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For a sign-changing function a(x) we consider the solutions of the following
semilinear elliptic problem in R

n with n � 3:

−∆u = (γa+ − a−)uq + up, u � 0 and u ∈ D(Rn),

where γ > 0 and 0 < q < 1 < p < (n + 2)/(n − 2). Under an appropriate growth
assumption on a− at infinity, we show that all solutions are compactly supported.
When Ω+ = {x ∈ R

n | a(x) > 0} has several connected components, we prove that
there exists an interval on γ in which the solutions exist. In particular, if
a(x) = a(|x|), by applying the mountain-pass theorem there are at least two solutions
with radial symmetry that are positive in Ω+.

1. Introduction

For a locally Hölder-continuous and sign-changing function a(x) in Rn, we study
the following elliptic problem in Rn with n � 3:

−∆u = aγ(x)uq + up in Rn, 0 < q < 1 < p <
n + 2
n − 2

,

u � 0 in Rn, u ∈ D(Rn),

⎫⎬
⎭ (1.1)

where

aγ(x) = γa+(x) − a−(x), γ > 0,

a+(x) = max(0, a(x)),

a−(x) = max(0,−a(x)).

The following assumption is also made on a−(x) throughout this paper:

0 < lim inf
|x|→∞

a−(x) � lim sup
|x|→∞

a−(x) < ∞.

We will discuss this assumption at the end of the paper.
By D(Rn) we mean the completion of C∞

0 (Rn) under the Dirichlet semi-norm,( ∫
Rn

|∇u|2 dx

)1/2

.
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Equations of this type (1.1) arise as stationary solutions to the degenerate reaction–
diffusion equations introduced by Gurtin and MacCamy [17, 18] to model the evo-
lution of a biological population (see also [2]). Throughout the paper, to emphasize
the dependence on λ, equation (1.1) is often referred to as (1.1)γ (the subscript γ
is omitted if no confusion arises).

Let

Ω+ = {x ∈ Rn | a(x) > 0},

Ω0+ = {x ∈ Rn | a(x) � 0},

Ω− = {x ∈ Rn | a(x) < 0}.

Since a(x) is sign-changing and lim inf |x|→∞ a−(x) > 0, Ω+ and Ω0+ are not empty
and bounded. The important feature of this equation is that it not only combines a
non-Lipschitz nonlinearity uq with a sign-changing coefficient a(x) but also exhibits
a combination of concave and convex nonlinearities in Ω+. Such ‘concave plus
convex’ nonlinearities in a bounded domain have been studied by Ambrosetti et
al . [6] (see also [1,14]), so we expect some similar results. In particular, we hope to
prove the multiplicity of solutions by using variational methods.

It was originally observed by Schatzman [21] that solutions could vanish on large
sets and in fact that, under appropriate hypotheses on a(x), there exist solutions
with compact support. We show more solutions as follows.

Theorem 1.1. Every weak solution of (1.1) is a compactly supported classical solu-
tion.

The sublinear term uq, 0 < q < 1, is essential for this phenomenon to occur. If,
instead, we consider the same equation (1.1) with q � 1, then a simple application
of the classical strong maximum principle shows that a non-negative solution must
be strictly positive in Rn, so the existence of compactly supported solutions would
be impossible.

In [2] a similar equation −∆u = a(x)uq + b(x)up with b(x) � 0 was studied, and
it was shown that all of the non-negative solutions in D(Rn) have compact support.
Moreover, the size of the support of these solutions is controlled by a(x) and does
not depend on any particular solution. In contrast with [2], the size of the support of
solutions to (1.1) cannot be controlled. In order to understand why the solutions for
the case b(x) ≡ 1 are different from those in the case b(x) � 0, we begin by recalling
an important result of [12]. In [12] it was proved that the equation −∆v = vp − vq

in Rn has a unique compactly supported radial solution. This suggests that (1.1)
could have a solution whose support lies completely in Ω−. Indeed, consider the
following special example.

Example 1.2. Let Ω+ ⊂⊂ B(0, r) and a(x) ≡ −1 in Rn − B(0, r) for some r > 0.
Again, from [12], we may construct arbitrarily many solutions of (1.1) by gluing
together the compactly supported solutions of −∆v = vp − vq in disjoint balls in
Rn − B(0, r) (see figure 1).

We also study the structure of the solution set of (1.1) in case the favourable
domain Ω+ has several components. We make the following assumption on Ω+.
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−∆u = up − uq

−∆u = a(x)uq + up

−∆u = up − uq

−∆u = up − uq

−∆u = up − uq
a(x) = −1
outside

Figure 1. a(x) as in example 1.2.

Assumption 1.3. Ω+ has k < ∞ connected components with Ω+ =
⋃k

i=1 Ω+
i and

each connected component Ω+
i satisfies an interior ball condition.

Set M = {1, 2, 3, . . . , k}. Under assumption 1.3, for any solution u(x) of (1.1),
by Hopf’s lemma it is easy to see that solution u(x) is either positive in Ω+

i or
completely vanishes in Ω+

i for any i ∈ M . To organize the set of solutions of
(1.1)γ according to the pattern of their supports we define the following classes of
solutions.

Definition 1.4.

(i) For any non-empty I ⊂ M , denote by SI,γ the class of solutions of (1.1)γ that
are positive in Ω+

I =
⋃

i∈I Ω+
i .

(ii) NI,γ denotes the set {u ∈ SI,γ | u ≡ 0 in Ω+ − Ω+
I }.

When γ > 0 is small, we show in the following theorem that there exists a ‘small’
solution which is the minimal solution of (1.1)γ in SI,γ , but for large γ there is no
solution at all.

Theorem 1.5. For any non-empty I ⊂ M , there exists 0 < ΓI < ∞ such that

(i) SI,γ �= ∅ when 0 < γ � ΓI and SI,γ = ∅ when γ > ΓI ,

(ii) SI,γ has a minimal element uI,γ for all 0 < γ � ΓI ,

(iii) ‖uI,γ‖L∞(Rn) → 0 as γ → 0+.

Note that the existence of a solution in SI,γ at the endpoint γ = ΓI is not trivial,
and it is the result of a priori estimates for the family of minimal solutions uI,γ as
γ → Γ−

I . It is an ‘extremal solution’ of the family of minimal solutions, and similar
results in a bounded domain have been obtained [4]. In addition, Cabré [10] stud-
ied extremal solutions for certain autonomous equations in bounded domains and
showed that extremal solutions exist for stable solution families, even for nonlinear-
ities with super-linear growth, for which the usual Palais–Smale-type compactness
results fail. As in [1, 4] we may view this existence theorem as a bifurcation result
in the parameter γ. It is expected that the family of solutions will bifurcate from
the trivial solution at γ = 0 and that the extremal value ΓI will be a sort of turning
point in a bifurcation curve. The difficulty with making this precise for (1.1)γ is
that the linearization is singular at u = 0, so standard continuation methods [13]
do not apply.

Assuming more on a(x), we also obtain an existence result for NI,γ for small γ.

https://doi.org/10.1017/S0308210509001231 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509001231


130 Q. Lu

Definition 1.6. We say that a(x) is admissible if assumption 1.3 holds and

(i) Ω0+ also has exactly k connected components with Ω0+ =
⋃k

i=1 Ω0+
i ,

(ii) Ω+
i ⊂ Ω0+

i for i ∈ M and dist(Ω0+
i , Ω0+

j ) > 0 for i �= j.

Theorem 1.7. If a(x) is admissible, there exists γ0 > 0 such that NI,γ �= ∅ for
0 < γ � γ0.

Unlike the results in [2], the elements in NI,γ are not unique. In fact, there are at
least two elements in NM,γ = SM,γ . To study multiplicity of solutions, we adopt a
variational framework for this problem. As mentioned in [1], variational analysis of
solutions in NI,γ , I �= M , is difficult since these solutions have infinite-dimensional
negative spaces associated to them (see remark 4.3). Therefore, we will only consider
the solutions u ∈ SM,γ , that is, u(x) > 0 in all of Ω+. For convenience we denote
by Γ = ΓM and Uγ the minimal solution in SM,γ for 0 < γ � Γ .

As the embedding H1(Rn) ↪→ Lp+1(Rn) is not compact, we always expect the
Palais–Smale condition to be an important issue in variational problems posed on
Rn. To illustrate how compactness may break down for these specific problems
we return to example 1.2, for which the solution space itself is non-compact. The
strategy we use here to eliminate this loss of compactness is to consider a(x) with
radial symmetry, and to restrict our attention to the class of radial functions. A
forthcoming paper [3] will present some existence and multiplicity results in non-
radial settings. Therefore, we restrict the functional space to be radial and assume
a(x) = a(|x|). Consider the Banach space

Hr =
{

v ∈ D(Rn)
∣∣∣∣ v is radial and

∫
Rn

|v|q+1 dx < ∞
}

endowed with the norm

‖v‖H1
q

=
( ∫

Rn

|∇v|2 dx

)1/2

+
( ∫

Rn

|v|q+1 dx

)1/(q+1)

.

