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For a sign-changing function a(z) we consider the solutions of the following
semilinear elliptic problem in R™ with n > 3:

—Au= (yaT —a")ud + P, u>0 and ue DR"),

where y > 0and 0 < ¢ <1< p < (n+2)/(n—2). Under an appropriate growth
assumption on a~ at infinity, we show that all solutions are compactly supported.
When 217 = {z € R" | a(x) > 0} has several connected components, we prove that
there exists an interval on 7 in which the solutions exist. In particular, if

a(z) = a(|z]), by applying the mountain-pass theorem there are at least two solutions
with radial symmetry that are positive in £21.

1. Introduction

For a locally Holder-continuous and sign-changing function a(z) in R™, we study
the following elliptic problem in R™ with n > 3:

2

—Au=ay(z)u?+u? InR", 0<¢g<l<p< i,

n—2 (1.1)

u>=0 in R", ue€ D[R"),

where

a,(€) = ya* (@) —a~ (), 7 >0,

a” (z) = max(0, —a(x)).
(

The following assumption is also made on a~ () throughout this paper:

0 <liminfa™(x) < limsupa™(z) < oo.
|| —o00 |z] =00

We will discuss this assumption at the end of the paper.
By D(R™) we mean the completion of C§°(R™) under the Dirichlet semi-norm,

1/2
(/ |Vu|2dx> :
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Equations of this type (1.1) arise as stationary solutions to the degenerate reaction—
diffusion equations introduced by Gurtin and MacCamy [17,18] to model the evo-
lution of a biological population (see also [2]). Throughout the paper, to emphasize
the dependence on A, equation (1.1) is often referred to as (1.1), (the subscript ~y
is omitted if no confusion arises).

Let

2T ={x e R"|a(z) > 0},
2% = {z € R" | a(zx) > 0},
27 ={z eR"|a(z) <0}.

Since a(x) is sign-changing and lim inf |, a™ (z) > 0, 27 and 2°F are not empty
and bounded. The important feature of this equation is that it not only combines a
non-Lipschitz nonlinearity u? with a sign-changing coefficient a(x) but also exhibits
a combination of concave and convex nonlinearities in £2F. Such ‘concave plus
convex’ nonlinearities in a bounded domain have been studied by Ambrosetti et
al. [6] (see also [1,14]), so we expect some similar results. In particular, we hope to
prove the multiplicity of solutions by using variational methods.

It was originally observed by Schatzman [21] that solutions could vanish on large
sets and in fact that, under appropriate hypotheses on a(z), there exist solutions
with compact support. We show more solutions as follows.

THEOREM 1.1. Every weak solution of (1.1) is a compactly supported classical solu-
tion.

The sublinear term u?, 0 < ¢ < 1, is essential for this phenomenon to occur. If,
instead, we consider the same equation (1.1) with ¢ > 1, then a simple application
of the classical strong maximum principle shows that a non-negative solution must
be strictly positive in R™, so the existence of compactly supported solutions would
be impossible.

In [2] a similar equation —Au = a(z)u? 4+ b(x)uP with b(x) < 0 was studied, and
it was shown that all of the non-negative solutions in D(R™) have compact support.
Moreover, the size of the support of these solutions is controlled by a(x) and does
not depend on any particular solution. In contrast with [2], the size of the support of
solutions to (1.1) cannot be controlled. In order to understand why the solutions for
the case b(z) = 1 are different from those in the case b(x) < 0, we begin by recalling
an important result of [12]. In [12] it was proved that the equation —Av = vP — v?
in R™ has a unique compactly supported radial solution. This suggests that (1.1)
could have a solution whose support lies completely in {27. Indeed, consider the
following special example.

ExaMPLE 1.2. Let 27 ccC B(0,r) and a(z) = —1 in R” — B(0,r) for some r > 0.
Again, from [12], we may construct arbitrarily many solutions of (1.1) by gluing
together the compactly supported solutions of —Av = vP — v? in disjoint balls in
R™ — B(0,r) (see figure 1).

We also study the structure of the solution set of (1.1) in case the favourable
domain Q7 has several components. We make the following assumption on 27.
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a(x) = —1 —Au/-_u’i— ud
OutSide \ A\ —Au = uP — u4
- | ] PN
X J \ \
T | )
/ N J
{ )
//\_/
—Au =uP —u

—Au = a(x)ud + uP
Figure 1. a(z) as in example 1.2.

ASSUMPTION 1.3. 2% has k < oo connected components with 2+ = [J*_, 2 and
each connected component Qj satisfies an interior ball condition.

Set M = {1,2,3,...,k}. Under assumption 1.3, for any solution u(z) of (1.1),
by Hopf’s lemma it is easy to see that solution w(z) is either positive in Q;r or
completely vanishes in .(Zi"“ for any ¢ € M. To organize the set of solutions of
(1.1),, according to the pattern of their supports we define the following classes of
solutions.

DEFINITION 1.4.

(i) For any non-empty I C M, denote by S - the class of solutions of (1.1), that
are positive in 2] = J,c; 2}

(ii) Nt denotes the set {u € Sy |u=0in 27 — Q2] }.

When v > 0 is small, we show in the following theorem that there exists a ‘small’
solution which is the minimal solution of (1.1), in St ,, but for large  there is no
solution at all.

THEOREM 1.5. For any non-empty I C M, there exists 0 < I't < oo such that
(i) Sry # @ when 0 <y < It and St~ = @ when v > I,
(i) Sr~ has a minimal element ug ., for all 0 <~y < I7,

(iil) [|usllzoe@ny — 0 as vy — 0.

Note that the existence of a solution in St - at the endpoint v = Iy is not trivial,
and it is the result of a priori estimates for the family of minimal solutions u; , as
v — I'[ . It is an ‘extremal solution’ of the family of minimal solutions, and similar
results in a bounded domain have been obtained [4]. In addition, Cabré [10] stud-
ied extremal solutions for certain autonomous equations in bounded domains and
showed that extremal solutions exist for stable solution families, even for nonlinear-
ities with super-linear growth, for which the usual Palais—Smale-type compactness
results fail. As in [1,4] we may view this existence theorem as a bifurcation result
in the parameter v. It is expected that the family of solutions will bifurcate from
the trivial solution at v = 0 and that the extremal value I'7 will be a sort of turning
point in a bifurcation curve. The difficulty with making this precise for (1.1), is
that the linearization is singular at u = 0, so standard continuation methods [13]
do not apply.

Assuming more on a(x), we also obtain an existence result for Ny  for small .
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DEFINITION 1.6. We say that a(x) is admissible if assumption 1.3 holds and
(i) £2°F also has exactly k connected components with 20 = |J¥_ 0+
(i) ;7 C 20" for i € M and dist(2)F, 2)7) > 0 for i # j.

