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Parametric reconstruction of radar image
based on Multi-point Scattering Model

maxim konovalyuk, anastasia gorbunova, andrey baev and yury kuznetsov

The wideband coherent-pulse radar provides high-resolution image of the target. The model of this image is a complex enve-
lope superposition corresponding to signals diffracted by the point scatterers. The values of complex envelopes are distributed
over the radar image coordinate plane in accordance with the point scatterer positions and their reflection coefficients. The
radar image model consists of range and Doppler profiles. The parameters of the target point scatterers were defined by pro-
cessing of two-dimensional (2D) data extracted from the complex 2D discrete Fourier transforms of the radar image. The
proposed parametric system identification method performs the estimation of the model parameters for a short dwell
time and the extrapolation of the radar data image beyond this time. The modified procedure of inverse synthesis aperture
radar imaging applied to actual data showed a reduction of the Doppler smearing and some improvements of image
resolution.
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I . I N T R O D U C T I O N

The high range resolution of a radar system makes it possible
to get information about a target shape and its geometrical
dimensions. That may be used for the target identification
[1]. It is known that the radar short pulse response from the
target may be described as a superposition of responses dif-
fracted from point scatterers [2]. Information about the
space positioning of the most powerful target scatterers may
be used for determination of the target shape and dimensions.
According to the geometrical theory of electromagnetic
back-scattering, any object having primitive shape such as
sphere, cone, edge, and so on can be described by a single
point-scatterer located on its surface at the equivalent phase
center [3]. Each man-made target in the X-band can be repre-
sented as a superposition of these primitive elements. Finally,
any man-made object could be uniquely described by a spa-
tially distributed point-scatterer model.

Responses from separate point scatterers may be consid-
ered as their individual reflected signals [4]. However, the dis-
tance between the scattering centers may be far lesser than the
radar range resolution, which considerably complicates
the target recognition directly from its radar range profile.
The implementation of the complex radar image technology
requires a coherent-pulse radar mode. The main reason for
using complex imaging technology for wideband radar
systems consists in necessary image resolution improvement.
This paper treats coherent X-band radar emitting a wideband

signal in the form of a sequence of short pulses without chirp
modulation. Pulse duration needs to be short enough to obtain
the range profile with predefined range resolution. In addition,
it was assumed that radar is equipped with the non-scanning
antenna system having a beam width much larger than the
target angular dimension [5].

The cross-range resolution of a radar target image is pro-
portional to the minimum discriminable difference between
Doppler frequencies shifts due to cross-range motion of
equivalent scatterers. In order to improve the cross-range
resolution, the observation dwell time should be increased
[6]. However, it should be taken into account that the
motion of a target point scatterer could be considered as rec-
tilinear and uniform only during a short dwell-time observa-
tion interval. Therefore, Doppler spectrum smearing is caused
by variation of the radial speed component due to the obser-
vation time increase.

I I . R A D A R I M A G E M O D E L

The complex envelope of the radar signal reflected from
P-point scatterers of a moving target can be expressed as

ẋ(t) =
∑P

p=1

Ȧp · ṡ[t − tp(t)] =
∑P

p=1

Ȧp · ṡ[t − 2rp(t)/c], (1)

where ṡ(t) =
∑N−1

n=0 ṡ0(t − n T) is the complex envelope of
the signal composed of N radar transmitted pulses ṡ0(t); T is
the interpulse interval; Ȧp is the complex amplitude of the
signal reflected from the p-th scatterer; tp (t) is the round-trip
delay proportional to the time-varying distance rp (t) between
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the radar and the p-th scatterer; c is the speed of electromag-
netic wave propagation.

