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Granular flow of rough particles in the
high-Knudsen-number limit
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(Received 2 June 2005 and in revised form 2 December 2005)

The granular shear flow of rough inelastic particles driven by flat walls is considered
in the high-Knudsen-number limit, where the frequency of particle collisions with the
wall is large compared to the frequency of inter-particle collisions. An asymptotic
analysis is used in the small parameter ε = ndL in two dimensions and ε = nd2L in
three dimensions, where n is the number of particles (per unit area in two dimensions
and per unit volume in three dimensions), d is the particle diameter and L is the
distance between the flat walls. In the collision model, the post-collisional velocity
along the line joining the particle centres is −en times the pre-collisional velocity, and
the post-collisional velocity perpendicular to the line joining the particle centres is
−et times the pre-collisional value, where en and et are the normal and tangential
coefficients of restitution. In the absence of binary collisions, a particle which has
a random initial velocity tends to a final state where the translational velocities are
zero, and the rotational velocity is equal to (−2Vw/d), where Vw is the wall velocity.
When the effect of binary collisions is included, it is found that there are two possible
final steady states, depending on the values of the tangential and normal coefficients
of restitution. For certain parameter values, the final steady state is a stationary
state, where the translational velocities of all the particles reduce to zero. For other
parameter values, the final steady state is dynamic state where the translational
velocity fluctuations are non-zero. In the dynamic state, the mean-square velocity
has a power-law scaling with ε in the limit ε → 0. The exponents predicted by
the theory are found to be in quantitative agreement with simulation results in two
dimensions.

1. Introduction
Theories for rapid flows of granular material have been developed based upon the

kinetic theory approach for dense gases. Such approaches make an analogy between
the motion of the particles in a granular material and the motion of molecules in
a gas, and attempt to write down constitutive relations similar to those derived by
the Chapman–Enskog procedure for hard-sphere gases (Chapman & Cowling 1970).
There have been many formulations of the balance laws and constitutive relations
for smooth inelastic particles (Savage & Jeffrey 1981; Jenkins & Savage 1983; Lun
et al. 1984; Jenkins & Richman 1985). In the generalized Navier–Stokes models, the
mass and momentum equations are similar to those for a simple fluid, but the energy
equation has an additional term due to the dissipation of energy in inelastic collisions
(Jenkins & Savage 1983; Lun et al. 1984; Sela, Goldhirsch & Noskowicz 1996; Sela &
Goldhirsch 1998). In the moment expansion models (Jenkins & Richman 1985),

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

01
27

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006000127


44 V. Kumaran

the higher moments of the velocity distribution function are incorporated into the
description. There have been systematic derivations of hydrodynamic equations up
to Burnett order, starting from the Boltzmann equation using an expansion with the
Knudsen number and the inelasticity of the particle collisions as the small parameters
(Sela et al. 1996; Sela & Goldhirsch 1998; Brey et al. 1998; Kumaran 2004). A recent
review (Goldhirsch 2003) concluded that hydrodynamic models have been unusually
successful in describing rapid granular flows.

The above theories usually assume that the single-particle velocity distribution
is close to a Maxwell–Boltzmann distribution, and deal exclusively with the low-
Knudsen-number regime, where the mean free path (or particle diameter) is small
compared to the macroscopic scale. Since the momentum and energy conservation
equations are second-order partial differential equations in the spatial coordinates, it
is necessary to prescribe boundary conditions for the velocity and the temperature
at the boundaries. Jenkins & Richman (1986) have, for example, derived momentum
and energy flux conditions at the boundaries by averaging over the interactions of a
particle with the boundaries. This flux turns out to be sensitive to the nature of the
particle interaction with the boundary. The effect of boundaries on the higher moments
of the velocity distribution were also incorporated in the analysis of Kumaran (2000)
based on a moment expansion technique.

There are practical situations, such as the flow in thin layers, where the distance
between boundaries could be of the order of a few particle diameters, and the
Knudsen number is not small. It is important to determine whether the continuum
description based on the low-Knudsen-number approximation is valid in this regime
as well, or whether a very different description is necessary. While the low-Knudsen-
number regime has been relatively well characterized, the successful modelling of the
finite-Knudsen-number regime requires some asymptotic results for the dependence
of the stress on the strain rate of the system in the limit of high-Knudsen-number.
Clearly, the rheology can be local only when the macroscopic scale is large compared
to the mean free path. In the high-Knudsen-number limit where the macroscopic
scale (channel width) is of the same magnitude as the mean free path, the rheology is
not local, and a relationship between the local stress and local strain rate cannot be
established. However, high-Knudsen-number flows are often encountered in practical
applications in granular flows, and so it is of importance to be able to predict the
stress required for a given relative wall velocity and channel width. In such cases, it
is not possible to obtain a differential equation relating the local stress and strain
rate; the best one can do is to obtain a relationship between the macroscopic stress
(stress on the walls) and apparent strain rate (velocity difference divided by channel
width). A constitutive relation of this type will have viscometric parameters which are
dependent on the channel width, in addition to the apparent strain rate and particle
properties. The objective of the present analysis is to determine these constitutive
relations, and examine their dependence on the channel width and particle properties.
It is also of interest to examine whether the ‘Bagnold law’, which states that the stress
is proportional to the square of the strain rate, is applicable to the high-Knudsen-
number regime.

The ratio of the Bagnold coefficients in the high- and low-Knudsen-number
regimes may be important for determining whether a granular flow is likely to
flow homogeneously or to slip at the boundaries. If the Bagnold coefficient in the
high-Knudsen-number regime is much lower than that in the low-Knudsen-number
regime, it is possible to envisage a situation where the strain rate in the flow is large
in a thin mobile layer for which the mean free path is comparable to the thickness of
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the layer, while the bulk of the flow has very little deformation. However, it should
be noted that the Bagnold coefficient in the high-Knudsen-number limit is likely to
be sensitive to the width of the flowing layer as well as the boundary conditions at
the bounding surface. This is in contrast to the low-Knudsen-number regime, where
the constitutive relation does not depend on the macroscopic scale.

Hydrodynamic equations for the momentum and energy cannot be written in
the high-Knudsen-number limit, because the mean free path is not small compared
to the macroscopic scale. In this case, it is necessary to use a more fundamental
approach, where the Boltzmann equation is solved directly to obtain the distribution
function. It should be noted that the Boltzmann equation is non-local, because the
collision integral involves discontinuous changes in the particle velocities during
collisions, whereas a hydrodynamic description in terms of the mass, momentum and
energy is strictly local. Hydrodynamic descriptions usually use the near-equilibrium
approximation, where the distribution function is assumed to be close to the Maxwell–
Boltzmann distribution. To describe non-equilibrium phenomena, a perturbation
expansion in the ratio of the mean free path and the macroscopic scale is used to
derive balance equations for the conserved variables, which are the mass, momentum
and energy. Such an approach cannot be used in the high-Knudsen-number limit,
because the mean free path is not small compared to the macroscopic scale, and the
distribution function could be very different from the equilibrium Maxwell–Boltzmann
distribution. In this case, it is necessary to first determine an analytical expression
for the distribution function in some well-defined limit. This is difficult, in general,
because the constitutive relation in the high-Knudsen-number regime is likely to
depend on the details of the particle–wall interactions, and it may not be possible to
obtain analytical results in all cases.

The high-Knudsen-number limit has been extensively studied in rarefied gas
dynamics (Cercignani 1988), mostly in order to obtain matching conditions for the
distribution function in a boundary layer near surfaces, to match two solutions on
either side of a shock wave or to relate an initial distribution function to the final
Maxwell distribution in the long-time limit. In all of these cases, the objective is to
supply the boundary or initial conditions for the outer solution in the boundary region
(in space or time). For this, it is necessary to incorporate the details of the particle
interaction with the boundary, or of the initial (transient) distribution function in
time. Another problem of interest at high-Knudsen-number is the free molecular flow
across bounded objects. The approach used here is to neglect the inter-molecular
collisions in the leading approximation, and the method of characteristics can be
employed to determine the distribution function, which remains unchanged along
characteristic directions in the flow. In this case, it is of interest to compute the flux
of mass, momentum and energy to the particle, and an accurate form of the kernel
for the collision between a particle and the surface is essential for obtaining accurate
solutions.

The flow in the high-Knudsen-number limit in channels and tubes with cross-section
small compared to the mean free path is an old problem dating back to Knudsen
(1909), where one of the important objectives is to predict the flux across a tube as a
function of the pressure drop when the tube diameter is small compared to the mean
free path (Willis 1962, 1965; Loyalka & Hamoodi 1991). More recently, this problem
has become relevant in the context of predicting slip at surfaces in micro-electro-
mechanical devices, where the channel width may be small compared to the mean free
path, and simulation techniques such as direct simulation Monte Carlo (Liou & Fang
2004) and lattice-Boltzmann (Zhang, Qin & Emerson 2005) have been developed

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

01
27

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006000127


46 V. Kumaran

for these applications. In applications restricted to the high-Knudsen-number limit,
intermolecular collisions are neglected, and the details of the wall–particle collision
become important in determining the transport rate. Collisions with the wall are
modelled either by specular boundary conditions, where the energy of a particle is
preserved in a collision, or by an absorption boundary condition where the energy
of a particle equilibrates with the thermal energy of the surface, so that the average
energy of a molecule is invariant in time. This is very different from a granular flow,
because there is no intrinsic thermal energy in the system, and the energy of the
particles is provided by the driving at the walls. Therefore, a dynamical steady state
with non-zero energy fluctuations can be attained only if there is driving at the walls,
and the distribution function is sensitive to the boundary conditions at the walls. In
addition, as we shall see in the analysis, a dynamical steady state can be achieved
only in the presence of binary collisions, so that the distribution function depends on
both the particle diameter and the channel width in the high-Knudsen-number limit.
This is a reflection of the fact that the high-Knudsen-number limit usually cannot
be analysed using regular perturbation techniques, due to the singular nature of the
limiting process.

