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IMPORTANCE SAMPLING FOR FAILURE
PROBABILITIES IN COMPUTING AND
DATA TRANSMISSION

SØREN ASMUSSEN,∗ University of Aarhus

Abstract

In this paper we study efficient simulation algorithms for estimating P(X > x), whereX
is the total time of a job with ideal time T that needs to be restarted after a failure. The
main tool is importance sampling, where a good importance distribution is identified via
an asymptotic description of the conditional distribution of T given X > x. If T ≡ t

is constant, the problem reduces to the efficient simulation of geometric sums, and a
standard algorithm involving a Cramér-type root, γ (t), is available. However, we also
discuss an algorithm that avoids finding the root. If T is random, particular attention is
given to T having either a gamma-like tail or a regularly varying tail, and to failures at
Poisson times. Different types of conditional limit occur, in particular exponentially tilted
Gumbel distributions and Pareto distributions. The algorithms based upon importance
distributions for T using these asymptotic descriptions have bounded relative error as
x → ∞ when combined with the ideas used for a fixed t . Nevertheless, we give examples
of algorithms carefully designed to enjoy bounded relative error that may provide little or
no asymptotic improvement over crude Monte Carlo simulation when the computational
effort is taken into account. To resolve this problem, an alternative algorithm using
two-sided Lundberg bounds is suggested.
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1. Introduction

Consider a task of length T that is subject to failures and must be restarted if a failure occurs
before completion. For example, the task may be the execution of a computer program, the
transmission of a file on a communications channel, or a conversation with a call center.

The distribution of the (ideal) task time T is denoted throughout by F and the distribution
of the failure time U is denoted by G. For convenience, the densities f and g are assumed to
exist, except when T ≡ t is constant. Owing to the possibility of (multiple) failures, the total
task time X can possibly be large (certainly, we always have X ≥ T ). Here we are interested
in the distribution H of X or, more specifically, in its tail H̄ (x) = P(X > x).

This problem has a long history in computer science, where the model goes under the name
of RESTART (see [6] for references). Nevertheless, a comprehensive description of the tail
asymptotics of X was only recently provided by Sheahan et al. [17] and Asmussen et al. [6].
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Importance sampling for failure probabilities 769

At about the same time (in part independently), Jelenković and Tan [15], [16] performed a
related study in the communications engineering context; the main difference from [6] is an
on–off assumption on the channel, which in the computer reliability context corresponds to
incorporating repair times. Further aspects involve parallel computing [2] and checkpointing
(fragmentation) [5].

In the early work of Sheahan et al. [17], a numerical comparison of approximations and
simulated values was performed. This turned out to be an extremely demanding task computa-
tionally, since 108 independent copies of X were needed to be generated to obtain sufficiently
precise estimates of P(X > x) in the range of x values under study. (In [17], 106 independent
copies were quoted, but this was a typo.)

In the present paper we suggest and analyze some more sophisticated algorithms designed
to reduce the computational effort. Given the literature on rare event simulation (surveyed in,
e.g. [4, Chapter VI]), it is not unexpected that importance sampling is the main tool (though
other ideas like conditional Monte Carlo and splitting have been used for specific purposes; see
again loc. cit.). The classical idea when using importance sampling is to look for an asymptotic
description of the conditional distribution given the rare event and use this as an importance
distribution. This is also the path we follow here and it leads to some additional theoretical
problems on the model, since we must analyze such problems as how failures accumulate within
a long but fixed time horizon and what the asymptotics as x → ∞ of T are given that X > x.
We will see some rather nonstandard limit distributions arise.

For most applications, it would be of particular interest to assume thatG is exponential, say
at rate µ, and that F is either degenerate (say at t), gamma-like, or of power form. Here by
gamma-like we mean

f (t) ∼ ctα−1e−λt , t → ∞, (1.1)

for suitable constants c > 0, α ∈ R, and λ > 0, where f (t) ∼ g(t) means that f (t)/g(t) → 1
as t → ∞; (1.1) incorporates as a special case the three distributions in the numerical example
of [17]. By power form we mean log f (t)/t → −α−1; this covers as a special case a regularly
varying f ,

f (t) ∼ L(t)

tα+1 , t → ∞, (1.2)

with L slowly varying (since logL(t)/t → 0 for any slowly varying L). We shall therefore
pay particular attention to these three specific cases.

The paper is organized as follows. In Section 2 we give the relevant preliminaries both on
RESTART and rare event simulation. In particular, a crucial quantity for the rest of the paper
is introduced, a Cramér-type root γ (t). In Section 3 and Appendix B we study the simulation
problem when T ≡ t is deterministic. This is fairly standard in its simplest formulation since,
as surveyed in Section 2, X − T = X − t then admits a geometric sum representation, and it
is folklore that the simulation of tails of light-tailed geometric sums is most efficiently carried
out by exponential tilting; in the RESTART setting, this means involving γ (t). However, we
also discuss to what extent the evaluation of γ (t) can be avoided.

The rest of the paper deals with the case of a random T . The asymptotic results of [6] exhibit
great diversity depending on the specific form of the tails of F and G, and, for this reason, we
have to expect the same to be true for the form of efficient rare event simulation algorithms.
We consider two cases, in both of which G is taken to be exponential(µ). In Section 4 we
study the gamma-like case, (1.1). Motivated by general principles for rare event simulation, the
asymptotic behavior of T given X > x is studied, and after appropriate centering, we obtain
a nonstandard limit, the exponentially tilted Gumbel distribution Qβ . The use of this as an
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770 S. ASMUSSEN

importance distribution is discussed, and an important message is that importance sampling on
T alone is only modestly efficient—to do better, we have to combine the importance sampling
algorithm with the more sophisticated algorithms for geometric sums.

In Section 5, a similar discussion is carried out for the regularly varying case, (1.2). Here
T , given X > x, needs to be both centered and scaled (not just centered), and the limit is
Pareto. However, using the Pareto distribution (shifted and scaled back to T ) as an importance
distribution, we encounter an absolute continuity problem. This is resolved by combining this
algorithm with another importance sampling algorithm.

Perhaps the most surprising feature of these algorithms is that even if the distribution of X
is always heavy tailed when T has unbounded support, the ideas all come from the light-tailed
area; in general, the methodologies for simulation of light versus heavy tails are intrinsically
different (cf. [4, Chapter VI]).

The algorithms outlined above enjoy bounded relative error, a concept at the center of the
rare event simulation literature (for a definition of rare event simulation, see Section 2.2) and
generally considered to represent the ultimate improvement over crude Monte Carlo simulation
one can hope for. However, focusing solely on the bounded relative error as the efficiency
measure is misleading—we also need to consider the computational effort. This is done in
Section 6, and a considerably more diverse picture emerges. A partial solution to the problem
based upon two-sided Lundberg-type bounds is suggested in Section 7. Finally, Section 8
contains some numerical examples.