Define the energy functional Iγ : Hr → R associated with (1.1)γ as

Iγ(v) = 1
2

∫
Rn

|�v|2 dx − 1
q + 1

∫
Rn

aγ(v+)q+1 dx − 1
p + 1

∫
Rn

(v+)p+1 dx.

From [24] we see that Iγ is C1 from Hr to R. Since a(x) = a(|x|), the minimal
element Uγ in SM,γ is radial. Hence, we study the following minimization problem
in a convex constraint set:

inf{Iγ(v) | v ∈ Y } and Y = {v ∈ Hr | 0 � v � UΓ almost everywhere (a.e.)}.

As in lemma 4.1, the infimum is attained at some function in Y , say vγ , and
vγ ∈ SM,γ . We show in the following theorem that vγ is actually a local minimizer
of Iγ in the Hr topology.

Theorem 1.8. If a(x) = a(|x|), for 0 < γ < Γ , vγ is a local minimizer for Iγ in
Hr; that is, there exists δ > 0 such that

Iγ(vγ) � Iγ(v) for all v ∈ Hr with ‖v − vγ‖Hr < δ.
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Recall that Brezis and Nirenberg [9] first observed that minimization in the C1-
topology (for example, the sub- and super-solution construction above) yields min-
ima in the weaker H1-topology for a large class of subcritical elliptic variational
problems (see also [5] for remarks on supercritical problems).

Given that we have a local minimizer of Iγ for γ ∈ (0, Γ ), we expect a second
solution by using the celebrated mountain-pass theorem of Ambrosetti and Rabi-
nowitz [20].

Theorem 1.9. If a(x) = a(|x|), for 0 < γ < Γ , (1.1)γ has at least two radially
symmetric solutions in SM,γ .

Denoting the mountain-pass solution by Vγ , we could not rule out the possibility
that supp(vγ) ∩ supp(Vγ − vγ) = ∅, which means that Vγ and vγ may coincide in
the region Ω+. The forthcoming paper [3] will present some results on this subject.
This paper is organized as follows. We prove theorem 1.1 and part of theorem 1.5 in
§ 2. The other part of theorem 1.5 and theorem 1.7 are proved in §§ 3 and 4. In § 5
we prove theorem 1.8 and theorem 1.9. At the end of the paper we also discuss the
boundedness assumption that we made for a−(x) at ∞. We would like to mention
that there is a forthcoming paper [19] in which we deal with problem (1.1)γ in the
case when p = (n + 2)/(n − 2) and we show that there basically exist two solutions
both in radial and non-radial settings.

2. Compact support and minimal solution

In this section we first prove theorem 1.1. The method used here is derived from the
approach of Cortázar et al . [12] on the constant-coefficient equation −∆u = up−uq.
The regularity of solutions of (1.1) follows from standard bootstrap arguments
(see [23, appendix B]) and standard elliptic theory [16]. Let u(x) be a solution
of (1.1). For any ball B(x, 1) ⊂ B(x, 2), x ∈ Rn, we have the following lemma.

Lemma 2.1. There exists a continuous function h : R+ ∪ {0} → R with h(0) = 0
such that

‖u‖L∞(B(x,1)) � Kh(‖u‖H1(B(x,2))).

The function h depends on q, p and n and the constant K depends on q, p, n and
‖aγ‖L∞(B(x,2)).

Proof. This is a simple application of lemma 2.1 of [12], and we should mention
that the assumption that lim sup|x|→∞ a−(x) < ∞ is very important for this.

Lemma 2.2. We have lim|x|→∞ u(x) = 0.

Proof. Since u ∈ D(Rn) for ε > 0, there exists R1 > 0, which depends on ε, such
that

‖u‖D(Rn−B(0,R1)) + ‖u‖L2∗ (Rn−B(0,R1)) < ε.

Hence, for x ∈ Rn − B(0, R1 + 3), we have B(x, 1) ⊂ B(x, 2) ⊂ Rn − B(0, R1).
From lemma 2.1 we obtain

|u(x)| � ‖u‖L∞(B(x,1)) � Kh(‖u‖H1(B(x,2))).
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Note that ‖u‖H1(B(x,2)) is controlled by ‖u‖D1,2(Rn−B(0,R1)) and ‖u‖L2∗ (Rn−B(0,R1)).
Since h(t) is continuous and h(0) = 0, this lemma is proved.

Now we give the proof of theorem 1.1.

Proof. Define two functions f(s), F (s) : R+ → R as

f(s) = sp − csq and F (s) =
1

p + 1
sp+1 − c

1
q + 1

sq+1,

where c = 1
2 lim inf |x|→∞ a−(x). Let B > 0 be a constant such that Bp−q = cq/p.

It is easy to see that f(s) is strictly decreasing in the range [0, B]. Because of the
choice of c and lim|x|→∞ u(x) = 0, there exists R1 > R such that

a−(x) � c and u(x) < B for all x ∈ Rn − B(0, R1).

Let w(r) be the function defined implicitly by∫ B

w(r)

ds√
−F (s)

=
√

2r.

It is easy to see that w(r) satisfies

w′′(r) + f(w(r)) = 0 in (0, A),

where A is given by
√

2A =
∫ B

0

ds√
−F (s)

.

Moreover, w(r) is a decreasing function in r that satisfies

w(0) = B and w(A) = w′(A) = w′′(A) = 0.

Therefore, by defining w(r) ≡ 0 for r ∈ [A,∞), we obtain a non-increasing solution
of

w′′(r) + f(w(r)) = 0 in (0,∞)

with w(0) = B and supp(w) = [0, A].
Finally, let V (x) = w(|x| − R1). Then we have

∆V − cV q + V p � 0 in Rn − B(0, R1),
V = B on ∂(Rn − B(0, R1)).

Note that, for u, we have

∆u − a−uq + up = 0 in Rn − B(0, R1),
u < B on ∂(Rn − B(0, R1)).

By subtracting them, we have

−∆(V − u) � V p − cV q + a−(x)uq − up for x ∈ (Rn − B(0, R1)).

Claim 2.3. V � u � 0 for x ∈ Rn − B(0, R1).
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Otherwise there exists x0 ∈ Rn−B(0, R1) such that u(x0) > V (x0), which implies
that V −u attains a global minimal value at some point in Rn −B(0, R1). We may
assume that V − u achieves minimal value at x0. Then

0 � −∆(V − u)(x0)

� V p(x0) − cV q(x0) + a−(x0)uq(x0) − up(x0)

� V p(x0) − cV q(x0) + a−(x0)uq(x0) − up(x0) + cuq(x0) − cuq(x0)

� (V p(x0) − cV q(x0)) − (up(x0) − cuq(x0)) + (a−(x0) − c)uq(x0)
> 0.

This a contradiction. So V � u � 0 for x ∈ (Rn − B(0, R1)), which implies that u
has compact support.

Now we turn to the existence of a minimal element in SI,γ if it is not empty. We
have the following theorem, which is the second part of theorem 1.5.

Theorem 2.4. Under assumption 1.3 and I �= ∅, if SI,γ �= ∅, there exists a min-
imal element uI,γ in SI,γ .

The subscript γ is not important for the remainder of this section and we therefore
drop it. Let S̄I and N̄I be the corresponding set of SI and NI for the following
equation:

−∆v = a(x)vq, v ∈ D(Rn), v � 0. (2.1)

Since lim inf |x|→∞ a−(x) > 0, from [2], all solutions of (2.1) have compact support,
the set S̄I �= ∅ and S̄I has a minimal element denoted by uI . Moreover, N̄I has a
unique element.

Lemma 2.5. Under assumption 1.3, if SI �= ∅, then u � uI for any u ∈ SI .

Proof. Since SI �= ∅, pick any u ∈ SI . Then there exists J ⊂ M such that I ⊂ J
and u ∈ NJ . By the sub-supersolution method and the uniqueness in N̄J we have
u � u, where u is the unique element in N̄J . Since I ⊂ J , u ∈ S̄I . Therefore,
u � u � uI .

We also need existence and uniqueness results for the equation

−∆v + a−(x)vq = a+(x)hq + hp in Rn and v � 0 in Rn, (2.2)

where h(x) is non-negative, smooth and compactly supported in Rn.

Lemma 2.6. Equation (2.2) has a unique compactly supported solution.

Proof. For R > 0, let us consider the Dirichlet boundary-value problem

−∆v + a−(x)vq = a+(x)hq + hp in B(0, R) and v = 0 on ∂B(0, R).