Analytical results were obtained for the velocity distribution function for smooth
particles by Kumaran (1997) using an asymptotic analysis in the small parameter
ε = ndL, which is proportional to the inverse of the Knudsen number, where n is
the number density, d is the diameter of the particles and L is the channel width.
That study was restricted to smooth particles where the angular momentum of
the particles was not incorporated into the description, though the particle–wall
collision rule did permit the transport of momentum from the wall to the particle
in the tangential direction. One of the important findings of this study was that the
velocity distribution is highly non-Gaussian and anisotropic. In particular, the mean
square of the cross-stream velocity fluctuations is O(ε) times the mean square of
the streamwise velocity fluctuations. In addition, the ‘Reynolds stress’, which is the
average of the product of the streamwise and cross-stream velocity fluctuations, is
O(ε log (ε)) times the mean square of the streamwise velocity fluctuations. Therefore,
the normal stress in the cross-stream direction is small compared to the normal stress
in the streamwise direction, while the shear stress is larger than the normal stress in
the cross-stream direction. This is in contrast to the flow of nearly elastic particles
(1 − e) � 1 in the low-Knudsen-number regime, where the shear stress is (1 − e)1/2

smaller than the normal stresses. Here, e is the coefficient of restitution. This indicates
that there is a significant difference in the nature of the stress between the high-
and low-Knudsen-number regimes, and kinetic theories based on the homogeneous
shear flow approximation may provide erroneous results in the high-Knudsen-number
regime. The predictions of Kumaran (1997) were found to be in agreement with the
simulations of Bose & Kumaran (2004).

A similar calculation (Kumaran 1998) was carried out for a vibrated granular
material, in the limit where the frequency of collisions with the vibrated surface is
large compared to the frequency of inter-particle collisions. The velocity distribution
function at steady state was determined by a balance between the flux in and out
of a differential interval in the velocity coordinate due to collisions. It was found
that the velocity distribution function is sensitive to the nature of the driving by
the vibrated surface at the base (symmetric or asymmetric waveform), as well as
the nature of the dissipation (inelastic collisions at the base or viscous drag). The
distribution functions were shown to be in quantitative agreement with simulations
(Kumaran 1999). The leading correction to the distribution function due to binary
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collisions between particles was also calculated, and it was found that the distribution
function has a power-law dependence on the horizontal velocity in the limit where
the velocity goes to zero.

The above studies indicate that the velocity distribution function in the high-
Knudsen-number regime is very different from that in the low-Knudsen-number limit
even when the coefficient of restitution is close to 1, and the relative magnitudes of
the shear and normal stresses for shear flows scale as a power of the parameter ε

which is the inverse of the Knudsen number. The disadvantage of the analytical result
of Kumaran (1997) was that it is only valid for a specific model of the interaction
between the particle and the wall. The particles were assumed to be smooth, and the
particle–wall interaction was similar to the type-A boundary conditions of Campbell
& Brennen (1985), whereby the difference in the tangential velocity between the
particle and the wall is reduced by a constant factor in a collision. This acts as
the source of momentum for the particles in the direction tangential to the wall.
It is of interest to examine a more detailed particle–wall interaction model, which
incorporates the angular velocity of the particles as well as the normal and tangential
transfer of momentum at the point of contact for particle–wall and particle–particle
collisions. In the present study of rough particles in the high-Knudsen-number limit,
a similar procedure is followed to obtain the dependence of the steady-state velocity
distribution on a small parameter ε, defined as ndL in two dimensions and nd2L in
three dimensions, where n is the number density of particles (per unit area in two
dimensions and per unit volume in three dimensions), d is the diameter of the particle
and L is the distance between the walls.

The collision model used here is a modification of the perfectly rough, elastic
hard-sphere model which was first formulated by Bryan (Chapman & Cowling
1970). Pidduck (1992) extended the methods developed by Chapman & Enskog, for
non-rotating spherical molecules, to rotating hard spherical molecules and obtained
expressions for thermal conductivity and viscosity. The constitutive relations for the
flow of rough inelastic particles in the low-Knudsen-number regime were considered
by Lun (1991, 1996). We use the same model for the high-Knudsen-number regime
in the present analysis. A brief description of the model and the simulation technique
used for verifying the theoretical results is provided in the § 2.1. The steady state in the
absence of inter-particle collisions is obtained in § 2.2 for a two-dimensional system
of sheared disks, while the effect of inter-particle collisions on this steady state is
analysed in § 2.3. The analysis in § 2.3 reveals that there are two possible steady states
depending on the normal and tangential coefficients of restitution. In the static steady
state, the translational energy of the particles reduces to zero, while in the dynamical
steady state, the translational energy of the particles approaches a non-zero value in
the long time limit. The distribution function, and the scaling of the moments of the
velocity distribution with the parameter ε, in the dynamical steady state are derived
in § 2.4 for a two-dimensional shear flow of disks. The extension of the analysis to a
three-dimensional shear flow of spheres is briefly summarized in § 2.5.

2. Theoretical analysis
2.1. Collision model and simulation technique

The system consists of a two-dimensional channel of width L containing disks of
diameter d , and number density (number of particles per unit area) n. The channel is
bounded by two parallel rough walls moving with equal and opposite velocities +Vw

and −Vw positioned at y = +L/2 and y = −L/2, and is considered to be infinite
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x

y

Moving wall, velocity –Vw

Moving wall, velocity Vw

L

Figure 1. Schematic of two-dimensional rough disks sheared with two parallel
moving rough walls.

in the x-direction, as shown in figure 1. For this system, the frequency of particle
collisions with the wall per unit length of the channel is proportional to nu while that
of a particle–particle collision is n2duL per length of the channel, where u is the
root-mean-square fluctuating velocity. If the velocity fluctuations are isotropic, the
ratio of the frequencies of particle–particle and particle–wall collisions is given by
the parameter ε = ndL, which is considered to be small in the high-Knudsen-number
limit.

The collision rules for rough, inelastic hard particles, of Lun (1991, 1996), which is
a generalization of the rough elastic particle model of Bryan (1894) (see Chapman &
Cowling 1970), is used here. Two particles, with pre-collisional velocities ui and u∗

i are
considered, where indicial notation is used to represent the components of vectors.
The post-collisional velocities, u′

i and u∗′

i are related by

u′
i = ui +

Ji

m
(2.1)

u∗′
i = u∗

i − Ji

m∗ (2.2)

where Ji is the impulse exerted by particle with velocity ui on particle with velocity
u∗

i . The angular velocities before and after collision are related by

dω′
i = dωi +

2

κm
εijkkjJk (2.3)

dω∗
i

′ = dω∗
i +

2

κm
εijkkjJk (2.4)

where ωi and ω′
i are particle angular velocities before and after collision respectively,

d is the diameter of the particle, κ = (4I/md2) (m is the mass of the particle and I

is the moment of inertia), and k is the unit vector along the line joining the centre
of the particles directed from the centre of the unstarred particle to the starred
particle. For rough inelastic particles, the impulse exerted is modelled by introducing
the tangential and normal coefficients of restitution, en and et . In this case, the post-
collisional relative velocity along k is equal to −en times the relative pre-collisional
velocity along k, while the relative post-collisional velocity in the plane perpendicular
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to k at the point of contact is equal to −et times the relative pre-collisional velocity
in the plane perpendicular to k. The impulse between the two particles is given by,

Ji

2mr

= −η2(ui − u∗
i ) − (η1 − η2)(uj − u∗

j )kjki + 1
2
η2εijkkj (dωk + d∗ω∗

k) (2.5)

where mr is the reduced mass given by (mm∗)/(m + m∗),

η2 =
(1 + et )

2

κ

1 + κ
, η1 =

1 + en

2
,

and en and et are the normal and tangential restitution coefficients. The limit of
smooth elastic particles corresponds to en = 1 and et = −1, while the limit of rough
inelastic particles (where the tangential velocity at the point of contact is reversed in
a collision) corresponds to en = 1 and et = 1. For a wall-particle collision, the mass
of the wall is considered to be infinite, so that the reduced mass is equal to the mass
of the particle, and the angular velocity is assumed to be equal to zero. In this case,
the expression for the impulse is

Ji

m
= −2η2(ui − u∗

i ) − 2(η1 − η2)(uj − u∗
j )kjki + η2εijkkjdωk (2.6)

where u∗
i is the wall velocity.

Two-dimensional simulations of the flow of rough inelastic disks in a channel were
carried out to verify the theoretical predictions. Periodic boundary conditions are
applied in the flow (x) direction at the planes x = ±L/2. The event-driven simulations
consist of two steps: a streaming step and a collisional step. In the streaming step, the
time required for the next impending collision is calculated using the current positions
and velocities of all the particles. In the collision step, the velocity of the colliding
particles is updated according to equations (2.1) to (2.4). The number of particles in
the simulation cell was fixed at 125, and the length and width of the simulation cell
were set equal to 1. The diameter of the particles was varied in order to vary the
dimensionless parameter ε = ndL in the range 0.1 to 10−4. The theory developed in
§ 2.4 predicts that the velocity distribution function in the limit ε → 0 depends only
on ε, and not individually on d and n, and it was verified that the results for the
velocity moments do not change by more than 1% when the number of particles
was increased from 125 to 250 at ε = 10−4 for the coefficients of restitution used
here. The number of collisions for the simulations was fixed as follows. As discussed
in the introduction, the frequency of particle–wall collisions is large compared to
the frequency of particle–particle collisions in the high-Knudsen-number limit. The
dependence of the ratio of the frequency of particle–wall to particle–particle collisions,
im, is derived a little later in equation (2.19). This increases proportionally to log (ε) in
the limit ε → 0. In order to obtain accurate averages, it is necessary to vary the total
number of collisions with ε in such a way that a particle experiences a large number
of binary collisions during the course of the simulation. In the simulations, the system
was allowed to equilibrate for 1000im collisions per particle, and the averages were
taken for an additional 1000im collisions per particle. This ensured that a particle
experienced, on average, at least 1000 binary collisions, and a significantly larger
number of wall collisions, over the time period of the simulation. The collision ratio
im is typically in the range 3–20 for the values of ε and the coefficients of restitution
studied here, so the total number of collisions in a typical simulation run was of the
order of 106.
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When simulating high-Knudsen-number granular flows, it is necessary to pay
attention to two issues. The first is that a large number of periodic images are
required in the direction parallel to the plates, in order to capture all collisions,
especially those of particles which travel almost parallel to the plates, and travel long
distances before colliding with a wall or another particle. This issue was resolved
by treating the particle crossing one of the periodic boundaries as an event, and the
particle positions were updated for each crossing of one of the periodic boundaries.
However, this event was not counted as a collision for the purpose of determining
the total number of collisions in the simulation run. This has the advantage that
it was not necessary to predict collisions of a particle in the central collision cell
with its periodic images, but it has the disadvantage that the times required for the
simulation are greatly increased. This is due to the large number of crossings of the
periodic boundaries by particles having velocity nearly parallel to the walls between
successive particle–particle or particle–wall collisions. The other important issue is
that the results of time averaging for the distribution function are not identical to the
results obtained by averaging over collisions. This is because the time period between
wall collisions is small compared to that between binary collisions, and averaging over
collisions results in a bias towards wall collisions. Therefore, in order to determine the
distribution function and velocity moments, it is necessary to carry out time averages
while calculating the distribution function and the velocity moments.