2. Preliminaries

2.1. The RESTART model

Consider a deterministic T ≡ t , and let X(t) be the corresponding simple RESTART total
time, Ht(x) = P(X(t) ≤ x).

As in [6], we can write X(t) = t + S(t), where S(t) = ∑N
1 Ui(t) is a geometric sum,

N,U1(t), U2(t), . . . are independent such that P(N = n) = (1 − ρ)ρn with ρ = G(t), and
the Ui(t) have distribution G | t , defined as G conditioned to (0, t). That is, the cumulative
distribution function is P(Ui(t) ≤ s) = G(s)/G(t) for s ≤ t and P(Ui(t) ≤ s) = 1 for s > t ,
and the density is g(s)/G(t) for s ≤ t and 0 for s > t . By the general theory for geometric
sums [19] (see also [6]) we know that

P(S(t) > x) ∼ C1(t)e
−γ (t)x,

where γ (t) is the solution of

1 =
∫ t

0
eγ ug(u) du (2.1)

and

C1(t) = Ḡ(t)

γ (t)m(t)
, where m(t) =

∫ t

0
ueγ (t)ug(u) du.

Since P(X(t) > x) = P(S(t) > x − t), we therefore have

H̄t (x) = P(X(t) > x) ∼ C2(t)e
−γ (t)x, where C2(t) = eγ (t)tC1(t).

From [6] we also quote the two-sided Lundberg inequality:

e−γ (t)x ≤ H̄t (x) ≤ eγ (t)te−γ (t)x . (2.2)
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It was shown in [6] that, for a general G, γ (t) ∼ µḠ(t) as t → ∞, where 1/µ is the mean
of G. For the exponential case, we shall need certain refinements and related results that are
proved/collected in Appendix A. In particular,

µe−µt ≤ γ (t) = µe−µt + µ2te−2µt + o(te−2µt ) as t → ∞, (2.3)

γ (t) = − µ log t

t (1 + o(1))
as t ↓ 0. (2.4)

For a random T , we write the total task time as X = X(T ), with the understanding that N
and the Ui(t) have the same distributions as above given T = t . Thus, the distribution H is
given by H(x) = ∫ ∞

0 Ht(x)f (t) dt .

2.2. Rare event simulation

Consider the probability z(x) of an eventA(x) (in our case, {X > x}) that is rare in the sense
that z(x) → 0 as x → ∞. As in [4], we call a random variable Z(x) an estimator for z(x) if
Z(x) can be generated by simulation and is unbiased, i.e. EZ(x) = z(x). A family {Z(x)}x>0
of such estimators (or just Z(x)) is said to have bounded relative error if varZ(x) = O(z(x)2)
as x → ∞, and to be logarithmically efficient if varZ(x) = O(z(x)2−ε) for all ε > 0 (cf. [4,
p. 159]). In practice, the estimate of z(x) for a given x is obtained by averaging R replications
of Z(x), and Gaussian confidence intervals can be produced in a standard way by computing
the empirical variance.

If we (in a nonstandard terminology) define the logarithmic efficiency factor of an estimator
Z(x) as

sup

{
p > 0 : varZ(x)

z(x)p
→ 0

}
,

then the crude Monte Carlo method has logarithmic efficiency factor 1 and an estimator that
is logarithmically efficient or has bounded relative error has logarithmic efficiency factor at
least 2.

The traditional approach to exhibiting estimators with logarithmic efficiency factor greater
than 1 via importance sampling is to provide an asymptotic description of the conditional
distribution P(· | A(x)) given the rare eventA(x), and to use this as an importance distribution.
The philosophy is that sampling from P(· | A(x)) yields a zero-variance estimator, so that an
importance distribution that is close hopefully has a small variance.

As already touched upon in Section 1, the computational effort also needs to be taken into
account; this is often neglected in the rare event simulation literature. We defer the discussion
of this to Section 6.

3. Simulation algorithms for a deterministic T ≡ t

In this section we discuss efficient algorithms for the simulation of z(x) = P(S(t) > x)

for a fixed t . One of them (Algorithm 3.1, below) has bounded relative error. Replacing x by
x − t gives algorithms with bounded relative error for the simulation of H̄t (x) (the case of a
random T is the subject of the rest of the paper and requires more work). The other approach,
Algorithm 3.2, below, is conceptually simpler and reduces variance by an exponential factor,
but does not have bounded relative error.

We will allow G to be general, not necessarily exponential. We write

Sn = U1 + · · · + Un, τ(x) = inf{n : Sn > x}.
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Recall from Section 2 that G | t denotes G conditioned to (0, t), and define Gγ(t) as the
distribution on (0, t) with density gγ (t)(y) = eγ (t)yg(y), 0 < y < t .

The following algorithm is a special case of the one given in [4, Exercise 2.3, p. 172] for
general geometric sums (see also [10]). An outline of the approach is given in Appendix B. We
need to determine a certain root and to define a corresponding exponentially tilted distribution.
When specialized to the RESTART setting, it is easy to see that the root is precisely γ (t) and that
the exponentially tilted distribution becomesGγ(t) (see Remark B.1). This yields the following
algorithm.

Algorithm 3.1. Generate U1, U2, . . . from Gγ(t). Stop the simulation at τ(x) and return the
estimator Z1(x) = exp{−γ (t)Sτ(x)}.

Noting that Gγ(t) has finite mean because the support is finite, the results of Appendix B at
once give the following result.

Theorem 3.1. The estimator Z1(x) is unbiased for z(x) and has bounded relative error. That
is, varγ (t) Z1(x) = O(z(x)2) as x → ∞.

Random variate generation from Gγ(t) as well as root finding may sometimes be tedious.
A simpler idea is to take advantage of the special feature of bounded support (which is not
available for general geometric sums) and simulate using the distribution G | t . This leads to
the following algorithm.

Algorithm 3.2. Generate U1(t), U2(t), . . . from G | t . Stop the simulation at τ(x) and return
the estimator Z2(x) = G(t)τ(x).

Proposition 3.1. The estimator Z2(x) is unbiased for z(x). Furthermore, var | t Z2(x) is of
order e−(γ (t)+ξ(t))x , where ξ(t) is the solution of

1 = G(t)

∫ t

0
e(γ (t)+ξ(t))ug(u) du (3.1)

and satisfies 0 < ξ(t) < γ (t). That is, the logarithmic efficiency factor is 1+ξ(t)/γ (t) ∈ (1, 2).

