurations. In such
cases, the algorithm requires manual identification of
intermediate collision-free configurations.

Joskowicz and Taylor’s EXTRACT algorithm3 handles
spatial geometrically complex, tight fit insertion problems,
where fine, complex, coupled six-degree of freedom
motions in a preferred direction are necessary. The algo-
rithm avoids collision detection altogether, using instead
local, linearized configuration space constraints derived
from the object shapes to compute successive interference-
free motion steps in a preferred direction. It has been tested
on complex examples consisting of objects with up to
10,000 facets and clearances of 2mm toan accuracy of
0.25mm. The algorithm has limited search capabilities,
requiring a preferred direction and producing quasi-mono-
tone paths. The algorithm presented in this paper extends
the search capabilities of this approach.

Faverjon and Tournassoud17 use linearized configuration
space constraints and quadratic optimization to plan
motions of cooperating mnipulators. The main limitation of
their algorithm is the search, since the algorithms plans
motions locally, without keeping track of explored config-
uration space regions. This prevents systematic
backtracking and detours which place the robot locally
further from the target.

3. SOLUTION OVERVIEW
We have developed an algorithm that searches a path by
incrementally building a graph of adjacent convex free

configuration space cells. Each cell is defined by a set of
linearized constraints, constructed according to a robot/
obstacles features proximity pairing. The configuration
space cells are more complex than the cells used in the 2n-
cube cells, but there are much fewer of them. Each cell is
characterized by a canonical, non-redundant set of con-
straints, which is in most cases of constant size. The planes
bounding the cells obtained by linearizing the contact
constraints are used to identify adjacent cells. The normals
to the cells boundary planes are used as objective functions
in a linear optimization problem, whose solution yields the
next motion step. The algorithm uses the A* search strategy
and can solve search problems requiring significant back-
tracking.

4. PATH PLANNING WITH LINEARIZED
CONFIGURATION SPACE CELLS
This section presents the details of the algorithm. Section
4.1 describes the representation of the robot and the free
working space. Section 4.2 introduces the notation and
problem formulation. Section 4.3 defines feature proximity
and pairing. Section 4.4 describes the construction of a
single configuration space cell. Section 4.5 describes
constraint redundancy elimination, and section 4.6 describes
the incremental cell construction strategy. Sections 4.7 and
4.8 describe the search strategy and cost function.

4.1 Object and workspace representation
We represent the robot by a series of sampled points on its
boundary, and the free space between obstacles as the union
of overlapping trapezoids. Each point in free space belongs
to two exactly trapezoids, and no trapezoid is contained in
any other. We also require that trapezoids having a common
intersection or sharing an edge should be of comparable
size. This subdivision greatly simplifies the process of robot
vertices migration from one configuration space cell to
another. We assume that a good subdivision is given as an
input to the algorithm. A simple method for producing a
subdivision with overlaps is to create two different subdivi-
sions18 and then merging them.

4.2 Problem formulation
The workspace obstacles are defined with respect to a fixed
global coordinate frame. The robot geometry is defined with
respect to a local coordinate system. The configuration of a
robot is defined by three degrees of freedom, two transla-
tions, p̄ =(x, y) and a rotation u. The transformation F(p̄, u )
maps points in robot coordinates to points in global
coordinates for robot configuration (p̄, u ). The set of all
configurations forms a configuration space C.

Let r̄ be a robot point whose coordinates are with respect
to the robot coordinate frame. The position ȳ of a robot
point r̄ in configuration (p̄, u ) with respect to the global
coordinate frame is:

ȳ = F(p̄, u )r̄ = Rot(u )r̄+ p̄

where Rot(u) is the rotation operator specifying the robot
orientation with respect to the global coordinate frame. Let
R and S be the sets of points describing the robot and the
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obstacles. Let H(x) be a function that describes the shape of
the obstacles such that H(x)≤0 for every point x in the
Euclidean plane that is not inside any of the obstacles. A
robot point r̄ in configuration (p̄, u ) is interference-free iff:

H(F(p̄, u )r̄)≤0

This condition, formulated over all robot points and all
obstacles, defines the robot’s free configuration constraints
which must hold for the robot to not interfere with any of
the obstacles. This set of free robot configurations is called
the free configuration space:

Cfree ={( p̄,u ) u H(F( p̄, u )·r̄ )≤0; ;r̄PR}

4.3 Proximity pairing
The set of constraints defining the configuration space cells
are formulated with contact constraints.19 In our case, the
single contact constraint is a moving vertex-fixed edge
constraint. Free space is defined by at most O(nm) contact
constraints, where n is the number of robot vertices and m
is the number of obstacles’ edges. Computing the whole set
at once is impractical for very complex obstacles. Instead,
we iteratively construct configuration space cells whose
complexity is at most O(n) based on proximity relations.