2.2. Steady state in the absence of inter-particle collisions

In the absence of binary collisions, a steady state is achieved if the particle velocity
distribution is recovered after two wall collisions. In the present case, we show by
analysing the evolution of a particle velocity due to wall collisions, that the steady-
state distribution is a delta function at the location in velocity space where the
translational velocities are equal to zero, and the rotational velocity is equal to the
ratio of the wall velocity and the particle radius.

If the particle collides with the wall at y = −L/2, the particle velocity after a
collision obtained from equations (2.1), (2.3) and (2.5), is

u′
x = (1 − 2η2)ux − 2η2

(
Vw + 1

2
dω

)
, (2.7)

u′
y = (1 − 2η1)uy, (2.8)

ω′ = ω − 4η2

κd
ux − 4η2

κd

(
Vw + 1

2
dω

)
, (2.9)

where subscripts x, y stands for flow and gradient directions respectively. The velocity
after a subsequent collision with the wall at y = L/2 is given by

u′′
x = (1 − 2η2)u

′
x + 2η2

(
Vw + 1

2
dω′), (2.10)

u′′
y = (1 − 2η2)u

′
y, (2.11)

ω′′ = ω′ +
4η2

κd
u′

x − 4η2

κd

(
Vw + 1

2
dω′). (2.12)

It is convenient to define Ω = (ω + 2Vw/d), which is the departure of the angular
velocity from its limiting value at long time. With this substitution, equations (2.7)
and (2.9) can be written in matrix form,(

u′
x

Ω ′

)
=

(
1 − 2η2 −η2d

−4η2/dκ 1 − 2η2/κ

) (
ux

Ω

)
. (2.13)
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Equations (2.10) and (2.12) can be written in the matrix form as(
u′′

x

Ω ′′

)
=

(
1 − 2η2 η2d

4η2/dκ 1 − 2η2/κ

) (
u′

x

Ω ′

)
. (2.14)

Considering two successive wall collisions as one event, equations (2.13) and (2.14)
can be combined to obtain the velocity of a particle after (i+1) pairs of wall collisions
as a function of the velocity after i pairs of wall collisions,(

u(i+1)
x

Ω (i+1)

)
= M

(
u(i)

x

Ω (i)

)
(2.15)

The magnitudes of the eigenvalues of M provide the rate of decrease in the velocity
due to a pair of collisions with the top and bottom walls. We restrict attention,
in the reminder of the analysis, to disks of uniform density, for which κ = (1/2).
However, the scaling relations obtained here are more general, and apply to disks of
any density distribution. For uniform disks with κ = (1/2), it can easily be verified
that the eigenvalues are complex conjugates for et > 0.0294373, and the magnitudes
of the two eigenvalues are equal, |λ1| = |λ2| = λxΩ (which provides a measure of the
amplification or reduction in the magnitude of the eigenvectors in ux − Ω space) is
equal to et . For et < 0.0294373, the eigenvalues are real and positive, and λxΩ , the rate
at which the velocity decreases with the number of collisions, is the larger of the two
eigenvalues. In all cases, the magnitudes of the eigenvalues are less than 1, indicating
that the magnitude of the two eigenvectors, which are linear combinations of u(i)

x

and Ω (i), decreases monotonically with i. Therefore, in the limit of large i and in
the absence of binary collisions, the particle velocities approach ux =0 and Ω = 0.

The post-collisional velocity of particle in the cross-stream direction after two
successive collisions with the wall is obtained from equation (2.8):

u(i+1)
y = λyu

(i)
y (2.16)

where λy = e2
n. Since λy is also less than 1, the cross-stream velocity of a particle also

approaches zero in the long time limit. The above results indicate that one possible
steady-state distribution is a delta function at the point in velocity space where the
translational velocities are zero, and the rotational velocity is −Vw/ 1

2
d .

2.3. Effect of inter-particle collisions

First, we provide a qualitative description of the expected final steady states in the
presence of binary collisions, and then proceed to quantify them and compare them
with simulations. In the presence of binary collisions, there are two possible final
steady states. One is the state where all particle velocities decrease to zero at long
times, because the frequency of wall-particle collisions, which tends to reduce the
translational velocity, is larger than that of inter-particle collisions. The frequency
of wall-particle collisions per unit area is proportional (nuy/L), whereas the number
of inter-particle collisions is proportional to n2d(u2

x + u2
y)

1/2. The ratio of the binary

collision frequency and the particle–wall collision frequency is given by (ndL(u2
x +

u2
y)

1/2/uy). Since we are considering the limit (ndL) = ε � 1, the ratio of binary and
particle–wall collisions is always small if ux decreases to zero faster than uy as
the particle undergoes wall collisions, so that the ratio ((u2

x + u2
y)

1/2/uy) is close
to 1. Therefore, it is expected that the final steady state will be one in which the
translational velocities of the particles reduce to zero if ux reduces to zero faster than
uy as the particle undergoes wall collisions.
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Figure 2. Static and dynamic regions for different values of et and en, and κ = 0.5: +,
parameter values corresponding to static steady state from simulations for ε = 0.0001; �,
parameter values corresponding to dynamic steady state from simulations for ε = 0.0001; —,
theoretical prediction for the boundary between static and dynamic steady states.

In the opposite case, where uy reduces to zero faster than ux as the particle collides
with the wall, it is expected that ((u2

x + u2
y)/uy) will increase with the number of

collisions, and this ratio could be large enough that (ndL(u2
x + u2

y)
1/2/uy) will be

O(1) even though ndL is small. For example, consider ux ∝ λi
xΩ and uy ∝ λi

y , where
i is the number of pairs of wall collisions since the most recent binary collision.
For λxΩ < λy , the streamwise velocity decreases to zero faster than the cross-stream
velocity, and the final state is a static state consisting of particles with zero linear
velocity and angular velocity equal to (−2Vw/d). For λy < λxΩ the cross-stream velocity
decreases to zero faster than the streamwise velocity, and the frequencies of binary and
wall collisions are of equal magnitude when the number of pairs of wall collisions is
i = im ∼ (log (ndL)/ log (λy/λxΩ )). At this point, there is a high probability of a particle
undergoing a binary collision, and thereby regenerating the velocity fluctuations which
result in further wall collisions. Thus, the translational velocities of the particles do
not reduce to zero at long time, but attain some final distribution with a non-zero
standard deviation.

The results anticipated from the above analysis are in good agreement with the
results of simulations. Figure 2 shows the boundary between the parameter regimes
for the zero translational energy steady state, and the non-zero translational energy
steady state. The points are the parameter values for which simulations were carried
out on either side of the boundary: the plusses are the points at which the final steady
state had zero translational energy, and the circles are the points at which the final
steady state had non-zero energy. It is found that there is good agreement between
theory and simulations. The distinction between final steady states with zero and
non-zero translational energy is shown in figure 3. This plots the variation of 〈u2

x〉
and 〈u2

y〉, the mean-square velocities in the streamwise and cross-stream direction, as
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Figure 3. Variation of streamwise and cross-stream mean-square velocities as a function of
the number of wall collisions at et = 0.84 and ε = 0.0001. �, (〈u2

x〉/V 2
w); ×, (〈u2

y〉/V 2
w) for

en = 0.92 corresponding to the static steady state, and �, (〈u2
x〉/V 2

w); +, (〈u2
y〉/V 2

w) for en = 0.91
corresponding to the dynamic steady state.

a function of number of collisions with the wall. It is observed that when the final
steady state has zero translational energy, there is a steady decrease in the energy due
to wall collisions, and periodic increases in the energy for every inter-particle collision.
However, in the long term, the decrease in the energy due to wall collisions is faster
than the increase due to inter-particle collisions, and the system reaches a final state
where the energy decreases below machine precision. However, when the final state
has non-zero translational energy, the translational energy approaches a steady value
as the number of collisions increases. Next, we examine the velocity distribution and
its moments in the ‘dynamic’ steady state with non-zero translational energy.

2.4. Distribution function for the dynamic steady state

At steady state, the number of particles in a differential volume in velocity space is
determined by a balance between the number of particles entering and leaving that
differential volume due to particle–particle and particle–wall collisions. The frequency
of particle–wall collisions per unit length of the top and bottom plates is proportional
to nuy and the frequency of inter-particle collisions is proportional to n2duxL

for ux 
 uy . These two frequencies are of equal magnitude for (uy/ux) ∼ ε, where
ε = (ndL) � 1.