THEOREM 1.7. If a(x) is admissible, there exists vo > 0 such that Ny, # @ for
0<v<-

Unlike the results in [2], the elements in Ny are not unique. In fact, there are at
least two elements in Ny, = Syr. To study multiplicity of solutions, we adopt a
variational framework for this problem. As mentioned in [1], variational analysis of
solutions in Ny, I # M, is difficult since these solutions have infinite-dimensional
negative spaces associated to them (see remark 4.3). Therefore, we will only consider
the solutions u € Sy, that is, u(z) > 0 in all of 7. For convenience we denote
by I' = Iy and U, the minimal solution in Sy, for 0 <~y < I

As the embedding H'(R"™) < LP*1(R™) is not compact, we always expect the
Palais—Smale condition to be an important issue in variational problems posed on
R™. To illustrate how compactness may break down for these specific problems
we return to example 1.2, for which the solution space itself is non-compact. The
strategy we use here to eliminate this loss of compactness is to consider a(z) with
radial symmetry, and to restrict our attention to the class of radial functions. A
forthcoming paper [3] will present some existence and multiplicity results in non-
radial settings. Therefore, we restrict the functional space to be radial and assume
a(x) = a(|z]). Consider the Banach space

H, = {v € D(R")

v is radial and / o7t dx < oo}

n

endowed with the norm

1/2 1/(g+1)
|v||H1—< / |Vv2dx) +( / |vq+1dx) .
q RTL Rn

Define the energy functional I, : H, — R associated with (1.1), as

1
p+1 /e

1
I,(v) = 1/ |vo|? de — —— a (v de —

v )P dg.
2 q +1 R” ( )

From [24] we see that I, is C' from H, to R. Since a(z) = a(|z|), the minimal
element U, in Sy~ is radial. Hence, we study the following minimization problem
in a convex constraint set:

inf{l,(v) [veY} and Y ={ve H,|0<v<Ur almost everywhere (a.e.)}.

As in lemma 4.1, the infimum is attained at some function in Y, say v, and
vy € Sy,y. We show in the following theorem that v, is actually a local minimizer
of I, in the H, topology.

THEOREM 1.8. If a(z) = a(|z|), for 0 < v < I', vy is a local minimizer for I, in
H,.; that is, there exists § > 0 such that

I,(vy) < Iy(v) for allv € H, with ||v—vy| g, <.
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Recall that Brezis and Nirenberg [9] first observed that minimization in the C''-
topology (for example, the sub- and super-solution construction above) yields min-
ima in the weaker H'-topology for a large class of subcritical elliptic variational
problems (see also [5] for remarks on supercritical problems).

Given that we have a local minimizer of I, for v € (0,I"), we expect a second
solution by using the celebrated mountain-pass theorem of Ambrosetti and Rabi-
nowitz [20].

THEOREM 1.9. If a(z) = a(|z]), for 0 < v < I, (1.1)y has at least two radially
symmetric solutions in Sy .

Denoting the mountain-pass solution by V., we could not rule out the possibility
that supp(vy) N supp(Vy — vy) = &, which means that V, and v, may coincide in
the region 7. The forthcoming paper [3] will present some results on this subject.
This paper is organized as follows. We prove theorem 1.1 and part of theorem 1.5 in
§2. The other part of theorem 1.5 and theorem 1.7 are proved in §§3 and 4. In §5
we prove theorem 1.8 and theorem 1.9. At the end of the paper we also discuss the
boundedness assumption that we made for a™(x) at co. We would like to mention
that there is a forthcoming paper [19] in which we deal with problem (1.1), in the
case when p = (n+2)/(n —2) and we show that there basically exist two solutions
both in radial and non-radial settings.

2. Compact support and minimal solution

In this section we first prove theorem 1.1. The method used here is derived from the
approach of Cortézar et al. [12] on the constant-coefficient equation —Au = u? —u?.
The regularity of solutions of (1.1) follows from standard bootstrap arguments
(see [23, appendix B]) and standard elliptic theory [16]. Let u(x) be a solution
of (1.1). For any ball B(x,1) C B(z,2), x € R", we have the following lemma.

LEMMA 2.1. There exists a continuous function h: RT U {0} — R with h(0) = 0
such that

ullzo (B(z,1)) < Kh(|ullm (B(a,2)))-
The function h depends on q, p and n and the constant K depends on q, p, n and
lay [l Loe (B(,2)) -

Proof. This is a simple application of lemma 2.1 of [12], and we should mention

that the assumption that limsup,_,o a™(z) < oo is very important for this. [

LEMMA 2.2. We have lim|| o u(x) = 0.

Proof. Since u € D(R™) for ¢ > 0, there exists R; > 0, which depends on &, such
that

lullp@n—B(0,r1)) + l[ull L2 ®n —B(0,R))) <€
Hence, for z € R™ — B(0, Ry + 3), we have B(z,1) C B(z,2) C R"™ — B(0,Ry).
From lemma 2.1 we obtain

lu(z)] < lJullpo (B,1)) < Kh(||lull g1 (B(2,2)))-
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Note that [|u|| g1 (B(z,2)) is controlled by ||ul[p1.2rn—B(0,r,)) and Hu||Lz*(Rn_B(O)R1)).
Since h(t) is continuous and h(0) = 0, this lemma is proved.

Now we give the proof of theorem 1.1.

Proof. Define two functions f(s), F'(s): RT — R as
1

1
s)=s" —¢cs? and F(s)= ——gPtl — c—— 4011
7s) (5) = g — ey

b

where ¢ = £ lim inf),| o @™ (). Let B > 0 be a constant such that BP~7 = cq/p.
It is easy to see that f(s) is strictly decreasing in the range [0, B]. Because of the
choice of ¢ and lim|,|_,o u(x) = 0, there exists R; > R such that

a (x)2c¢ and wu(zx)<B forall z € R" — B(0,Ry).

Let w(r) be the function defined implicitly by

B ds
L
/w(r) V—F(s) 2

Tt is easy to see that w(r) satisfies
w”(r) + f(w(r)) =0 in (0, A),

where A is given by

B
ds
V2A = / —_—
o V—F(s)
Moreover, w(r) is a decreasing function in r that satisfies
w(0) =B and w(A)=w'(4)=w"(A)=0.

Therefore, by defining w(r) = 0 for r € [A, 00), we obtain a non-increasing solution
of
w”(r) + f(w(r)) =0 in (0,00)

with w(0) = B and supp(w) = [0, A].
Finally, let V(z) = w(|xz| — R1). Then we have

AV —eVI+VP <0 inR" - B(0,Ry),
V=B ondR" - B(0,Ry)).

Note that, for u, we have

Au—a u?4+u? =0 inR" — B(0,Ry),
u<B ondR"— B(0,Ry)).
By subtracting them, we have

AV —u) 2 VP —cVi4a (z)u? —uP for z € (R" — B(0, Ry)).
Cram 2.3. V2u 20 forx € R" — B(0, Ry).
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Otherwise there exists g € R”—B(0, R;) such that u(xg) > V(xg), which implies
that V' — u attains a global minimal value at some point in R” — B(0, Ry). We may
assume that V — u achieves minimal value at xg. Then

0> —-A(V —u)(xg)

\

> VP(x) — Vi (xo) + a (zo)ul(zo) — uP(z0)

> VP(xg) — V(xo) + a™ (zo)ul(xo) — uP(x0) + cul(zo) — cul(xo)
Z (VP(x0) = V¥ (x0)) — (uP (o) — cu’(x0)) + (a~ (z0) — c)u(xo)
> 0.

This a contradiction. So V' > u > 0 for x € (R™ — B(0, Ry)), which implies that u
has compact support. O

Now we turn to the existence of a minimal element in Sy , if it is not empty. We
have the following theorem, which is the second part of theorem 1.5.

THEOREM 2.4. Under assumption 1.3 and I # @, if S;, # &, there exists a min-
imal element uy , in Sy .