Radial velocity for each target scatterer could be approxi-
mately assumed as a constant for a short observation time
DT ¼ N T. Hence, it can be represented as:

vp(t) = drp(t)/dt � v0p, p = 1, 2, . . . , P. (2)

Doppler frequency shift for the p-th scatterer is determined
by the expression:

fDp = 2f0v0p/c, (3)

where f0 is the carrier frequency.
Figure 1 shows the scheme of the radar emitting coherent-

pulse train and received radar signal in the form of range
profile moduli. Each range profile is composed of in-
phase and quadrature (I/Q) components as a result of quadra-
ture detection of the received radar signal.

The model of the digitized received radar signal can be
expressed as follows:

ẏ[k] =
∑P

p=1

Ȧp · ṡ[kDt − tp(kDt)] + ẇ[k], k = 0, 1, 2, . . . ,

(4)

where Dt is the time sampling interval; ẇ[k] is a complex addi-
tive Gaussian noise in the radar receiver bandwidth.

Spectrum of M signal samples ẏ[k] could be processed on
each interpulse interval T ¼M Dt:

ẎM[m] =
∑M−1

k=0

ẏ[k] · exp (− jfm k), (5)

where fm ¼ 2pm/M, m ¼ 0, 1, . . ., M21 are discrete normal-
ized frequencies in pulse bandwidth limited by the sampling
frequency 1/Dt.

This spectrum could be described by the product of radar
pulse spectrum Ṡ0M[m] and the superposition of exponential
terms corresponding to complex amplitudes of point-scatterer
models in frequency domain:

ẎM[m] = Ṡ0 M[m] ·
∑P

p=1

Ȧp · exp
−jfmt0p

Dt

( )[ ]

+ ẆM[m], (6)

where t0p = 2r0p/c, ẆM[m] is the Fourier transform of noise
complex envelope ẇ[k].

Doppler cross-spectrum of a moving target could be
obtained by using the discrete Fourier transform of N-time
domain signal samples with (M.Dt) sampling interval during
N.T dwell time:

YN [n] =
∑N·M−1

k=0

ẏ[k] · exp (−jcn k), (7)

where cn ¼ 2pn/N,n ¼ 0, 1, . . ., N 2 1 are discrete normal-
ized frequencies in coherent signal bandwidth limited by 1/T.

Doppler spectrum could be represented as a set of harmo-
nics with frequencies determined by cross-range shifts of
target point scatterers:

YN [n] �
∑N−1

n=0

∑P

p=1

Ȧp · exp (j 2p fDp n T)

[ ]

· exp ( − jcn n) + ẆN [n], (8)

where ẆN [n] is the Fourier transform of the noise complex
envelope ẇ[k].

Sampled data ẏ[k] obtained during N T dwell time could be
buffered into the two-dimensional (2D) structure with M rows
and N columns as follows: each column represents corre-
sponding range profile contains M samples linked with
certain single pulse (see Fig. 2(a)). The 2D structured

Fig. 1. Functional concept of inverse synthetic aperture radar.
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samples of the received signal can be expressed as:

ẏM×N [m, n] = ẏ[m − n M], n = 0, 1, . . . , N − 1,

m = 0, 1, . . . , M − 1. (9)

The individual cross-range slice of the radar image can be
formed by the fast Fourier transform (FFT) of corresponding
m-th data row (see Fig. 2(b)):

ż(rm, hn) = żM×N [m, n]

=
∑N−1

n=0

ẏN×M[m, n] · exp (−jcn n). (10)

In order to enhance resolution of inverse synthesis aperture
radar (ISAR) image, several methods can be applied. One of
the algorithms is based on time-frequency transform (TFT)
of radar data along dwell time. This algorithm was named
as joint time frequency (JTF) analysis [3]. Each TFT of a
range bin data sequence is inherently a 2D signal. Their trans-
forms are collected into an array along the range axis. The
resulting three-dimensional (3D) image could be synthesized
along discrete dwell time, range, and cross-range axes by
transforming obtained 2D slices into a 3D array. Fig. 2(b)
shows that FFT algorithm produces image blurring due to
the rotation of the target. On the contrary, JTF analysis
makes it possible to observe the time history of target
motion. This can be represented as the moving picture with
slices of 3D array instead of frames.