The velocity distribution function can be inferred by following the evolution of the
velocity of a particle after a binary collision. If u(0)

x , u(0)
y and ω(0) are the components

of the velocity of a particle after a binary collision, and the average particle undergoes
im wall collisions between two inter-particle collisions, the magnitudes of the velocity
after im subsequent wall collisions are (λim

xΩu(0)
x , λim

y u(0)
y , (λim

xΩ (ω(0) + 2Vw/d) − 2Vw/d)
from equations (2.15) and (2.16). It is shown a little later, in equation (2.19), that im is
large. Since the eigenvalues λxΩ and λy are less than 1, the translational velocity after
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im wall collisions is small compared to those after the most recent binary collision,
while the rotational velocity is close to (−2Vw/d). Therefore, a typical binary collision
involves two particles with translational velocities close to zero, and rotational velocity
close to (−2Vw/d). A collision between two such particles will result in post-collisional
linear velocities of the particles proportional to Vw . The exact expression for the post-
collisional velocities can be evaluated as follows. Consider a collision between two
particles whose translational velocities are zero in the leading approximation, while
the rotational velocities are equal to ω = (−2Vw/d). However, the relative translational
velocity of the particles is along the x-axis in the leading approximation, since ux 
 uy

for the colliding particles. When these two particles collide, the final velocity after the
collision depends on the angle θ between the relative velocity and the line joining the
centres of the particles. Because ux 
 uy for the colliding particles, the angle θ is also
the angle between the line joining centres and the x-axis. The final velocities after the
binary collision can be easily determined using the collision rules (2.7), (2.8) and (2.9)
as

u(0)
x = −2η2Vw sin (θ),

u(0)
y = 2η2Vw cos (θ),

Ω (0) = (4η2Vw/dκ),

⎫⎪⎬
⎪⎭ (2.17)

where η2 = ((1+et )/2)(κ/(1+κ)). Consequently, both u(0)
x and u(0)

y scale as Vw . Therefore,
the linear and angular velocities of the particles after i pairs of particle–wall collisions
scale as

u(i)
x ∼ λi

xΩVw,

u(i)
y ∼ λi

yVw,

Ω (i) ∼ λi
xΩ (Vw/d),

⎫⎪⎬
⎪⎭ (2.18)

where Ω (i) = ω(i) + (2Vw/d).
As the particle undergoes wall collisions, the y-component of the velocity decreases

faster than the x-component, since λy < λxΩ for the dynamic steady state. The
frequency of particle–wall collisions is proportional to nu(i)

y f (u(i)
x , u(i)

y ), while that of

binary collisions is proportional to n2dL(u(i)2
x +u(i)2

y )1/2 ∼ n2dLu(i)
x . Therefore, the ratio

of particle–particle collisions and particle–wall collisions is (u(i)
x ε/u(i)

y ) ∼ (λxΩ/λy)
iε.

This ratio is of O(1) for

i = im ∼ (log (ε)/ log (λy/λxΩ )). (2.19)

Therefore, after im collisions, the frequencies of particle–particle and particle–wall
collisions are of equal magnitude, and for i 
 im, the frequency of particle–particle
collisions is large compared to that of particle–wall collisions. The magnitudes of
the velocity components for the cross-over from the particle–wall-collision-dominated
regime to the particle–particle-collision-dominated regime are

ux ∼ Vwλ
im
xΩ ∼ Vwε(log (λxΩ )/ log (λy/λxΩ )),

uy ∼ Vwλ
im
y ∼ Vwε(log (λy )/ log (λy/λxΩ )),

ω + (2Vw/d) ∼ (Vw/d)λim
xΩ ∼ (Vw/d)ε(log (λxΩ )/ log (λy/λxΩ )).

⎫⎪⎬
⎪⎭ (2.20)

The physical picture of the evolution of the particle velocity is as follows. The
frequency of binary collisions is of the same magnitude as that of particle–wall
collisions only for ux � Vw and uy � Vw , for which (ux/uy) ∼ ε−1. Therefore, a binary
collision scatters particles from a pre-collisional state with near-zero translational
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velocity and a rotational velocity close to −(2Vw/d), to a post-collisional state in
which the magnitudes of both the velocity components are Vw . When the translational
velocity of the particles is O(Vw), the frequency of wall collisions is large compared
to that of binary collisions, and so the particle undergoes repeated collisions with
the walls and comes down the velocity cascade according to equations (2.15) and
(2.16). This process continues until the velocity decreases to ux � Vw , uy � Vw and
(ux/uy) ∼ ε−1. The number of pairs of wall collisions required for the particle velocity
to decrease to this value is im = (log (ε)/ log (λy/λxΩ )). At this level in the velocity
cascade, the probability of a binary collision is equal to that of a wall collision, and
a particle undergoes a binary collision for i ∼ im. In this manner, a dynamical steady
state is achieved.

It is convenient to define a velocity distribution fi(θ) parameterized by the number
of pairs of particle–wall collisions after the most recent particle–particle collision i,
which is defined such that nfi(θ) dθ is the number of particles per unit area which
have undergone i pairs of collisions after the most recent binary collision, and for
which the angle between the line joining the centres and the x-coordinate at the most
recent binary collision is in the differential angle dθ about θ . Note that θ is the angle
between the x-axis and the line joining the centres of the particles after the most recent
binary collision, for which the post-collisional velocity is given by equation (2.17).
Once the post-collisional velocity after the most recent binary collision is known as
a function of θ from equation (2.17), the velocity after the ith wall collision can be
calculated as a function of θ and i using the recurrence relations (2.15) and (2.16). The
velocity distribution function f (ux, uy, Ω) can be formally expressed in terms of fi(θ)
by

f (ux, uy, Ω) =
∑

i

∫
dθfi(θ)δ

(
ux − u(i)

x

)
δ
(
uy − u(i)

y

)
δ
(
Ω − Ω (i)

)
(2.21)

where u(i)
x , u(i)

y and Ω (i) are given in (2.15) and (2.16).
The distribution function fi(θ) at steady state is determined by a balance between

an accumulation and a depletion term. The accumulation for particles with i pairs of
wall collisions is due to particles with (i − 1) pairs of wall collisions which undergo
a subsequent collision with the wall. The frequency of these collisions per unit length
of the channel is

N
(i)
in (θ) = n

∣∣u(i−1)
y

∣∣fi−1(θ). (2.22)

Note that there is no accumulation of particles for i > 0 due to binary collisions,
since a binary collision sets the wall collision index of the particles to zero. The
accumulation of particles for i = 0 due to binary collisions is determined later in
equations (2.32) and (2.33).

The depletion of particles with i wall collisions after the most recent binary collision
could be due to a collision of the particle with the wall or with another particle. The
rate of depletion of particles due to collisions with the wall per unit length of the
channel is

N
(i)′

out (θ) = n
∣∣u(i)

y

∣∣fi(θ). (2.23)

For i � im, we would expect equation (2.23) to provide the total rate of depletion of
particles, since the rate of depletion due to binary collisions is small compared to
that due to wall collisions. In this case, the distribution function is given by equating
(2.22) and (2.23),

fi = λ−1
y fi−1 = λ−i

y f0. (2.24)
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Note that the above equation is valid only for i � im, and is modified by the rate of
depletion of particles due to binary collisions for i ∼ im. The value of the distribution
function for i ∼ im can be estimated as,

fi ∼ λ−im
y f0 ∼ f0ε

(log (λy )/ log (λy/λxΩ )). (2.25)

Though equation (2.24) has provided an expression for the distribution function for
i � im, we do not yet have an estimate of fi for i 
 im. This estimate is obtained by
explicitly considering the depletion of particles due to binary collisions.

The exact expression for the rate of depletion of particles due to binary collisions,
assuming molecular chaos, is

N
(i)′′

out = n2dL
∑

j

∫
dθ ′

∫
dkfi(θ)fj (θ

′)
(
u(i) − u(j )

)
· k (2.26)

where k is the unit vector in direction of the line joining the centres of the particles, and
the integral over k is carried out only for particles which approach before a collision,
i.e. for which (u(i) − u(j )) · k > 0. Note that there is a factor L in (2.26) because
we consider the rate of depletion per unit width of the channel. Equation (2.26)
is difficult to analyse, and so we seek a uniform approximation for this flux which
is valid for both the wall-collision-dominated regime i � im and the binary-collision-
dominated regime i 
 im. Consider the collision of a particle in the latter regime
i 
 im with a second particle that has wall collision index j .

(a) If the second particle has wall collision index j � im, the velocity of the second
particle is u(j )

x ∼ Vw , and the distribution function f ∼ f0. The collision rate per unit
width of the channel is proportional to n2dLVwf0.

(b) If the second particle has wall collision index j ∼ im, then u(j )
x ∼ Vwλ

im
xΩ , and

f ∼ λ(−im)
y f0 from equation (2.24). The collision rate per unit width of the channel is

n2dLVw(λxΩ/λy)
imf0 ∼ n2dLVwf0ε

−1, since im = log (ε)/ log (λy/λxΩ ).
(c) If j 
 im, we show below that the distribution function decreases proportionally

to λj 2/2
y while the particle velocity in the x-direction decreases proportionally to λ

j
xΩ .

Therefore, the collision rate per unit width of the channel is proportionally to
n2dLf0λ

j 2

y λ
j
xΩVw . For j 
 im, it can easily be verified that this collision rate is small

compared to the collision rate n2dLVwf0ε
−1 for j ∼ im.

