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1. Introduction

Let L(H) be the algebra of bounded linear operators on the separable infinite-dimensional
Hilbert space H. Recall that the operators T1 ∈ L(H1) and T2 ∈ L(H2) are similar if
there exists a linear isomorphism J : H1 −→ H2 such that T1 = J−1T2J . The operator
U ∈ L(H) is called universal if for any T ∈ L(H) there exist a closed U -invariant subspace
M ⊂ H, i.e. U(M) ⊂M , and a constant c �= 0 such that the operators U|M : M −→M
and cT : H −→ H are similar. The concept of a universal operator was introduced by Rota
[28], who showed that the backward shift of infinite multiplicity is an explicit example of
these seemingly strange objects. The invariant subspace problem provides motivation for
studying concrete universal operators, namely, every operator in L(H) has a non-trivial
invariant subspace if and only if the minimal non-trivial invariant subspaces of (any)
universal operator are one dimensional. General references for this approach and results
about universal operators include [3, Chapter 8] and the survey [6].

Later, Caradus [1] (see also [3, Theorem 8.1.3]) described a simple sufficient condition
for an operator to be universal, namely,

(C) If U ∈ L(H) is such that the kernel Ker(U) is infinite dimensional and its range
Ran(U) = H, then U is universal for H.

However, Caradus’s condition and its recent generalization by Pozzi [26] are very far from
being necessary. In § 2 of this paper, we look more closely at some fundamental properties
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of the class of universal operators, as well as some of its subclasses. In particular, we derive
spectral theoretic consequences of universality which can be used to verify that a given
operator is not universal.

Owing to its simplicity, condition (C) is often used to obtain examples of universal
operators, even though the desired properties can be difficult to verify for many concrete
operators. By a celebrated example of Nordgren et al. [24] from 1987, the operators
Cϕ − λI are universal on the Hardy space H2(D) whenever the composition operator
f �−→ Cϕf = f ◦ ϕ is induced by a hyperbolic automorphism ϕ of the unit disc D and
λ belongs to the interior of the spectrum of Cϕ. In this case, the infinite-dimensionality
of Ker(Cϕ − λI) is verified by explicit computation, but the original argument for the
surjectivity relies on fairly sophisticated properties of multiplication operators induced by
certain Blaschke products in H2(D). Only very recently, an alternative argument for the
universality of Cϕ − λI on H2(D) was given [8]. For other concrete examples of universal
operators, see [5,7,25,26]. Moreover, the connection between the invariant subspace
problem and universality has motivated recent work on the lattice of invariant subspaces
of Cϕ on H2(D) for hyperbolic automorphisms ϕ, e.g. [18] and [12].

In § 3 we show that the adjoint C∗
ϕ − λI is universal on S2(D), the Hilbert space con-

sisting of analytic functions f : D −→ C such that f ′ ∈ H2(D), whenever λ is an interior
point of the spectrum of Cϕ on S2(D). It follows from known results that Cϕ − λI is not
a universal operator on S2(D) for any λ ∈ C, which suggests that universality passes to
the adjoint for small enough spaces in the scale of weighted Dirichlet spaces of analytic
functions on D.

Recently, Müller [22] introduced the notion of universality for commuting n-tuples of
operators and obtained versions of the sufficient condition (C) in this setting. However,
examples of universal commuting n-tuples are rather more difficult to exhibit compared
with the case of a single operator, and in § 4 we discuss new concrete examples of universal
commuting pairs (U1, U2) ∈ L(H)2. In particular, we show that certain pairs (LA, RB)
of left and right multiplication operators on the ideal of the Hilbert–Schmidt operators
are universal, and consider the case of universal Nordgren–Rosenthal–Wintrobe pairs
(Cϕ − λI,Cψ − μI) in L(H2(D))2.

2. Structure of the class of universal operators

The main interest has been in exhibiting and analysing concrete examples of universal
operators belonging to various classes of operators, and less attention has been paid to
general properties of the full class

U(H) = {U ∈ L(H) : U is universal}.

In this section, we systematically consider U(H) and some of its subclasses. Clearly,
U(H1) and U(H2) are related by similarity whenever H1 and H2 are separable infinite-
dimensional Hilbert spaces, so the particular realization of the Hilbert space H is
immaterial. We will use the notation B∞ : (⊕Z+�

2)�2 → (⊕Z+�
2)�2 for Rota’s universal

model operator,

B∞x = B∞(x0, x1, . . .) = (x1, x2, . . .),
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for x = (xn)n∈Z+ ∈ (⊕Z+�
2)�2 , where xn ∈ �2 for any n ≥ 0. The universality of the back-

ward shift B∞ of infinite multiplicity on (⊕Z+�
2)�2 is immediate from (C), but the original

argument by Rota [28] is quite direct.
It was pointed out in [6, p. 44] that the precise relationship between universality and

condition (C) is somewhat circular: U ∈ U(H) if and only if there is a U -invariant infinite-
dimensional subspace M ⊂ H so that the restricted operator U|M : M →M satisfies
condition (C). This can be seen by recalling that the restriction of any U ∈ U(H) to
some invariant subspace is similar to cB∞ for some c �= 0, combined with an observation
of Pozzi recalled separately as Proposition 2.1 below. To state the proposition in a con-
venient form, we write operators V ∈ L(H) with respect to direct sum decompositions
H = M ⊕M⊥ as vector-valued operator matrices

V =
(
V1,1 V1,2

V2,1 V2,2

)

in the obvious fashion. Thus, V1,1 = PV|M , V1,2 = PV|M⊥ , V2,1 = QV|M and V2,2 =
QV|M⊥ , where P : H →M and Q = I − P : H →M⊥ are the related orthogonal pro-
jections. The following fact allows us to construct examples of universal operators having
different properties on direct sums H ⊕H.

