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We ‘derive’ the eddy-damped quasi-normal Markovian model (EDQNM) by a method
that replaces the exact equation for the Fourier phases with a solvable stochastic
model, and we analyse the entropy budget of the EDQNM. We show that a quantity
that appears in the probability distribution of the phases may be interpreted as the
rate at which entropy is transferred from the Fourier phases to the Fourier amplitudes.
In this interpretation, the decrease in phase entropy is associated with the formation
of structures in the flow, and the increase of amplitude entropy is associated with
the spreading of the energy spectrum in wavenumber space. We use Monte Carlo
methods to sample the probability distribution of the phases predicted by our theory.
This distribution contains a single adjustable parameter that corresponds to the triad
correlation time in the EDQNM. Flow structures form as the triad correlation time
becomes very large, but the structures take the form of vorticity quadrupoles that do
not resemble the monopoles and dipoles that are actually observed.
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1. Introduction
In the ‘standard model’ of two-dimensional turbulence, due mainly to Kraichnan

(1967), Leith (1968) and Batchelor (1969) (hereafter KBL), forcing at an intermediate
wavenumber produces a leftward (to lower wavenumber) cascade of energy in a k−5/3

inertial range, and a rightward enstrophy cascade in a k−3 inertial range. Simple
and compelling arguments predict the existence of these ranges, but nothing in the
standard model anticipates the isolated coherent vortices discovered by McWilliams
(1984). Although numerical experiments show these vortices to be well defined and
ubiquitous, there is as yet no compelling theoretical explanation for their existence:
if they had never been observed, no one would be greatly surprised. However, Benzi,
Patarnello & Santangelo (1988) suggested that the vortex population statistics obey
a self-similar scaling that resembles the KBL scaling of the inertial ranges. This
self-similarity, which is supported by the work of Burgess, Dritschel & Scott (2017),
encourages the hope that the coherent vortices might yet fit within the standard model
of two-dimensional turbulence. For a recent review of two-dimensional turbulence,
see Boffetta & Ecke (2012).

† Email address for correspondence: rsalmon@ucsd.edu
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Entropy budget and coherent structures 807

Turbulence closure models of the direct-interaction family provide a quantitative
theoretical foundation for the inertial range theory of two-dimensional turbulence,
but it is generally agreed that these models have nothing to say about the formation
of structures in the flow: the closure models predict the evolution of the Fourier
amplitudes, whereas the structures clearly depend on the phases of the Fourier
coefficients. However, it is possible to ‘derive’ a well-known spectral closure model,
the eddy-damped quasi-normal Markovian model (EDQNM), by a method that
exposes the closure hypothesis as an assumption about the phases of the Fourier
coefficients. By examining this hypothesis on phases, we investigate flow structures
that are consistent with the EDQNM. For an introduction to the EDQNM see Orszag
(1970) and Lesieur (1987).

The plan of this paper is as follows. In § 2 we ‘derive’ the EDQNM by a method
that replaces the exact equation for the Fourier phases with a solvable stochastic
model. This method of derivation demonstrates the primary importance of the principle
of entropy increase in the EDQNM. Section 3 analyses the entropy budget of the
EDQNM. We show that a quantity that appears in the probability distribution of
the phases may be interpreted as the rate at which entropy is transferred from the
Fourier phases to the Fourier amplitudes. In this interpretation, the decrease in phase
entropy is associated with the formation of structures in the flow, and the increase
of amplitude entropy is associated with the spreading of the energy spectrum in
wavenumber space. In § 4 we use Monte Carlo methods to sample the probability
distribution of the phases predicted by our theory. This distribution contains a single
adjustable parameter that corresponds to the triad correlation time in the EDQNM.
Flow structures form as the triad correlation time becomes very large, but the
structures take the form of vorticity quadrupoles that do not resemble the monopoles
and dipoles that are actually observed. Section 5 concludes with an assessment of
our results.

2. EDQNM

We consider freely decaying, two-dimensional turbulence governed by

ζt + v · ∇ζ = ν∇2ζ , (2.1)

where v = (−ψy, ψx) is the fluid velocity and ζ = ∇2ψ is the vorticity. The flow is
2π-periodic in x and y. We introduce the Fourier representation

ψ(x, t)=
∑

k

ψ̂k(t)ei(k·x), (2.2)

where x = (x, y) and the sum is over integer pairs k = (kx, ky) in the wavenumber
plane. We let

ψ̂k = Ak exp(iφk), (2.3)

where the amplitude Ak is real and positive, and the phase φk is real. Since ψ is real,
A−k = Ak and φ−k =−φk. The Fourier transform of (2.1) is

d
dt

Ak =
1
2

∑
p

∑
q

(k× p)
q2
− p2

k2
ApAq cos(φk + φp + φq)δk+p+q − νk2Ak (2.4)
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808 R. Salmon

and
d
dt
φk =

1
2Ak

∑
p

∑
q

(k× p)
p2
− q2

k2
ApAq sin(φk + φp + φq)δk+p+q, (2.5)

where k= |k|.
To obtain EDQNM we regard Ak as definite (i.e. statistically sharp) and φk as

random. Then the average of (2.4) is

d
dt

Ak =
1
2

∑
p

∑
q

(k× p)
q2
− p2

k2
ApAq〈cos ξkpq〉δk+p+q − νk2Ak, (2.6)

where
ξkpq ≡ φk + φp + φq (2.7)

and 〈 〉 denotes the average. Closure at the level of the spectrum requires that 〈cos ξkpq〉

be replaced by an approximation that involves only the amplitudes. To this end, we
use (2.5) to write the evolution equation,

d
dt
ξkpq =

d
dt
(φk + φp + φq)