From the above, it is clear that the dominant contribution to the rate of depletion
of particles is due to collisions with other particles having j ∼ im. For these particles,
the velocity u(j )

x 
 u(i)
x (since j ∼ im and i 
 im), and the relative velocity between the

particles can be approximated as |u(i)
x − u(j )

x | = u(j )
x . Therefore, the rate of depletion

due to binary collisions can be approximated as,

N
(i)′′

out = n2dLfi(θ)
∑

j

∫
dθ ′∣∣u(j )

x

∣∣fj (θ
′)

= An2dLfi(θ)Vwλ
im
xΩ

= An2dLfi(θ)Vwε(log (λxΩ )/ log (λy/λxΩ ))

= Anfi(θ)ε(log (λy )/ log (λy/λxΩ )) (2.27)

where A is a function of the coefficients of restitution, but is not a function of ε in
the limit ε → 0, because the ε dependence is incorporated into the last term on the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

01
27

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006000127


Granular flow of rough particles in the high-Knudsen-number limit 57

right-hand side of equation (2.27). Note that the above equation is a definition of A,

A =

(∑
j

∫
dθ ′∣∣u(j )

x

∣∣fj

)/(
Vwλ

im
xΩ

)
. (2.28)

It should be noted that A cannot be evaluated at the present stage, since the
distribution function is not yet evaluated, but it can be evaluated self-consistently
along with the distribution function after we have an expression for the distribution
function in terms of A. Equation (2.27) for the flux is exact for particles with number
of wall collisions i 
 im and u(i)

x � u(im)
x . For particles with i � im, it is significantly in

error, because u(i)
x and u(i)

y are of the same magnitude, and u(i)
x is not small compared

to u(j )
x . However, it should be noted that for these particles, the depletion rate due to

binary collisions (2.27) is O(ε) smaller than the depletion rate due to wall collisions
(2.23), and therefore the sum of equations (2.23) and (2.27) provides a uniform
approximation for the depletion rate for both i � im and i 
 im. With this uniform
approximation for the rate of depletion of particles due to binary collisions, the total
rate of depletion of particles is

N
(i)
out = n

(∣∣u(i)
y

∣∣ + Aε(log (λy )/ log (λy/λxΩ ))Vw

)
fi

= n
(∣∣u(0)

y

∣∣λi
y + Aλim

y Vw

)
fi. (2.29)

At steady state, a balance between the rate of increase and decrease provides the
recurrence relation for the distribution function,

fi(θ) =
λi−1

y

∣∣u(0)
y

∣∣fi−1(θ)

λi
y

∣∣u(0)
y

∣∣ + Aλim
y Vw

=
λ−1

y fi−1

1 +
(
Aλim−i

y Vw

/∣∣u(0)
y

∣∣)
=

λ−i
y f0

i∏
j=0

(
1 +

(
AVwλ

im−j
y Vw

/∣∣u(0)
y

∣∣)) . (2.30)

This expression is consistent with equation (2.24) for the distribution function for
i � im, since the denominator is close to 1. For i 
 im, the above distribution function
can be approximated as,

fi(θ) ∼
(
AVw

/∣∣u(0)
y

∣∣)−i
λ(i(i+1)/2−iim−i)

y f0. (2.31)

The function f0(θ) is determined by a balance between the accumulation of particles
whose velocity is scattered by a binary collision, and the depletion of particles due to
the first wall collision. The flux of particles due to a binary collision, per unit width
of the channel, can be determined using the molecular chaos approximation,

N
(0)
in (θ) dθ = n2dL

∑
i

∑
j

∫
dθ ′

∫
dθ ′′

∫
dkfi(θ

′)fj (θ
′′)

(
u(i) − u(j )

)
· k (2.32)

where k is the unit vector in the direction of the line joining the centres of the particles
at collision, and the integral over k (equation (2.32)) is evaluated for particles which
approach prior to a collision, or for (u(i) − u(j )) · k � 0. The integral over the velocity of
the colliding particles depends on the details of the velocity distribution, which is not
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known at this stage. However, this can be evaluated consistent with the approximation
in equation (2.27). Scaling arguments were used to show, above equation (2.27), that
the dominant contribution to binary collisions is due to collisions between particles
with wall collision index i ∼ im. For these particles, the streamwise velocity ux is large
compared to the cross-stream velocity uy , and ux ∼ λim

xΩVw . Therefore, the rate of
accumulation of particles with wall collision index i = 0 can be estimated as

N
(0)
in = g0n

2dL| cos (θ)|
(
Vwλ

im
xΩ

)
= g0n| cos (θ)|Vwε(log (λy )/ log (λy/λxΩ )) (2.33)

where θ is the angle between the line joining the centres of the particles at collision
and the x-axis, and g0 is a multiplicative constant defined by the normalization
condition a little later. Note that the constant g0 is not the same as the constant A

defined earlier, since we had made the assumption |u(i)
x | � |u(j )

x | when defining A for a
binary collision between two particles i and j in equation (2.27), whereas the constant
g0 is used to model collisions between particles i and j for which |u(i)

x | ∼ |u(j )
x |.

The collisional rate of depletion of particles with wall collision index 0 due to the
first wall collision is

N
(0)
out = n

∣∣u(0)
y

∣∣f0(θ)

= n(2η2Vw| cos (θ)|)f0(θ). (2.34)

Equating these, we find that f0 is independent of θ , and

f0 = (g0/2η2)ε
(log (λy )/ log (λy/λxΩ )). (2.35)

In (2.35), the value of g0 is determined from the normalization requirement,∑
i

∫
dθfi = 1 (2.36)

where fi is given in terms of f0 from the relation (2.30). With this, the uniform
approximation for the distribution function fi is

fi(θ) =

(
λ−i

y εlog (λy )/ log (λy/λxΩ )

/
i∏

j=0

(
1 +

(
AVwλ

im−j
y Vw

/∣∣u(0)
y

∣∣)))

∫
dθ

∞∑
i=0

(
λ−i

y εlog (λy )/ log (λy/λxΩ )

/
i∏

j=0

(
1 +

(
Aλim−j

y Vw/
∣∣u(0)

y

∣∣))) . (2.37)

It is clear, from equations (2.24) and (2.31), that the distribution function decreases
proportionally to λ−i

y f0 for i � im, and shows a much faster decrease proportionally

to λi2/2
y λim

xΩf0 for i 
 im, and has a maximum for i ∼ im. It can also be shown that the
number of particles per unit area with i < im is large compared to that with i > im.
The number of particles per unit area with i < im can be estimated by summing the
approximation (2.24) for the distribution function from 0 to im,

n

im∑
i=0

fi ∼ n

im∑
i=0

λ−i
y f0

∼ nλ−im
y f0 (2.38)

∼ n. (2.39)
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The number of particles with i > im can be estimated by summing the approximation
(2.31) for the distribution function from im to ∞,

n

∞∑
i=im

fi ∼ n

∞∑
i=im

λi2/2
y λim

xΩf0

∼ (nf0/

√
log (λ−1

y ))

∼
(
nε(log (λy )/ log (λy/λxΩ ))

/√
log

(
λ−1

y

))
. (2.40)

Therefore, the number of particles for i > im is small compared to that for i < im.
Similar calculations can be carried out to determine the contributions to the moments
of the velocity distribution, and these calculations indicate that the contribution to
the second moments of the velocity distribution from particles with i > im is small
compared to the contribution due to particles with i < im. Therefore, the dominant
contribution to the moments of the velocity distribution is due to particles with i < im,
for which the distribution function fi increases proportional to λ−i

y .
Next, we numerically examine some features of the distribution function obtained

above. There is one constant in equation (2.37) which is determined from self-
consistency, and there is the implicit assumption that this constant tends to finite
values in the limit ε → 0. We examine this assumption by evaluating this constant as
a function of ε for fixed values of et and en. The numerical procedure for carrying out
the computations is as follows. The distribution function fi was determined from equ-
ation (2.37). The evolution of the particle velocity in a particle–wall collision is given
by equations (2.15) and (2.16), while the evolution of the particle velocity in a binary
collision is given by equation (2.17). The upper limit for the wall-collision index i was
assumed to be (2 log (ε)/ log (λy/λxΩ )), which is two times the expected magnitude of
im from equation (2.19), in all the computations. The trapezoidal rule was used for
integration in the θ-coordinate, where the interval from 0 to 2π was divided into 400
intervals for the integration. It was verified that doubling this number of intervals did
not alter results by more than 1%. An interative procedure required to determine the
constant A is determined from the requirement of self-consistency (equation (2.28)).
The iterative procedure used here was the Newton–Raphson technique, and it was
verified that quadratic convergence is obtained.

The results for the constant A are shown as a function of ε for different values of
the coefficients of restitution in figure 4. It is observed that the A does tend to a finite
value in the limit ε → 0 for all values of the coefficient of restitution, as assumed in
the self-consistency equation (2.28). The value of A is in the range 1 to 100 for most
values of the coefficient of restitution, though it is higher for et =0.8 and en = 0.85.
This is because the ratio (λy/λxΩ ) = 1.1 is close to 1, and the rate of decrease of uy in
wall collisions is close to the rate of decrease of ux . Therefore, this point is close to
the boundary between static and dynamical steady states in figure 2. We will see, a
little later, that the rate of decrease of the velocity moments with ε is also relatively
high in this case, and the agreement between theory and simulation is relatively poor
for et = 0.8 and en = 0.85. However, figure 4 confirms that A approaches a constant
value in the limit ε → 0 for all values of the coefficient of restitution, thus validating
the assumptions made in equation (2.28).