Proof. For u < t , we have

P | t (U1 ∈ du) = g(u) du

G(t)
= e−γ (t)u

G(t)
Pγ (t)(U1 ∈ du),

and it follows by a standard extension to stopping times (see, e.g. [4, pp. 131–132]) that

E | t Z2(x) = Eγ (t)

[
exp{−γ (t)Sτ(x)}

G(t)τ(x)
Z2(x)

]

= Eγ (t) exp{−γ (t)Sτ(x)}
= Eγ (t) Z1(x)

= z(x),

showing unbiasedness.
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Since (3.1) can be rewritten as 1 = G(t)Eγ (t) exp{ξ(t)U1}, it follows in a similar way that

E | t Z2(x)
2 = Eγ (t)

[
exp{−γ (t)Sτ(x)}

G(t)τ(x)
Z2(x)

2
]

= Eγ (t)[exp{−γ (t)Sτ(x)}G(t)τ(x)]
= Eγ (t)

[
exp{−(γ (t)+ ξ(t))Sτ(x)} exp{ξ(t)Sτ(x)}

(Eγ (t) exp{ξ(t)U1})τ(x)
]
.

Using |Sτ(x) − x| ≤ t , we show that this expression is bounded above and below by a constant
times

e−(γ (t)+ξ(t))x Eγ (t)

[
exp{ξ(t)Sτ(x)}

(Eγ (t) exp{ξ(t)U1})τ(x)
]
.

But the expectation is the expectation of an exponential Wald martingale stopped at τ(x). The
condition for optional stopping (see [3, p. 362]) is trivially satisfied because, by positivity, τ(x)
is automatically finite for any exponential tilting of Pγ (t). Thus, the expectation is indeed 1,
and so the order of var | t Z2(x) is as asserted.

To complete the proof, it remains to show that 0 < ξ(t) < γ (t). Clearly, the right-hand side
of (3.1) is increasing in ξ(t). The value at ξ(t) = 0 is G(t) < 1 because of the definition of
γ (t). This implies that ξ(t) > 0. Similarly, ξ(t) < γ (t) will follow if we can show that the
value at γ (t) is greater than 1. But this value is

G(t)

∫ t

0
e2γ (t)ug(u) du = G(t)2 E | t exp{2γ (t)U1} > G(t)2(E | t exp{γ (t)U1})2 = 1,

where in the last step we have used the fact that the definition of γ (t) can be rewritten as

1 =
∫ t

0
eγ (t)ug(u) du = G(t)E | t exp{γ (t)U1}.

The last part of Proposition 3.1 shows that Algorithm 3.2 does indeed provide exponential
variance reduction (at rate ξ(t)), but does not have bounded relative error (for this, ξ(t) ≥ γ (t)

would be necessary). However, the loss of efficiency vanishes as t → ∞.

Proposition 3.2. Assume that Ĝ[ε] = ∫ ∞
0 eεtG(dt) < ∞ for some ε > 0. Then ξ(t) ∼ γ (t) ∼

µe−µt as t → ∞. That is, the logarithmic efficiency factor of Algorithm 3.2 goes to 2 as t → ∞.

Proof. See Appendix A.

Algorithm 3.2 is simpler than Algorithm 3.1 as it avoids finding the root and exponential tilt-
ing. However, forG exponential, the exponentially tilted distribution is truncated exponential.
So, both algorithms require simulation from an exponential distribution truncated to (0, t) (but
with different parameters,µ1 = µ−γ (t) forAlgorithm 3.1 andµ2 = µ forAlgorithm 3.2). This
can easily be done by inversion: generate the random variable as − log((1− exp{−µit})V/µi)
with V uniform on (0, 1); cf. [4, Remark 2.4, p. 39]. Another way is acceptance–rejection: use
the exponential(µi) distribution as proposed and reject values greater than t .

4. Simulation algorithms for a gamma-like T

If T is random, we expect a largeX to occur as a consequence of a large T . Thus, the general
principles of importance sampling surveyed in Section 2.2 suggest looking for the conditional
distribution of T given X > x. Our result is as follows.
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Theorem 4.1. Assume that F is gamma-like, as in (1.1). Then the conditional distribution of
Y = Y (x) = µT − log x − logµ given X > x has a limit in distribution as x → ∞, namely,
the distribution Qβ with density

q(y) = exp{−e−y − βy}
	(β)

, −∞ < y < ∞, where β = λ

µ
. (4.1)

One simple message is that T givenX > x is of order log x/µ. When λ = µ,Q = Q1 is the
Gumbel distribution familiar from extreme value theory. The cumulative distribution function
at y is exp{−e−y}. When λ 
= µ, Qβ is an exponentially tilted Gumbel distribution, and the
properties are less standard. We return to this at the end of the section.

Proof of Theorem 4.1. Specializing Corollary 1.1 (or Theorem 2.2) of [6], we obtain

P(X > x) ∼ c	(β)

µα+β
logα−1 x

xβ
. (4.2)

Let f (t; x) be the density of T on the event X > x, that is, f (t; x) dt = P(T ∈ dt, X > x),

and let t (x, y) = (log x + logµ + y)/µ. Then the density q(y | x) at y of Y given X > x is
f (t (x, y); x)/µP(X > x). Using (2.3) gives

γ (t (x, y)) = e−y

x
+ O

(
log x

x2

)
.

It then follows from the two-sided Lundberg inequality, (2.2), that

P(X > x | T = t (x, y)) ∼ exp{−e−y},
and so

q(y | x) = 1

µP(X > x)
f (t (x, y); x)

= 1

µP(X > x)
f (t (x, y))P(X > x | T = t (x, y))

∼ µα+β−1

c	(β)

xβ

logα−1 x
ct (x, y)α−1e−λt (x,y) exp{−e−y}

∼ µα+β−1

c	(β)

xβ

logα−1 x
c

logα−1 x

µα−1 x−βµ−βe−βy exp{−e−y}
= q(y).

But Scheffé’s theorem (see [7, p. 224]) states that convergence of densities implies convergence
in distribution.

Theorem 4.1 suggests that in the case of a gamma-like F as in (1.1), we should proceed as
follows in order to simulate z(x) = P(X > x).

Algorithm 4.1. Generate Y from the density q in (4.1), and let T = t = (log x+ logµ+Y )/µ.
If T ≤ 0, return the estimator Z3(x) = 0. Otherwise, calculate the likelihood ratio

W = f (T )

µq(µT − log x − logµ)
= f (T )x−βµ−1−β	(β) exp{µe−µT x + λT },

compute the crude Monte Carlo estimator Z0(x − t) for P(S(t) > x − t) = P(X(t) > x), and
return the estimator Z3(x) = WZ0(x − t).
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The algorithm is motivated by the general principle of rare event simulation, i.e. that we
should use a distribution close to the conditional distribution given the rare event (hereX > x)
as the importance distribution; cf. [4, Example 1.3, p. 128]. Indeed, the suggested importance
distribution for T corresponds to the asymptotic description of the conditional distribution
provided by Theorem 4.1, and the event X > x is not rare when T is simulated from q. The
following result shows that the algorithm does indeed have a substantially smaller asymptotic
variance than the crude Monte Carlo method, but does not get close to bounded relative error
or logarithmic efficiency.