=
1

2Ak

∑
r

∑
s

(k× r)
r2
− s2

k2
ArAs sin(ξkrs)δk+r+s

+
1

2Ap

∑
r

∑
s

(p× r)
r2
− s2

p2
ArAs sin(ξprs)δp+r+s

+
1

2Aq

∑
r

∑
s

(q× r)
r2
− s2

q2
ArAs sin(ξqrs)δq+r+s, (2.8)

for ξkpq. Next we rewrite the right-hand side of (2.8) as the sum of ‘direct interaction’
terms, in which r and s are equal to k, p, or q, and a (generally much larger)
remainder term that includes all the other values of r and s. Thus,

d
dt
ξkpq = Bkpq sin ξkpq + Rkpq, (2.9)

where

Bkpq = (k× p)
(

q2
− k2

p2

AkAq

Ap
+

k2
− p2

q2

AkAp

Aq
+

p2
− q2

k2

ApAq

Ak

)
δk+p+q (2.10)

and Rkpq is the remainder. Finally, we set

Rkpq =Wkpq(t), (2.11)

where Wkpq(t) is a white noise process with a prescribed covariance,

〈Wkpq(t)Wkpq(t′)〉 = 2Dkpqδ(t− t′). (2.12)

Note that Bkpq and ξkpq are invariant to permutations in their vector subscripts. The
same must therefore be true of Rkpq, Wkpq and Dkpq.
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Entropy budget and coherent structures 809

Suppose that Dkpq have been chosen. Let Pk,p,q(ξ , t) be the probability distribution
of ξkpq. Then, temporarily omitting the vector subscripts to ease the notation, we find
that P(ξ , t) obeys the Fokker–Planck equation,

∂P
∂t
+
∂

∂ξ
(B sin ξ · P)=D

∂2P
∂ξ 2

. (2.13)

This is a separate equation for every triad. In statistically steady or slowly evolving
flow, the time derivative is negligible, and the solution, which must be periodic in ξ ,
is

P(ξ)=C exp(−B cos ξ/D), (2.14)

where C is the normalization constant. From (2.14) it follows that

〈cos ξ〉 =−
I1(B/D)
I0(B/D)

, (2.15)

where I0 and I1 are modified Bessel functions. If B/D is small, then

P(ξ)≈ (1− B cos ξ/D)/2π (2.16)

and, restoring the vector subscripts,

〈cos ξk,p,q〉 ≈−
1
2

Bkpq

Dkpq
. (2.17)

Let Uk = (1/2)k2A2
k be the energy in mode k. Multiplying (2.6) by k2Ak and using

(2.10) and (2.17), we obtain the spectral evolution equation

d
dt

Uk =
∑

p

∑
q

θkpq
(k× p)2

k2p2q2
[(q2
− p2)2UpUq − 2(q2

− p2)(q2
− k2)UkUq]δk+p+q

− 2νk2Uk, (2.18)

where
θkpq ≡

1
Dkpq

. (2.19)

Equation (2.18) is the standard form of the EDQNM. In the usual interpretation,
θkpq, which is symmetric with respect to permutations of its vector subscripts, is the
average time over which the phases corresponding to wavenumbers k, p, q remain
correlated. The θkpq are often considered to be free parameters of the theory. A typical
choice is

Dkpq =µ(k)+µ(p)+µ(q), (2.20)

where
µ(k)= g

∑
|p|<|k|

p2Up (2.21)

is proportional to the strain in scales larger than k−1, and g is an order-one
dimensionless constant. The choice (2.20)–(2.21) is consistent with Kolmogorov
theory, and the constant g may be adjusted to agree with measured values of
Kolmogorov’s constant in either inertial range. At the two extremes,
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810 R. Salmon

Kraichnan’s (1971) test field model offers a systematically derived expression for
θkpq, while Frisch, Lesieur & Brissaud (1974) simply take θkpq to be a constant
(independent of k, p, q). Experience shows that solutions of (2.18) are relatively
insensitive to the precise choice of θkpq.

Equation (2.17) is the critical assumption that removes all of the phase information
to yield a closed evolution equation (2.18) in terms of the spectral amplitudes alone.
The validity of (2.17) rests upon the validity of (2.18), which has proved itself in many
applications. However, if (2.17) is valid, then the information that it contains about
the phases may also have value. That is, equation (2.17) may contain information
about the structure of the flow field. In the remainder of this paper we explore this
possibility. However, first we recall some important properties of the EDQNM.

