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DEAR EDITOR,
‘Piecing it together’

In an earlier article I argued that the results from a theory associated
with Felix Baumgartner's fall from a great height over Roswell in New
Mexico in October 2012 showed a good measure of agreement with practice
[1], except perhaps in respect of total free fall time.  Between acceptance
and publication of that article an even greater fall in the same region was
undertaken in October 2014 by Alan Eustace.  I subsequently analyzed and
compared results from both falls recently and proposed also a simple
modification to the earlier theory that resulted in an improved agreement
with known facts of free fall time.  Readers who wish to know more can
find the details in the letters column of [2].
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Feedback

On Note 93.36: Paul Dale writes: A succinct solution of the difference
equation 

f (k, n + 1) = 2f (k, n) − ( ) , n ≥ 1 (1)n
k

and the initial condition  (equation (5) of Martin Griffiths' note)
is here derived by a rather less cumbersome method.

f (k,  1) = 2

For  we findk = 2

{f (2, n) : n ≥ 1} = {2,  4,  7,  11,  16,  22, … }
∴ {�f (2, n)} = {2,  3,  4,  5,  6, … }

�f (2, n) = 1 + n = 1 + n1⎯or

where  denotes the falling factorial powernr⎯

n (n − 1) (n − 2) … (n − r + 1) .
On summing we get

f (2, n) = C + n1⎯ +
n2⎯

2!
.
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But  therefore , and sof (2,  1) = 2 C = 1

f (2, n) = ∑
2

r = 0
( ) .n
r

Similarly for k = 3

{f (3, n) : n ≥ 1} = {2,  4,  8,  15,  26,  42,  64, … }
∴ {�f (3, n)} = {2,  4,  7,  11,  16,  22, … }

= {f (2, n)}

�f (3, n) = 1 + n1⎯ +
n2⎯

2!
or

giving

f (3, n) = C′ + n1⎯ +
n2⎯

2!
+

n3⎯

3!
.

But  therefore , and sof (3,  1) = 2 C′ = 1

f (3, n) = ∑
3

r = 0
( ) .n
r

These results suggest that

f (k, n) = ∑
k

r = 0
( ) . (2)n
r

To prove (2) we show that it satisfies (1).

Proof:

f (k, n + 1) = ∑
k

r = 0
( )n + 1

r

( ) = ( ) + ( )but n + 1
r

n
r

n
r − 1

 ∴ f (k, n + 1) = ∑
k

r = 0

⎧
⎩
⎨( ) + ( )⎫⎭⎬n

r
n

r − 1

= ∑
k

r = 0
( ) + ∑

k

r = 1
( )n

r
n

r − 1

= ∑
k

r = 0
( ) + ∑

k − 1

r = 0
( )n

r
n
r

= 2 ∑
k

r = 0
( ) − ( )n
r

n
r
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f (k, n + 1) = 2f (k, n) − ( ) .n
r

As required.  Also

f (k,  1) = ∑
k

r = 0
( ) ,  k ≥ 21
r

= ( ) + ( ) = 1 + 1 = 2,1
0

1
1

satisfying the initial condition.

On 98.16: Andrew Jobbings writes: I think there is a much simpler proof
of part (3) of the author's result than that given on pages 337-338. In
particular, I don't think it is necessary to deal with the special case first.

We are given a quadrilateral  and a point , from which
‘equiangular’ lines are drawn to meet the sides , ,  and
respectively in , ,  and . Part (1) of the author's result states that the
four quadrilaterals , ,  and  are cyclic. Part (3)
states that the quadrilateral , formed by the circumcentres of the four
quadrilaterals in part (1), is similar to .

ABCD M
AB BC CD DA

E F G H
AEMH BFME CGMF DHMG

PQRS
ABCD

E

F

G

H

M

A B

C

D

P

Q

R

S

P

FIGURE 1

To prove part (3), we note that , ,  and  are the centres of the four
circles, and , ,  and  are chords. Therefore, from the ‘angle at
the centre’ theorem, we have , , and
so on. It follows from the ‘equiangular’ condition that

.