The subscript - is not important for the remainder of this section and we therefore
drop it. Let S; and N; be the corresponding set of S; and N; for the following
equation:

—Av =a(z)v?, veDR"), v=0. (2.1)

Since lim inf|,| o a™ () > 0, from [2], all solutions of (2.1) have compact support,
the set Sy # @ and S; has a minimal element denoted by u uy. Moreover, Ny has a
unique element.

LEMMA 2.5. Under assumption 1.3, if St # &, then u > u; for any u € Sy.

Proof. Since S; # @, pick any u € S;. Then there exists J C M such that I C J
and u € N;. By the sub-supersolution method and the uniqueness in N; we have
u < u, where u is the unique element in Nj. Since I ¢ J, u € S;. Therefore,
uZ>u > ug. O

We also need existence and uniqueness results for the equation
—Av+a” (z)v? =a"(2)h? + AP in R" and v > 0 in R", (2.2)
where h(z) is non-negative, smooth and compactly supported in R™.
LEMMA 2.6. Equation (2.2) has a unique compactly supported solution.
Proof. For R > 0, let us consider the Dirichlet boundary-value problem
~Av+a (2)v? =at(z)h?+h? in B(O,R) and v=0ondB(0,R).

Since h is non-negative, 0 is a subsolution to this problem. We also find that

o= [ o W)+ 17)dy
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satisfies
—AT=a h?+h’ >a"h!+h° —a ¢ inR",

where @ is the fundamental solution of the Laplace equation, so v is a supersolu-
tion. By the sub-supersolution method [23] there exist a non-zero solution to this
Dirichlet boundary problem, v € H}(B(0, R)), and 0 < v < @. Since h and a~ are
Holder continuous, this solution v is classical. A simple comparison argument shows
that v is unique.

Next we show that when R is sufficiently large, v is compactly supported in
B(0, R). Indeed, since h is compactly supported, © — 0 uniformly as |z| — oo.
Hence, there exists Ry > 0 such that for R > Ry,

h(z) =0, a (z)2c and wv(z)<v<B forall x € B(0,R)— B(0,Ry),

where B and c are chosen as in the proof of theorem 1.1. Following the proof of
theorem 1.1, we construct a supersolution V' and make the comparison in B(0, R) —
B(0, R;) to show that V > v when R; is sufficiently large. Since V' is compactly
supported, v is also a solution of (2.2).

The uniqueness is also an easy consequence of comparison. Suppose that there
are two compactly supported smooth solutions vy and vy. They satisfy

~Avy +a vl =a"(2)h? +h? and — Avg+a v =a"(x)h? +hP in R".

Subtracting them, we have —A(v; — v2) + a™ (z)(v] — vd) = 0 in R". We now mul-
tiply both sides by (v; — vy) and integrate over R™. Since they are compactly
supported, we have

/ V(v —v2)?da —|—/ a” (v —vd)(v1 —ve)dz = 0.
So we must have v = vs. O

Now we start the monotone iteration process, using the minimal element in Si
as the starting point. Consider the following iteration problem:

—Aupyr +a ul =a"ul +u? in R, Upt1 = 0 in R™, (2.3)
where u; = u; is the minimal element in Sr.

LEMMA 2.7. Under assumption 1.8, u, is well defined and compactly supported.
Moreover, tun41 = Uy for all n.
Proof. From lemma 2.6, u,, is well defined and compactly supported. Now we want
to show that uws > ui. u; and usy satisfy the following equations:

—Aup +a uf =atu! and —Aus+a ud=atuf +u] inR"
By subtracting them, we obtain —A(u; — ug) + a™ (uf — ud) = —uf < 0inR". Mul-
tiplying both sides by (u; — u2)™ and integrating over R™, we obtain

/ |V (up — ug)t|? da —|—/ a” (uf —ud)(uy —uz)tdz <0,

which implies (u; — u2)™ = 0; that is, us > uy in R™. The proof is completed by
the standard induction process, which we omit. O
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LEMMA 2.8. Under assumption 1.3, if S; # @, then u, < u for any u € Sy.

Proof. Take any u € S;. From lemma 2.5, u > wu;. By the standard induction
process, which is very similar to the previous one, we complete the proof. O

Finally, we are ready to prove theorem 2.4.

Proof. Taking any u € S, the above lemmas show that w,, is increasing in n and
Up < u. Let up = limy, 00 U, then uy < u. We only need to prove that u; is a
solution of (1.1).

Indeed, u, is uniformly bounded above by u, which is compactly supported.
From equation (2.3), we obtain that [|un||c1.e®n) is uniformly bounded, so, by
the Arzela—Ascoli compactness theorem, u,, uniformly converges to u;. Moreover,
u, — uy weakly in D(R™). Now, taking any function ¢ € C§°(R™), multiplying
both sides of equation (2.3) by ¢ and integrating over R™, we have

a+u‘fl¢dx+/ ubpde.

n

VunHngdx—i—/ a_ufl+1¢dx:/
R™ n

R

Passing to the limit, we have

/ Vu;VquaH—/ a‘u?d)dx:/ a+u?¢>dx+/ uf¢d,

which implies that u; is a solution of equation (1.1) in the weak sense, by standard
bootstrap arguments [23] and elliptic theory [16], uy is a classical solution. O

We want to mention that if a(z) = a(]x|), the minimal element uy in Sy is radial.

3. Existence for S7 ., and Ny

In this section we first show the existence of (1.1), in S . The idea is very simple
and has already appeared in the proof of lemma 2.6. Namely, we find a global
supersolution for (1.1), in S7., which is positive in R™ and uniformly goes to
zero at infinity. It is obvious that this supersolution is also a supersolution of the
following Dirichlet boundary-value problem:

—Au = a,(z)u? +u” in B(0,R), u € Hy(B(0,R)), u >0, (3.1)

for any R > 0. For large R, we show that this boundary-value problem has a
compactly supported solution in B(0, R), which of course is a solution to (1.1), in
St

First, let us define, for non-empty I € M := {1,2,...,k} (recall that & denotes
the number of connected components of 21),

I't =sup{y > 0] S; # @ for (1.1),}.
LEMMA 3.1. Under assumption 1.3, Iy is finite.

Proof. Otherwise, for each Qj‘ , 1 € I, take a small ball B; such that B; CC Qj .
Let ¢; and \;, respectively, be the first positive eigenvalue and eigenfunction of the
following problem:

7A(pl = )\zgoz in Bz and Yi = 0 on 8B1
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Multiplying both sides of (1.1), with ¢; and integrating over B;, we obtain

—Au)p;dr = a~ulp; dor + uPp; dz
2 FUP 2
B; B; B;

z/ 'ya;rquoidx—i—/ uPp; dx.
; B

Bz i

But

0p; ou
Apiu — Aup; = — —;
[, e awsar= [ (G Fha)as

i

where n is the outer unit normal vector of dB;. Therefore, we have

)\i/ ugpidx:/ —Ap;udx

i B
> / —Aup; dx
B;

:/ ajquaidx+/ uPy; dz,
B; B;

i i

ie.
/ (Aiu — vafud — uP)p; dz > 0.
B

Let a = inf,ey,_, B, a(x), then a > 0. We obtain
/ Niuw —yau? —uP)p;de >0 foriel, v>0.
B;

By assumption, u is positive in 2] = Uier 2%, but
Ait —yat? — P = tq()\itl_q —vya—tP"1) <0 forallt>0
if 7 is sufficiently large, so this is a contradiction. We must have It < oo. O

Since I't < oo, we shall prove that I > 0. Recall that it is shown in [11] that
the non-negative smooth solutions of

Av +oFD/(=2) — o ip R?
with n > 3 are of the form
[n(n — 2)A%) =2/
(A2 + |z — 202)(n=2)/2°
where A > 0 and 2° € R"™. Note that

— 92)\2](n—2)/4 — 92)]|(n—2)/4
o)~ =¥ _ (=2
(A2 + |z — 20[2)(n—2)/2 \(n—2)/2

v(z) =

=cC
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Pick A > 0 so that ¢(\) = 1 and fix some z° € 27, with this special v denoted by
V. Let liminf|;| o @~ = as. Then we have the following lemma.