Proposition 4.1. The estimator Z3(x) has logarithmic efficiency factor at most 3
2 , and exactly

equal to 3
2 provided

∫ t0
0 f (t)2 dt < ∞ for all t0 < ∞.

In the proof, we shall need the following analytical result.

Lemma 4.1. For any t0 > 0,

∫ ∞

t0

exp{−ke−ηtx}ctδ−1e−λt dt ∼ 	(λ/η)

ηδkλ/η

logδ−1 x

xλ/η
as x → ∞.

Proof. This lemma is of the same type as a crucial step in the proof of Equation (4.2) of [6],
but since its proof is short, we reproduce it here: substituting s = e−ηt , the integral becomes

∫ e−ηt0

0
e−ksx (− log s)δ−1

ηδ
sλ/η−1 ds,

and Karamata’s Tauberian theorem (see [8, Theorems 1.5.11 and 1.7.1]) implies that this has
the asserted asymptotics.

Proof of Proposition 4.1. From EZ0(x − t)2 = P(S(t) > x − t) = H̄t (x), we obtain, by
conditioning upon T = t , for a given ε > 0,

EZ3(x)
2 =

∫ ∞

0
H̄t (x)

f (t)2

µ2q(µt − log x − logµ)2
µq(µt − log x − logµ)

µ
dt

= x−β
∫ ∞

0
H̄t (x)f (t)

2	(β)µ−1−β exp{µe−µtx + λt} dt (4.3)

≥ k1x
−β

∫ ∞

t0

e−γ (t)x t2α−2e−2λt exp{µe−µtx + λt} dt

≥ k1x
−β

∫ ∞

t0

t2α−2 exp{−O(te−2µt )x − λt} dt

≥ k1x
−β

∫ ∞

t0

t2α−2 exp{−k2(ε)e
−(2−ε)µtx − λt} dt

∼ k3(ε)x
−β log2α−2 x

xλ/(2−ε)µ

= k3(ε)
log2α−2 x

xβ(1+1/(2−ε)) ,

where we have used the lower Lundberg bound in (2.2), the right-hand side inequality in (2.3),
and Lemma 4.1. Combining this with (4.2) shows that the logarithmic efficiency factor is at
most 1 + 1/(2 − ε) and, therefore, at most 3

2 .
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For the lower bound, first note that the upper Lundberg bound implies that (4.3) can be
bounded by

k5x
−β

∫ ∞

0
f (t)2 exp{ψ(t, x)− λt} dt,

whereψ(t, x) = γ (t)t−γ (t)x+µe−µtx. Let I1 and I2 denote the contributions to this integral
from the intervals 0 < t ≤ t0 and t > t1, respectively, where t0 and t1 will be specified later.
Then, with k7 = supt>t0 γ (t)t , we have, by the right-hand side of (2.3),

I2 ≤ k6

∫ ∞

t1

t2α−2 exp{k7 − k8te
−2µtx − λt} dt

≤ k9

∫ ∞

t1

t2α−2 exp{−k8t1e−2µtx − λt} dt

∼ k10
log2α−2 x

xλ/2µ
.

For x ≥ 1, we can bound I1 by
∫ t0

0
f (t)2eψ(t)x dt,

where ψ(t) = γ (t)t − γ (t)+ µe−µt . Using (2.4) yields

ψ(t) ≤ −µ log t

(
1 − 1

t

)
(1 + O(1))+ µ as t ↓ 0.

This shows that if t0 is small enough then ψ(t) < 0 uniformly in 0 < t ≤ t0. Hence, using the
assumption on f 2 shows that I1 goes to 0 exponentially fast as x → ∞.

Replacing t1 by a smaller value, we may assume that t1 ≤ t0 and then (4.3) is bounded by
x−β(I1 +I2), which in turn, by the above estimates, is O(x−δ) for all δ < 3β/2. This completes
the proof.

Remark 4.1. An essential ingredient of the proof of Proposition 4.1 is informally to replace
P(S(t − x) > x) for a large t by its Cramér–Lundberg approximation C2(t)e−γ (t)x (note that
C2(t) ∼ 1 and γ (t) ∼ µe−µt as t → ∞, so that the final approximation is exp{−µe−µtx});
to justify this, Lundberg’s inequality (and in part more refined estimates like (2.4)) was used.
The same procedure will be used in Section 5, but since we have carefully given the details for
the present case, we will not do so there.

To improve Algorithm 4.1, we involve further properties of the conditional distribution given
the rare event, namely, the behaviour of U1(t), . . . , UN(t)(t) as used in Algorithms 3.1 and 3.2
(it is not a priori obvious that this will help since the eventX > x is not rare when T is simulated
from q).

Algorithm 4.2. Generate Y from the density q in (4.1), and let T = t = (log x+ logµ+Y )/µ.
If T ≤ 0, return Z4(x) = 0. Otherwise, calculate the likelihood ratio

W = f (t)

µq(µt − log x − logµ)
,

compute one of the two estimators Zi(x − t) of Section 3 (i = 1 or 2), and return Z4(x) =
WZi(x).
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Theorem 4.2. The estimator Z4(x) has bounded relative error provided
∫ t0

0 f (t)2 dt < ∞ for
all t0 < ∞.

Proof. The proof is a slight variant of the last part of the proof of Proposition 4.1. First
let i = 1. From EZ1(x − t)2 ≤ e−2γ (t)(x−t), we obtain, by conditioning upon T = t and
replacing H̄ (t) by e−2γ (t)(x−t) in (4.3),

EZ4(x)
2 ≤ x−β

∫ ∞

0
e2γ (t)t f (t)2 exp{−2γ (t)x + µe−µtx + λt} dt.

Again, let I1 and I2 denote the contributions to this integral from the intervals 0 < t ≤ t0 and
t > t1, respectively. The proof that I1 goes to 0 exponentially fast follows the same lines as
above. Furthermore,

I2 ≤ k12

∫ ∞

0
exp{2k7}t2α−2 exp{−µe−µtx − λt} dt ∼ k13

log2α−2 x

xβ
.

This shows the assertion for i = 1. For i = 2, we have

EZ4(x)
2 ≤ k14

∫ ∞

0
eγ (t)t+ξ(t)t f (t)2 exp{−γ (t)x − ξ(t)x + µe−µtx + λt} dt.

For I1, we insert ξ(t) ≥ 0, and are then back to the same integral as above. For I2, we use
ξ(t) ≥ k15γ (t) for t ≥ t1 and can then use just the same estimates.

For the implementation of Algorithms 4.1 and 4.2, we note the following results.