P Q R S
AM BM CM DM

∠APM = 2∠AEM ∠BQM = 2∠BFM

∠APM = ∠BQM = ∠CRM = ∠DSM
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Hence the triangles , ,  and  are similar,
because they are isosceles and have equal ‘vertical’ angles. As a result, the
spiral similarity with centre , angle , and scale factor  maps the
quadrilateral  to .

�APM �BQM �CRM �DSM

M ∠PMA PM
MA

ABCD PQRS

Remark
The result still holds when some of the intersection points of the

‘equiangular’ lines and the sides of  lie outside the quadrilateral, such
as the points  and  in the figure above. The proof of part (1) can be
modified, where necessary, to use ‘angles in the same segment’ rather than
‘exterior angles of a cyclic quadrilateral’.

ABCD
F G

On ‘Cubics whose vertical translates factorise’ [1]: Andrew Jobbings

writes:  Consider the cubic curve whose equation is

y = f (x) ≡ ax3 + bx2 + cx + d, (1)
where , ,  and  are integers.a b c d

If the curve has a rational root, then some appropriate enlargement will
have an integer root. Such an enlargement corresponds to a linear
transformation of the coordinates . Given this, henceforward I shall
ignore integer roots and concentrate on whether the roots are rational.

(x, y)

The point of inflexion of the cubic curve given by (1) is a centre of
rotational symmetry of order two. Suppose the point of inflexion has
coordinates . Then  and  are rational, because they are given by the
equations  (from ) and . 

(ξ, η) ξ η
6aξ + 2b = 0 y″ = 0 η = aξ3 + bξ2 + cξ + d

Proposition 1:  Let  and γ be the roots of . Then the roots of
 are ,  and . 

α, β f (x) = 0
f (x) − 2η = 0 2ξ − α 2ξ − β 2ξ − γ

Proof: Consider the curve  shown in Figure 1, where the dashed
line is the image of the -axis under a rotation through  about .

y = f (x)
x 180° (ξ, η)

y

x

(ξ, η)

FIGURE 1 

https://doi.org/10.1017/mag.2015.57 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2015.57


FEEDBACK 367

Now the curve  is obtained by translating the -axis to
the dashed line. 

y = f (x) − 2η x

But from the rotational symmetry, the roots can be placed in pairs, with
 as the midpoint of each pair. So any root  of  corresponds

to a root  of .
(ξ, η) α y = f (x)

2ξ − α y = f (x) − 2η

Corollary 1:  The roots of  are rational if, and only if, the roots of
 are rational.

f (x) = 0
f (x) − 2η = 0

Examples 
We apply the above to the illustrative examples in the Note. 

1. The curve  has inflexion point ,
leading to a translation by 15.  The original roots are  and ; the
translated roots are ,  and

.

y = 2x3 + 9x2 − 2x − 24 (−3
2, −15

2 )
3
2, −2 −4

−3 − 3
2 = −9

2 −3 − (−2) = −1
−3 − (−4) = 1

2. The curve  has inflexion point .  So
and the two curves are the same. 

y = x3 − 3x2 + 2x (1, 0) η = 0

3. (a) The curve  has inflexion point ,
leading to a translation by .  The roots , ,  become .

y = 12x3 − 56x2 + 77x − 30 (7
3, −136

243)
272
243

3
2

5
2

2
3

19
6 , 13

6 ,  4
(b) The curve  has inflexion point

 leading to a translation by .  The roots  become
.

y = 12x3 − 56x2 + 77x − 26
(7

3, 836
243) 1672

243 2, 1
2, 13

6
8
3, 25

6 , 5
2

4. (a) The curve  has inflexion point
, leading to a translation by 936. The roots

become 16, 11, .

y = x3 − 21x2 + 14x + 120
(7, −468) −2,  3,  20

−6
(b) The curve  has inflexion point

, leading to a translation by 264. The roots
become 18, 8, .

y = x3 − 21x2 + 14x + 556
(7, −132) −4,  6,  19

−5
5. (a) The curve  has inflexion point ,

leading to a translation by 6. The curves have irrational roots. 
y = x3 − 6x2 + 5x + 3 (2, −3)

(b) The curve  has inflexion point , leading
to a translation by 12.  The roots 0, 1, 5 become .

y = x3 − 6x2 + 5x (2, −6)
4,  3, −1
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