LEMMA 3.2. There exists v« > 0 so that
—AMV) 2 ay(2)(MV)T+ (MV)?P
is always true for v < v, and some M > 0.

Proof. Let a® = sup{a(z) | € R"} and BT be a ball including 27 with centre z°
such that

inf{a” (z) |z € R" — BT} > Ja.

This can be done because liminf|,| o @~ = @oo. Let K = inf{V(z) | x € BT}.
When the radius of the ball B tends to infinity, K goes to zero.
For some suitable positive constant M and small ~, to show

—AMV) = ay(x)(MV)T + (MV)P,
it is equivalent to show
My /(=2 > () (MV)? + (MV)? in BT,
MV D=2 > o () (MV)? + (MV)? in R" — BY.
First we study the part in R*® — BT, where we need to obtain
M-ay(t2)/(n=2)—q 5 ay + (MV)P7,
But in R" — B*, ay = —a~ < —1a. and V < 1, we have

2

Lo + MP™1 > ay + (MV)P7I.
Choose M such that 0 < M < (%aoo)l/(p_‘“. We obtain
My eFD/(n=D=a 5 0> Lg 4 MPTU > a, + (MV)PT? in R" — BT,
Therefore, for 0 < M < (3a.0)Y?~9, we have
My /(=2 5 g () (MV)? + (MV)? in R" — BY.
Next we study the part in BT, where we need to obtain
MV +D/(=2) 5 g () (MV)T + (MV)P.

In BT, we know

MY (+2)/(n=2)
ya® M7 + MP

MK ®+2)/(n=2)

P
2 ay(z)(MV)T + (MV)P.

Therefore, we only need to show

MK (®+2)/(n=2) > va® M7+ MP.
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Letting A = > K~ ("12)/(n=2) and B = K~ ("+2)/(n=2) e need to show that
MY™9 >~A+BMP™9 ie M'™9—BMP™7—~A>0.

We know that

Y e Ve

max{t! 1 — BtP~1 — yA} > 0 < (AP 1B 71 <
{ vA} (vA) =

)

and the maximal value is achieved at

ty = [&p—_qc)])] 1/(,,_1).

As mentioned at the beginning of the proof, a large radius of BT means small K.
In turn, B is large and tp is small. So we choose large BT such that

0<tp < (dax)/ P9,
Take ~, such that

p-1gl-q _ (p—1P 1 —-g)'
2(p — q)r—1

and choose M = tp. For this choice of M we have, for v < 7,

('7* A)

)

~AMV) > a (MV)? + (MV)? in R".
O

REMARK 3.3. Note that we can choose M somewhere between zero and tp depend-
ing on v so that, when v — 0, M also goes to zero.

The following theorem proves the first part of theorem 1.5 except for the existence
at FI.

THEOREM 3.4. Under assumption 1.8, we have 0 < I't < oo.

Proof. We only need to show that I’ > 0. Indeed, for any R > 0, from the previous
lemma, MV is a supersolution for the Dirichlet boundary-value problem (3.1),
which is

—Au = a,(z)u? +u? in B(0,R), u € H}(B(0,R)), u>0,

where v < 7,. Because of the sublinear term we can always find an arbitrarily
small subsolution supported in each of 2], i € I, (for details see [2,7]). By the
sub-supersolution method, this Dirichlet boundary-value problem has a solution
ur < MV. Since lim|,|_,oo MV = 0, we can adopt the same argument as that used
in the proof of lemma 2.6 to show that ug is compactly supported in B(0, R) for
large R. Therefore, for large R, ug is also a solution of (1.1), in S;, which means
that I'T > 0. O

Recall that the minimal element in Sy is denoted as uy . The following propo-
sition is also part of theorem 1.5.
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PROPOSITION 3.5. ur . is increasing in vy; that is

ULy SULy, for0<m <72 <IT.

Moreover, lim_,o+ |[ug 5| oo @n) = 0.

Proof. Tt is easy to see that us , acts naturally as a supersolution for (1.1),,. Noting
that us ,, has compact support, with proper small subsolution which is supported
at each 2; for i € I, (1.1),,, has a compactly supported solution u in St -, such that
u < Ug,4, by the sub-supersolution method. Since ur , is the minimal element in
St we have uy y, < ur ,. From remark 3.3 and the fact that ur  is the minimal
element in St ., we have lim.,_,o+ [[ur || fo®n) = 0. O

To this end, theorem 1.5 is proved except for the existence at the ‘end point’ I7.
Next we are going to prove theorem 1.7, which addresses the existence in Ny as
in [2] when a(z) is admissible.

Taking ¢ > 0, which is chosen later, let

s 1/(p—q)
F(S)Z/ (tp—ctq>dt and 0:( ¢ q) :
0 n+1 n+1p

Let e € (0,0], to be chosen later, and denote

5o L / o ds
V3 TG
We have the following lemma.
LEMMA 3.6. Letting B = {x € R™ | |z| < ¢}, the equation
—Av=v"—-cv?in B and v=eondB
has a unique classical solution @ such that @(0) =0 and 0 < @(z) < e in B.

Proof. The uniqueness result is a simple matter of comparison. We are going to
use the sub-supersolution method to show the existence. First we construct the
supersolution. Let w(r) be the function defined implicitly by

¢ ds
— =2
/wm Vv —F(s)

It is easy to see that w(r) satisfies
w”(r) + wP(r) — ——wi(r) =0 in (0,d),
n

where ¢ is given as above. w(r) is a decreasing function in r, w(0) = e and w"(§) =
w'(§) =w(d) =0.

Now let V(r) = w(é — r). Then V(0) = V/(0) = V"(0) =0, V() = e and V(r)
is increasing in [0, 0]. Moreover, V satisfies

V' (r) + VP(r) — n%lvqm =0 in (0,0).

https://doi.org/10.1017/50308210509001231 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210509001231

140 Q. Lu

Hence, for r < 6§, we have

c
n+1

Vi) = [ vieas= [[ L - v <

n+1

Va(r) — V”(r))r.

A simple calculation shows that

AV = V() + 2L

V'(r) < eVi(r) — VP(r).
Therefore, V satisfies
—AV 2 VP —cV?%in B(0,§) and V =eon 9B(0,9),

which implies that V is a supersolution. It is easy to see that 0 is a subsolution, so,
by the sub-supersolution method, we have a solution @ such that 0 < u <V e
and @(0) = V(0) = 0. O

We are now ready to give the proof of theorem 1.7.