Proposition 2.1 (Pozzi [26, Remark 1.4]). Let H = M ⊕M⊥, where M ⊂ H is
an infinite-dimensional subspace, and let

V =
(
U A
0 B

)
∈ L(H)

as above. Suppose that U ∈ L(M) is a universal operator for M . Then V ∈ U(H) for any
operators A and B.

Proof. If T ∈ L(H) is given, there are, by assumption, a U -invariant subspace N ⊂M
and c �= 0 such that U|N : N → N and cT : H → H are similar. Fix an isometry J0 : M →
H. We have that U|N is similar to cJ−1

0 TJ0. Since N ⊂M , we get that N is V -invariant,
and V|N = U|N is similar to cJ−1

0 TJ0 and consequently also to cT . �

We are interested in conditions that enable us to decide whether a given concrete
operator is universal or not. We first consider spectral criteria. Let σ(S;H) denote the
spectrum of S ∈ L(H). The spectrum of a diagonal sum of operators on H1 ⊕H2 satisfies

σ

((
U 0
0 B

)
;H1 ⊕H2

)
= σ(U ;H1) ∪ σ(B;H2)

for any U ∈ L(H1) and B ∈ L(H2). It follows from Proposition 2.1 that there is no general
characterization of universal operators purely in terms of their spectra. Nevertheless,
the universality of U ∈ U(H) does have relevant consequences for various subsets of the
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spectrum of U . For this, recall the classes of semi-Fredholm operators

Φ−(H) = {S ∈ L(H) : dim(H/Ran(S)) <∞},
Φ+(H) = {S ∈ L(H) : dim(Ker(S)) <∞,Ran(S) is closed},

where Φ(H) = Φ+(H) ∩ Φ−(H) consists of the Fredholm operators. Operators S ∈
Φ+(H) cannot be universal, since clearly Ker(S) has to be infinite dimensional for S
to be a universal operator. We will need the Φ+-spectrum of S ∈ L(H) defined as

σ+
e (S;H) = {λ ∈ C : S − λI /∈ Φ+(H)}.

It is known [21, Chapter III.19] that σ+
e (S;H) is a non-empty compact subset of the

essential spectrum

σe(S;H) = {λ ∈ C : S − λI /∈ Φ(H)}
of S. Furthermore, let σp(S;H) denote the point spectrum of S.

It follows from the definition of universality that Riesz operators S ∈ L(H) cannot
be universal. (Recall that S is a Riesz operator if σe(S;H) = {0}.) The following result
reveals some further common spectral properties of universal operators.

Theorem 2.2. Let U ∈ U(H) be an arbitrary universal operator. Then the following
hold.

(i) There is r > 0 such that the open disc

B(0, r) ⊂ σp(U ;H) ∩ σ+
e (U ;H) ⊂ σe(U ;H) ⊂ σ(U ;H), (1)

and, moreover, any λ ∈ B(0, r) is an eigenvalue of U having infinite multiplicity.
In particular, if U ∈ U(H), then 0 is an interior point of any of the sets σ+

e (U ;H),
σe(U ;H) and σp(U ;H), as well as σ(U ;H).

(ii) There is r > 0 and a vector-valued holomorphic map z �→ yz : B(0, r) → H for
which

Uyz = zyz, z ∈ B(0, r).

Proof. We first recall some well-known spectral properties of the backward shift B∞
on the direct sum H0 ≡ (⊕N �2)�2 . Let |z| < 1 and fix the non-zero vector x0 ∈ �2, whence
the sequence xz = (znx0)n≥0 = (x0, zx0, . . .) ∈ H0. Clearly

B∞(xz) = (zx0, z
2x0, . . .) = zxz,

so that any |z| < 1 is an eigenvalue of infinite multiplicity for B∞, that is, z ∈
σ+
e (B∞;H0). Moreover, z �→ xz is a (weakly) holomorphic map B(0, 1) → H0, since

z �→ 〈xz, y〉 =
∞∑
n=0

zn〈x0, yn〉

is analytic for any y = (yn) ∈ H0, where 〈·, ·〉 denotes the respective inner product.
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Let U be an arbitrary universal operator on H. By assumption, there is a constant
c �= 0, a U -invariant subspace M ⊂ H and a linear isomorphism J : H0 →M so that
U|M = J(cB∞)J−1. Since eigenvalues are preserved under similarity, we get that

B(0, |c|) ⊂ σp(cB∞;H0) = σp(U|M ;M) ⊂ σ(U ;H).

Towards the related claim for σ+
e (U ;H), one obtains instead that

B(0, |c|) ⊂ σ+
e (cB∞;H0) = σ+

e (U|M ;M) ⊂ σ+
e (U ;H).

For the right-hand inclusion, note for example that Ker(λIM − U|M ) ⊂ Ker(λI − U),
where the left-hand subspace is infinite dimensional by similarity, since dim(Ker(λI −
cB∞)) = ∞.

Finally, the above identities B∞xz = zxz and cJB∞ = (U|M )J imply that

U(Jxz) = cJB∞(xz) = czJ(xz), |z| < 1.

It follows that the renormalized holomorphic map z �→ yz ≡ J(xz/c) satisfies condition
(ii) in the disc B(0, |c|). �

By Example 3.4 below, the spectral condition (1) in Theorem 2.2 is not sufficient for
the universality of U . We next state some typical applications of the preceding result.

Corollary 2.3. The operator T ∈ L(H) cannot be universal if any of the following
conditions holds:

(i) the interior int(σp(T ;H)) = ∅,
(ii) the interior int(σe(T ;H)) = ∅,
(iii) every non-zero eigenvalue α ∈ σp(T ;H) has finite multiplicity.

Another immediate consequence of Theorem 2.2 which will be useful in § 3 is as follows.

Corollary 2.4. Suppose that T ∈ L(H) and λ ∈ ∂σ(T ;H). Then T − λI cannot be
universal. In particular, if σ(T ;H) = ∂σ(T ;H), then T − λI is not universal for any
λ ∈ C.