The variation of the distribution function fi , integrated over the θ-coordinate, with
the wall collision index i is shown in figure 5. As expected, the distribution function
first increases for i < im, and then decreases rapidly for i > im. The distribution
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A

Figure 4. The parameter A as a function of ε determined self-consistently from equation
(2.28). �, et = 0.6, en = 0.65; �, et = 0.7, en = 0.75; ∇, et = 0.8, en = 0.85; +, et = 0.70, en = 0.70;
×, et =0.80, en = 0.80; ∗, et =0.90, en = 0.90; �, et = 0.65, en = 0.6; �, et = 0.75, en = 0.7; �,
et = 0.85, en = 0.8.
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Figure 5. The variation of
∫ 2π

0
dθfi(θ ) as a function of i for (a) et = en = 0.7 and (b) et =

en = 0.9 �, ε = 0.01; �, ε = 0.001; ∇, ε = 0.0001. The solid lines show the theoretical predictions,
and the dashed lines show the simulation results. The dotted lines in (a) and (b) show the
theoretically predicted slopes of 0.49 and 0.81 respectively.

function fi as a function of i was also evaluated using event-driven simulations.
In these simulations, each particle was assigned a wall collision index, which was
incremented by 1 for every pair of wall collisions, and which was set equal to zero at
every binary collision. The distribution function fi as a function of i was determined
by averaging over all particles as described § 2.1. The results of the event-driven
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Figure 6. The ratio (im/(log (ε)/ log (λy/λxΩ ))) as a function of ε. �, et = 0.6, en = 0.65; �,
et = 0.7, en = 0.75; ∇, et = 0.8, en = 0.85; +, et = 0.70, en = 0.70; ×, et =0.80, en = 0.80; ∗, et =
0.90, en = 0.90; �, et = 0.65, en = 0.6; �, et = 0.75, en = 0.7; �, et = 0.85, en = 0.8. The solid lines
show the theoretical predictions and the broken lines show the simulation results.

simulations are also shown in figure 5. It is observed that the qualitative features of
the distribution function obtained from simulations are in agreement with theoretical
results for ε = 0.001 and ε = 0.0001, though there is some disagreement for ε = 0.01.
The slopes of the distribution function for i < im are in very good agreement with
the theoretical predictions, and the sharp decrease of fi for i > im is also confirmed
by simulations. However, there is a difference in the location of the maximum, with
the theoretical prediction of im being consistently higher than the simulation result
in all cases. In the case of et = 0.9 and en = 0.9, there is no clear maximum in the
simulation result for ε =0.01, though there is a maximum and a region of power-law
increase with slope 0.81 for ε =0.001 and ε = 0.0001, as expected from the theory.

The value im at which fi is a maximum, divided by the scaling expected from
equation (2.19) (log (ε)/ log (λy/λxΩ )), is shown for different values of ε and the
coefficients of restitution in figure 6. It is observed that the ratio is close to 1, and is
independent of ε in the limit ε → 0, thus confirming earlier assumptions regarding the
position of the peak in fi . The value of im obtained from simulations is also shown
in figure 6, and it is observed that the simulation result also approaches a constant
value in the limit ε → 0, in agreement with the theoretical prediction. However, the
simulation results are consistently lower than the experimental predictions in all cases.
In some cases, such as et =0.9 and en = 0.9, the simulation result is lower than the
theoretical prediction by an order of magnitude for ε =0.01, but increases to about
0.5 for ε < 0.001. This is because, as noted in the discussion of figure 5, there is no
clear maximum in the fi vs. i graph for et = 0.9, en =0.9 and ε = 0.01, though there
is a clear maximum and a well-defined power-law scaling for i < im for lower values
of ε.
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The theoretical prediction of im is consistently higher than the simulation result for
the following reason. The maximum of the distribution function is the value at which
the frequency of binary collisions is of the same magnitude as wall collisions. Whereas
an exact expression was used for the wall collisions, an approximate expression given
by (2.27) and (2.28), was used for the frequency of binary collisions. This expression
is exact in the limits i � im, but it under-estimates the frequency of binary collisions
for i ∼ im. Thus, the theory over-estimates the value of i at which the frequency of
particle–wall and particle–particle collisions are of equal magnitude, and this results
in an over-estimation of im.

The moments of the velocity distribution can now be determined as

〈
u2

x

〉
=

∫
dθ

im∑
i=0

(
u(i)

x

)2
fi(θ),

〈
u2

y

〉
=

∫
dθ

im∑
i=0

(
u(i)

y

)2
fi(θ),

〈
uxuy

〉
=

∫
dθ

im∑
i=0

u(i)
x u(i)

y fi(θ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.41)

The scaling of the moments of the distributions with ε can be evaluated analytically.
For example, in the expression for u2

y , the distribution function fi is proportional to

λ−i
y ε(log (λy )/ log (λy/λxΩ )) and u(i)

y is proportional to λi
y , and therefore

〈
u2

y

〉
∼ ε(log (λy )/ log (λy/λxΩ ))

im∑
i=0

λ2i
y λ

−i
y

∼ ε(log (λy )/ log (λy/λxΩ ))

(
1 − λim

y

1 − λy

)

∼ ε(log (λy )/ log (λy/λxΩ )). (2.42)

In the last step, we have used the fact that (log (λy)/ log (λy/λxΩ )) is always positive
for λy < λxΩ . A similar result is obtained for the cross-correlation 〈uxuy〉,

〈uxuy〉 ∼ ε(log (λy )/ log (λy/λxΩ )). (2.43)

However, when a similar calculation is carried out for the moment 〈u2
x〉, we find that

〈
u2

x

〉
∼ ε(log (λy )/ log (λy/λxΩ ))

im∑
i=0

λ2i
xΩλ

−i
y

∼ ε(log (λy )/ log (λy/λxΩ ))

(
1 − (λ2

xΩ/λy)
(log (ε)/ log (λy/λxΩ ))

1 − (λ2
xΩ/λy)

)
. (2.44)

The above summation provides different scalings depending on whether (λ2
xΩ/λy) is

greater than, equal to or less than 1, as follows:〈
u2

x

〉
∼ ε(log (λy )/ log (λy/λxΩ )) for

(
λ2

xΩ/λy

)
< 1

∼ ε(2 log (λxΩ )/ log (λy/λxΩ )) for
(
λ2

xΩ/λy

)
> 1

∼ ε2 log (ε)

log (λy/λxΩ )
for

(
λ2

xΩ/λy

)
= 1. (2.45)
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Figure 7. The scaled second moments (a) (〈u2
x〉/V 2

w) (b) (〈u2
y〉/V 2

w) and (c) (−〈uxuy〉/V 2
w) as a

function of ε. The slopes obtained by connecting the last five points by the dashed lines are
used for purposes of comparison in table 1. �, et = 0.6, en = 0.65; �, et = 0.7, en = 0.75; ∇,
et = 0.8, en = 0.85; +, et = 0.70, en =0.70; ×, et = 0.80, en =0.80; ∗, et = 0.90, en = 0.90; �,
et = 0.65, en = 0.60; �, et = 0.75, en = 0.70; �, et = 0.85, en = 0.80.

Thus, the scaling of the mean-square velocity in the flow direction is sensitive to the
values of the coefficients of restitution.

The variation of moments of the distribution with ε are shown in figure 7(a–c).
The scalings in the limit of small ε obtained from the simulations are compared
with the theoretical predictions of equations (2.42), (2.43) and (2.44) in table 1. It
is observed that there is excellent agreement between the theoretical predictions and
simulation results in most cases. One exception is the results for 〈u2

x〉 for et = en (or
λxΩ = λ2

y). In this case, the theoretical prediction (2.42) has a logarithmic correction

(〈u2
x〉 ∼ ε2 log (ε)) which is not incorporated when determining the scaling from the

simulation, resulting in relatively poor agreement. The other exception is the result
for et = 0.80 and en =0.85, where the theoretically predicted slope is large, and the
range of ε studied in the simulations is not sufficient to obtain convergence to the
theoretically predicted scaling law.

A numerical comparison of the moments of the velocity distribution with the
distribution function (2.37) indicated that the theory under-predicts the moments
of the velocity distribution. The reason for this is as follows. The approximation
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log (〈u2
x〉)/ log (ε) log (〈u2

y〉)/ log (ε) log (−〈uxuy〉)/ log (ε)

et en Theoretical Simulation Theoretical Simulation Theoretical Simulation

0.60 0.65 2.5074 2.4865 2.5074 2.5261 2.5074 2.5696
0.70 0.75 2.6310 2.5944 2.6310 2.6285 2.6310 2.6583
0.80 0.85 3.1899 2.9858 3.1899 3.0050 3.1899 3.0736
0.70 0.70 2.0000∗ 1.7839 2.0000 1.9956 2.0000 2.0338
0.80 0.80 2.0000∗ 1.7559 2.0000 1.9869 2.0000 2.0245
0.90 0.90 2.0000∗ 1.6834 2.0000 1.9739 2.0000 2.0126
0.65 0.60 1.4581 1.4437 1.7291 1.7306 1.7291 1.7204
0.75 0.70 1.3516 1.3218 1.6758 1.7050 1.6758 1.6913
0.85 0.80 1.1453 1.1550 1.5727 1.5653 1.5727 1.5807

Table 1. The variation of log (〈u2
x〉)/ log (ε), log (〈u2

y〉)/ log (ε) and log (−〈uxuy〉)/ log (ε) with

the coefficients of restitution in the limit ε → 0 from theory and simulations. ∗〈u2
x〉 ∼ ε2 log (ε).

(2.28) clearly under-estimates the frequency of binary collisions for |u(i)
x | ∼ |u(j )

x |, since
there is the implicit assumption in equation (2.28) that |u(i)

x | � |u(j )
x |. This results in

an under-estimation of the velocity moments. It is of importance to examine the
sensitivity of the numerical results of the velocity moments to the binary collision
frequency. For this purpose, we introduce a factor B in the term corresponding to the
frequency of binary collisions in equation (2.37) as follows:

fi(θ) =

(
λ−i

y εlog (λy )/ log (λy/λxΩ )

/
i∏

j=1

(
1 +

(
ABλim−j

y Vw

/∣∣u(0)
y

∣∣)))

∫
dθ

∞∑
i=0

(
λ−i

y εlog (λy )/ log (λy/λxΩ )

/
i∏

j=1

(
1 +

(
ABλim−j

y Vw

/∣∣u(0)
y

∣∣))) (2.46)

where the parameter A is given by the self-consistency requirement (2.28), and the
parameter B is a fitted parameter to compensate for the underestimation of the binary
collision frequency. We examine, numerically, the effect of this parameter B on the
velocity moments in figure 8(a–c). It is expected that the numerical values of the
velocity moments increase as B is increased, and it is of interest to examine whether
the simulation results for the velocity moments can be reproduced using equation
(2.46) with a value of B which is not much larger than 1. The approximation in
equation (2.46) is valid only if the numerical value of B is not much larger than 1,
and the numerical range of B required to reproduce the simulation results would be
indicative of the extent of underestimation of the frequency of binary collisions in
equation (2.37).