Since h is non-negative, 0 is a subsolution to this problem. We also find that

v̄ =
∫

Rn

Φ(x − y)(a+(y)hq(y) + hp) dy
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satisfies
−∆v̄ = a+hq + hp � a+hq + hp − a−v̄q in Rn,

where Φ is the fundamental solution of the Laplace equation, so v̄ is a supersolu-
tion. By the sub-supersolution method [23] there exist a non-zero solution to this
Dirichlet boundary problem, v ∈ H1

0 (B(0, R)), and 0 � v � v̄. Since h and a− are
Hölder continuous, this solution v is classical. A simple comparison argument shows
that v is unique.

Next we show that when R is sufficiently large, v is compactly supported in
B(0, R). Indeed, since h is compactly supported, v̄ → 0 uniformly as |x| → ∞.
Hence, there exists R1 > 0 such that for R > R1,

h(x) = 0, a−(x) � c and v(x) � v̄ < B for all x ∈ B(0, R) − B(0, R1),

where B and c are chosen as in the proof of theorem 1.1. Following the proof of
theorem 1.1, we construct a supersolution V and make the comparison in B(0, R)−
B(0, R1) to show that V � v when R1 is sufficiently large. Since V is compactly
supported, v is also a solution of (2.2).

The uniqueness is also an easy consequence of comparison. Suppose that there
are two compactly supported smooth solutions v1 and v2. They satisfy

−∆v1 + a−vq
1 = a+(x)hq + hp and − ∆v2 + a−vq

2 = a+(x)hq + hp in Rn.

Subtracting them, we have −∆(v1 − v2) + a−(x)(vq
1 − vq

2) = 0 in Rn. We now mul-
tiply both sides by (v1 − v2) and integrate over Rn. Since they are compactly
supported, we have∫

Rn

|∇(v1 − v2)|2 dx +
∫

Rn

a−(vq
1 − vq

2)(v1 − v2) dx = 0.

So we must have v1 = v2.

Now we start the monotone iteration process, using the minimal element in S̄I

as the starting point. Consider the following iteration problem:

−∆un+1 + a−uq
n+1 = a+uq

n + up
n in Rn, un+1 � 0 in Rn, (2.3)

where u1 = uI is the minimal element in S̄I .

Lemma 2.7. Under assumption 1.3, un is well defined and compactly supported.
Moreover, un+1 � un for all n.

Proof. From lemma 2.6, un is well defined and compactly supported. Now we want
to show that u2 � u1. u1 and u2 satisfy the following equations:

−∆u1 + a−uq
1 = a+uq

1 and − ∆u2 + a−uq
2 = a+uq

1 + up
1 in Rn.

By subtracting them, we obtain −∆(u1 − u2) + a−(uq
1 − uq

2) = −up
1 � 0 in Rn. Mul-

tiplying both sides by (u1 − u2)+ and integrating over Rn, we obtain∫
Rn

|∇(u1 − u2)+|2 dx +
∫

Rn

a−(uq
1 − uq

2)(u1 − u2)+ dx � 0,

which implies (u1 − u2)+ = 0; that is, u2 � u1 in Rn. The proof is completed by
the standard induction process, which we omit.
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Lemma 2.8. Under assumption 1.3, if SI �= ∅, then un � u for any u ∈ SI .

Proof. Take any u ∈ SI . From lemma 2.5, u � u1. By the standard induction
process, which is very similar to the previous one, we complete the proof.

Finally, we are ready to prove theorem 2.4.

Proof. Taking any u ∈ SI , the above lemmas show that un is increasing in n and
un � u. Let uI = limn→∞ un, then uI � u. We only need to prove that uI is a
solution of (1.1).

Indeed, un is uniformly bounded above by u, which is compactly supported.
From equation (2.3), we obtain that ‖un‖C1,α(Rn) is uniformly bounded, so, by
the Arzela–Ascoli compactness theorem, un uniformly converges to uI . Moreover,
un ⇀ uI weakly in D(Rn). Now, taking any function φ ∈ C∞

0 (Rn), multiplying
both sides of equation (2.3) by φ and integrating over Rn, we have∫

Rn

∇un+1∇φ dx +
∫

Rn

a−uq
n+1φ dx =

∫
Rn

a+uq
nφ dx +

∫
Rn

up
nφ dx.

Passing to the limit, we have∫
Rn

∇uI∇φ dx +
∫

Rn

a−uq
Iφ dx =

∫
Rn

a+uq
Iφ dx +

∫
Rn

up
Iφ dx,

which implies that uI is a solution of equation (1.1) in the weak sense, by standard
bootstrap arguments [23] and elliptic theory [16], uI is a classical solution.

We want to mention that if a(x) = a(|x|), the minimal element uI in SI is radial.

3. Existence for SI,γ and NI,γ

In this section we first show the existence of (1.1)γ in SI,γ . The idea is very simple
and has already appeared in the proof of lemma 2.6. Namely, we find a global
supersolution for (1.1)γ in SI,γ , which is positive in Rn and uniformly goes to
zero at infinity. It is obvious that this supersolution is also a supersolution of the
following Dirichlet boundary-value problem:

−∆u = aγ(x)uq + up in B(0, R), u ∈ H1
0 (B(0, R)), u � 0, (3.1)

for any R > 0. For large R, we show that this boundary-value problem has a
compactly supported solution in B(0, R), which of course is a solution to (1.1)γ in
SI,γ .

First, let us define, for non-empty I ∈ M := {1, 2, . . . , k} (recall that k denotes
the number of connected components of Ω+),

ΓI ≡ sup{γ > 0 | SI,γ �= ∅ for (1.1)γ}.

Lemma 3.1. Under assumption 1.3, ΓI is finite.

Proof. Otherwise, for each Ω+
i , i ∈ I, take a small ball Bi such that Bi ⊂⊂ Ω+

i .
Let ϕi and λi, respectively, be the first positive eigenvalue and eigenfunction of the
following problem:

−∆ϕi = λiϕi in Bi and ϕi = 0 on ∂Bi.
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Multiplying both sides of (1.1)γ with ϕi and integrating over Bi, we obtain∫
Bi

(−∆u)ϕi dx =
∫

Bi

aγuqϕi dx +
∫

Bi

upϕi dx

=
∫

Bi

γa+
i uqϕi dx +

∫
Bi

upϕi dx.

But ∫
Bi

(∆ϕiu − ∆uϕi) dx =
∫

∂Bi

(
∂ϕi

∂n
u − ∂u

∂n
ϕi

)
dS

=
∫

∂Bi

∂ϕi

∂n
u dS

� 0,

where n is the outer unit normal vector of ∂Bi. Therefore, we have

λi

∫
Bi

uϕi dx =
∫

Bi

−∆ϕiu dx

�
∫

Bi

−∆uϕi dx

=
∫

Bi

a+
i uqϕi dx +

∫
Bi

upϕi dx,

i.e. ∫
Bi

(λiu − γa+
i uq − up)ϕi dx � 0.

Let a = infx∈
⋃

i∈I Bi
a(x), then a > 0. We obtain∫

Bi

(λiu − γauq − up)ϕi dx � 0 for i ∈ I, γ > 0.

By assumption, u is positive in Ω+
I =

⋃
i∈I Ω+

i , but

λit − γatq − tp = tq(λit
1−q − γa − tp−q) < 0 for all t > 0

if γ is sufficiently large, so this is a contradiction. We must have ΓI < ∞.

Since ΓI < ∞, we shall prove that ΓI > 0. Recall that it is shown in [11] that
the non-negative smooth solutions of

∆v + v(n+2)/(n−2) = 0 in Rn

with n � 3 are of the form

v(x) =
[n(n − 2)λ2](n−2)/4

(λ2 + |x − x0|2)(n−2)/2 ,

where λ > 0 and x0 ∈ Rn. Note that

v(x) =
[n(n − 2)λ2](n−2)/4

(λ2 + |x − x0|2)(n−2)/2 � [n(n − 2)](n−2)/4

λ(n−2)/2 ≡ c(λ).
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Pick λ > 0 so that c(λ) = 1 and fix some x0 ∈ Ω+, with this special v denoted by
V . Let lim inf |x|→∞ a− = a∞. Then we have the following lemma.

Lemma 3.2. There exists γ∗ > 0 so that

−∆(MV ) � aγ(x)(MV )q + (MV )p

is always true for γ � γ∗ and some M > 0.

Proof. Let a∞ = sup{a(x) | x ∈ Rn} and B+ be a ball including Ω+ with centre x0

such that
inf{a−(x) | x ∈ Rn − B+} > 1

2a∞.

This can be done because lim inf |x|→∞ a− = a∞. Let K = inf{V (x) | x ∈ B+}.
When the radius of the ball B+ tends to infinity, K goes to zero.