Proof. By assumption, a(z) is admissible and dist(£29", Q;-”) > 0 for any ¢ # j.
Letting § = inf;; dist (29", Q?"’), we have § > 0.
Picking R large enough that 2°F cC B(0, R) and denoting

Ci = {z € B(0, R+ 36) | dist(z, 2)) < &4},

it is easy to see that C; N C;j = @ for any i # j. Let C' = |J;c,, Ci- We define
N = {z € B(0, R+ 20) | dist(z, 2°") > 15}.

For any x € N, W N C; = @ for any ¢ € M. Finally, letting

a= inf _ a (x),
z€B(0,R+38)—C

we have a > 0. For the constants ¢ and e used in lemma 3.6, let ¢ = a, then

( a q>1/(p—q)
o= - .
n+1p

o1

Let
1 /U ds

V2Jo /=F(s)
We make the following choice for e: if 6; > §/16, choose suitable e so that § = §/16,
and if 6; < /16, choose e to be o. The purpose of this choice is to make sure that
B(z,6) N C = @ for any & € N. Recall that ups -, is the minimal element in Sy .

Since lim, g+ [[uar || Lo rn) = 0, there exists v > 0 so that ||uns || L~ ®n) < e for
7 < Y-

Cram 3.7. If v < yo, upmH(x) =0 for any x € N.
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In fact, taking x € N, consider the following equation:
—Av(y) =vP(y) —a” (y)vi(y) in B(z,d) and v =wupy ondB(x,0). (3.2)

A simple comparison argument shows that this problem has a unique classical
solution v < e, so v = uys,,. But, from lemma 3.6, the unique solution % of the
problem

—Av(y) = vP(y) — cv?(y) in B(x,0) and v =e on dB(z,J)

is a supersolution for equation (3.2). Since 0 is a subsolution, by the sub-super-
solution method and uniqueness, we have 0 < ups, < @ in B(z, ). Since @ < e and
w(z) =0, upry =0 for z € N.

Since upz,4 is the minimal element in Sy, then ups , vanishes outside of B(0, R+
26). It is therefore easy to see that the support of u M,y consists of k disjoint compo-
nents, and its restriction to each component gives k compactly supported solutions
of (1.1),. By taking an appropriate union we can construct an element of Ny for
any choice of I C M. This concludes the proof of theorem 1.7. O

4. Existence for Sy at Iy

So far, we have established an interval of existence for (1.1),, v € (0,I7), in the class
S1~, where I C M indicates the components of 07 in which these solutions must
be positive. Now we assert that a solution of class S; , must exist at the endpoint
of the maximal interval of existence, v = I'y. This is the ‘extremal solution’ for this
family [10].

First we introduce the Banach space

1 n 1
Hq:{UED(]R )‘/n|v|q+ dx<oo}

endowed with the norm

1/2 1/(q+1)
oy = ([ 1woan) e ([ pirtas)
Rn n

Define the energy functional I,: H; — R associated with (1.1), as

IV(/U) = %/ |VU‘2d.’I} — q:{y»i]_ e a+(v+)q+1 dx
L a” (v da — L / (vH)PT dg.
q+ 1 R p+ 1 n

It is a standard fact that I, is a C'-functional on H; [24].

LEMMA 4.1. Suppose that u € Ny 5 for some ¥ > 0. Then Ny admits an element
Uy for every 0 < v < 4. Moreover, uy, < 4 and L,(uy) < 0.

Proof. For 0 < v < 4, @ is a supersolution for the equation (1.1), and 0 is a
subsolution. We consider the following minimization problem in a convex constraint
set:

inf{I,(v) |ve X} and X={veH,|0<v<uaec}
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Note that @ has compact support so, following [23], the infimum is achieved at
some u, € X and (¢, I’ (u,)) = 0 for all ¢ € C§°(R™), and by routine regularity
arguments, . is a solution to (1.1),. Since u, € X, it vanishes on the components
2% —U,e; 27 Tt remains to show that u, does not vanish in £2;" for each i € I.

CLAIM 4.2. u, does not vanish in .Q;' for each i € 1.

Indeed, suppose, for some i € I, that u, # 0 in Qj.ﬁThen the strong maximum
principle and Hopf’s lemma imply that u, = 0 over Qj' Choose a ball B CC QZ-"’
and ¢ with 0 < ¢ € C§°(B). Hence, for small positive ¢, (u, +t$) € X and

Iy (uy + t¢) = I (uy) + Iy (td) < Iy(uy),
since
L (t¢) — ltZ/ |V¢|2 dz — Ltq+1,y/ a+¢q+1 de — tpH/ ¢p+1 de <0
K 2 B g+1 B p+1 B
for sufficiently small ¢. This contradicts the fact that w. is the infimum of I, over

X. So we must have u, € Ny 5. Also, note that I,(t¢) < 0 for sufficiently small ¢,
and thus I, (uy) < 0. O

REMARK 4.3. Given the variational formulation of the problem as an infimum, it is
natural to ask whether the solutions obtained by lemma 4.1 are local minima of I,
in any sense. Note that this cannot be the case when I # M. Indeed, following the
arguments used in the last part of the proof, we can decrease the value of I, near
such a solution by small perturbations in each Qjﬂ where j ¢ I. So the existence
of a second solution in the classes Ny, remains an open question.

COROLLARY 4.4. For0 <~ < I, I,(ur,) <0, whereuy ~ is the minimum element
m SI»’Y‘

Proof. We apply lemma 4.1 with @ = us ., ¥ = and some J C M such that I C J
and uy, € Ny .. Hence, by lemma 4.1 we obtain a solution u, € Sy 4 such that

I,(uy) <0 and 0<uy <us,.
Since uy ~ is the minimal element in S;,, we must have u, = uy . O
In order to show the existence at I';, we need to show some estimates.
LEMMA 4.5 [[ury[lgz + [[urqllpoesgey is uniformly bounded.

Proof. We use the equation —Auy, = anyu?7 + u’;ﬁ. Multiplying both sides of this
equation by ur , and integrating over R™, we obtain

2 +1 — g+l +1
/Rn |Vur,|*de = W/Rn a"'u(}ﬁ dx — /n a”uf’ dr + /n uy’ dx. (4.1)

From the above corollary, we have I,(ur ) < 0; that is

1 2 1 — q+1
5/]Rn |Vur 5| dx—&-m @ ufl’ dz

v +,.q+1 1 p+1
< — atui de + —— ut - da. 4.2
q+ 1 R Ly p+ 1 R7 Loy ( )
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Putting (4.1) into (4.2), we obtain

1 1 1 1
—,,at1 p+1
<q+1_2>/na UI”Y dx+<2_p+]‘)/"UL’y &
1 1
(i) Lo

Since 1/(q¢+ 1) > 1 > 1/(p+ 1), from the above inequality we have

1 1 1 1
- PH qp <~ —— — = +ult de. 4.3
(2 p+1)/RnuM v 7(q+1 2)/na Uy OF (43)

Since a™ is compactly supported, we obtain

/ aﬂﬂ# dz < ||a+||Loo(Rn)/ u‘})‘:l dz

supp(a™t)

< C(a+)|‘a+||LW(R")”uI,7 ‘%til(]gn): (4.4)

where C'(a™) is some constant depending on a* and 27. Putting this back into
(4.3), we find that

1 1 +1 + 1 1 + +1
(5 51 )Tty < C@O (g = 5 It ol 5 e

Therefore, we have

|z prq < C(a+)7 L — 1 ||a+||Loo - 1 _ L !
s LP+1(]RTL) X q + 1 B ( ) 5 » + 1 ,

which implies that |[us || zp+1(rn) is uniformly bounded. Plugging this and (4.4) into
(4.2), we conclude that |[Vur | p2@n) and [Jur | Le+1@n) are uniformly bounded.
O

Now we are ready to complete the proof of theorem 1.5.
Proof. Picking an increasing sequence {~,} with limit I, from lemma 4.5,
”uI,'ynHH; + Hul,'yn”LPH(]R")
is uniformly bounded. Hence, there exists up, € Hy such that
Ug -, — upr, weakly in D(R™), LPT1(R™) and LT (R").