Proposition 4.2. The distribution Qβ in (4.1) has cumulative distribution function

Qβ(y) = 1

	(β)

∫ ∞

e−y
uβ−1e−u du.

Proof. In the identity Qβ(y) = ∫ y
−∞ q(v) dv, substitute u = e−v .

Corollary 4.1. Assume that β > 1. Then a random variable Y with distribution Qβ can be
generated as Y = − logZβ , where Zβ is gamma with density zβ−1e−z/	(β).

Proof. We have P(− logZβ ≤ y) = P(Zβ ≥ e−y) = P(Y ≤ y).

5. Simulation algorithms for heavy-tailed F

In this section we assume that F is regularly varying; cf. (1.2). As in Section 4, the first
step in the design of simulation algorithms is to look for the conditional distribution of T given
X > x, that is, for an analogue of Theorem 4.1. We then face the difficulty that the results of
[6] (more precisely part (2:1) of Theorem 2.1 of [6]) gives only logarithmic asymptotics. Part
(i) of the following result improves this to sharp asymptotics.

Theorem 5.1. Assume that G is exponential with rate µ, and that f (t) = L(t)/tα+1 with
α > 0 and L(x) slowly varying as t → ∞. Then,

(i) H̄ (x) ∼ L(log x)µα/α logα x;
(ii) P(X > x, T > log x/µ) ∼ L(log x)µα/α logα x;

(iii) P(X > x, T ≤ log x/µ) ∼ L(log x)µαE1(µ)/ logα+1 x.

Here E1(z) = ∫ ∞
z
v−1ev dv denotes the exponential integral; cf. [1, p. 228].
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Note that the asymptotics in (i) and (ii) are the same, whereas the one in (iii) exhibits a
lighter tail. Thus, the main contribution to P(X > x) comes from the event T > log x/µ.

Proof of Theorem 5.1. Obviously, (i) is a trivial consequence of (ii) and (iii), so it suffices
to prove (ii) and (iii).

First consider (ii). Appealing to Remark 4.1 and substituting t = log x/µ+ y log x/µ, we
obtain

1

L(log x)
P

(
X > x, T >

log x

µ

)

∼ 1

L(log x)

∫ ∞

log x/µ
exp{−µe−µtx}L(t)

tα+1 dt

= 1

L(log x)

∫ ∞

0
exp{−µe−y log x}L(log x(1/µ+ y/µ))

log x(1/µ+ y/µ)α+1

log x

µ
dy

∼ µα

logα x

∫ ∞

0

R(x, y)

(1 + y)α+1 dy, (5.1)

where R(x, y) = L(log x(1/µ + y/µ))/L(log x). Choose 0 < δ < α. By the Potter bounds
(see [8, p. 25]), there exist k and y0 such that R(x, y) ≤ kyδ for all y > y0, and by the
uniform convergence theorem for slowly varying functions (see [8, p. 22] with ρ = 0 and
a = 1/µ), R(x, y) → 1 uniformly on (0, y0). Since R(x, y) → 1 on (y0,∞) also, dominated
convergence applies to the integral over this interval, and we conclude that (5.1) asymptotically
behaves like

µα

logα x

∫ ∞

0

1

(1 + y)α+1 dy = µα

α logα x
,

as claimed.
For (iii), P(X > x, T ≤ t0) goes to 0 exponentially fast (at rate at least γ (t0)) and can be

neglected. Furthermore (cf. Remark 4.1 again),

P

(
X > x, t0 ≤ T ≤ log x

µ

)
∼

∫ log x/µ

t0

exp{−µe−µtx}L(t)
tα+1 dt

=
∫ log x/µ−t0

0
exp{−µey} L(log x/µ− y)

(log x/µ− y)α+1 dy

∼ L(log x)µα+1

logα+1 x

∫ ∞

0
exp{−µey} dy,

where in the last step we have used similar arguments as in the proof of (ii). But substituting
v = ey , the integral becomes E1(µ)/µ.

Theorem 5.2. Assume thatF is regularly varying, as in (1.2). Then the conditional distribution
of Y = µT/ log x−1 givenX > x has a limit in distribution as x → ∞, namely, the Pareto(α)
distribution Pα with density pα(y) = α/(1 + y)α+1, y > 0.

It follows that, givenX > x, the order of T is again log x/µ. However, whereas the deviation
of T from log x/µ remained of constant order in the gamma case, it now has to be scaled by
log x.

Proof of Theorem 5.2. We recall from Theorem 5.1(i) that

P(X > x) ∼ L(log x)µα

α logα x
.
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Let t (x, y) = log x(1 + y)/µ. Then γ (t (x, y)) ∼ µe−µt(x,y) = µe−y log x/x, and, therefore
(cf. Remark 4.1), P(S(t (x, y)) > x − t (x, y)) ∼ exp{−γ (t (x, y))x} → 1.With f (t; x) as in
the proof of Theorem 4.1, it follows that the density of Y given X > x is

log x

µP(X > x)
f (t (x, y); x)P(S(t (x, y)) > x − t (x, y))

∼ α logα+1 x

µα+1L(log x)

L(log x(1 + y)/µ)µα+1

(1 + y)α+1 logα+1 x

∼ α

L(log x)

L(log x)

(1 + y)α+1

= pα(y).

For simulation of P(X > x), Theorem 5.2 suggests using the distribution of T (Y ) =
(Y log x + log x)/µ as the importance distribution for T . This choice meets the difficulty that
the support of T (Y ) is (log x/µ,∞), so that absolute continuity fails and the algorithm can
only estimate P(X > x, T > log x/µ).

Algorithm 5.1. Generate Y from the Pareto density pα , and let T = t = (Y log x + log x)/µ.
Calculate the likelihood ratio

W = µf (t)

log xpα(µt/ log x − 1)
= f (t)µα+2tα+1

α logα+2 x
.

Compute the crude Monte Carlo estimatorZ0(x− t) for P(S(t) > x− t). Return the estimator
Z5(x) = WZ0(x − t) for P(X > x, T > log x/µ).

That only the crude Monte Carlo estimator of P(S(t) > x − t) needs to be used comes of
course from the fact that the event X > x is not rare even in the whole support of T (Y ).

Theorem 5.3. Algorithm 5.1 has bounded relative error for estimating

P

(
X > x, T >

log x

µ

)
.

Proof. Appealing to Remark 4.1, we obtain

EZ5(x)
2 ∼

∫ ∞

log x/µ
P(S(t) > x − t)

f (t)2µαtα+1

α logα x
dt

≤ k15

logα x

∫ ∞

log x/µ
exp{−µe−µtx}L(t)

2

t2α+2 t
α+1 dt

≤ k15

logα x

∫ ∞

log x/µ

L(t)2

tα+1 dt

∼ k15L(log x/µ)2

log2α x

∼ k15L(log x)2

log2α x

∼ k16 P

(
X > x, T >

log x

µ

)2

,
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where we have used Karamata’s theorem for the integral asymptotics and (in the last step)
Theorem 5.1(i).