For some suitable positive constant M and small γ, to show

−∆(MV ) � aγ(x)(MV )q + (MV )p,

it is equivalent to show

MV (n+2)/(n−2) � aγ(x)(MV )q + (MV )p in B+,

MV (n+2)/(n−2) � aγ(x)(MV )q + (MV )p in Rn − B+.

First we study the part in Rn − B+, where we need to obtain

M1−qV (n+2)/(n−2)−q � aγ + (MV )p−q.

But in Rn − B+, aγ = −a− < − 1
2a∞ and V � 1, we have

− 1
2a∞ + Mp−q � aγ + (MV )p−q.

Choose M such that 0 < M < ( 1
2a∞)1/(p−q). We obtain

M1−qV (n+2)/(n−2)−q > 0 � − 1
2a∞ + Mp−q � aγ + (MV )p−q in Rn − B+.

Therefore, for 0 < M < ( 1
2a∞)1/(p−q), we have

MV (n+2)/(n−2) � aγ(x)(MV )q + (MV )p in Rn − B+.

Next we study the part in B+, where we need to obtain

MV (n+2)/(n−2) � aγ(x)(MV )q + (MV )p.

In B+, we know

MV (n+2)/(n−2) � MK(n+2)/(n−2),

γa∞Mq + Mp � aγ(x)(MV )q + (MV )p.

Therefore, we only need to show

MK(n+2)/(n−2) � γa∞Mq + Mp.
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Letting A = a∞K−(n+2)/(n−2) and B = K−(n+2)/(n−2), we need to show that

M1−q � γA + BMp−q, i.e. M1−q − BMp−q − γA � 0.

We know that

max{t1−q − Btp−q − γA} > 0 ⇐⇒ (γA)p−1B1−q <
(p − 1)p−1(1 − q)1−q

(p − q)p−q
,

and the maximal value is achieved at

tB =
[

(1 − q)
B(p − q)

]1/(p−1)

.

As mentioned at the beginning of the proof, a large radius of B+ means small K.
In turn, B is large and tB is small. So we choose large B+ such that

0 < tB < ( 1
2a∞)1/(p−q).

Take γ∗ such that

(γ∗A)p−1B1−q =
(p − 1)p−1(1 − q)1−q

2(p − q)p−q
,

and choose M = tB . For this choice of M we have, for γ � γ∗,

−∆(MV ) � aγ(MV )q + (MV )p in Rn.

Remark 3.3. Note that we can choose M somewhere between zero and tB depend-
ing on γ so that, when γ → 0, M also goes to zero.

The following theorem proves the first part of theorem 1.5 except for the existence
at ΓI .

Theorem 3.4. Under assumption 1.3, we have 0 < ΓI < ∞.

Proof. We only need to show that ΓI > 0. Indeed, for any R > 0, from the previous
lemma, MV is a supersolution for the Dirichlet boundary-value problem (3.1),
which is

−∆u = aγ(x)uq + up in B(0, R), u ∈ H1
0 (B(0, R)), u � 0,

where γ � γ∗. Because of the sublinear term we can always find an arbitrarily
small subsolution supported in each of Ω+

i , i ∈ I, (for details see [2, 7]). By the
sub-supersolution method, this Dirichlet boundary-value problem has a solution
uR � MV . Since lim|x|→∞ MV = 0, we can adopt the same argument as that used
in the proof of lemma 2.6 to show that uR is compactly supported in B(0, R) for
large R. Therefore, for large R, uR is also a solution of (1.1)γ in SI,γ , which means
that ΓI > 0.

Recall that the minimal element in SI,γ is denoted as uI,γ . The following propo-
sition is also part of theorem 1.5.
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Proposition 3.5. uI,γ is increasing in γ; that is

uI,γ1 � uI,γ2 for 0 < γ1 < γ2 < ΓI .

Moreover, limγ→0+ ‖uI,γ‖L∞(Rn) = 0.

Proof. It is easy to see that uI,γ2 acts naturally as a supersolution for (1.1)γ1 . Noting
that uI,γ2 has compact support, with proper small subsolution which is supported
at each Ω+

i for i ∈ I, (1.1)γ1 has a compactly supported solution u in SI,γ1 such that
u � uI,γ2 by the sub-supersolution method. Since uI,γ1 is the minimal element in
SI,γ1 , we have uI,γ1 � uI,γ2 . From remark 3.3 and the fact that uI,γ is the minimal
element in SI,γ , we have limγ→0+ ‖uI,γ‖L∞(Rn) = 0.

To this end, theorem 1.5 is proved except for the existence at the ‘end point’ ΓI .
Next we are going to prove theorem 1.7, which addresses the existence in NI,γ as
in [2] when a(x) is admissible.

Taking c > 0, which is chosen later, let

F (s) =
∫ s

0

(
tp − c

n + 1
tq

)
dt and σ =

(
c

n + 1
q

p

)1/(p−q)

.

Let e ∈ (0, σ], to be chosen later, and denote

δ =
1√
2

∫ e

0

ds√
−F (s)

.

We have the following lemma.

Lemma 3.6. Letting B = {x ∈ Rn | |x| < δ}, the equation

−∆v = vp − cvq in B and v = e on ∂B

has a unique classical solution ū such that ū(0) = 0 and 0 � ū(x) � e in B.

Proof. The uniqueness result is a simple matter of comparison. We are going to
use the sub-supersolution method to show the existence. First we construct the
supersolution. Let w(r) be the function defined implicitly by∫ e

w(r)

ds√
−F (s)

=
√

2r.

It is easy to see that w(r) satisfies

w′′(r) + wp(r) − c

n + 1
wq(r) = 0 in (0, δ),

where δ is given as above. w(r) is a decreasing function in r, w(0) = e and w′′(δ) =
w′(δ) = w(δ) = 0.

Now let V (r) = w(δ − r). Then V (0) = V ′(0) = V ′′(0) = 0, V (δ) = e and V (r)
is increasing in [0, δ]. Moreover, V satisfies

V ′′(r) + V p(r) − c

n + 1
V q(r) = 0 in (0, δ).

https://doi.org/10.1017/S0308210509001231 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509001231


140 Q. Lu

Hence, for r � δ, we have

V ′(r) =
∫ r

0
V ′′(s) ds =

∫ r

0

c

n + 1
V q(s) − V p(s) ds �

(
c

n + 1
V q(r) − V p(r)

)
r.

A simple calculation shows that

∆V (r) = V ′′(r) +
n − 1

r
V ′(r) � cV q(r) − V p(r).

Therefore, V satisfies

−∆V � V p − cV q in B(0, δ) and V = e on ∂B(0, δ),

which implies that V is a supersolution. It is easy to see that 0 is a subsolution, so,
by the sub-supersolution method, we have a solution ū such that 0 � ū � V � e
and ū(0) = V (0) = 0.

We are now ready to give the proof of theorem 1.7.

Proof. By assumption, a(x) is admissible and dist(Ω0+
i , Ω0+

j ) > 0 for any i �= j.
Letting δ̄ = infi �=j dist(Ω0+

i , Ω0+
j ), we have δ̄ > 0.

Picking R large enough that Ω0+ ⊂⊂ B(0, R) and denoting

Ci = {x ∈ B(0, R + 3δ̄) | dist(x, Ω0+
i ) � 1

16 δ̄},

it is easy to see that Ci ∩ Cj = ∅ for any i �= j. Let C =
⋃

i∈M Ci. We define

N = {x ∈ B(0, R + 2δ̄) | dist(x, Ω0+) � 1
4 δ̄}.

For any x ∈ N , B(x, δ̄/16) ∩ Ci = ∅ for any i ∈ M . Finally, letting

a = inf
x∈B(0,R+3δ̄)−C

a−(x),

we have a > 0. For the constants c and e used in lemma 3.6, let c = a, then

σ =
(

a

n + 1
q

p

)1/(p−q)

.

Let

δ1 =
1√
2

∫ σ

0

ds√
−F (s)

.

We make the following choice for e: if δ1 > δ̄/16, choose suitable e so that δ = δ̄/16,
and if δ1 � δ̄/16, choose e to be σ. The purpose of this choice is to make sure that
B(x, δ) ∩ C = ∅ for any x ∈ N . Recall that uM,γ is the minimal element in SM,γ .
Since limγ→0+ ‖uM,γ‖L∞(Rn) = 0, there exists γ0 > 0 so that ‖uM,γ‖L∞(Rn) < e for
γ � γ0.

Claim 3.7. If γ � γ0, uM,γ(x) = 0 for any x ∈ N .
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In fact, taking x ∈ N , consider the following equation:

−∆v(y) = vp(y) − a−(y)vq(y) in B(x, δ) and v = uM,γ on ∂B(x, δ). (3.2)

A simple comparison argument shows that this problem has a unique classical
solution v � e, so v = uM,γ . But, from lemma 3.6, the unique solution ū of the
problem

−∆v(y) = vp(y) − cvq(y) in B(x, δ) and v = e on ∂B(x, δ)

is a supersolution for equation (3.2). Since 0 is a subsolution, by the sub-super-
solution method and uniqueness, we have 0 � uM,γ � ū in B(x, δ). Since ū � e and
ū(x) = 0, uM,γ = 0 for x ∈ N .