Moreover, ur,, — up, a.e. in R". From proposition 3.5 we know that uy ., is
increasing in n, so by the monotone convergence theorem

ur~, — up, strongly in LPT1(R™) and L¢H(R™). (4.5)

We know that ujp,, satisfies the equation —Auy,, =a,,uj_ +uj_ . So, taking
any ¢ € C§°(R™), multiplying both sides of the equation by ¢ and integrating over
R™, we obtain

_ q P
Vur,, Vodr = / Ay, Up o @+ / Uy, P
]Rn ]Rn RTI,
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By (4.5), passing to the limit on n, we have

VupIVgodx:/ ap,qulgo—l—/ ulp, p.

n R

Rn

Therefore, up, is a weak solution of (1.1),. By routine regularity arguments, ur,
is a classical solution. O

COROLLARY 4.6. ur, is the minimal element in St r,, i.e. ur, = ur,r,.

Proof. From above Sy r, is not empty. Picking any U € Sr,, we just need to apply
lemma 4.1 to equation (1.1), with @ = U, ¥ = I't and some J C M such that I C J
and U € Np,. We obtain a solution u, to (1.1), such that u, € S;, and we also
have U = u, > uy . Since hmvﬁff ury = ur,;, we have U > up,. O

For later, denote I'ys by I', denote uys, by U, and denote ups,r,, by Ur. We
conclude this section with a simple result.

COROLLARY 4.7. Assume that a(z) = a(|z|), then Uy(x) = Uy(|z|) for 0 <~y < T.

5. Second solution in Sps

In this section we are going to show the existence of a second solution in Sy~
for 0 < 4 < I'. The embedding H,(R") < LP*!(R") is not compact and the
compactly supported solution of —Av = v? —v? in R™ by Cortézar et al. [12] poses
a difficulty for proving the compactness of the Palais—Smale sequence. So we assume
a(x) = a(|z]) in this section and restrict the functional space to be radial. Consider
the Banach space

H, = {v € D(R™)

v is radial and o7t dx < oo}
R’!L

endowed with the same norm as in H;. It is obvious that I, is a C' functional
on H,.

Recall that U, represents the minimal element in Sy~ for 0 < v < I'. Consider
the following minimization problem in a convex constraint set:

inf{I,(v) [veY} and Y={veH, |0<v<Urael (5.1)

As in lemma 4.1, the infimum is attained at some radial function in Y, say v,. By
the principle of symmetric criticality, v, € Saz,y.

Now we are going to show that v, is actually a local minimizer of I, in H,. Pick
R > 0 so that supp(Ur) CC B(0, R) and 2°F cC B(0, R). Let H}(B(0, R)) be the
subspace of H!(B(0, R)), which contains radially symmetric functions.

LEMMA 5.1. For~ € (0,1), vy is a local minimizer for L, in H}(B(0, R)); that is,
there exists § > 0 such that

I,(vy) < I,(v) for allv € HY(B(0,R)) with ||v — vyl 1By < 6.
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Proof. We already know that
I,(vy) = inf{I,(v) |ve Y}
Since supp(Ur) CcC B(0, R), we find out that
I,(vy) = inf{I,(v) |v € H}(B(0,R)) and 0 < v < Ur}.

We follow the same proof as that used in proposition 5.2 of [1] to complete the
proof. It is worth pointing out that there is an extra assumption on £2°F in the
proof of proposition 5.2 of [1], which is the following,.

ASSUMPTION 5.2. 2°F has m < oo connected components with 20 = (JI*, 297,
and 20T N 0T £ @ for every i = 1,...,m.

We do not need this extra assumption because Ur is the minimal element in
Sar.r. Indeed, if there is one connected component of 2°F, say Q?Jr, such that
Q?* NN+ = @, we must have a(x) =0 in Q?Jr. Moreover, either Ur(z) =0 in QJO-JF
or one of the connected components of supp(Ur) includes _Q;H' and some connected
component of 2%, which means that any connected component of supp(Ur) has to
include one of the connected components of 21. This fact helps to lift the extra
assumption on 27 and completes the proof. O

LEMMA 5.3. Fory € (0,I"), vy is also a local minimizer for I, in H,.
Proof. From lemma 5.3 there exists § > 0 such that
I(vy) < Iy(v) for all v € H}(B) with ||v — vy z1(p) <.
There exists 4; > 0 such that
v — vyl <6 if [v—vy|lm, <d1.

Now, by density, taking any symmetric function v € C§°(R™)NH, with |[v—v,| &, <
81 and noting that 2°F cc B(0, R), we have

1 1

1
I(v) = 3 /Rn |Vo|? do — 71 e ay (v dr — P Rn(v+)p+1 dz
1 1
= 1/ Vo] dz — —— a (v de — —— v )P de
2 JB(o,R) q+1JBo,r) p+1JBo,Rr)
1
+ 1/ Vo2 da + —— a” (v dz
2 Jrn—B(0,R) q+1 Jrn_B(o,R)
1
_ - (v+)p+1 dz
P+ 1 Jrn_B0,R)
1 1
>I,(v )—I—f/ Vol?dz + —— a” (vh)tdz
T2 Jgn_poo,R) q+1 Jrn_B(o,R)

1

b (0P da.
p+1 Jrn_B(o,R)
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Denote inf,crn_p(o,r a~ by c. We obtain

L) > L)+ 5 Voltde + —— () do
R"—B(0,R) q+1Jrn_B(o,R)

1

- ()P da.
p+1 Jrn_Bo,R)

Let

Then V € H,.. So we have

Iw(v)fI,y(v,y)>l/ IVV[2dz + —S / (V*+)etl dg
2 Jrn ¢+ 1 Jrn_B(o,R)
1
- (V)P da.
P+ 1 Jrn_Bo,R)
CLAIM 5.4.
1 2 c +\q+1 1 +\p+1

E(V)== vVVIfde + —— VOrtde - —— VTPTide >0

( ) 2/n| ‘ . q+1 R"*B( ) v p—l—l ]R”*B( ) .

when 61 1s sufficiently small.
Indeed, by using Holder’s inequality and denoting

~n+2—p(n—2)
S n+2-gq(n-2)’

we have

1 d(q+1) 2*(1—d)
/R"B(O " VEPF dz < IVEIEE - po,rp IV L2 @ 508 (5.2)

Since d + (1 — d)n/(n — 2) > 1, there exist a > 1 and 8 > 1 such that
—+-==1, a=da(g+1)>qg+1 and [=p(1-d)2" > 2.
Hence, from (5.2) and Young’s inequality, we obtain

1 5 1 5
VEPH Az < — [V 2ot g =\ [ :
oo VP 2 < IV im0y + 51V W oy

From the above inequality and the Sobolev inequality, we find that

S E—— ¢ +|att
E(’U) 2 THV ||L2*(Rn) + m”v H%lﬁ’l(R”fB(O,R))

1 1

S———1 v | __ qvhB
2oV e -sony ~ 5571V

L2* (R"~B(0,R))
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Cn) 142 ¢ +jat+i
> THV ”L"’* (R"—B(0,R)) + q+ 1 ||V H%q-%—l(R"—B(O,R))

1 - 1 3
+ +118
- m”v | Za+1(Rn—B(0,R)) — m”v 122 (&n— B0, RY)"

Since & > ¢+ 1 and 3 > 2, for sufficiently small 6;, we obtain

C(n) a+1

2 ¢ +
E(v) > T”V HLZ*(R"—B(O,R)) + m”v ||Lq+1(]Rn—B(0,R))

: v

+a
- a(p+ 1) ”V HLq-%—l(R"—B(O,R)) - ﬁ(p—i— 1) ”V L2* (R"—B(0,R)) = 0.