To provide an unbiased estimate of P(X > x), we thus need an estimator of P(X > x, T ≤
log x/µ). We first note the following result.

Theorem 5.4. The conditional distribution of Y = log x −µT givenX > x and T ≤ log x/µ
has a limit in distribution as x → ∞, namely, the distribution Rµ with density rµ(y) =
exp{−µey}/E1(µ), y > 0.

It follows that, given X > x and T < log x/µ, the order of T is again log x/µ. However,
whereas the deviation of T from log x/µ had to be scaled by log x when T was unrestricted as
in Theorem 5.2, it now remains constant.

Proof of Theorem 5.4. Let t (x, y) = log x/µ− y/µ. Since T = log x/µ−Y/µ, it follows
that the density of Y given X > x and T ≤ log x/µ is asymptotically

1

µP(X > x, T ≤ log x/µ)
f (t (x, y))P(S(t (x, y)) > x − t (x, y))

∼ logα+1 x

µα+1L(log x)E1(µ)
f

(
log x

µ
− y

µ

)
exp{−µe−µ(log x/µ−y/µ)x}

∼ exp{−µey}
E1(µ)

.

We are now led to the following algorithm for estimating P(X > x, T ≤ log x/µ).

Algorithm 5.2. Generate Y from the density rµ, and let T = t = log x/µ − Y/µ. Calculate
the likelihood ratio

W = f (t)

µrµ(log x − µt)
= E1(µ)f (t) exp{µe−µtx}

µ
.

Compute one of the two estimators Zi(x − t) of Section 3 (i = 1 or 2). Return the estimator
Z6(x) = WZi(x − t) of P(X > x, T ≤ log x/µ).

Theorem 5.5. Algorithm 5.2 has bounded relative error for estimating

P

(
X > x, T ≤ log x

µ

)
.

Proof. First let i = 1. Then

EZ6(x)
2 =

∫ log x/µ

0

EZ1(x − t)2E1(µ)f (t)
2 exp{µe−µtx}

µ
dt

≤ k17

∫ log x/µ

0

e−2γ (t)xf (t)2 exp{µe−µtx}
µ

dt.

A similar argument as in the proof of Theorem 5.3, together with bound (2.3) for γ (t), shows
that this is asymptotically bounded by

k17

∫ log x/µ

t0

e−2γ (t)x L(t)
2

t2α+2 exp{µe−µtx} dt

≤ k17

∫ log x/µ

t0

exp{−µe−µtx}L(t)
2

t2α+2 dt
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= k18

∫ log x−µt0

0
exp{−µey} L(log x/µ− y/µ)2

(1 + log x/µ− y/µ)2α+2 dy

∼ k19
L(log x)2

log2α+2 x

∼ k20 P(X > x)2.

We omit the details for i = 2.

6. Computational effort

As already noted by Hammersley and Handscombe [14], considering variance alone as
the performance measure of an algorithm may be misleading: we also need to consider the
computational effort. They even quantified this effect in the statement

The efficiency of a Monte Carlo process may be taken as inversely proportional to the product
of the sampling variance and the amount of labor expended in obtaining this estimate.

The philosophy behind this is the fact that the ‘inverse efficiency’, varZ timeZ, of a
simulation estimator Z can be identified with the variance per unit computer time; here timeZ
is the expected computer time to generate Z. See [4, III.10] and [13]. The quantity timeZ is
of course hard, if not impossible, to identify in a mathematically rigorous way and timeZ is,
obviously, also highly implementation dependent, but in many situations a natural definition
(up to a constant) suggests itself. For example, when simulating a random walk with positive
drift up to its first passage of level x, it seems reasonable to take timeZ = x. A good example
of this is the Siegmund algorithm for simulating the probability P(M > x) that the maximum,
M , of a random walk with light tails exceeds x; see [4, Chapter VI]. Here varZ decays
asymptotically exponential, varZ ∼ D1e−θx for some D1, and θ > 0 so that varZ and
varZ timeZ = D1xe−θx do not differ much in order (the same is true for many other standard
rare event algorithms in the presence of light tails and the running time issue is therefore often
ignored in the literature). However, with power tails, more disturbing examples exist. For
example, for a random walk with increments with tail (say) c/(1 + x)α, α > 1, Blanchet and
Glynn [9] gave an algorithm with varZ ∼ D2/x

2α−2 and timeZ ≈ x. Thus, varZ timeZ is
one power larger than varZ.

Crude Monte Carlo simulation of P(X > x) was implemented in [17] by generating X and
returning Z(x) = 1{X>x}. The effort in generating X is roughly proportional to the number of
restarts, which in turn is roughly proportional toX. Thus, we take timeZ(x) = EX and obtain

varZ(x) timeZ(x) = P(X > x)(1 − P(X > x))EX ≈ P(X > x)EX. (6.1)

For the algorithms considered so far in this paper, we can take timeZ(x) ≈ x and the bounded
relative error property implies that

varZ(x) timeZ(x) ≈ P(X > x)2x. (6.2)

To compare these two expressions, we consider the case of F being exponential(λ) and
G being exponential(µ). With β = λ/µ, the probability of no restarts is

∫ ∞
0 λe−(µ+λ)t dt

= β/(1+β). Thus, we have many restarts for small β and few restarts for large β. Furthermore,
P(X > x) is of order x−β by (4.2). In particular, EX = ∞ when β ≤ 1, and then the advantage
of (6.2) over (6.1) is of course enormous. However, for β > 1, (6.1) is of order x−β and (6.2)
is of order x1−2β , which is only notably better if β is large.
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The calculation does not, however, pay full justice to the crude Monte Carlo simulation,
because in order to simulate P(X > x), it is not necessary to generateX, onlyX 1{X≤x}. Thus,
when β < 1, (6.1) has to be replaced by

varZ(x) timeZ(x) ≈ P(X > x)E[X 1{X≤x}] ≈ x1−2β,

where in the last step we have used

E[X 1{X≤x}] =
∫ x

0
P(X > s) ds ≈

∫ x

x0

s−β ds ≈ x1−β.

Thus, the order is of the same magnitude as (6.2). In order words, the importance sampling
algorithm does not lead to any asymptotic improvement in the work-corrected variance.

This raises the problem of finding a complexity O(1) but still efficient estimator of P(S(t) >
x − t). We may note that this probability is simply the probability that the largest interevent
time of a Poisson(µ) process M on the interval [0, x − t] is at most t (counting 0 and x − t

as epochs). An explicit expression for this is known (see [12], and also [11] and [18]), given
the number, m = M(x − t), of Poisson epochs, but is an alternating series with orderm terms,
so using this formula would not reduce the complexity from O(x) and could potentially be
numerically unstable. We have therefore not pursued this approach, but suggest a different
solution in the next section.