When ν = 0, equation (2.18) conserves all the quantities that are conserved by the
exact dynamics and can be expressed solely in terms of the amplitudes Ak. These
include the energy,

E=
∑

k

Uk, (2.22)

and the enstrophy
Z =

∑
k

k2Uk. (2.23)

This may be shown directly from (2.18), but it is immediate from (2.6), which holds
for arbitrary values of the amplitudes and phases on its right-hand side (arbitrary
initial conditions), and thus for arbitrary 〈cos ξk,p,q〉. Thus, the choice (2.17) that
corresponds to the EDQNM is not determined by the need to maintain conservation
laws. Instead, as we shall see, it is more closely associated with the principle of
entropy increase.

Carnevale, Frisch & Salmon (1981) showed that when ν = 0, equation (2.18)
satisfies an H-theorem. In our notation,

d
dt

∑
k

2 ln Ak > 0. (2.24)

Here we offer a brief justification of (2.24). In the following section we give a more
thorough discussion of entropy and its evolution in the EDQNM.

The reasoning behind (2.24) runs as follows. First, it is easy to show that when
ν= 0 the motion in the phase space spanned by the real and imaginary parts of ψk is
non-divergent. That is, Liouville’s theorem applies. The variables Ak and φk represent
polar coordinates in the subspace corresponding to mode k. The entropy associated
with a knowledge of the amplitudes alone is proportional to the logarithm of the
volume in phase space that corresponds to the set of amplitude values {Ak}. For each
Ak, this volume corresponds to a circle of radius Ak in the subspace corresponding to
mode k. Assuming no knowledge of φk, each point on this circle is equally probable.
As the circumference of the circle is proportional to its radius, the entropy must be
proportional to

S=
∑

k

2 ln Ak =
∑

k

ln Uk. (2.25)

The principle of mixing in phase space dictates that the amplitude values
successively predicted by the EDQNM must correspond to successively larger values
of the entropy; mixing in phase space can only degrade information. Thus, the
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Entropy budget and coherent structures 811

EDQNM must obey dS/dt > 0. We check this by direct calculation. First we
rewrite (2.24) as

dS
dt
=

∑
[kpq]

2

(
Ȧk

Ak
+

Ȧp

Ap
+

Ȧq

Aq

)
, (2.26)

where the sum is over all the triads in the system, and the overdots denote the rate
of change due to the other two members of the triad. As the initial conditions are
arbitrary and may be such that only a single triad is excited, each triad must make a
positive contribution to (2.26). That is, the summand in (2.26) must be positive. (We
do not count permutations as separate triads. Thus, if [kpq] occurs in the sum, then
[pkq] does not.) By (2.6) the entropy increase due to triad [kpq] is

2

(
Ȧk

Ak
+

Ȧp

Ap
+

Ȧq

Aq

)
= (k× p)

q2
− p2

k2

ApAq

Ak
〈cos ξkpq〉 + cyc(k, p, q)

= −Bkpq〈cos ξkpq〉, (2.27)

where Bkpq is given by (2.10). Thus,

dS
dt
=−

∑
[kpq]

Bkpq〈cos ξkpq〉. (2.28)

Equation (2.28) holds for (2.6) in general. For the EDQNM closure hypothesis (2.17),
we obtain

dS
dt
=

∑
[kpq]

1
2

Bkpq
2

Dkpq
> 0. (2.29)

Salmon (1998) argues that the H-theorem associated with the EDQNM is not merely
an incidental property of the theory, but rather that it, along with the conservation laws
for energy and enstrophy, “virtually determines” the form that the theory can take.
From (2.28) we see that the EDQNM closure hypothesis is not the only hypothesis
that satisfies (2.24). The more general hypothesis

〈cos ξkpq〉 ∝−

(
Bkpq

Dkpq

)2n+1

(2.30)

satisfies the conservation and entropy properties for any integer n. The EDQNM
hypothesis (2.17) corresponds to n= 0. The hypothesis (2.15), which does not assume
small B/D, also satisfies (2.24), and in fact (2.30) are just the terms that appear in
an expansion of (2.15) in powers of B/D.

If the viscosity is switched off, and if the dynamics (2.1) is truncated to a finite
number of modes (typically k < kc for some cutoff kc), then the system evolves to
a statistically steady state that maximizes (2.25) subject to the constraints (2.22)
and (2.23). This easy variational problem leads to the ‘absolute equilibrium’ state
discovered by Kraichnan (1967), namely

Uk =
1

α + βk2
, (2.31)

where α and β are determined by (2.22) and (2.23) and the prescribed values of E
and Z.
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812 R. Salmon

Carnevale (1982) tested these ideas in direct numerical simulations of inviscid,
spectrally truncated, two-dimensional turbulence. He found that the entropy (2.25)
increases monotonically, asymptotically approaching the maximum entropy state
corresponding to (2.31). It is noteworthy that his computations of entropy involve no
averaging of any kind: the Uk were calculated from a single numerical simulation at
a single time. The addition of the many logarithms evidently cancels the statistical
fluctuations of the terms.