Each robot vertex lies in two overlapping trapezoids for a
given robot configuration. This defines the proximity
relation of each robot vertex. The match is used throughout
the algorithm as the identifying “name” for the configura-
tion space cells. For each pair of free workspace region and
robot vertex, a set of four constraints is formulated – one for
every edge of the quadrilateral. This set of constraints define
the robot configurations in which the robot vertex remains
inside the quadrilateral. The set of 4n constraints defines the
configuration space cell such that no robot vertex leaves its
enclosing region.

4.4 Linearized configuration space cells
Given the list of n pairwise matchings between robot
vertices and their containing regions, the 4n contact
constraints define a three-dimensional configuration space
cell. For every robot vertex r̄, four constraints are produced,
one with every edge hi of the work space quadrilateral
region. Let the equation of an edge hi be āix̄+ci.

Substituting r̄ in position ȳ when the robot is in
configuration (p̄, u) yields:

āi(F(p̄, u) · r̄)+ci ≤0 (1)

This set of constraints is non-empty if there is no
interference between the robot and the obstacles, and each
robot vertex remains inside its corresponding workspace
free region. Using the standard small motion approximation
this set becomes a set of linear constraints. Let ȳ be the
position of vertex r̄, when the robot is in configuration
(p̄0, u0). The position ȳ9 of r̄ after a small relative motion
(ē, a) is given by:

ȳ9=Rot(a)·ȳ+ ē

Since (ē, a) is a small motion, it can be approximated as:

y9x =yx 2ayy +ex

y9y =ayx +yy +ey

Substituting the approximated new configuration in the edge
equation yields:

a1(yx 2ay+ex)+a2(ayx +yy +ey)+c≤0 (2)

Rearranging by the small motion parameters yields:

a1ex +a2ey +a(a2yx 2a1yy)+(a1yx +a2yy +c)≤0 (3)

The result is a set of linear constraints in the new motion
parameters (ē, a) which are related to the configuration
space parameters by the relation:

F(p̄, u)=F(ē, a)F(p̄0, u0)

This set of linear constraints approximates the configura-
tion space cell that describes all proximity preserving robot
motions. It is convex and singly connected, which guaran-
tees interference-free motions up to the approximation
between any two configurations inside the cell.

4.5 Canonical representation
The set of configuration space constraints in Equation 3 is
highly redundant because all contacts cannot be realized
simultaneously, and most contacts cannot be realized at all.
Geometrically, this corresponds to intersecting a large set of
half planes. The intersection forms a convex polygon in the
plane. The number of segments in the intersection polygon
is typically much smaller than the number of half planes in
the set. The half planes not appearing in the intersection are
redundant. To reduce storage space and running time, we
remove redundant constraints using the Convex Hull
Method (CHM),20 which yields a canonical form in which
all equations are in solved form and the inequalities
represent a full dimensional polyhedral set free of redundan-
cies. The canonical form is unique and allows simple
comparison between two constraint sets.

4.6 Incremental cell construction and motion
To search for a path, the algorithm incrementally constructs
configuration space cells, starting from the cell defined by
the initial robot configuration. To move within the cell, a
linear optimization problem is formulated with the con-
straint set and an objective function defined by a given
motion direction. The solution yields a small motion vetor
that keeps the proximity relations and avoids interferences.
The resulting motion vector is applied to the current robot
configuration yielding a new one.

The linear programming problem at the kth iteration is
formulated using constraints in the form of Equation 3, over
all robot vertices and their corresponding edges of the
containing trapezoids:

maximize Tk(e
k
x, e

k
y, a

k)

subject to:

a1e
k
x + a2e

k
y + ak(a2yx 2a1yy)+(a1yx +a2yy +c)≤0

u ak u ≤amax

where Tk(e
k
x, e

k
y, a

k) is the linear objective function which set
by the global search method (see section 4.7). The small
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motion approximation assumes small rotations in every
motion step, therefore the u ak u ≤amax constraint limiting the
size of the rotation in the step is added. It further subdivides
the configuration space, limiting each cell to a certain range
of angles. For tight fits, this additional subdivision does not
increase significantly the number of configuration space
cells.