7. An algorithm exploiting Lundberg’s inequality

The problem in the analysis of Section 6 is the order of increase in timeZ(x) in x. We now
suggest an alternative estimator having the property timeZ(x) = O(1). The estimator may lead
to increased confidence bands, in particular for small x, but the problem vanishes as x → ∞.

The idea is to avoid the O(x) simulation of P(S(t) > x− t) by just replacing this probability
by its upper and lower Lundberg bounds. For example, in the gamma-exponential setting of
Section 4, we have the following algorithm.

Algorithm 7.1. Generate Y from the density q in (4.1), and let T = t = (log x+ logµ+Y )/µ.
If T ≤ 0, return the estimator Z3(x) = 0. Otherwise, calculate γ (t) and the likelihood ratio

W = f (T )

µq(µT − log x − logµ)
= f (T )x−βµ−1−β	(β) exp{µe−µT x + λT },

and let Z′
8(x) = We−γ (t)x and Z′′

8 (x) = We−γ (t)(x−t). Repeat R times and compute the
empirical means z′8(x) and z′′8(x), and the variances s′7(x)2 and s′′7 (x)2. Return the interval

(
z′8(x)− 1.96s′8(x)

R1/2 , z′′8(x)+ 1.96s′′8 (x)
R1/2

)
. (7.1)

We immediately obtain the following theorem.

Theorem 7.1. Interval (7.1) is an asymptotic 95% confidence interval for P(X > x). That is,
as R → ∞, it contains P(X > x) with probability at least 95%.

The limiting probability that (7.1) contains P(X > x) is of course somewhat larger than
95%. How much larger depends on how tight the Lundberg bounds are, but as noted above,
these bounds are asymptotically tight as t → ∞.
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8. Numerical examples

We took F as exponential(1) and G as exponential(0.8). Thus, we are in the setting of
Section 4 with α = 1 and β = 1.25. We consider 10 x values, 10i/2, i = 1, . . . , 10; in this
range, z(x) = P(X > x) varies approximately from 10−1 to 10−6.

We first implemented Algorithm 4.2 with R = 1000 replications.
Figure 1 shows the 95% two-sided confidence band (the scale is log10–log10, as for all

figures except Figure 4). As is seen, the precision is excellent even with the modest value
R = 1000, except for small values of x. The error appears to be decreasing in x, and this is
further confirmed by Figure 2 which gives the relative error of the algorithm, as defined by the
halfwidth of the confidence band divided by the simulated values. It may even look as if the
relative error goes to 0, even if our theoretical analysis suggests it has a limit. This could be
explained by Algorithm 3.2 becoming more and more efficient as t → ∞ because ξ(t) ↑ γ (t)

log10(x)
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Figure 1: Confidence bands for Algorithm 4.2.
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Figure 2: Relative precision of Algorithm 4.2.
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Figure 3: Confidence bands for Algorithm 7.1.
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Figure 4: Lundberg bounds.

as t → ∞ (cf. Proposition 3.2) and by the fact that the limit γ (t) is not attained in the range of
x values under consideration.

In comparison to Figure 1, the confidence bands produced by Algorithm 7.1 are given in
Figure 3. The precision is comparable to Algorithm 4.2 except for the smallest values of x. Of
course, we expect this to be due to the inaccuracy of the Lundberg bounds for small x, and this
is confirmed by Figure 4, which shows the upper and lower Lundberg bounds divided by the
simulated values.

Table 1 gives a comparison of the running times for Algorithms 4.2 and 7.1, more precisely,
the ratio between the running time for Algorithm 7.1 and the running time for Algorithm 4.2 as
produced by the MATLAB©R commands ‘tic’ and ‘toc’.

It is seen that the root finding in Algorithm 7.1 (implemented using the MATLAB routine
‘fsolve’) is indeed much more expensive than the O(x) complexity of Algorithm 4.2 for small
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Table 1.

x 101/2 101 103/2 102 105/2 103 107/2 104 109/2 105

407 377 228 157 50 18 4.8 1.2 0.35 0.12

or moderate x. The overall picture when comparing this with the precision discussed above is
that Algorithm 4.2 is preferable for small or moderate x, but Algorithm 7.1 is preferable for
large x.

Finally, we took the opportunity to use our MATLAB program to check the accuracy of
the approximations of [6], more precisely, (4.2) in the present paper. Figure 5 shows the
simulated values versus the approximations, and Figure 6 shows the relative error of the
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Figure 5: Simulated values versus approximations.
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Figure 6: Relative error of approximation.
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approximations, as defined by the absolute value of the difference between the simulated value
and the approximation divided by the simulated value. The relative error indeed appears to go
to 0, as expected, and the roughly linear shape of Figure 6 (cf. the log-log scale) suggests a
roughly power-like rate of decrease.

Appendix A. Root properties

It was shown in [6] that, for a general G, γ (t) ∼ µḠ(t) as t → ∞. If G is exponential(µ),
as assumed in the following, we shall need certain refinements and related results. First note
that the defining equation (2.1) for γ (t) means that

1 = ϕ(γ (t)), where ϕ(γ ) = µ

γ − µ
(e(γ−µ)t − 1) (A.1)

(note that t is fixed but suppressed in the definition of ϕ).

Proof of (2.3). The right-hand side of (2.1) (or, equivalently, of ϕ(γ )) is an increasing
function of γ . Taking γ = µe−µt , this right-hand side becomes

µ

µ− µe−µt (1 − exp{(µe−µt t − µt)}) < µ

µ− µe−µt (1 − e−µt ) = 1.

Therefore, the desired solution γ (t) must be greater than µe−µt .
Since

∞∑
k=2

γ (t)k

k!
∫ t

0
ykµe−µy dy ≤ γ (t)2

∞∑
k=0

γ (t)k

k!
∫ ∞

0
yk+2µe−µy dy

= γ (t)2
∫ ∞

0
µy2eγ (t)y−µy dy

∼ γ (t)2
∫ ∞

0
µy2e−µy dy

= O(γ (t)2)

as t → ∞, we further obtain

1 =
∫ t

0
(1 + γ (t)y)µe−µy dy + O(γ (t)2)

= 1 − e−µt + γ (t)
1

µ
− γ (t)

∫ ∞

t

µye−µy dy + O(γ (t)2)

= 1 − e−µt + γ (t)
1

µ
− γ (t)te−µt − γ (t)

µ
e−µt + O(γ (t)2)

= 1 − e−µt + γ (t)
1

µ
− γ (t)te−µt (1 + o(1))+ O(γ (t)2).

This implies the right-hand side inequality in (2.3).