In this section, we have adopted the viewpoint that the EDQNM is solely concerned
with the Fourier amplitudes, and that the entropy measures our complete ignorance of
the phases. However, it is possible to regard the stochastic model (2.9) underlying the
EDQNM as a model of both the amplitudes and the phases. In this expanded view,
entropy measures our combined ignorance of both. In the following section we adopt
this second point of view. However, one important conclusion is already apparent. A
complete lack of information about the phases corresponds to independent, uniformly
distributed φk. (Such distribution also corresponds to the ‘random initial conditions’
that are commonly used in numerical simulations of freely decaying turbulence.)
Uniformly distributed phases correspond to uniformly distributed ξk,p,q and, hence,
to 〈cos ξkpq〉 = 0. By (2.6) this shuts off the evolution of the Ak and the associated
increase in the entropy (2.25) associated with the amplitudes. To permit the entropy
increase associated with the amplitudes, the phases must reduce their entropy from
the maximum value associated with uniform distribution. This reduction is associated
with the formation of flow structure. We shall see that structures form suddenly as
the parameter Dkpq is slowly decreased. Although we are always very far away from
the absolute equilibrium regime represented by (2.31), this sudden appearance of
structure resembles the phase changes described by equilibrium statistical mechanics.

3. Entropy in the EDQNM

As it is usually presented, the EDQNM, equation (2.18), is a closed set of equations
in the averages of the spectral amplitudes 〈Ak〉. In the loose derivation of § 1, we
have omitted the averaging operators from the amplitudes, but now we consider them
to be restored. From this new point of view, equations (2.6) and (2.17) are closed
equations in the statistical variables 〈Ak〉 and 〈cos ξk,p,q〉. We can go further, replacing
the slowly varying approximation (2.17) by an evolution equation for 〈cos ξk,p,q〉 that
is more faithful to (2.13). For example,

d
dt
〈cos ξk,p,q〉 =−

Bkpq

2

(
1− 〈cos ξk,p,q〉

2
)
−Dkpq〈cos ξk,p,q〉. (3.1)

The time-independent solution of (3.1) agrees with (2.17) when Dkpq is large. For
small Dkpq, 〈cos ξk,p,q〉 shares the property of (2.15) that it approaches +1 if Bkpq is
negative and −1 if Bkpq is positive. Moreover, (3.1) respects the realizability condition
|〈cos ξk,p,q〉|6 1. For a further discussion of (3.1), see appendix A.

If we adopt (3.1) in place of (2.17), then the closure consists of coupled evolution
equations, (2.6) and (3.1), in the statistical variables 〈Ak〉 and 〈cos ξk,p,q〉, which now
enter the approximation on an equal footing. These statistical variables are what
Kaneda (2007) calls the “representatives” of the closure. In his opinion, the choice
of representatives is the most important step in the construction of a theory. As he
states, “. . . the same closure equations can be derived by several ways of reasoning,
while similar ways of reasoning result in different closure equations for different
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Entropy budget and coherent structures 813

representatives. These facts show that what makes the difference between closures is
the choice of representatives, rather than the method of derivation”.

However, every closure theory must pass a crucial test of self-consistency. At every
time, knowledge of the theory’s representatives, in our case 〈Ak〉 and 〈cos ξk,p,q〉,
corresponds to an inexact knowledge of the system’s precise state. The volume of
phase space that is consistent with the values of the representatives measures our
ignorance of the precise system state. Entropy is the logarithm of that volume. By
the principle of mixing in phase space, the entropy must, in the absence of external
forcing and damping, increase with time. For any given closure theory, the entropy
can, in principle, be expressed as a function of the theory’s representatives. Then the
closure equations can be tested to see whether they obey the principle of entropy
increase. Information theory provides the means of calculating the entropy associated
with given values of the representatives.

To illustrate the essential idea, suppose that the system consists of one amplitude
A and one phase φ. Let P(A, φ) be the joint probability distribution of A and φ. It
must satisfy ∫∫

A dA dφ P(A, φ)= 1. (3.2)

Let 〈 f (A, φ)〉 be the single representative, where f is an arbitrarily chosen function.
According to information theory, the probability distribution associated with the given
value 〈 f 〉 is that distribution which maximizes

S=−
∫∫

A dA dφ P ln P (3.3)

subject to the constraint ∫∫
A dA dφ fP= 〈 f 〉 (3.4)

and the normalization requirement (3.2). This variational problem leads to

P(A, φ)=C exp(−αf (A, φ)), (3.5)

where C is the normalization constant and the Lagrange multiplier α is chosen to
satisfy (3.4). If α(〈 f 〉) can be determined, then (3.5) can be substituted back into (3.3)
to give an expression for the entropy S(〈 f 〉) as a function of the representative. To be
consistent with the idea that mixing in phase space always degrades information, the
closure equation for the evolution of 〈 f 〉 must satisfy

d
dt

S(〈 f 〉) > 0. (3.6)

In the case of the EDQNM, the representatives are 〈Ak〉 for every k, and 〈cos ξkpq〉

for every triad [kpq]. The analogue of (3.5) is

P[Ak, φk] = PA[Ak]Pφ[φk], (3.7)

where
PA =

∏
k

Ck exp(−αkAk) (3.8)
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814 R. Salmon

and

Pφ =Cφ exp

(
−

∑
[kpq]

β[kpq] cos(φk + φp + φq)