Since uM,γ is the minimal element in SM,γ , then uM,γ vanishes outside of B(0, R+
2δ̄). It is therefore easy to see that the support of uM,γ consists of k disjoint compo-
nents, and its restriction to each component gives k compactly supported solutions
of (1.1)γ . By taking an appropriate union we can construct an element of NI for
any choice of I ⊂ M . This concludes the proof of theorem 1.7.

4. Existence for SI,γ at ΓI

So far, we have established an interval of existence for (1.1)γ , γ ∈ (0, ΓI), in the class
SI,γ , where I ⊂ M indicates the components of Ω+ in which these solutions must
be positive. Now we assert that a solution of class SI,γ must exist at the endpoint
of the maximal interval of existence, γ = ΓI . This is the ‘extremal solution’ for this
family [10].

First we introduce the Banach space

H1
q =

{
v ∈ D(Rn)

∣∣∣∣
∫

Rn

|v|q+1 dx < ∞
}

endowed with the norm

‖v‖H1
q

=
( ∫

Rn

|∇v|2 dx

)1/2

+
( ∫

Rn

|v|q+1 dx

)1/(q+1)

.

Define the energy functional Iγ : H1
q → R associated with (1.1)γ as

Iγ(v) = 1
2

∫
Rn

|�v|2 dx − γ

q + 1

∫
Rn

a+(v+)q+1 dx

+
1

q + 1

∫
Rn

a−(v+)q+1 dx − 1
p + 1

∫
Rn

(v+)p+1 dx.

It is a standard fact that Iγ is a C1-functional on H1
q [24].

Lemma 4.1. Suppose that ū ∈ NI,γ̄ for some γ̄ > 0. Then NI,γ admits an element
uγ for every 0 < γ � γ̄. Moreover, uγ � ū and Iγ(uγ) < 0.

Proof. For 0 < γ � γ̄, ū is a supersolution for the equation (1.1)γ and 0 is a
subsolution. We consider the following minimization problem in a convex constraint
set:

inf{Iγ(v) | v ∈ X} and X = {v ∈ H1
q | 0 � v � ū a.e.}.
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Note that ū has compact support so, following [23], the infimum is achieved at
some uγ ∈ X and (φ, I ′

γ(uγ)) = 0 for all ϕ ∈ C∞
0 (Rn), and by routine regularity

arguments, uγ is a solution to (1.1)γ . Since uγ ∈ X, it vanishes on the components
Ω+ −

⋃
i∈I Ω+

i . It remains to show that uγ does not vanish in Ω+
i for each i ∈ I.

Claim 4.2. uγ does not vanish in Ω+
i for each i ∈ I.

Indeed, suppose, for some i ∈ I, that uγ �> 0 in Ω+
i . Then the strong maximum

principle and Hopf’s lemma imply that uγ ≡ 0 over Ω+
i . Choose a ball B ⊂⊂ Ω+

i

and φ with 0 � φ ∈ C∞
0 (B). Hence, for small positive t, (uγ + tφ) ∈ X and

Iγ(uγ + tφ) = Iγ(uγ) + Iγ(tφ) < Iγ(uγ),

since

Iγ(tφ) = 1
2 t2

∫
B

|∇φ|2 dx − 1
q + 1

tq+1γ

∫
B

a+φq+1 dx − tp+1

p + 1

∫
B

φp+1 dx < 0

for sufficiently small t. This contradicts the fact that uγ is the infimum of Iγ over
X. So we must have uγ ∈ NI,γ̄ . Also, note that Iγ(tφ) < 0 for sufficiently small t,
and thus Iγ(uγ) < 0.

Remark 4.3. Given the variational formulation of the problem as an infimum, it is
natural to ask whether the solutions obtained by lemma 4.1 are local minima of Iγ

in any sense. Note that this cannot be the case when I �= M . Indeed, following the
arguments used in the last part of the proof, we can decrease the value of Iγ near
such a solution by small perturbations in each Ω+

j , where j /∈ I. So the existence
of a second solution in the classes NI,γ remains an open question.

Corollary 4.4. For 0 < γ < ΓI , Iγ(uI,γ) < 0, where uI,γ is the minimum element
in SI,γ .

Proof. We apply lemma 4.1 with ū = uI,γ , γ̄ = γ and some J ⊂ M such that I ⊂ J
and uI,γ ∈ NJ,γ . Hence, by lemma 4.1 we obtain a solution uγ ∈ SI,γ such that

Iγ(uγ) < 0 and 0 � uγ � uI,γ .

Since uI,γ is the minimal element in SI,γ , we must have uγ = uI,γ .

In order to show the existence at ΓI , we need to show some estimates.

Lemma 4.5. ‖uI,γ‖H1
q

+ ‖uI,γ‖Lp+1(Rn) is uniformly bounded.

Proof. We use the equation −∆uI,γ = aγuq
I,γ +up

I,γ . Multiplying both sides of this
equation by uI,γ and integrating over Rn, we obtain∫

Rn

|∇uI,γ |2 dx = γ

∫
Rn

a+uq+1
I,γ dx −

∫
Rn

a−uq+1
I,γ dx +

∫
Rn

up+1
I,γ dx. (4.1)

From the above corollary, we have Iγ(uI,γ) < 0; that is

1
2

∫
Rn

|∇uI,γ |2 dx +
1

q + 1

∫
Rn

a−uq+1
I,γ dx

<
γ

q + 1

∫
Rn

a+uq+1
I,γ dx +

1
p + 1

∫
Rn

up+1
I,γ dx. (4.2)
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Putting (4.1) into (4.2), we obtain(
1

q + 1
− 1

2

) ∫
Rn

a−uq+1
I,γ dx +

(
1
2

− 1
p + 1

) ∫
Rn

up+1
I,γ dx

< γ

(
1

q + 1
− 1

2

) ∫
Rn

a+uq+1
I,γ dx.

Since 1/(q + 1) > 1
2 > 1/(p + 1), from the above inequality we have(

1
2

− 1
p + 1

) ∫
Rn

up+1
I,γ dx < γ

(
1

q + 1
− 1

2

) ∫
Rn

a+uq+1
I,γ dx. (4.3)

Since a+ is compactly supported, we obtain∫
Rn

a+uq+1
I,γ dx � ‖a+‖L∞(Rn)

∫
supp(a+)

uq+1
I,γ dx

� C(a+)‖a+‖L∞(Rn)‖uI,γ‖q+1
Lp+1(Rn), (4.4)

where C(a+) is some constant depending on a+ and Ω+. Putting this back into
(4.3), we find that(

1
2

− 1
p + 1

)
‖uI,γ‖p+1

Lp+1(Rn) � C(a+)γ
(

1
q + 1

− 1
2

)
‖a+‖L∞(Rn)‖uI,γ‖q+1

Lp+1(Rn).

Therefore, we have

‖uI,γ‖p−q
Lp+1(Rn) � C(a+)γ

(
1

q + 1
− 1

2

)
‖a+‖L∞(Rn)

(
1
2

− 1
p + 1

)−1

,

which implies that ‖uI,γ‖Lp+1(Rn) is uniformly bounded. Plugging this and (4.4) into
(4.2), we conclude that ‖∇uI,γ‖L2(Rn) and ‖uI,γ‖Lq+1(Rn) are uniformly bounded.

Now we are ready to complete the proof of theorem 1.5.

Proof. Picking an increasing sequence {γn} with limit ΓI , from lemma 4.5,

‖uI,γn
‖H1

q
+ ‖uI,γn

‖Lp+1(Rn)

is uniformly bounded. Hence, there exists uΓI
∈ H1

q such that

uI,γn ⇀ uΓI
weakly in D(Rn), Lp+1(Rn) and Lq+1(Rn).

Moreover, uI,γn → uΓI
a.e. in Rn. From proposition 3.5 we know that uI,γn is

increasing in n, so by the monotone convergence theorem

uI,γn → uΓI
strongly in Lp+1(Rn) and Lq+1(Rn). (4.5)

We know that uI,γn satisfies the equation −∆uI,γn = aγnuq
I,γn

+ up
I,γn

. So, taking
any ϕ ∈ C∞

0 (Rn), multiplying both sides of the equation by ϕ and integrating over
Rn, we obtain ∫

Rn

∇uI,γn
∇ϕ dx =

∫
Rn

aγn
uq

I,γn
ϕ +

∫
Rn

up
I,γn

ϕ.
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By (4.5), passing to the limit on n, we have∫
Rn

∇uΓI
∇ϕ dx =

∫
Rn

aΓI
uq

ΓI
ϕ +

∫
Rn

up
ΓI

ϕ.