Therefore, we have I (v) — I,(v,) > 0 for sufficiently small d;; that is, v, is a local
minimizer in H.,.. O

From lemma 5.3 we know that v, is a local minimizer for the energy functional

1 1
I’Y = %/Rn |VU|2 dx — qT CL—Y(’U+)q+1 dr —

+\p+1
v dz, wve H,.
1 R7 p+1 ]Rn( ) "

It is easy to see that I,(tp) — —oo as t — oo for some positive radially symmetric
¢ € C§°(R™). So we have a mountain-pass structure. We expect to find a second
solution in the form u = v, + v with v > 0. If u solves the problem (1.1)., then v
should solve

—Av = a,[(0, +0)" — 02] + (v, + ) — 2.

Set

B, 0) = as {0y + )T — 0] + (v + 0P — 02],
H(z,v) = /0” h(z,s)ds
— [l 4570 o)+ 5 o8]

— ﬁaw[(v7 + o)t — it —a vlot

1
+ pi—&— 1[(1}7 + v+)p+1 — v?frl] — U,’;v+.

For v € H,., define the functional
1

ﬁ(ﬁ)ﬁl — H(z,v)dx.

1 1
Jy(v) = 5/R |Vl dz + ﬁmqﬂ _

By some calculations, we reach

_ 1 _
Iy (v) = L (vy +0F) = L, (vs) + %va ||2L2(]R") + q_‘_ilHU ”‘E:l(ﬂgn)'

LEMMA 5.5. There exists 61 > 0 such that Jy(v) > J,(0) = 0 when ||v||g, < d1.
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Proof. From the above calculations, we have

— g+l
TllvIIz

JFY('U) = Ify(’l)»y + 'U+) - I’Y(U’Y) 5 ||V’U ||L2 (R™) + Lat1(Rn)"

The result follows from lemma 5.3. O

LEMMA 5.6. Fory > 0, there exists a radial function ¢ € C§°(R™) with ¢ 2 0 and
T > 0 such that Jy(Ty) < 0.

Proof. Taking a radial function ¢ € C§°(R™) with ¢ = 0 such that the support of
 is separated from the support of v.,, we have

1
J,(Te) = L(T Vol|? Tq+1/ 28, a1 TP“/— Pl <0
(1) = L(T) = 1* [ 4174l Ly 5l
for sufficiently large T', since ¢ < 1 < p. O
The next lemma shows that the Palais—Smale sequence is bounded.

LEMMA 5.7. Suppose that 0 < v < I', {v,} is a sequence in H, such that J(v,) —
¢y and J.(v,) = 0. Then {vy + v, } is uniformly bounded in H,.

Proof. First, noting that J! (v,)v, = —([|Vv, ||L2(Rn) + ||, H‘fgil R,,)), we have

1
IV 122y + llom i gy

|7 () 11V, 2@y + vy (Lo @)
|5 i) |1V 0 122y + [l 1553 ey + O(1))

o)1V 22y + 107 1552, o) + 0(L).

<
<
<

Hence, we derive that
(1= o)1V [[72m) + o [ 5ets ny) < 0(1),

which implies v,; — 0 in H.,.
Therefore, we may take u,, = v + v;}. Then we obtain

Ly(un) = Iy(vy) + ¢ and I’ (u,) — 0.
Since I, (vy) < 0, we have
1 2 1 g+l
|Vun\ de + — a”ultt da
2 qg+1

1
- % atult dr — ?/ ubttdr < e, (5.3)
) n p R~

We also have

I'/y(un)un :/ |Vun|2dx—|—/ afugfl diL’—’y/ a+u?1+1 dx—/ u£+1 da
R" N -

= o()l[un|m, -
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Pick 0 such that 2 < § < p+ 1. Then
1 1 1 1

— <] <]l o< —.
pr1°60°25 911
From the above, we obtain
1 2 1 — qg+1 Y +..9+1
7 |Vu,|® de + ] a ul™dr — = aTulT da
R’V'L R’V'L n

- = uffl dz = o(1)||un|| .. (5.4)
9 Rn

Subtracting (5.3) from (5.4), we obtain

(; - ;) (/ |V, |? dz + /n a”udtt dx) + <; - p41—1> /Rn ultt dx

1 1
< 7( B 9) / atuftt dz + ey + o(1)|unl s,

From Young’s inequality, we have

((p+1)/(a+1))"
atutt = (iaJr)(gugLH) < CE Ly /@y P4 (1a+)

)

p+1 p+1\e
where ((p+1)/(g +1))* is the dual of (p+1)/(¢+ 1) and ¢ is small enough that

r4t e (1 Ly 11 1y
p+1 g+1 6) " 2\0 p+1
Pick C > 0 such that
(p+1)/(g+1))"
ppoaf 11 / LT
p+1\g+1 6 n \ € =
Overall, we reach
1 1 2 —,,q+1
(2 9)</7L|Vun| dx—l—/"a ul™ dx

1/1 1
+3(5-51) [ wrtar < e 0k ol

. (5.5)

CLAIM 5.8. There exists small positive n < min{%aoo, %} and a constant C; > 0
such that

/ |Vun‘2dx+/ a”uft dz + Cr 2 (V| Fa @y + lun | ot )

Indeed, since liminf|; o 67 = aoo, there exists r; > 0 such that o™ (z) > %aoo

for x € R™ — B(0,71). Now we see that
(1= VunlZ2@ny > 3

> 100 funl 22 ooy
>3

C(n)|un ||i2* (B(0,r1))

https://doi.org/10.1017/50308210509001231 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210509001231

150 Q. Lu

and
1 — 1 1
77||““||th+1(]]§%) - /R' a ugl+l de < 77||un||%-«~z_+1(3(0,1)) < 770(7”1)”7‘71”%—;(B(O,Tl))a

where C'(n) is the best Sobolev constant and C(r1) is a constant depending on r;.
When 7 is small and C is large, we conclude that

(1= )V gy + Cr > SO0 a3 00 + Co
> %C(n)||un||th3(B(0,r1))

> 77C(7"1)||Un||qL§*1(B(0,n))

>m|un||‘gil(w)—/ autt .
RTL

From (5.5) and the above claim, enlarging the constant C, we obtain

1 1
<2 - 9>n<|wn||ia<m a2t )

< ey + C 4 o()([ Tt 2y + lml o1 ey
<ey +C0+ 0(1)(“vun”%2(R") + ||un||%—(~1_}»1(Rn))
<

Cy +C+ O(l)(HV’unH%g(Rn) + ||un||%—(~1_}»1(Rn))?

which implies that ||V, | 2@~y and ||ty || Le+1(gny are uniformly bound. Going back
to (5.5), we have |[uy|| p+1(rn) also uniformly bounded. O

The most important fact about the radial function in H, is the following lemma
due to Strauss [22] (see also [8]).