)
. (3.9)

The Lagrange multipliers are αk and β[kpq]. With no loss in generality, we take each
sub-distribution to be separately normalized. Owing to the factorization property (3.7),
the entropy

S=−
∫∫
· · ·

∫ ∏
k

Ak dAk dφk P ln P= SA + Sφ (3.10)

is the sum of the entropy

SA =−

∫∫
· · ·

∫ ∏
k

Ak dAk PA ln PA, (3.11)

associated with the amplitudes, and the entropy,

Sφ =−
∫∫
· · ·

∫ ∏
k

dφk Pφ ln Pφ, (3.12)

associated with the phases. The factorization (3.8) of PA into distributions of a single
representative is a great convenience. By easy calculations we find that αk = 2/〈Ak〉,
Ck = 4/〈Ak〉

2, and
SA =

∑
k

2 ln〈Ak〉 (3.13)

to within irrelevant additive constants.
The determination of Sφ as a function of the representatives is much more difficult:

the equations that determine β[kpq] as functions of 〈cos(φk + φp + φq)〉 are highly
coupled. In appendix A we offer an approximate method for calculating Sφ based on
(3.1). However, the evolution equation for

Sφ =−
∑
[kpq]

∫
dξ[kpq]P(ξ[kpq]) ln P(ξ[kpq]) (3.14)

is easily obtained from the Fokker–Planck equation (2.13). Suppressing vector
subscripts, let

S=−
∫

dξ P(ξ) ln P(ξ) (3.15)

be the phase entropy associated with a single triad. Then (2.13) implies

dS
dt
= B〈cos ξ〉 +D

∫
dξ

1
P

(
∂P
∂ξ

)2

. (3.16)

Now we collect results. Restoring the viscosity terms, we find that the rate of
change of the entropy associated with the amplitudes is

dSA

dt
=

∑
k

2
〈Ak〉

d〈Ak〉

dt
=−

∑
[kpq]

Bkpq〈cos ξkpq〉 −
∑

k

2νk2. (3.17)
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For the entropy change associated with the phases, we obtain from (3.14) and (3.16)

dSφ
dt
=

∑
[kpq]

Bkpq〈cos ξkpq〉 +
∑
[kpq]

Dkpq

∫
dξkpq

1
P(ξkpq)

(
∂P
∂ξ
(ξkpq)

)2

. (3.18)

Thus, the total entropy of the stochastic model associated with the EDQNM obeys

dS
dt
=

dSA

dt
+

dSφ
dt
=

∑
[kpq]

Dkpq

∫
dξkpq

1
P(ξkpq)

(
∂P
∂ξ
(ξkpq)

)2

−

∑
k

2νk2. (3.19)

The white noise term in (2.9) corresponds to the Dkpq terms in (3.18)–(3.19) and is
the source of entropy in the model. It directly increases the entropy of the phases.
The phase entropy is transferred to amplitude entropy by the Bkpq terms in (3.17)
and (3.18). The resulting increase in SA is associated with the spreading of the energy
spectrum in wavenumber space. The viscosity term, the last term in (3.19), is the
entropy sink.

If viscosity is switched off, then SA steadily increases as the energy and enstrophy
spread to higher and lower wavenumbers in the spectrum. However, if the
wavenumbers are truncated to a finite set, then the spectrum evolves to the state
(2.31) of maximum SA. This corresponds to

〈Ak〉
2
=

2
αk2 + βk4

, (3.20)

which is equivalent to (2.31). For amplitudes of the form (3.20), the Bkpq defined
by (2.10) vanish. The entropy transfer from the phases to the amplitudes therefore
also vanishes. Phase entropy builds up until the phases reach their maximum-entropy
state of uniform distribution. In this state, P(ξ) is constant, ∂P/∂ξ therefore vanishes,
and the entropy source, the last term in (3.18), turns off. This absolute equilibrium
state of amplitudes given by (3.20) and independent, uniformly distributed phases is
of course far outside the regime of physical interest. The physically interesting cases
are those in which entropy flows continuously through the system, from the phases to
the amplitudes, to be finally destroyed by viscosity. The transfer of entropy from the
phases to the amplitudes requires that 〈cos ξkpq〉 and Bkpq be non-vanishing and have
opposite signs.

The white noise forcing of the phases, which represents the random action of the
fluid on itself, determines the rate at which entropy flows through the system. The
intensity of this forcing reflects the level of the turbulence in the flow. In numerical
simulations of freely decaying turbulence, coherent vortices are observed to form
as the turbulence between vortices subsides. This suggests that the formation of the
vortices might be associated with decreasing Dkpq in the EDQNM. In the following
section, we investigate this possibility.