We next consider general properties of the class U(H) of the universal operators.
Recently, Pozzi [26, Theorem 3.8] extended Caradus’s condition (C) as follows.

(C+) If U ∈ L(H) satisfies dim Ker(U) = ∞ and dim(H/Ran(U)) <∞, then U ∈
U(H).

It is helpful for comparative purposes to introduce the subclasses

UC(H) = {U ∈ L(H) : U satisfies (C)},
UC+(H) = {U ∈ L(H) : U satisfies (C+)}

of U(H). Observe that UC+(H) = Φ−(H) \ Φ+(H). It follows from the classical pertur-
bation theory for semi-Fredholm operators that UC+(H) is preserved under sufficiently
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small operator norm perturbations as well as compact perturbations (see [2, Theorem
4.2] or [21, Theorems III.16.18 and III.16.19]). In particular, U +K ∈ UC+(H) whenever
U ∈ UC(H) and K is a compact operator. In the sequel, we denote by K(H) the closed
ideal of L(H) consisting of compact operators on H. Moreover, in [5, Theorem 2], the
authors obtained by direct means a perturbation result for the class UC(H) which con-
tains more detailed information. We also recall that the universal model operator B∞ has
the stronger property that its restrictions represent suitable multiples cT up to unitary
equivalence for any T ∈ L(H) (e.g. [9, Theorem 8.1.5] or [27, Chapter 1.5]).

It is evident from Proposition 2.1 that the subclasses UC(H) and UC+(H) are much
smaller than U(H), and that U(H) contains operators very different from B∞. Moreover,
UC(H) is not preserved by compact perturbations. For the record, we include some very
simple related examples.

Example 2.5.

(i) Let U ∈ U(H), so that

V =
(
U 0
0 B

)

is a universal operator onH ⊕H for any B ∈ L(H) by Proposition 2.1. For instance,
if B(H) has infinite codimension in H, then Ran(V ) = U(H) +B(H) has infinite
codimension in H ⊕H, and if Ran(B) is not closed, then Ran(V ) is not closed
either.

(ii) Define U ∈ L(�2) by Ue2n = en and Ue2n+1 = 0 for n ∈ N, so that U ∈ UC(�2). Let
K ∈ K(�2) be the rank-1 operator defined by Ke2 = −e1 and Ken = 0 for n �= 2.
Since (U +K)e2 = 0, it follows that e1 /∈ (U +K)(�2), so that U +K /∈ UC(�2)
(even though U +K ∈ UC+(�2)).

More significantly, explicit examples demonstrate similarly that the full class U(H) of
universal operators is neither open in the operator norm nor invariant under compact
perturbations.

Example 2.6. Fix a universal operator U ∈ U(H). Proposition 2.1 implies that

V =
(
U IH
0 0

)

is a universal operator on H ⊕H, where IH is the identity map of H. Consider the
sequence (Vn) ⊂ L(H ⊕H) defined by

Vn =

⎛
⎝ U IH

1
n
IH 0

⎞
⎠ ,

that is, Vn(x, y) = (Ux+ y, (1/n)x) for (x, y) ∈ H ⊕H. Note that Vn is not universal on
H ⊕H for any n ∈ N, since Ker(Vn) = {(0, 0)}. In fact, Vn(x, y) = (Ux+ y, (1/n)x) =
(0, 0) yields that x = 0 and y = −Ux = 0. Clearly, ‖Vn − V ‖ = 1/n for n ∈ N, so that
V ∈ U(H ⊕H) is not an interior point of U(H ⊕H).
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Furthermore, let K ∈ K(H) be the diagonal operator defined by Kfn = (1/n)fn for
n ∈ N, where (fn) is some fixed orthonormal basis of H. Consider

W =
(
U IH
K 0

)
= V +

(
0 0
K 0

)
∈ L(H ⊕H),

that is, W (x, y) = (Ux+ y,Kx) for (x, y) ∈ H ⊕H. Thus, W is a compact perturbation
of V ∈ U(H ⊕H), but W is not a universal operator, since again Ker(W ) = {(0, 0)}.

It follows from the algebraic semi-group property of Φ−(H) [21, Theorem III.16.5]
that the subclass UC+(H) is multiplicative in the sense that UV ∈ UC+(H) whenever
U, V ∈ UC+(H) (and this property is obvious for UC(H)). Multiplicativity easily fails
for the class U(H). In fact, fix U0, V0 ∈ U(H). Then

U =
(
U0 0
0 0

)
and V =

(
0 0
0 V0

)

belong to U(H ⊕H) by Proposition 2.1, but UV = 0.

3. Universality of the adjoint C∗
ϕ − λI on S2(D)

Recall that Nordgren et al. [24] showed that the operators Cϕ − λI are universal on
the Hardy space H2(D) for any hyperbolic automorphism ϕ of the unit disc D and
λ ∈ int(σ(Cϕ;H2(D))). Here, Cϕ is the composition operator f �→ f ◦ ϕ. In this section,
we will discuss potential analogues of this result in the scale of weighted Dirichlet spaces
Dβ(D), which are Hilbert spaces of analytic functions defined on the unit disc D. Our
main observation (Theorem 3.2) is that the adjoint C∗

ϕ − λI is universal on the space
S2(D), whenever ϕ is a hyperbolic automorphism of D and λ ∈ int(σ(Cϕ;S2(D))). Here,
S2(D) is the Hilbert space consisting of the analytic functions f : D −→ C such that
f ′ ∈ H2(D), whence S2(D) is continuously embedded in the classical Dirichlet space D2.

Recall for β ∈ R that the weighted Dirichlet space Dβ(D) is the Hilbert space of analytic
functions f(z) =

∑∞
n=0 anz

n that satisfy

‖f‖2
β =

∞∑
n=0

|an|2(n+ 1)2β <∞.