LEMMA 5.9 (Strauss [22]). H, compactly embeds in LPTL(R™) for 1 < p < 2* — 1.

We can now prove the compactness of the Palais—Smale sequence using this
lemma.

LEMMA 5.10. Suppose that0 < v < I', {v,} is a sequence in H, such that J(v,) —
c and J'(vn) — 0. Then {v,} contains a strongly convergent subsequence in H,.
Moreover, if v, = vo 2 0, then up = vy + vo is a solution to (1.1),.

Proof. In view of lemma 5.7, taking u,, = v;" 4+ v,, we have

Ly(un) = Iy(vy) + ¢ and I’ (u,) — 0.
Again from lemma 5.7, we have that ||Vu,||p2 + ||un||pe+r + ||un || pp+1 is uniformly
bounded. So, from lemma 5.9, restricting to a subsequence if necessary, there exists

ug € H, such that

Up — up weakly in H, and wu, — ug strongly in LPTH(R™).
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By the weak and strong convergences it is easy to see that wug is a solution to
equation (1.1),. Hence, ug has compact support and I’ (ug) = 0. Now we obtain

(8 un) = I3 w0) (1t = w0) = [V — )P+ [ o™ ) — o) d

n n

— 7/71 at(ul — uld)(u, — up) dz
— /n(uﬁ — uf)(un — up) da
— 0. (5.6)

Since u,, — ug strongly in LPT1(R"), we have

/ (ub — ub)(up — ug)dz — 0 and / at(ud —ud)(u, —ug)de — 0.

n

Therefore, (5.6) reduces to

/ |V (t,, — ug)|? dz + / a” (ud — ud)(up — up) dz — 0,
which implies that w, — ug in D(R™).
CrLAIM 5.11. u, — uqg strongly in LIT1(R™).

Indeed, we know that v is a solution to equation (1.1), and has compact support.
Hence, take a ball B centred at the origin such that 29+ cC B and supp(ug) CC B.

Since
/ a” (ul — ud)(un — up) dz — 0,
we have
/ Baf(ugl — ud)(uy, — up) dz — 0,
that is

/ a”ultt dz — 0.
"L7B

Noting that liminf|,|, a~ > 0, we obtain

uittdz — 0,
n_B

which implies
up — ug  strongly in LT (R™)

by the fact that u, — wug strongly in LPTY(R™). Therefore, u,, — ug strongly
in H,. O
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Now, for fixed -y, consider the following set:
S, ={0€C([0,1],H,) | 0(0) =0 and o(1) = T},

where ¢ from lemma 5.6. Let ¢, = infyeg, max,e(g1) Jy(0(s)). From lemma 5.5, we
see that J,(v) > 0 with ||v||g, < 61. Therefore, ¢, > 0.

THEOREM 5.12. Suppose that ¢, = 0 and that there exists 1, > 0 such that, for

any p € [0,1,], .
inf{J, (v) [ [[v]|a, = p} = 0.

Then, for each p € (0,1,), problem (1.1), has a solution with |ju — vy |, = p.

Proof. For any fixed p € (0,7,), the set F' = 0B(0, p) in H, satisfies the hypothesis
of theorem 1 of [15]. Theorem (1.bis) of [15] asserts the existence of a solution for
each p € (0,7,) with the compactness of the Palais-Smale sequence. O

Here is the proof for theorem 1.9.

Proof. If there exists some p < 01 such that inf{J,(v) | ||v||m, = p} > 0, we have
¢y > 0. By the mountain-pass theorem of Ambrosetti and Rabinowitz, there exists
a solution V,, of (1.1), with J, (V) > 0, i.e. I,(Vy) > I,(vy), which implies that V,
is different from v,,.
If this is not the case, but ¢, > 0, we still have the same result as above.
If not, and ¢, = 0, then, for all p € [0,d1), we have inf{J,(v) | |v||m, = p} =0,
then, from theorem 5.12, we see that there are infinitely many solutions of (1.1),.
O

To conclude, we will discuss the assumption

0 < liminfa™ () < limsupa™ (z) < 0o
that we made throughout this paper.

First, taking liminf|, . a™(z) > 0, from the proof of theorem 1.1 we can
see that this ensures that the solution u of (1.1), with lim ;| u(z) = 0 has
compact support. Now we give an example, in which lim;_, u(z) = 0 and
lim|;| o0 @™ (z) = 0 but one solution does not have compact support, so we know
that the compactness of the support of a™ is not enough to guarantee the compact-
ness of the support of solutions of (1.1),.

Let us pick a locally Holder-continuous and sign-changing function c(x) and
assume that supp(c™(z)) cC B(0,1) and 1 < ¢ (z) < 2 for |z| > 2. We make
|¢™ || Lo (B(0,1)) SO small that the first eigenvalue of the operator —Av — ¢(x)v in
HY(R™) is positive, i.e. there exists a positive constant pu > 0 such that, for any
v e HYR™),

/ Vo2 — ¢(x)v? dz > u/ v? du.
]Rn n

This is always possible because |[Vv|[z2mny = Cilv]12- ® > Collvllz2(5(0.2))-
where C; and Cs are two positive constants depending on n. Therefore, if we choose
el oo (B(0,1)) < %022, then we have, for any v € H*(R"™),

/ |Vo|? — ¢(2)v? dz > min (1, %C’%)/ v da.

n
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Furthermore, assuming that c(x) is radial, i.e. ¢(z) = ¢(|z|), consider the energy

functional
E(v) = l/ |Vo|? — ¢(2)v? du,
2 Jgn

/ loPT da = 1},

where H, = {v € H'(R")|v(x) = v(|z|)}. Since the operator —Av—c(z)v in H(R")
has a positive first eigenvalue, we let 0 < & < 1u be such that (1 —e)u—ec(z) > Fu.
Then

which acts upon

Y—{UGHT

/ |Vo|? — e(x)v? do > E/ Vo2 — e(x)v? dz + (1 — s)u/ v? dx
R"n, RTL

25/ |Vv|2dx+%u/ v? dx
n R’Vl
> 5/ |Vol? + v? da.

]R'n.

Therefore, —Av—c(z)v is coercive on H,.. By lemma 5.9 and standard minimization
arguments [23], we obtain a positive radial solution v to the equation —Av—c(z)v =
vP, and it is well known that v(r) tends to zero at infinity very fast, like exponential
decay. Simply letting a(z) = c¢(x)v! 79, we are back to the form of (1.1), and v is a
positive solution, which is what we are trying to find. It should be mentioned that we
can still obtain solutions with compact support even though lim|,| o a™ (z) = 0 if
the speed of a™ going to zero at infinity is slow compared with the speed of solution
u going to zero at infinity. We will address this problem in a forthcoming paper.

Secondly, lim sup ;| a~ (z) < co. As mentioned earlier, this assumption is very
important for lemma 2.1 to hold, although we have found that theorem 1.9 continues
to hold even without this assumption. By allowing limsup,,|_,., a™ () = oo we can
still find two solutions of (1.1), with radial symmetry. We will present this result
in a forthcoming paper.
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