4. Monte Carlo computations
In this section we construct flow fields ψ(x, y) that are consistent with the EDQNM

model in the limit Dkpq→ 0. We take the amplitudes Ak as given. That is, we specify
the energy spectrum E(k) of the flow. Then, according to the EDQNM, the probability
distribution of the phases is

P[φk] =C
∏
[kpq]

exp(−Bkpq cos(φk + φp + φq)/Dkpq), (4.1)
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where C is the normalization constant, and Bkpq, defined by (2.10), is determined
by the specified amplitude values. The distribution (4.1) is the product of the
distributions given by (2.14), one for every triad in the system. It is a complicated
distribution because each phase appears in many triads. For simplicity sake (and with
the justification offered below) we take Dkpq = D0, a constant. Then (4.1) takes the
form

P[φk] =Ce−H/D0, (4.2)

where
H =

∑
[kpq]

Bkpq cos(φk + φp + φq). (4.3)

The sum is over all the triads in the system. Our strategy is to sample the probability
distribution (4.2) for states {φk} consisting of a value for every Fourier phase in the
flow. Each such state, combined with the prescribed amplitudes {Ak}, corresponds to
a snapshot ψ(x, y) of the flow.

The limit D0→0 corresponds to subsiding intensity of the turbulence. As the energy
spectrum E(k) remains fixed, this limit corresponds to an increasingly long time over
which the system has evolved before arriving at the state corresponding to E(k) from a
more concentrated initial spectrum. In other words, D0→ 0 corresponds to increasing
the time in which flow structures can form.

The distribution (4.2) has the form of the Boltzmann distribution with H playing the
role of energy and D0 playing the role of temperature. However, H is not the energy.
Rather, it is the negative of the rate at which the entropy associated with the energy
spectrum increases owing to the transfer of energy between modes. By the discussion
in the previous section, it is also the rate at which entropy is transferred from the
phases to the amplitudes. Compare (4.3) with (2.28) and (3.17)–(3.18).

We consider 2π-periodic flow with n = 128 grid points in each direction.
Experiments show that the results do not depend sensitively on the prescribed
energy spectrum. In the calculations described below, we specify the spectrum to be
proportional to

E(k)=
k2

(1+ (k/k0)5)
e−5k/kc, (4.4)

with the constant k0 chosen to give a maximum of E(k) at k = 4. The exponential
factor, with kc= n/2, provides a smooth falloff in the dissipation range. We normalize
E(k) by the assumption 〈ζ 2

〉 = 1, where ζ =∇2ψ is the vorticity. In this section the
angle brackets denote the spatial average over the periodic domain. These requirements
fix the values of the n2/2 independent Ak and, hence, the values of the Bkpq defined
by (2.10). The n2/2 independent phases φk will be drawn from the distribution (4.2).
By the standards of direct numerical simulation, n = 128 corresponds to extremely
poor spatial resolution. Unfortunately, the inefficiency of the Monte Carlo algorithm
constrains n to be relatively small.

We adopt the ‘Metropolis algorithm’ for sampling the distribution (4.2). We begin
with an arbitrarily chosen state in which φk are independent and uniformly distributed
on the interval [−π,+π]. The probability of this state is given by (4.2). At each step
in the algorithm, we randomly perturb a single φk (being careful that φ−k experiences
the opposite perturbation), and we compute the probability of the perturbed state. If,
according to (4.2) the perturbed state has a higher probability than the unperturbed
state, then the perturbed state is added to our collection of states and the cycle
continues. If, on the other hand, the perturbed state has a lower probability, then the
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ratio of probabilities is compared with a random number drawn from a distribution
that is uniform on the interval [0, 1]. If this random number is less than the ratio
of probabilities, then the perturbed state is accepted despite its lower probability. It
can be shown that the set of states assembled in this manner is consistent with the
probability distribution (4.2). See, for example, Kalos & Whitlock (2008).

There are n2/2 values of φk to be perturbed. Each phase perturbation affects O(n2)
triads. The total number of triads, the number of terms in the sum (4.3), is O(n4).
At each successive value of D0 we perform phase perturbations until the statistics of
ψ(x, y) cease to change. This typically requires several perturbations of every phase.
Thus, the number of operations required to produce a representative set of flow fields
for a given D0 is O(n4). This is what limits the size of n.

As the Metropolis algorithm proceeds, we gradually reduce the ‘temperature’ D0.
This procedure, taken to its extreme, is called ‘simulated annealing’ and is typically
used to find minima of H. In our case, the minima of H correspond to maxima in the
transfer of entropy from the Fourier phases to the amplitudes. For large D0, the phases
are nearly uniformly distributed (as in (2.14)) and there is no evidence of structures
in the flow. However, as D0 is reduced, structures form suddenly, like crystals in a
supersaturated solution. Once formed, these structures prove to be surprisingly stable
against further reduction in D0. That is, the corresponding stream function field ψ(x, y)
changes little as D0 is further reduced. It is as if H[φk] has many local minima – the
rate of entropy increase has many local maxima – in which the system can be trapped.