Therefore, uΓI
is a weak solution of (1.1)ΓI

. By routine regularity arguments, uΓI

is a classical solution.

Corollary 4.6. uΓI
is the minimal element in SI,ΓI

, i.e. uΓI
= uI,ΓI

.

Proof. From above SI,ΓI
is not empty. Picking any U ∈ SΓI

, we just need to apply
lemma 4.1 to equation (1.1)γ with ū = U , γ̄ = ΓI and some J ⊂ M such that I ⊂ J
and U ∈ NΓJ

. We obtain a solution uγ to (1.1)γ such that uγ ∈ SI,γ and we also
have U � uγ � uI,γ . Since limγ→Γ −

I
uI,γ = uΓI

, we have U � uΓI
.

For later, denote ΓM by Γ , denote uM,γ by Uγ and denote uM,ΓM
by UΓ . We

conclude this section with a simple result.

Corollary 4.7. Assume that a(x) = a(|x|), then Uγ(x) = Uγ(|x|) for 0 < γ � Γ .

5. Second solution in SM,γ

In this section we are going to show the existence of a second solution in SM,γ

for 0 < γ < Γ . The embedding H1
q (Rn) ↪→ Lp+1(Rn) is not compact and the

compactly supported solution of −∆v = vp − vq in Rn by Cortázar et al . [12] poses
a difficulty for proving the compactness of the Palais–Smale sequence. So we assume
a(x) = a(|x|) in this section and restrict the functional space to be radial. Consider
the Banach space

Hr =
{

v ∈ D(Rn)
∣∣∣∣ v is radial and

∫
Rn

|v|q+1 dx < ∞
}

endowed with the same norm as in H1
q . It is obvious that Iγ is a C1 functional

on Hr.
Recall that Uγ represents the minimal element in SM,γ for 0 < γ � Γ . Consider

the following minimization problem in a convex constraint set:

inf{Iγ(v) | v ∈ Y } and Y = {v ∈ Hr | 0 � v � UΓ a.e.}. (5.1)

As in lemma 4.1, the infimum is attained at some radial function in Y , say vγ . By
the principle of symmetric criticality, vγ ∈ SM,γ .

Now we are going to show that vγ is actually a local minimizer of Iγ in Hr. Pick
R > 0 so that supp(UΓ ) ⊂⊂ B(0, R) and Ω0+ ⊂⊂ B(0, R). Let H1

r (B(0, R)) be the
subspace of H1(B(0, R)), which contains radially symmetric functions.

Lemma 5.1. For γ ∈ (0, Γ ), vγ is a local minimizer for Iγ in H1
r (B(0, R)); that is,

there exists δ > 0 such that

Iγ(vγ) � Iγ(v) for all v ∈ H1
r (B(0, R)) with ‖v − vγ‖H1

r (B) < δ.
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Proof. We already know that

Iγ(vγ) = inf{Iγ(v) | v ∈ Y }.

Since supp(UΓ ) ⊂⊂ B(0, R), we find out that

Iγ(vγ) = inf{Iγ(v) | v ∈ H1
r (B(0, R)) and 0 � v � UΓ }.

We follow the same proof as that used in proposition 5.2 of [1] to complete the
proof. It is worth pointing out that there is an extra assumption on Ω0+ in the
proof of proposition 5.2 of [1], which is the following.

Assumption 5.2. Ω0+ has m < ∞ connected components with Ω0+ =
⋃m

i=1 Ω0+
i ,

and Ω0+
i ∩ Ω+ �= ∅ for every i = 1, . . . , m.

We do not need this extra assumption because UΓ is the minimal element in
SM,Γ . Indeed, if there is one connected component of Ω0+, say Ω0+

j , such that
Ω0+

j ∩Ω+ ≡ ∅, we must have a(x) ≡ 0 in Ω0+
j . Moreover, either UΓ (x) ≡ 0 in Ω0+

j

or one of the connected components of supp(UΓ ) includes Ω0+
j and some connected

component of Ω+, which means that any connected component of supp(UΓ ) has to
include one of the connected components of Ω+. This fact helps to lift the extra
assumption on Ω+ and completes the proof.

Lemma 5.3. For γ ∈ (0, Γ ), vγ is also a local minimizer for Iγ in Hr.

Proof. From lemma 5.3 there exists δ > 0 such that

Iγ(vγ) � Iγ(v) for all v ∈ H1
r (B) with ‖v − vγ‖H1

r (B) < δ.

There exists δ1 > 0 such that

‖v − vγ‖H1
r (B) < δ if ‖v − vγ‖Hr < δ1.

Now, by density, taking any symmetric function v ∈ C∞
0 (Rn)∩Hr with ‖v−vγ‖Hr <

δ1 and noting that Ω0+ ⊂⊂ B(0, R), we have

Iγ(v) = 1
2

∫
Rn

|∇v|2 dx − 1
q + 1

∫
Rn

aγ(v+)q+1 dx − 1
p + 1

∫
Rn

(v+)p+1 dx

= 1
2

∫
B(0,R)

|∇v|2 dx − 1
q + 1

∫
B(0,R)

aγ(v+)q+1 dx − 1
p + 1

∫
B(0,R)

(v+)p+1 dx

+ 1
2

∫
Rn−B(0,R)

|∇v|2 dx +
1

q + 1

∫
Rn−B(0,R)

a−(v+)q+1 dx

− 1
p + 1

∫
Rn−B(0,R)

(v+)p+1 dx

� Iγ(vγ) + 1
2

∫
Rn−B(0,R)

|∇v|2 dx +
1

q + 1

∫
Rn−B(0,R)

a−(v+)q+1 dx

− 1
p + 1

∫
Rn−B(0,R)

(v+)p+1 dx.
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Denote infx∈Rn−B(0,r) a− by c. We obtain

Iγ(v) � Iγ(vγ) + 1
2

∫
Rn−B(0,R)

|∇v|2 dx +
c

q + 1

∫
Rn−B(0,R)

(v+)q+1 dx

− 1
p + 1

∫
Rn−B(0,R)

(v+)p+1 dx.

Let

V =

{
v(R) x ∈ B(0, R),
v x ∈ Rn − B(0, R).

Then V ∈ Hr. So we have

Iγ(v) − Iγ(vγ) � 1
2

∫
Rn

|∇V |2 dx +
c

q + 1

∫
Rn−B(0,R)

(V +)q+1 dx

− 1
p + 1

∫
Rn−B(0,R)

(V +)p+1 dx.

Claim 5.4.

E(V ) = 1
2

∫
Rn

|∇V |2 dx +
c

q + 1

∫
Rn−B

(V +)q+1 dx − 1
p + 1

∫
Rn−B

(V +)p+1 dx � 0

when δ1 is sufficiently small.

Indeed, by using Hölder’s inequality and denoting

d =
n + 2 − p(n − 2)
n + 2 − q(n − 2)

,

we have∫
Rn−B(0,R)

|V +|p+1 dx � ‖V +‖d(q+1)
Lq+1(Rn−B(0,R))‖V +‖2∗(1−d)

L2∗ (Rn−B(0,R)). (5.2)

Since d + (1 − d)n/(n − 2) > 1, there exist α > 1 and β > 1 such that

1
α

+
1
β

= 1, ᾱ = dα(q + 1) > q + 1 and β̄ = β(1 − d)2∗ > 2.

Hence, from (5.2) and Young’s inequality, we obtain∫
Rn−B(0,R)

|V +|p+1 dx � 1
α

‖V +‖ᾱ
Lq+1(Rn−B(0,R)) +

1
β

‖V +‖β̄

L2∗ (Rn−B(0,R)).

From the above inequality and the Sobolev inequality, we find that

E(v) � C(n)
2

‖V +‖2
L2∗ (Rn) +

c

q + 1
‖V +‖q+1

Lq+1(Rn−B(0,R))

− 1
α(p + 1)

‖V +‖ᾱ
Lq+1(Rn−B(0,R)) − 1

β(p + 1)
‖V +‖β̄

L2∗ (Rn−B(0,R))
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� C(n)
2

‖V +‖2
L2∗ (Rn−B(0,R)) +

c

q + 1
‖V +‖q+1

Lq+1(Rn−B(0,R))

− 1
α(p + 1)

‖V +‖ᾱ
Lq+1(Rn−B(0,R)) − 1

β(p + 1)
‖V +‖β̄

L2∗ (Rn−B(0,R)).

Since ᾱ > q + 1 and β̄ > 2, for sufficiently small δ1, we obtain

E(v) � C(n)
2

‖V +‖2
L2∗ (Rn−B(0,R)) +

c

q + 1
‖V +‖q+1

Lq+1(Rn−B(0,R))

− 1
α(p + 1)

‖V +‖ᾱ
Lq+1(Rn−B(0,R)) − 1

β(p + 1)
‖V +‖β̄

L2∗ (Rn−B(0,R)) � 0.