(These spaces are also special cases of the weighted Hardy spaces.) The Hardy space
H2(D) is obtained for β = 0, the Bergman space A2(D) for β = −1/2, the Dirichlet
space D2 for β = 1/2 and S2(D) for β = 1 (possibly up to an equivalent norm). We also
recall that there is a continuous embedding Dβ(D) ⊂ Dα(D) for α < β. The reference [9,
Chapter 2.1] contains more background about these spaces.

It will be enough for our purposes to consider the normalized hyperbolic automorphisms
of D that have the form

ϕr(z) =
z + r

1 + rz
, r ∈ (0, 1). (2)

In fact, it is known that all other hyperbolic automorphisms of D can be conjugated by
automorphisms of D to the preceding normalized form. We will later need the fact that

ϕ−1
r (z) = ϕ−r(z) =

z − r

1 − rz
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belongs to the same conjugacy class as ϕr, since ϕ−r = g ◦ ϕr ◦ g, where g(z) = −z for
z ∈ D. Hence, Cϕ−r

= CgCϕr
Cg, so that Cϕr

and Cϕ−r
= C−1

ϕr
are similar operators. For

more information on linear fractional transformations in general, see for example [31,
Chapter 0], and on composition operators acting on spaces of analytic functions; see [9]
or [31].

The composition operators Cϕr
are known to be bounded on Dβ(D) for all β ∈ R, see

[9, Chapter 3.1] and [32] for various ranges of β. We will require the result that

σ(Cϕr
;S2(D)) = σ(Cϕr

;H2(D)) =
{
λ ∈ C :

(
1 − r

1 + r

)1/2

≤ |λ| ≤
(

1 − r

1 + r

)−1/2}
(3)

for all 0 < r < 1. We refer to [9, Theorem 7.4] for the Hardy space case and to [13,
Theorem 3.9] for the case S2(D) = D1(D). In the sequel, we will denote the corresponding
open annulus, i.e. the interior of the above spectrum, by

Ar :=
{
λ ∈ C :

(
1 − r

1 + r

)1/2

< |λ| <
(

1 − r

1 + r

)−1/2}
.

We point out as an initial motivation that Cϕr
− λI is not universal on any of the small

weighted Dirichlet spaces contained in the classical Dirichlet space D2 = D1/2(D).

Example 3.1. Let 0 < r < 1. Then Cϕr
− λI is not universal on Dβ(D) for any β ≥

1/2 and any λ ∈ C.
In fact, for β = 1/2 it is known that σ(Cϕr

;D2) = T by [15, Theorem 3.2]. It follows
from Corollary 2.4 that neither Cϕr

− λI nor its adjoint C∗
ϕr

− λI is universal on D2 for
any λ ∈ C.

For β > 1/2, it follows from [13, Theorem 3.9] and its proof that in this case the point
spectrum σp(Cϕr

;Dβ(D)) = {1}, and, moreover, that Ker(Cϕr
− I;Dβ(D)) = C. Conse-

quently, dim Ker(Cϕr
− λI;Dβ(D)) is either 0 (for λ �= 1) or 1 (for λ = 1), so Corollary 2.3

yields that Cϕr
− λI cannot be universal on the weighted Dirichlet spaces for any β > 1/2

and λ ∈ C.

As a contrast, we show in the main result of this section that the adjoint of Cϕr
− λI

is universal on S2(D).

Theorem 3.2. Let ϕr be the hyperbolic automorphism of D defined by ϕr(z) =
((z + r)/(1 + rz)) for r ∈ (0, 1). Then C∗

ϕr
− λI is universal on S2(D) for any λ ∈ Ar.

Proof. Let 0 < r < 1 and write H2(D) = zH2(D) ⊕ [1], where [1] denotes the constant
functions. The crux of the argument is the fact that the compression

PzH2C−1
ϕr

: zH2(D) −→ zH2(D)

and the restriction of the adjoint

C∗
ϕr

: zS2(D) −→ zS2(D)

are similar operators, where the subspace zS2(D) is invariant under C∗
ϕr

. The details of
the similarity are explained in Corollary 3.6 and Remark 3.8 in [13], which in turn are
based on a duality argument of Hurst [16, Theorem 5].
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We first consider the operator C−1
ϕr

− λI : H2(D) −→ H2(D). Since C−1
ϕr

(1) = 1, we
may write C−1

ϕr
− λI as the following operator matrix acting on H2(D) = zH2(D) ⊕ [1]:

C−1
ϕr

− λI =
(
PzH2C−1

ϕr
− λI 0

PCC
−1
ϕr

(1 − λ)

)
.

We claim that the compression PzH2C−1
ϕr

− λI : zH2(D) −→ zH2(D) satisfies
Caradus’s condition (C) for all λ ∈ Ar. Since C−1

ϕr
= Cϕ−r

, we know that the operator
C−1
ϕr

− λI : H2(D) −→ H2(D) is surjective by the proof of [24, Theorem 6.2]. It follows
that (PzH2C−1

ϕr
− λI)(zH2(D)) = zH2(D) as well. In fact, if g ∈ zH2(D) is arbitrary, then

there is f = f1 + f2 ∈ H2(D), with f1 ∈ zH2(D) and f2 ∈ [1], such that (C−1
ϕr

− λI)f = g,
that is,

(
PzH2C−1

ϕr
− λI 0

PCC
−1
ϕr

(1 − λ)

)(
f1
f2

)
=

(
(PzH2C−1

ϕr
− λI)f1

PCC
−1
ϕr
f1 + (1 − λ)f2

)
=

(
g
0

)
.

In particular, (PzH2C−1
ϕr

− λI)f1 = g, so that the compression PzH2C−1
ϕr

− λI is an
onto map zH2(D) −→ zH2(D) for λ ∈ Ar. Moreover, it is not difficult to check that
since λ ∈ Ar is an eigenvalue of infinite multiplicity for C−1

ϕr
: H2(D) −→ H2(D), the

same fact holds for the compression PzH2C−1
ϕr

: zH2(D) −→ zH2(D). Consequently,
PzH2C−1

ϕr
− λI : zH2(D) −→ zH2(D) satisfies (C).