The sudden appearance of structures is always associated with a sudden increase in
two statistics that measure intermittency in the flow. These are the kurtoses of vorticity
and strain, defined by

Kζ =
〈ζ 4
〉

〈ζ 2〉2
, Kσ =

〈σ 4
〉

〈σ 2〉2
, (4.5a,b)

respectively. Here ζ 2
= (ψxx+ψyy)

2 and σ 2
= (ψxx−ψyy)

2
+ 4ψ2

xy. The spatial averages
〈ζ 2
〉 and 〈ζ 4

〉 are conserved by (2.1) when ν = 0, and 〈ζ 2
〉 = 〈σ 2

〉 for any periodic
ψ(x, y). Thus, only KS can increase in inviscid two-dimensional flow. However, our
limit D0 → 0 corresponds to a lengthening time over which viscosity can act to
increase Kζ (as is actually observed in numerical simulations of two-dimensional
turbulence). We note that the viscosity appears in the exact amplitude equation (2.4),
but not in the exact phase equation (2.8) or in the stochastic model (2.9)–(2.12).
We also note that, in the inviscid limit, the EDQNM conserves 〈ζ 2

〉 but makes no
prediction about 〈ζ 4

〉.
Figure 1 shows the vorticity kurtosis Kζ (solid lines) and strain kurtosis Kσ

(dashed lines) in four completely independent Monte Carlo computations in which
D0 is reduced, in stages, from D0= 10−4 to 10−7. The lighter lines correspond to the
kurtosis values in the four calculations, and the heavier lines represent the average
of the four. The four calculations differ only in the sequence of random numbers
used by the Monte Carlo algorithm. Each of the four calculations terminates with
ψ(x, y) ‘frozen’ into a state exhibiting a small number of vorticity quadrupoles. These
terminal states are shown in figures 2 and 3.

The appearance of the quadrupoles is associated with the increase in the kurtoses
that begins around D0 = 10−6. This is far below the D0 = O(1) value stipulated by
(2.20)–(2.21) for our choice of 〈ζ 2

〉 = 1. We note that (2.20)–(2.21) predict that µ(k)
varies only logarithmically with k in the enstrophy inertial range, where E(k) ∝ k−3,
and that our range of k= 1–64 is relatively small. Thus, it is the size of D0 and not
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FIGURE 1. The vorticity kurtosis Kζ (solid lines) and strain kurtosis Kσ (dashed lines)
in four Monte Carlo computations in which the parameter D0 is reduced, in stages, from
D0 = 10−4 to 10−7. The lighter lines correspond to the four separate computations, which
differ only in the sequence of random numbers used in the computation. The two heavier
lines represent the average of the four computations. The appearance of flow structures is
associated with the rapid increase in the kurtoses that begins around D0 = 10−6.

FIGURE 2. The stream function in the four independent Monte Carlo calculations at the
value D0 = 10−7. Heavier lines correspond to larger values of the stream function.

its constancy that is unrealistic here. It can be shown that statistically independent,
uniformly distributed phases correspond to Kζ = 3 and Kσ = 2. Figure 1 shows that
these values persist right up until the rapid increase in the kurtoses that coincides with
the appearance of the quadrupoles.
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FIGURE 3. The vorticity corresponding to the stream function in figure 2.

5. Discussion
No concept generates greater controversy in turbulence theory than does the concept

of entropy. This is especially true when the entropy concept is applied to turbulence
that is far outside the state of ‘absolute equilibrium’ corresponding to (2.31). It is
therefore worth emphasizing that all of our computational results follow from the
distribution (2.14) that was obtained from the stochastic model (2.9) with no mention
of entropy whatsoever. On the other hand, it would seem absurd to investigate the
distribution (2.14) without offering some interpretation of the quantity B cos ξ that
defines it.

The author will not hide his disappointment that the Monte Carlo computations
described in § 4 yielded only a sparse set of quadrupoles rather than the rich field
of monopoles and dipoles that is actually observed in direct numerical simulations
of two-dimensional turbulence, and that the quadrupoles appeared at values of D0
that are well below the ‘normal operating range’ of the EDQNM. It must reluctantly
be admitted that our calculations probably have more to say about the stochastic
model (2.9) than about actual two-dimensional turbulence. A better outcome evidently
requires a solvable stochastic model that is more faithful to (2.8) than is (2.9).

Ayala, Doering & Simon (2018) find the ψ(x, y) that maximizes the rate,

d
dt

∫∫
dx dy∇ζ · ∇ζ , (5.1)

of palinstrophy increase, for fixed values of the Reynolds number and palinstrophy,
assuming periodic flow governed by (2.1). Their goal is to assess the tightness of
an analytically determined bound on (5.1). They find that the vorticity field that
maximizes (5.1) consists of a single quadrupole that resembles the quadrupoles found
in our calculations. The connection between their results and ours is partly explained
by the following fact. In the enstrophy inertial range, E(k) ∝ k−3 corresponds to
Ak ∝ k−3. When Ak ∝ k−3, the entropy production (2.27) of triad [kpq] is proportional
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to its palinstrophy production. Thus, for spectra of the form E(k) ∝ k−3, the rate of
entropy production is proportional to the rate of palinstrophy production. For arbitrary
spectra there is no direct connection between these two quantities. However, Monte
Carlo calculations of the kind described in § 4, but with various prescribed E(k),
all yield quadrupoles as D0 → 0. Only very occasionally does a single dipole also
occur. In addition, various prescribed Dkpq including the choice (2.20)–(2.21) were
considered, with no significant change in results. Thus, the quadrupoles seem to be a
robust feature of the present approach.