The results of the comparison are shown in figure 8(a–c). It is more convenient to
plot the ratio (〈uiuj 〉th/〈uiuj 〉sim), where 〈uiuj 〉th is the theoretically predicted value
in the limit ε → 0, and 〈uiuj 〉sim is the value obtained from simulations. It is observed
that the value of B required to obtain agreement between theory and simulations is a
function of the coefficients of restitution, and is also different for different moments of
the velocity distribution. The ratio (〈u2

x〉th/〈u2
x〉sim) = 1 for B between 1 and 1.5 for the

range of coefficients of restitution studied here, whereas the ratio (〈u2
y〉th/〈u2

y〉sim) = 1
for B in the range 1–3, and (〈uxuy〉th/〈uxuy〉sim) = 1 for B in the range 1–2. In addition,
the velocity moments are also sensitive to the value of B , and in some cases they
increase by an order of magnitude for a unit increase in B . This confirms that the
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Figure 8. The ratio (a) (〈u2
x〉th/〈u2

x〉sim ) (b) (〈u2
y〉th/〈u2

y〉sim ) and (c) (〈uxuy〉th/〈uxuy〉sim ) in
the limit ε → 0 as a function of the parameter B in equation 2.46. ◦, et = 0.6, en = 0.65;
�, et = 0.7, en = 0.75; ∇, et = 0.8, en = 0.85; (+), et = 0.70, en = 0.70; ×, et = 0.80, en =0.80; ∗,
et = 0.90, en = 0.90; �, et =0.65, en = 0.60; �, et = 0.75, en =0.70; �, et =0.85, en = 0.80.

frequency of binary collision is being under-estimated due to the approximation made
in (2.28), though the scaling of the velocity moments with ε is correctly reproduced
by the theoretical analysis.

The components of the shear stress can be determined from the velocity moments.
The stress σij is defined as the rate of transport of momentum in the i-direction across
a surface whose outward unit normal is in the j -direction. The stress at a surface
consists of two components: the kinetic component, due to the physical motion of
particles across the surface, and the collisional component due to a collision between
two particles whose centres are on either side of the surface. In the present case, the
rate of transport of particles across a surface per unit length (in two dimensions) is
given by nu, where n is the number density and u is the root mean square of the particle
velocity. The number of collisions between two particles on either side of the sur-
face can be estimated as follows. For two particles to collide, it is necessary for the
first particle to be in a region of width d on either side of the surface, and the number
of particles per unit length in a region of width d on either side of the interface to be
nd . The frequency of collisions of a second particle with the first particle is ndu, where
u is the root-mean-square velocity. Therefore, the number of collisions per unit width
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of the surface between particles whose centres are on either side of the surface is
n2d2u. The ratio of the number of collisions and the number of particles transported
across the surface is nd2 = (ndL)(d/L) � 1, because (ndL) = ε � 1, and the particle
diameter is smaller than the channel width. Therefore, the transport of momentum
is due to the kinetic mechanism in the leading approximation, and the collisional
mechanism can be neglected when evaluating the transport across any surface within
the channel.

It should be noted that the transport of momentum to the walls is purely collisional,
since particles do not go through the walls. However, it can easily be inferred that
the rate of transport of momentum across any surface within the channel is equal
to the rate of transport to the walls. This is because there are no body forces in the
present system, and the flow is unidirectional, and so the divergence of the stress is
equal to zero. Consequently, the stress is independent of position, and the rate of
transport of momentum across any surface within the flow is equal to the rate of
transport of momentum to the walls. Since the rate of transport of momentum within
the channel occurs predominantly by the kinetic mechanism, the stress tensor is given
by (Chapman & Cowling 1970)

σij = −n〈uiuj 〉, (2.47)

where we have set the particle mass equal to 1, so that all masses are non-
dimensionalized by the particle mass. It is apparent that the stress is equal to the
number density of particles times the second moment of the velocity distribution, and
so the scaling of the stress with the parameter ε is also given by equations (2.42),
(2.43) and (2.45).

This section concludes with remarks regarding three surprising features of the
distribution function.

(a) The above analysis has indicated that the scaling of fi with i, as well as the
scaling of the velocity moments with ε, depend on the coefficients of restitution of
particle–wall collisions, but not on the coefficients of restitution of particle–particle
collisions. This is because a change in the coefficient of restitution of the particle–
particle collisions results in a variation of O(1) in the post-collisional velocities
in equation (2.17), and a variation of the coefficient of restitution in particle–wall
collisions results in a change in the value of λy in equation (2.24) for the distribution
function for i < im. However, since the frequency of particle–wall collisions is O(im)
larger than that of particle–particle collisions, a decrease in the value of λy would
result in a decrease of O(λim

y ) in the distribution function for i ∼ im corresponding to
the maximum of the distribution function. Since λim

y ∼ ε(log (λy )/ log (λy/λxΩ )), this factor
could be small compared to 1 in the limit ε → 0. This is in contrast to the variation of
O(1) due to a variation in the coefficient of particle–particle collisions. Consequently,
a variation in the coefficient of restitution of particle–particle collisions does not alter
the scaling laws for the velocity distribution function or its moments.

(b) It should also be noted that the distribution function is not a function of y

because we are in the high-Knudsen-number regime. In this case, the frequency of
particle–wall collisions is large compared to that of particle–particle collisions, and so
a particle collides with the wall many times between successive inter-particle collisions.
The ‘persistence length’, which is the length over which the perturbation to a particle
velocity persists, is equal to the distance between the walls. The particle velocity is
unchanged when it travels between the two walls in the leading approximation, and
so the probability of finding a particle with a given velocity is independent of y. Since
the number density of the particles is independent of position, the probability of a
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binary collision is also independent of position (apart from regions of thickness (d/2)
from the walls, where the shadow effect of the walls affects the frequency of binary
collisions). Therefore, the collisional rates of accumulation and depletion of particles
are also independent of position in the y-coordinate in this limit.

When the Knudsen number becomes lower, and the particle collides multiple times
with other particles between two wall collisions, the persistence length for the particle
velocity becomes much smaller than the channel width, and there is a variation of the
density and velocity distribution in the y-direction. The same variation is not present
in the high-Knudsen-number regime where a particle collides multiple times with the
wall between two successive inter-particle collisions.

(c) The distribution function has apparently been obtained without solving the
conventional Boltzmann kinetic equation for the distribution function. However, the
present procedure did involve solving the Boltzmann equation for the distribution
function. The unsteady term in the Boltzmann equation is neglected because we are
interested in the steady distribution, while the streaming terms in the Boltzmann
equation are identically zero because there are no gradients in real space, and there
are no body forces on the particles. Consequently, the Boltzmann equation just
reduces to setting the collision integral to zero. This is equivalent to N

(i)
in (θ) (equation

(2.22)) and N
(i)
out (θ) (equation (2.29)) for i > 0, which leads to the solution (2.30) for

the distribution function. The distribution f0 is obtained by equating the fluxes N
(0)
in

(equation (2.33)) and N
(0)
out (equation (2.34)).

2.5. Three-dimensional channel

The extension to a three-dimensional system of the analysis in §§ 2.2, 2.3 and 2.4
is briefly summarized here. In this case, the small parameter ε = nd2L, where n is
the number of particles per unit area. We use a coordinate system where x and y

are in the flow and gradient directions respectively, and z is the vorticity direction
perpendicular to the plane of flow. It is necessary to determine the evolution of
three components of the linear velocity and three components of the angular velocity
with particle–wall and particle–particle collisions. In the absence of particle–particle
collisions, the velocities of the particles tend to a final state where the translational
velocity reduces to zero, and the angular velocity in the z-direction (perpendicular to
the direction of the flow) tends to (−2Vw/d), while the linear velocities in the x- and
y-directions tend to zero. Since the angular velocity in the cross-stream y-direction is
not altered in a wall collision, this component of the angular velocity reaches a final
steady-state value only due to inter-particle collisions. Therefore, in the final state,
the linear velocities are all equal to zero, ux = uy = uz = 0, the angular velocity in the
x-direction is ωx = 0, the angular velocity in the z-direction is given by ωz =(−2Vw/d),
while the angular velocity in the y-direction is ωy ∼ O(Vw/d). The evolution of the
particle velocities, after i pairs of wall-particle collisions, equivalent to equations
(2.15) and (2.16), is

u(i)
y = λyu

(i−1)
y = λi

yu
(0)
y , (2.48)(

u(i)
x

ω(i)
z + 2Vw/d

)
= M

(
u(i−1)

x

ω(i−1)
z + 2Vw/d

)
= Mi

(
u(0)

x

ω(0)
z + 2Vw/d

)
, (2.49)

(
u(i)

z

ω(i)
x

)
= M

(
u(i−1)

z

ω(i−1)
x

)
= Mi

(
u(0)

z

ω(0)
x

)
, (2.50)
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It should be noted that there is a coupling in the evolution of (ux, ωz) and (uz, ωx), and
the matrix M is the same in equations (2.49) and (2.50). Consequently, the variation in
the linear and angular velocities with the number of collisions, which is the equivalent
of (2.18), is

u(i)
x ∼ λi

xΩVw, u(i)
y ∼ λi

yVw, u(i)
z ∼ λi

xΩVw,

ω(i)
z + (2Vw/d) ∼ λi

xΩ (Vw/d), ω(i)
x ∼ λi

xΩ (Vw/d),

}
(2.51)

When the leading effect of particle–particle collisions is incorporated, the condition
for a dynamic steady state is still given by λxΩ > λy . Therefore, the regions of static
and dynamic steady states in the (et , en)-plane are identical to those for a two-
dimensional flow (figure 2). In the dynamic steady state, the mean-square velocities
of the particles in the streamwise and cross-stream directions are still given by (2.42),
(2.43) and (2.44), while the mean-square velocity perpendicular to the plane of flow
has the same scaling as that for the mean-square velocity in the gradient direction:〈

u2
z

〉
∼ ε(log (λy )/ log (λy/λxΩ )) for

(
λ2

xΩ/λy

)
< 1

∼ ε(2 log (λxΩ )/ log (λy/λxΩ )) for
(
λ2

xΩ/λy

)
< 1

∼ ε2 log (ε)

log (λy/λxΩ )
for

(
λ2

xΩ/λy

)
= 1. (2.52)

3. Conclusion
In the present analysis, kinetic theory techniques were applied to determine the

scaling of the velocity distribution function and the velocity moments for the shear
flow of rough inelastic disks between two rough surfaces in the limit where the
frequency of particle–wall collisions is large compared to that of particle–particle
collisions. An asymptotic expansion was used in the small parameter ε = (ndL) in
two dimensions and ε =(nd2L) in three dimensions, where n is the number density
(particles per unit area in two dimensions and per unit volume in three dimensions),
d is the particle diameter and L is the channel width. The collision laws for rough
particles (Chapman & Cowling 1970; Lun 1991) were used in the present analysis. In
this model, the post-collisional velocity along the line joining centres is −en times the
pre-collisional velocity, while the post-collisional velocity perpendicular to the line
joining centres is −et times the pre-collisional velocity, where en and et are the normal
and tangential coefficients of restitution.