It follows from the similarity stated at the beginning of the argument that the restricted
adjoint C∗

ϕr
− λI : zS2(D) −→ zS2(D) also satisfies (C) and is hence universal on zS2(D).

Write C∗
ϕr

− λI on S2(D) as an operator matrix acting on zS2(D) ⊕ [1], that is,

(
C∗
ϕr

− λI PzS2C∗
ϕr

0 (1 − λ)

)
,

where we also take into account that C∗
ϕr

(zS2(D)) ⊂ zS2(D). It follows that C∗
ϕr

− λI :
S2(D) −→ S2(D) is universal by Proposition 2.1.

Alternatively, in the last step one may also note that if λ �= 1, then C∗
ϕr

− λI :
S2(D) −→ S2(D) satisfies (C), while codim Ran (C∗

ϕr
− I) = 1 in S2(D), so that C∗

ϕr
− I

satisfies the generalized condition (C+).
Finally, note that the annulus Ar is preserved by complex conjugation, so that we may

above change C∗
ϕr

− λI to C∗
ϕr

− λI. �

Heller [14] found a concrete formula for the adjoint C∗
ϕr

on S2(D) which involves a
compact perturbation. This fact leads to a related universal operator. Let Mz be the
multiplication operator f �→ zf on S2(D), whose adjoint M∗

z ∈ L(S2(D)) has the form

M∗
z

( ∞∑
n=0

anz
n

)
= a1 +

∞∑
n=1

an+1

(
n+ 1
n

)n
zn

for f(z) =
∑∞
n=0 anz

n ∈ S2(D).
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Corollary 3.3. Let ϕr be as in Theorem 3.2. Then the operator

Cϕr
− r

1 + r2
(M∗

z +Mz)Cϕr
− 1 − r2

1 + r2
λI

is universal on S2(D) for all λ ∈ Ar.

Proof. By [14, Theorem 6.5], we can write

(C−1
ϕr

)∗ − λI =
1 + r2

1 − r2
Cϕr

− r

1 − r2
(
M∗
z +Mz

)
Cϕr

− λI +K,

where K is a compact operator on S2(D). Recall that Cϕr
and C−1

ϕr
= Cϕ−r

are similar
operators on S2(D). From the symmetry of Ar, we get that Theorem 3.2 holds if we replace
C∗
ϕr

by (C−1
ϕr

)∗. Moreover, the proof of Theorem 3.2 shows that (C−1
ϕr

)∗ − λI satisfies
condition (C+) on S2(D) for all λ ∈ Ar. Since the class UC+ is preserved by compact
perturbations, we deduce that ((1 + r2)/(1 − r2))Cϕr

− (r/(1 − r2))(M∗
z +Mz)Cϕr

− λI
is a universal operator on S2(D). �

We include an explicit example of a non-universal composition operator, for which the
necessary condition in (1) from Theorem 2.2 holds.

Example 3.4. Fix 0 < s < 1 and let φ : D → D be the hyperbolic non-automorphism
defined by φ(z) = sz + 1 − s. Then

σ+
e (Cφ;H2(D)) = {λ ∈ C : |λ| ≤ s−1/2}, (4)

but Cφ is not universal on H2(D).
In fact, the argument in [16, Theorem 8] implies that for each λ = sp+iq with p > −1/2

and q ∈ R (so that 0 < |λ| < s−1/2), the functions fn(z) = exp((p+ i(q + 2nπt)) log(1 −
z)), where t = 1/ log(s), are linearly independent in H2(D) ∩ Ker(Cφ − λI) for n ∈ Z.
Here, log is the principal branch of the natural logarithm. This implies that (4) holds,
since σ+

e (Cφ;H2(D)) is a closed set. Clearly, Cφ is an injective operator and thus not
universal. Finally, to obtain an example where 0 belongs to the point spectrum of the
operator, one extends

Cφ to
(
Cφ 0
0 0

)
on H2(D) ⊕ [x],

where [x] denotes a one-dimensional space.

Recently, composition operators have also been studied on the Hardy space and the
weighted Bergman spaces of the upper half-plane Π+ = {z ∈ C : Im z > 0}, where new
phenomena occur (e.g. [10,11,19]). Recall that the analytic function F : Π+ → C belongs
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to the Hardy space H2(Π+) if

‖F‖2
H2(Π+) = sup

y>0

∫ ∞

−∞
|F (x+ iy)|2 dx <∞,

and to the weighted Bergman space A2
α(Π+), for α > −1, if

‖F‖2
A2

α(Π+) =
∫ ∞

0

∫ ∞

−∞
|F (x+ iy)|2yα dxdy

π
<∞.

Let τ be a hyperbolic automorphism of Π+, that is, τ(w) = μw + w0, where w0 ∈ R and
μ ∈ (0, 1) ∪ (1,∞). It follows from [10, Theorem 3.1] and [11, Theorem 3.4] that the
composition operator Cτ is bounded on H2(Π+) and on A2

α(Π+), respectively, for all
α > −1. It is natural to ask whether there is an analogue of the theorem of Nordgren,
Rosenthal and Wintrobe on these spaces.

Proposition 3.5. The operator Cτ − λI is not universal onH2(Π+) or A2
α(Π+), where

α > −1, for any λ ∈ C and any hyperbolic automorphism τ of Π+.