One aspect of our work seems noteworthy enough to guide future work, and that is
the idea that the coherent structures that occur in two-dimensional turbulence are not
themselves sites of maximum entropy as suggested by several authors (see Eyink &
Sreenivasan 2006, p. 97, for a concise review) but are instead low-entropy sites that
exist to maximize the rate of entropy increase. The present work can be considered
as a ‘toy model’ that serves to illustrate this idea. How might it be applied more
realistically?

Weiss (1991) showed that (2.1) implies

DP
Dt
=
[
ζx ζy

] [ σ1 σ2 + ζ

σ2 − ζ −σ1

] [
ζx
ζy

]
(5.2)

when ν = 0. Here P = (ζ 2
x + ζ

2
y ) is the palinstrophy density, ζ is the vorticity and

σ1=−2ψxy and σ2=ψxx−ψyy are the strain rates. Postulating that σ1, σ2 and ζ vary
less rapidly than ∇ζ , Weiss concluded from (5.2) that palinstrophy increase occurs in
regions of positive W≡σ 2

− ζ 2, in which the squared strain rate σ 2
≡σ 2

1 +σ
2
2 exceeds

ζ 2. In such regions the stream function is hyperbolic. Regions of negative W feature
vortices with closed streamlines.

In periodic flow, the spatial integral of W vanishes; on average, σ 2 and ζ 2 must
cancel. It therefore seems plausible that the flow maximizes its rate of palinstrophy
production (which we have associated with entropy production) by sequestering some
of the vorticity in isolated vortices, so that W is positive in the broad area between
vortices. The isolated coherent vortices are sites of very low entropy (very low
complexity) that exist to maximize the rate of entropy production in the region outside
the vortices. This entropy production is relatively efficient: in numerical simulations
of freely decaying turbulence, the enstrophy between the vortices cascades rapidly
to high wavenumber. However, the enstrophy sequestered in the isolated coherent
vortices cannot be reclaimed. When the turbulence between vortices is exhausted,
the entropy of the system continues to increase, but by the very slow process of
infrequent vortex mergers, eventually reaching the putative maximum entropy state of
two, oppositely signed, domain-filling vortices. In this scenario, the isolated coherent
vortices represent ‘waste products’ of the turbulent cascade, and their agonizingly
slow demise is the price to be paid for rapid entropy increase in the early stage of
flow evolution.

Nothing in the foregoing interpretation anticipates the very sharp demarcation
between the vortices and the turbulence that is observed to exist in high-resolution
numerical simulations of two-dimensional turbulence. In these simulations, the vortices
and the turbulence resemble the distinct phases that exist in a system undergoing a
first-order phase transition. A principal theoretical challenge is to explain this very
sharp separation. We conjecture that the concept of entropy production will find a
place in this explanation.
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Appendix A. Explicit expression for the phase entropy
The Fokker–Planck equation (2.13) implies

dx
dt
=−B(1− y)−Dx, (A 1)

where x = 〈cos ξ〉 and y = 〈cos2 ξ〉. This is the first in an unclosed hierarchy of the
equations for the moments 〈cosn ξ〉. Discarding the second cumulant corresponds to
setting y= x2 and replacing (A 1) by

dx
dt
=−B(1− x2)−Dx. (A 2)

However, for small |B|/D the steady solution of (A 2), namely x=−B/D, differs from
the exact result (2.17) by a factor of two. The alternative closure assumption y= (1+
x2)/2 corresponds to

dx
dt
=−

B
2
(1− x2)−Dx, (A 3)

which is equivalent to (3.1) and has the desirable properties listed thereafter.
Section 3 produced an expression (3.18) for the time derivative of Sφ , but we still

lack an expression analogous to (3.13) for Sφ in terms of the representatives 〈cos ξk,p,q〉.
We obtain one as follows. Let S(x) be the entropy associated with the knowledge of
x. Then it follows from (A 3) that

dS
dt
= S′(x)

(
−

B
2
(1− x2)−Dx

)
. (A 4)

To be consistent with (3.16) we must equate

−S′(x)
B
2
(1− x2)= Bx. (A 5)

It follows that
S(x)= ln(1− x2) (A 6)

to within an irrelevant constant. Thus, the entropy of the EDQNM as a function of
its representatives is

S= SA + Sφ =
∑

k

2 ln〈Ak〉 +
∑
[kpq]

ln(1− 〈cos ξk,p,q〉
2). (A 7)

We see that Sφ takes its maximum value, zero, when the 〈cos ξk,p,q〉 vanish, as when
the phases are uniformly distributed.

Alternatively, if we assume the quasi-equilibrium distribution (2.14), then (3.15)
implies

S= ln I0(B/D)− B/D
I1(B/D)
I0(B/D)

. (A 8)
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To obtain S(〈cos ξ〉) we must eliminate B/D between (A 8) and (2.15). In general
this is difficult, but it is not hard to check that the two methods for computing Sφ
agree when |B|/D is small, and that the second method yields an expression for Sφ
that approaches negative infinity at twice the rate of (A 7) when |B|/D is large and
〈cos ξ〉 is very close to ±1. We emphasize that an expression for Sφ is not required
by our calculations, and that the equation for its time derivative (3.18) is an exact
consequence of the Fokker–Planck equation (2.13).
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