Therefore, we have Iγ(v) − Iγ(vγ) � 0 for sufficiently small δ1; that is, vγ is a local
minimizer in Hr.

From lemma 5.3 we know that vγ is a local minimizer for the energy functional

Iγ = 1
2

∫
Rn

|∇v|2 dx − 1
q + 1

∫
Rn

aγ(v+)q+1 dx − 1
p + 1

∫
Rn

(v+)p+1 dx, v ∈ Hr.

It is easy to see that Iγ(tϕ) → −∞ as t → ∞ for some positive radially symmetric
ϕ ∈ C∞

0 (Rn). So we have a mountain-pass structure. We expect to find a second
solution in the form u = vγ + v with v � 0. If u solves the problem (1.1)γ , then v
should solve

−∆v = aγ [(vγ + v)q − vq
γ ] + [(vγ + v)p − vp

γ ].

Set

h(x, v) = aγ [(vγ + v+)q − vq
γ ] + [(vγ + v+)p − vp

γ ],

H(x, v) =
∫ v

0
h(x, s) ds

=
∫ v

0
aγ [(vγ + s+)q − vq

γ ] + [(vγ + s+)p − vp
γ ] ds

=
1

q + 1
aγ [(vγ + v+)q+1 − vq+1

γ ] − aγvq
γv+

+
1

p + 1
[(vγ + v+)p+1 − vp+1

γ ] − vp
γv+.

For v ∈ Hr, define the functional

Jγ(v) = 1
2

∫
Rn

|∇v|2 dx +
1

q + 1
|v|q+1 − 1

q + 1
(v+)q+1 − H(x, v) dx.

By some calculations, we reach

Jγ(v) = Iγ(vγ + v+) − Iγ(vγ) + 1
2‖∇v−‖2

L2(Rn) +
1

q + 1
‖v−‖q+1

Lq+1(Rn).

Lemma 5.5. There exists δ1 > 0 such that Jγ(v) � Jγ(0) = 0 when ‖v‖Hr < δ1.
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Proof. From the above calculations, we have

Jγ(v) = Iγ(vγ + v+) − Iγ(vγ) + 1
2‖∇v−‖2

L2(Rn) +
1

q + 1
‖v−‖q+1

Lq+1(Rn).

The result follows from lemma 5.3.

Lemma 5.6. For γ > 0, there exists a radial function ϕ ∈ C∞
0 (Rn) with ϕ � 0 and

T > 0 such that Jγ(Tϕ) < 0.

Proof. Taking a radial function ϕ ∈ C∞
0 (Rn) with ϕ � 0 such that the support of

ϕ is separated from the support of vγ , we have

Jγ(Tϕ) = Iγ(Tϕ) = T 2
∫

1
2 |∇ϕ|2 −T q+1

∫
aγ(x)
q + 1

|ϕ|q+1 −T p+1
∫

1
p + 1

|ϕ|p+1 < 0

for sufficiently large T , since q < 1 < p.

The next lemma shows that the Palais–Smale sequence is bounded.

Lemma 5.7. Suppose that 0 < γ < Γ , {vn} is a sequence in Hr such that Jγ(vn) →
cγ and J ′

γ(vn) → 0. Then {vγ + v+
n } is uniformly bounded in Hr.

Proof. First, noting that J ′
γ(vn)v−

n = −(‖∇v−
n ‖2

L2(Rn) + ‖v−
n ‖q+1

Lq+1(Rn)), we have

‖∇v−
n ‖2

L2(Rn) + ‖v−
n ‖q+1

Lq+1(Rn) � ‖J ′
γ(vn)‖(‖∇v−

n ‖L2(Rn) + ‖v−
n ‖Lq+1(Rn))

� ‖J ′
γ(vn)‖(‖∇v−

n ‖2
L2(Rn) + ‖v−

n ‖q+1
Lq+1(Rn) + O(1))

� o(1)(‖∇v−
n ‖2

L2(Rn) + ‖v−
n ‖q+1

Lq+1(Rn)) + o(1).

Hence, we derive that

(1 − o(1))(‖∇v−
n ‖2

L2(Rn) + ‖v−
n ‖q+1

Lq+1(Rn)) � o(1),

which implies v−
n → 0 in Hr.

Therefore, we may take un = vγ + v+
n . Then we obtain

Iγ(un) → Iγ(vγ) + cγ and I ′
γ(un) → 0.

Since Iγ(vγ) < 0, we have

1
2

∫
Rn

|∇un|2 dx +
1

q + 1

∫
Rn

a−uq+1
n dx

− γ

q + 1

∫
Rn

a+uq+1
n dx − 1

p + 1

∫
Rn

up+1
n dx < cγ . (5.3)

We also have

I ′
γ(un)un =

∫
Rn

|∇un|2 dx +
∫

Rn

a−uq+1
n dx − γ

∫
Rn

a+uq+1
n dx −

∫
Rn

up+1
n dx

= o(1)‖un‖Hr .
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Pick θ such that 2 < θ < p + 1. Then

1
p + 1

<
1
θ

<
1
2

<
1

q + 1
.

From the above, we obtain

1
θ

∫
Rn

|∇un|2 dx +
1
θ

∫
Rn

a−uq+1
n dx − γ

θ

∫
Rn

a+uq+1
n dx

− 1
θ

∫
Rn

up+1
n dx = o(1)‖un‖Hr . (5.4)

Subtracting (5.3) from (5.4), we obtain(
1
2

− 1
θ

)( ∫
Rn

|∇un|2 dx +
∫

Rn

a−uq+1
n dx

)
+

(
1
θ

− 1
p + 1

) ∫
Rn

up+1
n dx

� γ

(
1

q + 1
− 1

θ

) ∫
Rn

a+uq+1
n dx + cγ + o(1)‖un‖Hr .

From Young’s inequality, we have

a+uq+1
n =

(
1
ε
a+

)
(εuq+1

n ) <
q + 1
p + 1

(εuq+1
n )(p+1)/(q+1) +

p − q

p + 1

(
1
ε
a+

)((p+1)/(q+1))∗

,

where ((p + 1)/(q + 1))∗ is the dual of (p + 1)/(q + 1) and ε is small enough that

Γ
q + 1
p + 1

ε(p+1)/(q+1)
(

1
q + 1

− 1
θ

)
� 1

2

(
1
θ

− 1
p + 1

)
.

Pick C > 0 such that

Γ
p − q

p + 1

(
1

q + 1
− 1

θ

) ∫
Rn

(
1
ε
a+

)((p+1)/(q+1))∗

� C.

Overall, we reach(
1
2

− 1
θ

)( ∫
Rn

|∇un|2 dx +
∫

Rn

a−uq+1
n dx

)

+
1
2

(
1
θ

− 1
p + 1

) ∫
Rn

up+1
n dx � cγ + C + o(1)‖un‖Hr

. (5.5)

Claim 5.8. There exists small positive η < min{ 1
2a∞, 1

2} and a constant C1 > 0
such that∫

Rn

|∇un|2 dx +
∫

Rn

a−uq+1
n dx + C1 � η(‖∇un‖2

L2(Rn) + ‖un‖q+1
Lq+1(Rn)).

Indeed, since lim inf |x|→∞ a− = a∞, there exists r1 > 0 such that a−(x) � 1
2a∞

for x ∈ Rn − B(0, r1). Now we see that

(1 − η)‖∇un‖2
L2(Rn) � 1

2‖∇un‖2
L2(Rn)

� 1
2C(n)‖un‖2

L2∗ (Rn)

� 1
2C(n)‖un‖2

L2∗ (B(0,r1))
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and

η‖un‖q+1
Lq+1(Rn) −

∫
Rn

a−uq+1
n dx � η‖un‖q+1

Lq+1(B(0,r1))
� ηC(r1)‖un‖q+1

L2∗ (B(0,r1))
,

where C(n) is the best Sobolev constant and C(r1) is a constant depending on r1.
When η is small and C1 is large, we conclude that

(1 − η)‖∇un‖2
L2(Rn) + C1 � 1

2C(n)‖un‖2
L2∗ (B(0,r1))

+ C1

� 1
2C(n)‖un‖q+1

L2∗ (B(0,r1))

� ηC(r1)‖un‖q+1
L2∗ (B(0,r1))

� η‖un‖q+1
Lq+1(Rn) −

∫
Rn

a−uq+1
n dx.