The backscattering of the radar target can be represented as
a superposition of responses from its point scatterers [1].
Thus, calculated radar image is a surface in r and h coordinate
planes. This 2D function can be described as a convolution of
point spread function (PSF) ṡ(r, h)and 2D impulse responses
of the transversal filter (see Fig. 3):

ż(r, h) = ċ(r, h) ∗ ṡ(r, h) + ẇ(r, h), (11)

where ċ(r, h) is an unknown impulse response of the radar
target portrait defined in a limited region of 2D radar image
spectrum. It could be approximately represented as a

superposition of responses from P effective point-scatterers:

ċ(r, h) =
∑P

p=1

ap · exp(jup) · d(r − rp, h − hp), (12)

where ap and u p are amplitude and initial phase of the signal
reflected from the p-th scatterer with (rp, hp) coordinates in an
image plane; ẇ(r, h) is a complex envelope of the Gaussian
noise.

The radar range profile of the target contains information
about its length under observation along the line of sight
and locations of scatterer projections on this axis. The range
resolution is determined by duration of a single pulse t:

Dr =
2 t
c
. (13)

In the case of a rotating target, Doppler shifts of scattering
centers would be different. Doppler resolution is inversely
proportional to DT dwell time. Doppler shift is proportional
to the cross-range of a scattering center with scaling factor
related to the radar wavelength () and inversely proportional
to the target rotation rate V. Thus, cross-range resolution is

Fig. 2. Buffered ISAR data (a), ISAR image based on FFT (b), and ISAR 3D time-frequency image (c).

Fig. 3. 2D Finite impulse response filter.
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determined as follows:

Dh = lDfD

2V
= l

2VDT
, (14)

where DfD is the Doppler resolution.

I I I . R A D A R I M A G E
P O S T - P R O C E S S I N G

According to the traditional approach [2], a radar image can
be processed by using inverse filtering, which makes it possible
to improve image resolution and obtain target radar portrait
written down as follows:

u̇(r, h) = ż(r, h) ∗ ġ(r, h), (15)

where ġ(r, h) is the impulse response of the inverse filter
satisfying the condition of mean-square error minimum
criterion:

1 =
∫

D
u̇(r, h) − ċ(r, h)| |2dr dh, (16)

within a limited image region D where the target is located
spatially. This approach results in the well-known Wiener fil-
tering algorithm. The frequency response of the inverse filter
could be written down as follows:

Ġ(fr , fh) = Ṡ
∗
(fr , fh)

Ṡ(fr , fh) · Ṡ
∗
(fr , fh) + a

, (17)

where Ṡ(fr , fh) is the 2D Fourier transform of PSF ṡ(r, h), a is a
regularization parameter depending on inverse signal-to-noise
ratio, fr and fh are spatial image frequencies.

The unknown parameter a can be estimated using singular
value decomposition of the radar image. The radar image can
be divided into two subspaces. Significant singular values cor-
respond to the signal subspace and remaining singular values
correspond to the noise subspace. The sum of singular value
squares forms the trace of the covariance matrix which also
corresponds to the energy of 2D image. Thus, noise-to-signal
ratio can be estimated as the ratio of noise and signal energies
in corresponding subspaces. The algorithm of such discrimin-
ation can be implemented by the ranging of the difference
values between adjacent singular values in descending order.
The first maximum of this difference would correspond to
the boundary between subspaces.

The diagram of the next step of the enhanced post-
processing algorithm is shown in Fig. 4. The model parameter
estimation should be implemented assuming the target as a set
of point-scatterers.

First of all, one should select the model order P and then
estimate vector of parameters rp ¼ [ap, up, rp, hp]T for each
scatterer. This algorithm implements the parametric identifi-
cation of the inverse filter model based on its output image.
The algorithm uses information criterion for model order
selection [4] and 2D Matrix Pencil method for parameter esti-
mation [5].