Proof. The claim follows from Corollary 2.4 and the spectral results

σ(Cτ ;H2(Π+)) = {λ ∈ C : |λ| = μ−1/2},
[20, Theorem 2.12], and

σ(Cτ ;A2
α(Π+)) = {λ ∈ C : |λ| = μ−(α+2)/2}

for α > −1 [30, Theorem 1.2]. Here, τ(w) = μw + w0 and μ ∈ (0, 1) ∪ (1,∞) as above. �

4. Examples of universal commuting pairs

Recently, Müller [22] introduced a notion of universality for commuting pairs of operators
(and, more generally, for commuting n-tuples). Let H be a separable infinite-dimensional
Hilbert space. The commuting pair (U1, U2) ∈ L(H)2 is said to be universal if for each
commuting pair (S1, S2) ∈ L(H)2 there is a constant c �= 0 and a subspaceM ⊂ H, invari-
ant for both U1 and U2, so that the pairs (U1|M , U2|M ) and (cS1, cS2) are similar, that
is, there is an isomorphism V : H →M such that U1V = cV S1 and U2V = cV S2.

If (U1, U2) is a universal commuting pair, then dim(Ker(U1) ∩ Ker(U2)) = ∞, and both
U1 and U2 must be universal operators for H. Müller [22, Theorem 3] obtained a version
of Caradus’s condition for the universality of commuting pairs (U1, U2), which we recall
next in the special case where U1, U2 are surjections (see [22, Corollary 8]).

(M) Let U1, U2 ∈ L(H) be commuting surjections, such that:
(i) dim(Ker(U1) ∩ Ker(U2)) = ∞, and

(ii) Ker(U1U2) = Ker(U1) + Ker(U2).
Then (U1, U2) ∈ L(H)2 is a universal commuting pair.

The following concrete example of a universal commuting pair is contained in [22,
Example 9]. Let H be a separable infinite-dimensional Hilbert space and K = �2(Z2

+,H),
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the space of double-indexed sequences with values in H. Define Ui ∈ L(K) by Uif(α) =
f(α+ βi) for α ∈ Z

2
+, f ∈ �2(Z2

+,H) and i = 1, 2, where β1 = (1, 0) and β2 = (0, 1) in
Z

2
+. Then (U1, U2) ∈ L(K)2 is a universal commuting pair. (Alternatively, Ui = M∗

zi
for

i = 1, 2, where Mzi
denotes multiplication by the variable zi in the vector-valued Hardy

space H2(D2,H) for (z1, z2) ∈ D
2.)

In this section, we are mainly interested in obtaining further concrete examples of uni-
versal commuting pairs, since it turns out that such examples are rather more difficult to
write down explicitly compared with the class U(H). Our first observations and exam-
ples illustrate some of the obstructions, apart from the technical fact that condition (M)
requires knowledge of Ker(U1) and Ker(U2). We begin by noting that there is a kind
of algebraic independence between U1 and U2 for universal pairs (U1, U2). For this, let
{T}′ = {S ∈ L(H) : ST = TS} stand for the commutant of T .

Proposition 4.1. Let H be a separable infinite-dimensional Hilbert space and T ∈
L(H).

(i) If S ∈ {T}′, then (T, ST ) is not a universal commuting pair. In particular,
(T, p(T )T ) is not a universal commuting pair for any complex polynomial p(z) =
a1z + · · · + anz

n satisfying p(0) = 0, where p(T ) = a1T + · · · + anT
n.

(ii) (Tm, Tn) is not a universal commuting pair for any m,n ∈ N.

Proof.

(i) Consider (0, IH) ∈ L(H)2. If (T, ST ) is a universal pair, then corresponding to the
pair (0, IH) ∈ L(H)2 there is an infinite-dimensional subspace M ⊂ H invariant
under T , and c �= 0, so that (T|M , ST |M ) and (0, cIH) are similar. However, the
similarity of T|M and 0 implies that M ⊂ Ker(T ), so that ST|M cannot be similar
to cIH .

(ii) Observe that one may assume m < n by symmetry, and then argue as in
part (i). �

The following example looks at simple ways to construct universal pairs starting from
given universal operators U, V ∈ U(H).

Example 4.2.

(i) Suppose that U, V ∈ L(H) satisfy condition (C), and

U0 =
(
U 0
0 IH

)
, V0 =

(
IH 0
0 V

)
∈ L(K),

where K = H ⊕H. Then U0 and V0 are commuting surjections on K, and
Ker(U0) = Ker(U) × {0} and Ker(V0) = {0} × Ker(V ). Hence, the pair (U0, V0) ∈
(L(K))2 is not universal, since Ker(U0) ∩ Ker(V0) = {(0, 0)}. (Note, however, that
Ker(U0V0) = Ker(U0) + Ker(V0) in this case.)
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(ii) Suppose that (U1, U2) and (V1, V2) are commuting pairs of surjections that satisfy
condition (M), and

U =
(
U1 0
0 V1

)
, V =

(
U2 0
0 V2

)
∈ L(K).

In this case, (U, V ) ∈ L(K)2 is a universal commuting pair. In fact, (U, V ) also
satisfies (M), since it is not difficult to check that

Ker(UV ) =
(
Ker(U1) + Ker(U2)

) × (
Ker(V1) + Ker(V2)

)
= Ker(U) + Ker(V ).

We next look for a non-commutative version of the example from [22]. Let H be
a separable infinite-dimensional Hilbert space and C2(H) the space of Hilbert–Schmidt
operators on H equipped with the Hilbert–Schmidt norm ‖ · ‖2. Recall that T ∈ C2(H)
if there is an orthonormal basis (fn) of H such that

∑∞
n=1 ‖Tfn‖2 <∞, where

‖T‖2 =
( ∞∑
n=1

‖Tfn‖2

)1/2

is independent of the basis. Then (C2(H), ‖ · ‖2) is a separable Hilbert space, and
‖USV ‖2 ≤ ‖U‖ · ‖V ‖ · ‖S‖2 for S ∈ C2(H) and U, V ∈ L(H). We refer to [23, Chapter
2.4], for example, for more background on the ideal C2(H) of L(H).