After a small motion step, the new configuration is still
within the same configuration space cell. One or more of the
robot vertices placed in the new configuration lie on the
edges of their containing cells. This is due to the property of
linear programming by which if a solution is found, it is
always optimal and lies on a vertex of the convex
polyhedron defined by the set of constraints. Identifying the
edges or vertices on which the robot vertices now lie can be
difficult due to numerical errors. It might also require many
small steps to cross a cell’s boundary, since only a few
vertices are migrated in each step. We thus opted for the
overlapping free working space subdivision.

Migration of the robot vertices between adjacent over-
lapping regions is straightforward, since every robot vertex
always resides in two workspace regions. After each motion
step, each vertex is associated to the other region it resides
in. The migrated vertices are situated in the middle of the
new containing region, not on its edges, as it would be
without using overlapping workspace regions. The algo-
rithm performs membership queries only for the four
neighbors of the trapezoidal region containing the vertex.
Updating the vertices-regions match list takes linear time in
the number of robot vertices. After every re-matching
process, the constraints set for the next step is also
generated in linear time.

4.7 Search strategy
To determine which cell to construct and explore next, we
use a variant of the A* algorithm. Starting from the cell
containing the initial configuration, the search strategy
incrementally explores the configuration space structure. As
the search progresses, the algorithm constructs a directed
acyclic graph whose nodes are configuration space cells and
whose edges are cells adjacencies.

The algorithm builds and explores cells until the cell
containing the goal configuration is reached. When the goal
is reached, the algorithm tracks back the full motion path
from start to goal configurations by traversing the graph
nodes until the start cell is reached. When the goal
configuration is not reached and all cell neighbors have been
explored, the goal configuration cannot be reached and the
algorithm terminates with a failure message.

To advance from one configuration space cell to any of its
immediate neighbors, a list of normals to the cell’s
bounding planes is maintained. Each normal is assigned a
value by which the normals list is sorted. We chose to give
the normal a value which is its scalar product with the
normalized global start-to-goal vector. The best normal in
the list (not already used, largest value) is set to be the
objective function in the current cell’s linear programming
problem. Solving the linear programming problem yields a
small motion step towards one of the immediate neighbors
of the current cell. Exploring all normals in the list as

possible directions for motion guarantees the completeness
of the algorithm, up to the approximation.

4.8 Heuristic cost function
We use an Euclidean distance-based cost function which is
defined on the nodes as the A* algorithm cost-function. The
simplest method to estimate distances between nodes is to
set a representing configuration for every configuration
space cell and measure the distance between them.

Unlike the cells in a 2n-cubed decomposition method
[13], the cells in our algorithm are not uniform in shape.
Picking a representing configuration that is close to the
cell’s boundary can reduce the efficiency of the search
algorithm. Nevertheless, there is no simple way to compute
a good representing configuration, and so we have chosen to
sue the first configuration the robot reaches inside the cell as
the representing configuration for computing the cell’s
value. The standard Euclidean distance is used for the cost
function:

f*(nc,ns,ng)=h(nc,ns)+g*(nc,ng)

where qc is the current cell’s representing configuration, qs,
qg are the start and goal configurations and h, g* are
Euclidean distance functions. The * stands for approxi-
mated distance measure. Note that the path distance so far,
h(qc,qs) is computed accurately by storing the value and
passing it onward to the next node visited. The regular
Euclidean distance function is used as the optimistic
distance measure from current configuration to the goal.

5. IMPLEMENTATION AND EXPERIMENTS
We have implemented the algorithm and have tested it on
several challenging examples (Figures 1–4). All tests were
run on an SGI O 2 workstation with a 180Mhz R5000
processor and 192MB RAM. Table I shows the results. The
minimal clearance is the relative size of the smallest free
space passage relative to the robot’s diameter. It includes the
number of search graph nodes explored through planning
(opened nodes), the number of nodes listed as potential path
configurations (closed nodes) and the number of configura-
tions in the final path. CPU running time is measured in
seconds.