In the leading approximation, particle–particle collisions were neglected, and it
was found that, in the long time limit, the particles attain a final stationary state
in which the linear velocities are equal to zero and the angular velocity is equal
to the ratio of the wall velocity and the particle radius. This final static state is
in contrast to the model of Kumaran (1997), where the particles have a non-zero
translational velocity in the final state. When the effect of collisions in the high-
Knudsen-number limit was incorporated in the analysis, it was found that there are
two possible final states, depending on the relative rates of decrease of the streamwise
and cross-stream velocities in wall collisions. The cross-stream velocity decreases by
a factor λy = e2

n in a pair of wall collisions. When the streamwise velocity decreases
faster than the cross-stream velocity, the system attains a final static state where the
particles come to rest in the long time limit. However, when the cross-stream velocity
decreases faster than the streamwise velocity due to particle collisions with the wall,
it is shown that there is a final dynamical steady state in which the mean-square
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velocity of the particles is non-zero. Since the decrease in the streamwise and cross-
stream velocities is related to the tangential and normal coefficients of restitution,
this condition provided a prediction for the domains in the (et , en)-plane where the
static and dynamic steady states are observed in the long time limit. This prediction
was found to be in quantitative agreement with simulations.

The theoretical analysis also predicted that the mean-square velocities decrease
as a power of the parameter ε in the limit ε → 0. The mean-square velocities 〈u2

y〉
and 〈uxuy〉 decrease proportionally to ε(log (λy )/ log (λy/λxΩ )) in the limit ε → 0. The scaling
of the mean-square velocity 〈u2

x〉 depends on the ratio (λ2
xΩ/λy). It is found that

〈u2
x〉 ∼ ε(log (λy )/ log (λy/λxΩ )) for (λ2

xΩ/λy) < 1, and is proportional to ε(2 log (λxΩ )/ log (λy/λxΩ )) for
(λ2

xΩ/λy) > 1. Since the mean-square velocities are proportional to the components
of the stress in the three directions, this implies that the anisotropy in the stress
tensor is sensitive to the coefficients of restitution. The three components of the stress
tensor (in two dimensions) are of equal magnitude for (λ2

xΩ/λy) < 1, but the normal
stress in the flow direction is large compared to the other two components of the
stress for (λ2

xΩ/λy) > 1. The power-law scaling of the stress components with the
Knudsen number is different from the result of Kumaran (1997), where it was found
that the normal stress in the flow direction remains a constant in the limit ε → 0,
the normal stress in the cross-stream direction decreases proportionally to ε, and the
shear stress is proportional to ε log (ε). Thus, both the scaling of the components of
the stress tensor and the anisotropy in the stress tensor are sensitive to the details of
the wall-particle interactions.

The theoretical analysis involved an approximation in equation (2.28), and this
approximation resulted in an under-estimation of the binary collision frequency. It
was found that due to this approximation, the numerical values of the velocity
moments obtained from the theory were consistently lower than the corresponding
values obtained from simulations. The sensitivity of the numerical results to the
frequency of binary collisions was examined, and it was found that it is possible to
obtain agreement between theory and simulations if the binary collision frequency is
increased. This indicates that all of the scalings obtained by the theoretical analysis are
accurate, but the frequency of binary collisions is under-estimated by a factor of O(1).

The implications of the analysis for the relationship between the stress and
strain rate for high-Knudsen-number flows are as follows. The shear stress exerted
on the top and bottom surfaces, scaled by the particle mass, is proportional to
nV 2

wε(log (λy )/ log (λy/λxΩ )), where Vw is the wall velocity. Consequently, the shear stress
scales as the square of the wall velocity in this limit, and the ‘Bagnold coefficient’,
which is (σxy/(Vw/L)2), is proportional to (nL2)ε(log (λy )/ log (λxΩ/λy )). The Bagnold
coefficient for the normal stress in the cross-stream direction, is also proportional to
(nL2)ε(log (λy )/ log (λxΩ/λy )). The Bagnold coefficient for the normal stress in the streamwise
direction depends on the value of (λ2

xΩ/λy), but it is proportional to (nL2) times a
power of ε. This is very different from the behaviour in the low-Knudsen-number
limit, where the Bagnold coefficient is independent of the channel width L, and is
proportional to (nd2)−1 times a function of the coefficients of restitution in the dilute
limit. The effective high-Knudsen-number limiting values of the Bagnold coefficients
of the smooth particle model of Kumaran (1997), and the present rough particle
model, are compared with the values in the low-Knudsen-number limit in table 2.
This table indicates that the Bagnold coefficient is much smaller in the high-Knudsen-
number regime than it is in the low-Knudsen-number regime.

A more appropriate manner of scaling the stress in the high-Knudsen-number
regime is to divide it by V 2

w , so that the scaled stress (σij /V 2
w) is only a function of
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High Kn High Kn Low Kn Low Kn
Smooth Rough Dilute Dense

(σxx/(Vw/L)2) nL2 nL2ε(log (λy )/ log (λy /λxΩ )) (nd4)−1 d−1

(λ2
xΩ < λy))

(σxx/(Vw/L)2) nL2 nL2ε(2 log (λxΩ )/ log (λy/λxΩ )) (nd4)−1 d−1

(λ2
xΩ > λy))

(σyy/(Vw/L)2) nL2ε nL2ε(log (λy )/ log (λy /λxΩ )) (nd4)−1 d−1

(σxy/(Vw/L)2) nL2ε log (ε) nL2ε(log (λy )/ log (λy /λxΩ )) (nd4)−1 d−1

(σzz/(Vw/L)2) nL2ε nL2ε(log (λy )/ log (λy /λxΩ )) (nd4)−1 d−1

(λ2
xΩ < λy))

(σzz/(Vw/L)2) nL2ε nL2ε(2 log (λxΩ )/ log (λy/λxΩ )) (nd4)−1 d−1

(λ2
xΩ > λy))

Table 2. The scaling of the Bagnold coefficients in the high-Knudsen-number limit for smooth
particles (Kumaran 1997) and rough particles (present analysis) are compared with the
low-Knudsen-number limiting value. Here, ε =(ndL) in two dimensions and (nd2L) in three
dimensions, where n is the number density (per unit area in two dimensions and per unit
volume in three dimensions), d is the particle diameter and L is the width of the channel.

the number density n and the small parameter ε. For smooth particles (Kumaran
1997), the magnitudes of the scaled stresses are (σxx/V 2

w) ∼ n, (σyy/V 2
w) ∼ nε and

(σxy/V 2
w) ∼ nε log (ε). For rough particles, the magnitudes of the scaled stress are

(σxy/V 2
w) ∼ (σyy/V 2

w) ∼ nε(log (λy )/ log (λy/λxΩ )), while the normal stress in the flow direction
is (σxx/V 2

w) ∼ nε(log (λy )/ log (λy/λxΩ )) for λ2
xΩ < λy , and (σxx/V 2

w) ∼ nε(2 log (λxΩ )/ log (λy/λxΩ )) for
λ2

xΩ > λy . An issue of interest is the variation (σij /V 2
w) as the channel width is

decreased, in order to examine whether the wall velocity is a monotonic function of
channel width at a constant stress, or whether there is a maximum in the velocity
as the width is increased. This variation depends on whether the number density of
the particles is kept a constant as the width is decreased, or whether the number of
particles in the channel is kept a constant.

(a) At constant particle number density, the parameter ε decreases proportionally
to the channel width L as the channel width is decreased. For the smooth particle
model (Kumaran 1997), the ratio (σxx/V 2

w) remains a constant, while (σxy/V 2
w) and

(σyy/V 2
w) decrease as L is decreased. In the rough particle model, in the dynamic

steady state, (σij /V 2
w) decreases as L is decreased for all components of the stress.

(b) At constant number of particles (per unit length in two dimensions and per unit
area in three dimensions), the parameter ε is a constant as the width L decreased,
while the number density n increases. Consequently, all components of the stress
increase proportionally to L−1 as the channel width L is decreases.
Thus, the application of the high-Knudsen-number analysis to problems such as
avalanches and chute flows would require the specification of how the number density
of particles varyies as the width of the flowing layer changes in these applications.

The present analysis establishes that kinetic theory can be employed to model the
relation between the stress and strain rate in the high-Knudsen-number limit for
rough particles. The predictions of the kinetic theory are in quantitative agreement
with the results of simulations, both for the regimes of static and dynamic steady
states and for the velocity moments or stresses in the dynamic steady state. The

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

01
27

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006000127


Granular flow of rough particles in the high-Knudsen-number limit 71

distribution function for rough particles is very different from a Gaussian, and shows
a bimodal structure with a power-law decay at high velocity. The velocity moments
scale as a power of the small parameter ε, which is the inverse of the Knudsen number
in the high-Knudsen-number limit.
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