Hence, the multiplication maps LU and RU are bounded operators C2(H) → C2(H),
where LU (S) = US and RU (S) = SU for any U ∈ L(H) and S ∈ C2(H). Clearly,
(LU , RV ) ∈ L(C2(H))2 is a commuting pair for any U, V ∈ L(H), and we are interested
in the universality of (LU , RV ) on C2(H). Let B be the standard backward shift on
�2 = �2(Z+), that is, B(x0, x1, . . .) = (x1, x2, . . .) for (xj) ∈ �2. It turns out that (LB , RB∗)
is not a universal pair (see part (ii) of Theorem 4.3); to obtain universal pairs (LU , RV ),
we will consider the vector-valued direct �2-sum H = �2(Z+,H) = (⊕n∈Z+H)�2 , where H
is a fixed separable infinite-dimensional Hilbert space. Let B∞ be the backward shift of
infinite multiplicity on H, so that B∗

∞ is the corresponding forward shift on H.
The following result contains the main example of this section. We will use u⊗ v for

given u, v ∈ H to denote the rank-1 operator x �→ 〈x, v〉u on H.

Theorem 4.3.

(i) LB , RB∗ ∈ U(C2(�2)) and LB∞ , RB∗∞ ∈ U(C2(H)).

(ii) (LB , RB∗) is not a universal pair on C2(�2).

(iii) (LB∞ , RB∗∞) is a universal pair on C2(H).

Proof. (i) We check that LB and RB∗ satisfy condition (C) on C2(�2). In fact, if (en)
is the standard unit vector basis of �2, then LB(e0 ⊗ en) = Be0 ⊗ en = 0 for any n ∈ Z+,
so that Ker(LB) is infinite dimensional. Moreover, Ran(LB) = C2(�2), since BB∗ = IH .
The argument for RB∗ is similar.

The universality of LB∞ and RB∗∞ on C2(H) follows from part (iii) (alternatively, one
may also modify the preceding argument as in the proof of (iii)).
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(ii) Recall that (em ⊗ en)m,n∈Z+ is an orthonormal basis of C2(�2). It follows from
the identities LB(em ⊗ en) = Bem ⊗ en and RB∗(em ⊗ en) = em ⊗Ben that Ker(LB) =
[e0 ⊗ en : n ∈ Z+] and Ker(RB∗) = [en ⊗ e0 : n ∈ Z+]. Here, [A] denotes the closed lin-
ear span of the set A ⊂ C2(�2). In particular, Ker(LB) ∩ Ker(RB∗) = [e0 ⊗ e0] is one
dimensional, so that (LB , RB∗) can not be a universal pair.

(iii) We will verify that condition (M) holds. Towards this, note first that LB∞ and
RB∗∞ are surjections on C2(H), since B∞B∗

∞ = IH implies that LB∞(B∗
∞S) = S and

RB∗∞(SB∞) = S for any S ∈ C2(H).
To compute the kernels of LB∞ and RB∗∞ , we need the fact that any S ∈ C2(H) is

uniquely determined by its operator matrix components Si,j = PiSJj ∈ C2(H) for i, j ∈
Z+. Here, Pi is the orthogonal projection H → H onto the ith copy of H, and Jj : H → H
the canonical inclusion from the jth copy. One deduces from the definition of Si,j and
the identity LB∞(v ⊗ u) = B∞v ⊗ u for u, v ∈ H that

LB∞(S) =

⎛
⎜⎝
S1,0 S1,1 · · ·
S2,0 S2,1 · · ·

...
...

. . .

⎞
⎟⎠

for S = (Si,j), so that by uniqueness

Ker(LB∞) = {S = (Si,j) ∈ C2(H) : Si,j = 0 for i > 0}. (5)

Similarly, the identity RB∗∞(v ⊗ u) = v ⊗B∞u for u, v ∈ H yields that

RB∗∞(S) =

⎛
⎜⎝
S0,1 S0,2 · · ·
S1,1 S1,2 · · ·

...
...

. . .

⎞
⎟⎠ ,

whence

Ker(RB∗∞) = {S = (Si,j) ∈ C2(H) : Si,j = 0 for j > 0}. (6)

In particular, we get that

Ker(LB∞) ∩ Ker(RB∗∞) = {S = (Si,j) ∈ C2(H) : Si,j = 0 for i > 0 or j > 0}

is infinite dimensional, since the operator S0,0 ∈ C2(H) can be chosen freely. Finally, we
need to verify that

Ker(LB∞RB∗∞) = Ker(LB∞) + Ker(RB∗∞). (7)

However, (7) follows from (5) and (6), the identity LB∞RB∗∞(v ⊗ u) = B∞v ⊗B∞u for
u, v ∈ H, and the observation that

LB∞RB∗∞(S) =

⎛
⎜⎝
S1,1 S1,2 · · ·
S2,1 S2,2 · · ·

...
...

. . .

⎞
⎟⎠ ,
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as well as the fact that⎛
⎜⎝
S0,0 S0,1 · · ·
S1,0 0 · · ·

...
...

. . .

⎞
⎟⎠ =

⎛
⎜⎝
S0,0 S0,1 · · ·
0 0 · · ·
...

...
. . .

⎞
⎟⎠ +

⎛
⎜⎝

0 0 · · ·
S1,0 0 · · ·

...
...

. . .

⎞
⎟⎠

is the sum of two well-defined Hilbert–Schmidt operators for any S = (Si,j) ∈ C2(H) (see,
for example, the proof of [17, 1.c.8]).

We conclude from condition (M) that (LB∞ , RB∗∞) is a universal pair. �

Remarks. By a straightforward modification of the argument in part (iii), one may
also show that (L(B∞)m , R(B∗∞)n) is a universal pair on C2(H) for any m,n ∈ N. We do not
know explicit conditions on (U, V ) ∈ (L(H))2 which ensure that (LU , RV ) is a universal
pair on C2(H).