The results indicate that very few unnecessary cells of the
configuration space are constructed, meaning that the search
is very effective. The fish example presents a hard search
problem, in which an exhaustive search of configurations
space was made, exploring many of cells on the way. Our
experiments validate our initial intuition, which was to
exploit the geometrical structure of the space to reduce the
number of cells (or sampling points) constructed during the
search. The numbers are much smaller than, for instance, in
using the approximated cell decomposition method13 or
randomized planning.9,10 The computation time of a single
motion step is proportional to the number of robot points,
but does not depend on the obstacles complexity, and
therefore is low comparing to full collision detection test,
even with hierarchical bounding box data structures.
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5.1 Comparison with Benchetrit’s planner
Very few existing motion planners have specifically empha-
sized geometrically complex tight fit planning. Comparing
performance with existing planners is only of interest if
there is a reason to believe that the planner would be able to
solve such problems. Existing planners might solve hard
many degrees-of-freedom problems, but would have diffi-
culties solving tight fit problems. Most published papers do

not provide sufficient details or an interesting planar
example to test or program.

In this section, we present a performance comparison
between our planner and the planner developed by U.
Benchetrit.13 The algorithm is based on the approximated
cell decomposition approach, in which the configuration
space is partitioned by a 2n tree. The approximated cell
decomposition approach has the important advantage of

Fig. 2. Wrench in a narrow pipe.

Fig. 3. A hard ‘fish’ search problem.
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being both simple and general. Benchetrit has tested his
algorithm on three dimensional problems containing thou-
sands of geometric features. His algorithm is not designed
to efficiently solve tight fit problems, but being general
algorithm, is capable of solving many kinds of planning
problems.

Figure 4 shoes a tight fit planar cart-on-a-rail example.
We ran Benchetrit’s algorithm on this example and on the
feeder track example shown in Figure 1. The results for the
cart-on-a-rail example are shown Table II. The table clearly
shows the advantage of our program in tight fit planning. In
the larger clearance case, our program opened half the

number of cells opened by Benchetrit’s planner. In the
smaller clearance case, our program’s advantage is even
greater, opening about eight times less cells. The running
times match the number of cells opened by the program. In
addition, Benchetrit’s planner was tested on the feeder
example, but was not able to solve it after more than 20
hours.

6. CONCLUSIONS
Motion planning in geometrically complex environments is
an important category of problems for which no practical
satisfactory solution has been found yet. This paper presents
a step towards that goal. Building on the theoretical basis
and methods described in reference 3, a practical motion
planner was developed, with improved search capabilities.
The algorithm, is an incremental cell decomposition
algorithm that builds a graph of linearized convex cells. The
novel characteristics of the algorithm are: (a) free work-
space representation as overlapping convex regions (b)
canonical configuration space cell representation with no
redundant constraints (c) search strategy based on the
geometry of the cell, and (d) use of linear programming to
move inside and between cells. A key feature of the
algorithm is that, unlike all other planers, its complexity
does not significantly increase as the clearance of narrow
passages decreases. A three degrees of freedom version of
the algorithm was successfully implemented and tested. The
results clearly show the advantages of the suggested
algorithm: reduced number of configuration space cells,
small number of unnecessary steps, and no use of collision
detection tests.

Several extensions are contemplated for the future. First
and foremost, more extensive testing on more difficult
examples and quantitative comparison with the performance
of existing implementations (e.g. reference 10). Second,

Fig. 4. A very tight fit cart-on-a-rail.

Table I. Results for the examples in Figures 1–4.

Example name wrench feeder rail fish

# of obst. edges 46 102 106 74
# of robot points 103 26 18 12
min. clearance 5% 3% 3% 5%
opened nodes 2091 775 1161 372252
closed nodes 1406 487 1032 360914
steps in path 756 426 426 124
run time (secs.) 366 13 28 8900

Table II. Comparative results of running Benchetrit’s planner (A)
and our planner (B) on the example in Figure 4.

Planner A Planner B

clearance 6% 2% 6% 2%
opened nodes 1933 4207 809 508
closed nodes 641 1461 399 378
steps in path 453 959 351 366
run time(sec) 114 332 17 10
max. tree span 7 8 – –
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improvements in several aspects of the algorithm, such as
including the moving edge fixed vertex contact constraints,
using adaptive cost function, and precomputing inter-
mediate interference-free configurations. Third, a
three-dimensional version of the algorithm. The core
planning algorithm remains the same, since the linearization
carries over to three dimensions, as demonstrated in
reference 3. Issues of cell exploration and workspace
subdivision, and comparison with reference 21 require
further investigation.
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