Equivalent forms of (A.1) are

γ (t) = µeγ (t)t−µt , (A.2)

γ (t) = µ+ log γ (t)− logµ

t
(A.3)
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Figure 7: Simulated values versus approximations.

(indeed, (A.2) follows from (A.1) by trivial algebra, and (A.3) follows from (A.2) by taking
logarithms). Obviously, there is no explicit solution. Since some of our algorithms require
computation of γ (t) for a large number of t , an efficient numerical scheme is needed. In our
numerical examples, we used the MATLAB routine ‘fsolve’. Another possibility is involving
the Lambert W function (the root of θe−θ = y, in terms of which the solution of (A.2) can be
expressed). In software environments, where general root-finding algorithms are unavailable,
we may use traditional Newton–Raphson iteration, γn+1 = γn − ϕ(γn)/ϕ

′(γn), or iterative
schemes based upon (A.2) and (A.3).

Proposition A.1. We have γ (t) > µ, γ (t) = µ, or γ (t) < µ according to whether µt < 1,
µt = 1, or µt > 1, respectively. Furthermore, γ = γ (t) can be computed as γ = limn→∞ γn,
where in the case µt > 1,

γn+1 = µ exp{γnt − µt},
and the initial value γ0 is chosen with γ0 < µ, and in the case µt < 1,

γn+1 = µ+ log γn − logµ

t
,

and the initial value γ0 is chosen with γ0 > µ.

The need to distinguish between the casesµt < 1 andµt > 1 arises because (A.2) and (A.3)
have the additional fixed point µ, and γ (t) in (A.2) is attractive when µt > 1, but repulsive
when µt > 1 (similar remarks apply to (A.3)); see Figure 7.

Proof of Proposition A.1. The first statement follows immediately since the right-hand side
of (2.1) equals µt when γ = µ and is increasing in γ .

The convergence properties follow by standard arguments based upon convexity and con-
cavity; see Figure 7.

Proof of (2.4): γ (t) = −µ log t/t (1 + o(1)) as t ↓ 0. Define γδ = µ − δ log t/t − logµ.
Then the right-hand side of (A.2) is of order t−δ for γ = γδ , whereas the left-hand side is of
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order | log t |/t . If δ > 1, t−δ increases faster than | log t/t |, and since the right-hand side of
(A.2) is convex and the left-hand side is affine, the desired solution, γ (t), must be less than γδ .
A similar argument shows that γ (t) > γδ when δ < 1.

Proof of Proposition 3.2. That γ (t) ∼ µḠ(t) is shown in [6]. For ξ(t) ∼ γ (t), note that
the definition of ξ(t) means that

1 = G(t)

∫ t

0
e(γ (t)+ξ(t))ug(u) du

= (1 − Ḡ(t))

∫ t

0
eγ (t)u[1 + ξ(t)u+ ξ(t)O(t2ξ(t))]g(u) du

= (1 − Ḡ(t))

(
1 + ξ(t)

µ
+ o(ξ(t))

)
, (A.4)

where we have used ξ(t) < γ (t) ∼ µḠ(t) together with Ĝ[ε] < ∞ to infer that t2ξ(t) → 0,
and Ĝ[ε] < ∞ and dominated convergence to infer that

∫ t

0
ueγ (t)ug(u) du = 1

µ
+ o(1).

However, (A.4) is only possible if ξ(t) ∼ µḠ(t).

Appendix B. Simulation of geometric sums

Let U∗
1 , U

∗
2 , . . . be i.i.d. with common distribution G∗ concentrated on (0,∞), and let N

be an independent geometric random variable, P(N = n) = (1 − ρ)ρn for n = 0, 1, . . . .
Furthermore, define

S∗
n = U∗

1 + · · · + U∗
n , z(x) = P(S∗

N > x), τ ∗(x) = inf{n : S∗
n > x}.

In [4, Exercise 2.3, p. 172] (see also [10]), the following algorithm is suggested for simulation
of z(x) and it is claimed that it has bounded relative error as x → ∞. (Note that the expression
for the estimator in loc. cit. contains typos, corrected here.) As a preliminary, compute γ ∗, the
solution of

1 = ρ

∫ ∞

0
eγ

∗yG∗(dy). (B.1)

Let G∗ be the distribution defined by Gγ ∗(dy)/G∗(dy) = ρeγ
∗y . To generate one replication

of the estimator, proceed as follows.

Algorithm B.1. Generate U∗
1 , U

∗
2 , . . . from Gγ ∗ . Stop the simulation at τ ∗(x) and return the

estimator Z∗(x) = exp{−γ ∗Sτ∗(x)}.
To understand the algorithm, first note that z(x) = P(τ ∗(x) ≤ N). Next, let Pγ ∗ be the

probability measure such that theU∗
i are i.i.d. with distributionGγ ∗ andN remains independent

and geometric. Then, by the definition of Gγ ∗ ,

P(U∗
1 ∈ du) = 1

ρ
Eγ ∗ [exp{−γ ∗U∗

1 };U∗
1 ∈ du].
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By a standard extension to stopping times (see, e.g. [4, pp. 131–132]), this implies that

z(x) = Eγ ∗
[

1

ρτ
∗(x) exp{−γ ∗Sτ∗(x)}; τ ∗(x) ≤ N

]
= Eγ ∗ exp{−γ ∗S∗

τ(x)},

where we have used the fact that N remains geometric and independent of the U∗
i under Pγ ∗ ,

i.e. the estimator Z∗(x) is unbiased.
Furthermore,

Eγ ∗ Z∗(x)2 = Eγ ∗ exp{−2γ ∗Sτ(x)} ≤ e−2γ ∗x = O(z(x)2),

where in the last step we have used the standard Cramér–Lundberg asymptotics z(x) ∼
C∗e−2γ ∗x valid with 0 < C∗ < ∞ provided that Gγ ∗ has finite mean. This shows that
Z∗(x) has bounded relative error.

Remark B.1. For the geometric sum occurring in RESTART with T ≡ t , as discussed in
Section 2, we have ρ = G(t) and G∗ is the distribution with density g(y)/G(t), 0 < y < t .
Therefore, γ ∗ is the root γ (t) defined in (2.1), and Gγ ∗ is the distribution with density
eγ (t)yg(y), 0 < y < t .

Remark B.2. Algorithm B.1 may appear rather different from the best algorithm known for
Poisson (rather than geometric) sums discussed in [4, Section VI.2d], where one exponentially
tilts the whole distribution of S∗

N , leading to a new compound sum with changed Poisson
parameter and exponentially tilted increment distribution. The tilting parameter, θ = θ(x),
is determined by E S∗

N exp{θS∗
N }/E exp{θS∗

N } = x. Performing the same operation for a
geometric sum S∗

N , we can easily check that the relevant θ has limit γ ∗ so that the two algorithms
asymptotically coincide.
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