For our last examples, we return to the setting (and notations) from § 3 related to
composition operators on H2(D) associated with hyperbolic automorphisms of D. Recall
that Cϕr

− λI and Cϕs
− μI commute for any 0 < r, s < 1 and λ, μ ∈ C. This follows

from the fact that
ϕr ◦ ϕs = ϕt = ϕs ◦ ϕr, (8)

where t = (r + s)/(1 + rs). The result of Nordgren et al. [24] suggests the following
natural question.

Problem. Are there universal pairs of the form(
Cϕr

− λI,Cϕs
− μI

) ∈ L(H2(D))2,

for some 0 < r, s < 1, λ ∈ Ar and μ ∈ As?

We first note some obvious restrictions in view of Proposition 4.1.

Example 4.4.

(i) The pair (Cϕr
− λI,Cϕr

− μI) is not universal for any 0 < r < 1 and λ �= μ. In fact,
in this case, Ker(Cϕr

− λI) ∩ Ker(Cϕr
− μI) = {0} once λ �= μ.

(ii) Let 0 < r < 1. By (8), there is rn ∈ (0, 1) such that ϕnr = ϕrn
, where ϕnr = ϕr ◦

. . . ◦ ϕr (n-fold composition). Then (Cϕr
− λI,Cϕrn

− λnI) is not a universal pair
for any n ≥ 2 and λ ∈ Ar. Indeed, to see this we write Cϕrn

− λnI = S(Cϕr
− λI),

where S commutes with Cϕr
, and apply Proposition 4.1.

In our final example, we use the recent approach of Cowen and Gallardo-Gutiérrez [8]
to the universality result by Nordgren, Rosenthal and Wintrobe in order to analyse more
carefully a pair which shows subtler obstructions related to the existence of Nordgren–
Rosenthal–Wintrobe pair.

Example 4.5. There are r, s ∈ (0, 1) and respective eigenvalues λ ∈ Ar, μ ∈ As such
that Ker(Cϕr

− λI) ∩ Ker(Cϕs
− μI) is infinite dimensional, but condition (M) fails to

hold for the pair (Cϕr
− λI,Cϕs

− μI).
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Proof. Fix 0 < r < 1 and consider the positive eigenvalue λ = ((1 − r)/(1 + r))−u ∈
Ar, where 0 < u < 1/2. It follows from the proofs of Lemma 7.3 and Theorem 7.4 in [9]
that the functions

fn(z) = exp
(

(u+ in2πa) log
1 + z

1 − z

)
,

where a = (log((1 − r)/(1 + r)))−1 and n ∈ Z, forms a linearly independent family of
eigenfunctions for Cϕr

in H2(D) associated with the eigenvalue λ. Here, the logarithm
refers to the principal branch. Let r < s < 1 and consider μ = ((1 − s)/(1 + s))−u ∈ As.
As above,

gm(z) = exp
(

(u+ im2πb) log
1 + z

1 − z

)
,

where b = (log((1 − s)/(1 + s)))−1 and m ∈ Z, are linearly independent eigenfunctions of
Cϕs

for the eigenvalue μ. Moreover, we select r and s so that

n

m
=
b

a
=

log((1 + r)/(1 − r))
log((1 + s)/(1 − s))

(9)

holds for infinitely many pairs n,m ∈ Z \ {0}. This ensures that Ker(Cϕr
− λI) ∩

Ker(Cϕs
− μI) is infinite dimensional by comparing the above eigenfunctions.

Recall from [4, Theorem 5] (see also [8]) that there is an analytic covering map ψr :
D → Ar, such that Cϕr

− λI and T ∗
ψr−λ are similar operators on H2(D), where Tψr−λ ∈

L(H2(D)) is the analytic Toeplitz operator f �→ (ψr − λ)f . Indeed,

ψr(z) =
(

1 − z

1 + z

)itr/π
,

where tr = − log ((1 − r)/(1 + r)) > 0. Moreover, Cϕs
− μI and T ∗

ψs−μ are similar oper-
ators on H2(D) for the covering map ψs : D → As, where ψs(z) = ((1 − z)/(1 + z))its/π

and ts = − log((1 − s)/(1 + s)).
By standard duality, the dual version of part (ii) of condition (M) for the pair

(T ∗
ψr−λ, T

∗
ψs−μ) is the requirement that

Ran(Tψs−μTψr−λ) = Ran(Tψr−λ) ∩ Ran(Tψs−μ). (10)

Note for this that all the ranges are closed, since the adjoints are onto maps by similarity.
We claim that condition (10) does not hold. Towards this, consider the standard fac-

torization ψr − λ = B1S1F1 into a Blaschke product B1 containing the zeroes of the
function (counting multiplicity), a singular inner function S1 and an outer function F2.
Let ψs − μ = B2S2F2 be the analogous factorization for ψs − μ. It is not difficult to check
from (9) and the explicit form of ψr and ψs that the functions ψr − λ and ψs − μ have
infinitely many simple common zeroes. Let B1 = B0B3 and B2 = B0B4, where B0 is the
Blaschke product which contains the common zeroes.

To conclude the argument, consider the function g = B0B3B4S1F1S2F2. Observe that
g ∈ H2(D), since the maps ψr − λ and ψs − μ, and hence also S1F1 and S2F2, belong
to H∞ (see [29, Theorem 17.9], for instance). Clearly, g ∈ Ran (Tψr−λ) ∩ Ran (Tψs−μ)
by inspection. However, the Blaschke product containing the zeroes of (ψr − λ)(ψs − μ)
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already has the form B2
0B3B4, so that g /∈ Ran (Tψs−μTψr−λ) in view of the uniqueness

of the factorization. �

Remarks. One may verify from (9) that the pair (Cϕr
− λI,Cϕs

− μI) studied in
Example 4.5 has the property that there is p, q ∈ N with p < q, for which Cqϕr

− λqI =
Cpϕs

− μpI. However, we do not have general results which would exclude such a property
for universal pairs.
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