From (5.5) and the above claim, enlarging the constant C, we obtain(
1
2

− 1
θ

)
η(‖∇un‖2

L2(Rn) + ‖un‖q+1
Lq+1(Rn))

� cγ + C + o(1)(‖∇un‖L2(Rn) + ‖un‖Lq+1(Rn))

� cγ + C + o(1)(‖∇un‖2
L2(Rn) + ‖un‖q+1

Lq+1(Rn))

� cγ + C + o(1)(‖∇un‖2
L2(Rn) + ‖un‖q+1

Lq+1(Rn)),

which implies that ‖∇un‖L2(Rn) and ‖un‖Lq+1(Rn) are uniformly bound. Going back
to (5.5), we have ‖un‖Lp+1(Rn) also uniformly bounded.

The most important fact about the radial function in Hr is the following lemma
due to Strauss [22] (see also [8]).

Lemma 5.9 (Strauss [22]). Hr compactly embeds in Lp+1(Rn) for 1 < p < 2∗ − 1.

We can now prove the compactness of the Palais–Smale sequence using this
lemma.

Lemma 5.10. Suppose that 0 < γ < Γ , {vn} is a sequence in Hr such that Jγ(vn) →
c and J ′

γ(vn) → 0. Then {vn} contains a strongly convergent subsequence in Hr.
Moreover, if vn → v0 � 0, then u0 = vγ + v0 is a solution to (1.1)γ .

Proof. In view of lemma 5.7, taking un = v+
n + vγ , we have

Iγ(un) → Iγ(vγ) + cγ and I ′
γ(un) → 0.

Again from lemma 5.7, we have that ‖∇un‖L2 + ‖un‖Lq+1 + ‖un‖Lp+1 is uniformly
bounded. So, from lemma 5.9, restricting to a subsequence if necessary, there exists
u0 ∈ Hr such that

un ⇀ u0 weakly in Hr and un → u0 strongly in Lp+1(Rn).
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By the weak and strong convergences it is easy to see that u0 is a solution to
equation (1.1)γ . Hence, u0 has compact support and I ′

γ(u0) = 0. Now we obtain

(I ′
γ(un) − I ′

γ(u0))(un − u0) =
∫

Rn

|∇(un − u0)|2 dx +
∫

Rn

a−(uq
n − uq

0)(un − u0) dx

− γ

∫
Rn

a+(uq
n − uq

0)(un − u0) dx

−
∫

Rn

(up
n − up

0)(un − u0) dx

→ 0. (5.6)

Since un → u0 strongly in Lp+1(Rn), we have∫
Rn

(up
n − up

0)(un − u0) dx → 0 and
∫

Rn

a+(uq
n − uq

0)(un − u0) dx → 0.

Therefore, (5.6) reduces to∫
Rn

|∇(un − u0)|2 dx +
∫

Rn

a−(uq
n − uq

0)(un − u0) dx → 0,

which implies that un → u0 in D(Rn).

Claim 5.11. un → u0 strongly in Lq+1(Rn).

Indeed, we know that u0 is a solution to equation (1.1)γ and has compact support.
Hence, take a ball B centred at the origin such that Ω0+ ⊂⊂ B and supp(u0) ⊂⊂ B.
Since ∫

Rn

a−(uq
n − uq

0)(un − u0) dx → 0,

we have ∫
Rn−B

a−(uq
n − uq

0)(un − u0) dx → 0,

that is ∫
Rn−B

a−uq+1
n dx → 0.

Noting that lim inf |x|→∞ a− > 0, we obtain∫
Rn−B

uq+1
n dx → 0,

which implies
un → u0 strongly in Lq+1(Rn)

by the fact that un → u0 strongly in Lp+1(Rn). Therefore, un → u0 strongly
in Hr.
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Now, for fixed γ, consider the following set:

Sγ = {σ ∈ C([0, 1], Hr) | σ(0) = 0 and σ(1) = Tϕ},

where ϕ from lemma 5.6. Let cγ = infσ∈Sγ maxs∈[0,1] Jγ(σ(s)). From lemma 5.5, we
see that Jγ(v) � 0 with ‖v‖Hr

< δ1. Therefore, cγ � 0.

Theorem 5.12. Suppose that cγ = 0 and that there exists ηγ > 0 such that, for
any ρ ∈ [0, ηγ ],

inf{Jγ(v) | ‖v‖Hr
= ρ} = 0.

Then, for each ρ ∈ (0, ηγ), problem (1.1)γ has a solution with ‖u − vγ‖Hr = ρ.

Proof. For any fixed ρ ∈ (0, ηγ), the set F = ∂B(0, ρ) in Hr satisfies the hypothesis
of theorem 1 of [15]. Theorem (1.bis) of [15] asserts the existence of a solution for
each ρ ∈ (0, ηγ) with the compactness of the Palais–Smale sequence.

Here is the proof for theorem 1.9.

Proof. If there exists some ρ < δ1 such that inf{Jγ(v) | ‖v‖Hr = ρ} > 0, we have
cγ > 0. By the mountain-pass theorem of Ambrosetti and Rabinowitz, there exists
a solution Vγ of (1.1)γ with Jγ(Vγ) > 0, i.e. Iγ(Vγ) > Iγ(vγ), which implies that Vγ

is different from vγ .
If this is not the case, but cγ > 0, we still have the same result as above.
If not, and cγ = 0, then, for all ρ ∈ [0, δ1), we have inf{Jγ(v) | ‖v‖Hr = ρ} = 0,

then, from theorem 5.12, we see that there are infinitely many solutions of (1.1)γ .

To conclude, we will discuss the assumption

0 < lim inf
|x|→∞

a−(x) � lim sup
|x|→∞

a−(x) < ∞

that we made throughout this paper.
First, taking lim inf |x|→∞ a−(x) > 0, from the proof of theorem 1.1 we can

see that this ensures that the solution u of (1.1)γ with lim|x|→∞ u(x) = 0 has
compact support. Now we give an example, in which lim|x|→∞ u(x) = 0 and
lim|x|→∞ a−(x) = 0 but one solution does not have compact support, so we know
that the compactness of the support of a+ is not enough to guarantee the compact-
ness of the support of solutions of (1.1)γ .

Let us pick a locally Hölder-continuous and sign-changing function c(x) and
assume that supp(c+(x)) ⊂⊂ B(0, 1) and 1 � c−(x) � 2 for |x| � 2. We make
‖c+‖L∞(B(0,1)) so small that the first eigenvalue of the operator −∆v − c(x)v in
H1(Rn) is positive, i.e. there exists a positive constant µ > 0 such that, for any
v ∈ H1(Rn), ∫

Rn

|∇v|2 − c(x)v2 dx � µ

∫
Rn

v2 dx.

This is always possible because ‖∇v‖L2(Rn) � C1‖v‖L2∗ (Rn) � C2‖v‖L2(B(0,2)),
where C1 and C2 are two positive constants depending on n. Therefore, if we choose
‖c+‖L∞(B(0,1)) � 1

2C2
2 , then we have, for any v ∈ H1(Rn),∫

Rn

|∇v|2 − c(x)v2 dx � min (1, 1
2C2

2 )
∫

Rn

v2 dx.
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Furthermore, assuming that c(x) is radial, i.e. c(x) = c(|x|), consider the energy
functional

E(v) = 1
2

∫
Rn

|∇v|2 − c(x)v2 dx,

which acts upon

Y =
{

v ∈ Hr

∣∣∣∣
∫

Rn

|v|p+1 dx = 1
}

,

where Hr = {v ∈ H1(Rn)|v(x) = v(|x|)}. Since the operator −∆v−c(x)v in H1(Rn)
has a positive first eigenvalue, we let 0 < ε < 1

2µ be such that (1−ε)µ−εc(x) � 1
2µ.

Then ∫
Rn

|∇v|2 − c(x)v2 dx � ε

∫
Rn

|∇v|2 − c(x)v2 dx + (1 − ε)µ
∫

Rn

v2 dx

� ε

∫
Rn

|∇v|2 dx + 1
2µ

∫
Rn

v2 dx

� ε

∫
Rn

|∇v|2 + v2 dx.

Therefore, −∆v−c(x)v is coercive on Hr. By lemma 5.9 and standard minimization
arguments [23], we obtain a positive radial solution v to the equation −∆v−c(x)v =
vp, and it is well known that v(r) tends to zero at infinity very fast, like exponential
decay. Simply letting a(x) = c(x)v1−q, we are back to the form of (1.1)γ and v is a
positive solution, which is what we are trying to find. It should be mentioned that we
can still obtain solutions with compact support even though lim|x|→∞ a−(x) = 0 if
the speed of a− going to zero at infinity is slow compared with the speed of solution
u going to zero at infinity. We will address this problem in a forthcoming paper.

Secondly, lim sup|x|→∞ a−(x) < ∞. As mentioned earlier, this assumption is very
important for lemma 2.1 to hold, although we have found that theorem 1.9 continues
to hold even without this assumption. By allowing lim sup|x|→∞ a−(x) = ∞ we can
still find two solutions of (1.1)γ with radial symmetry. We will present this result
in a forthcoming paper.
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