General form of any information criterion looks as follows:

K(p) = −2 ln L(U̇, r1, r2, . . . , rp) + kr · F(p, N × M), (18)

where ln L(U̇, r1, r2, . . . , rp) is the maximum of the likelihood
function; U̇ is data matrix formed using 2D spectrum of
u̇(r, h); F(p, N × M) is the risk function; p is the current
value of the model order; kr is the number of (kr ¼ 4) assessed
independent parameters. Maximum-likelihood estimate P̂ is
determined from the condition:

P̂ = arg min
p

{K(p)}. (19)

Matrix pencil [7] can be written down using two Hankel
matrices U̇1 and U̇2 obtained from U̇ by exclusion of the
first and the last columns, respectively

Ṁ = U̇2 − l · U̇1 = QL · A · Q − l · I( ) · QR, (20)

where U̇1 = QL · A · QR, U̇2 = QL · A · Q · QR, Q = diag q̇1

(
q̇2 . . . q̇P), A = diag ȧ1 ȧ2 . . . ȧP( ) are matrices with
reduced rank P̂ obtained basing on singular value decompos-
ition. Eigenvalues of matrix pencil are related to scatterer coor-
dinates by non-linear argument function

{r̂p, ĥp} = −
arg q̇p

2p
. (21)

The vector of complex amplitudes can be obtained using a
pseudo-inversion of the matrix

ˆ̇a = [ â1 · ejû1 â2 · ejû2 . . . âP · ejûP ]T

= QH · Q
( )−1 ·QH · U̇. (22)

In order to obtain the super-resolution effect, the synthesized
image of the multi-point target could be expressed as

v̇(x, y) =
∑P̂

p=1

âp · exp (jûp) · sL(r − r̂p, h − ĥp), (23)

where sL(r, h) is narrowed PSF

sL(r, h) = s(Lr · r, Lh · h), Lr . 1, Lh . 1. (24)

Fig. 4. Diagram of the radar image post-processing algorithm.
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P̂ is the selected model order and r̂p = [âp, ûp, r̂p, ĥp]T is the
assessed vector of parameters for the p-th scatterer.

I V . S I M U L A T I O N R E S U L T S

In the following example, ISAR simulated data were used for
the radar image post-processing algorithm. Processing of
initial data has been implemented using the complex radar
image of MiG-25 aircraft [8]. Radar image of a MiG-25 was
simulated using about 100 scatterers. Coherent time interval
was equal to 2 s. The carrier frequency was 9 GHz and pulse
repetition frequency was 15 kHz. Number of range samples
was equal to 64.

Figure 5(a) shows contour maps of the simulated aircraft
ISAR image, blurred, and noised by complex AWGN with
signal-to-noise ratio SNR ¼ 15 dB. Performance of Wiener
deconvolution algorithm using designed filter based on the
known PSF is shown in Fig. 5(b). Radar image as a decompos-
ition of scatterer responses was obtained by parametric iden-
tification procedure applied to inverse filter model. It is shown
in Fig. 5(c).

Shown contour maps demonstrate radar image deblurring
and improving of image resolution thanks to denoizing
achieved by the combined approach of image post-processing
algorithm based on parametric and non-parametric methods
of image processing.

V . C O N C L U S I O N

This paper suggests joint inverse filtering and parametric
identification for post-processing algorithm of a complex

radar image. In order to get the significant improvement of
radar image resolution using image-processing algorithm,
one should be aware of a prior information about radar
image PSF. A radar target portrait is reconstructed as the
model assuming superposition of the individual partial
responses from target point scatterers. This information was
used for parametric and non-parametric procedures of
radar image post-processing algorithm that was used for
identification of target geometric form. The above-given
simulation example demonstrates the improvement of radar
image quality made for assumed movement of the radar
target.
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