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Abstract

Many seed quality tests are conducted by first randomly assigning seeds into replicates of a
given size. The replicate results are then used to check whether or not any problems occur
in the realization of the test. The two main tools developed for this verification are the
ratio of the observed variance of the replicate results to a theoretical variance and the tolerance
for the range of the results. In this paper, we derive the theoretical distribution and its related
properties of the sequence of numbers of seeds with a given quality attribute present in the
replicates. From these theoretical results, we revisit the two quality checking tools widely
used for the germination test. We show a precaution to be taken when relying on the variance
ratio to check for under- or over-dispersion of the replicate results. This has led to the devel-
opment of tables providing credible intervals of the variance ratio. The International Seed
Testing Association tolerance tables for the range of the results are also compared with toler-
ances computed from the exact theoretical distribution of the range, leading us to recommend
a revision of these tables.

Introduction

Many seed quality tests use k replicates of m seeds. For example, four replicates of 100 seeds
are recommended by the International Seed Testing Association (ISTA) for the germination
test (ISTA, 2018). The objective of these replicates is to ensure that no particular anomaly
such as a seed analyst mistake occurs in the test. This is accomplished by comparing the
observed variation among the replicates with the variation due only to the random distribution
of the seeds into the replicates. Miles (1963) developed tolerance tables for different tests (pur-
ity, germination and other seed count tests), setting limits for the range of the replicate results
above which it is considered that the observed variation is not only due to the random allo-
cation of seeds to replicates. These tolerances are based on strong assumptions regarding
the nature of the distribution of the number of seeds with the quality attribute in the different
replicates. Therefore, for the germination test, Miles considered the binomial distribution in
one replicate and the studentized range distribution for the range of the replicate results in
the absence of any test issues (examples of test issues include failing to appropriately random-
ize, abnormal growth chamber conditions, and human errors that may occur during seed ger-
mination process or results evaluation process).

Let us assume that of 400 seeds submitted to the germination test, 360 seeds germinated. In
the random assignment of these germinated seeds into the four replicates, 100 germinated
seeds could have occurred in three replicates and 60 in the remaining one. Alternatively, 90
germinated seeds could have occurred in each of the four replicates. These are just two of
the many possible patterns of assigning 360 germinated seeds into 4 × 100 seed replicates.
What is the probability to get a given pattern based solely on the random assignment of
the 360 germinated seeds into four 100 seed replicates? The formulation of this probability
will lead to the definition of the distribution of the number of seeds with the quality attribute
(in this case, ability to germinate under the test conditions) in the different replicates and then,
the derivation of the distributions of the statistics related to the replicate results such as the
range or the ratio of the observed variance of the replicates to the binomial theoretical
variance.

Using the urn model and number theory in this paper, we develop the exact distributions
and we discuss the implications for the germination test.

Theoretical results

Consider an urn with n white balls and N – n black balls and let W be the random variable
‘number of white balls in a random sample of m balls’. P(W = w) is then given by the
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hypergeometric probability mass function (pmf):

P(W = w) =
n
w

( )
N − n
m− w

( )
N
m

( ) .

Now, let Y be the random variable ‘tuple1 with 1st element the
number of white balls in a random sample of m balls out of N balls,
2nd element the number of white balls in a random sample of m
balls out of the remaining balls (i.e. N – m), …, ith element the
number of white balls in a random sample of m balls out of the
remaining balls, …’. The derivation of P(Y = (n1, n2, …, ni, …,
nk)ordered) is as follows:

P(Y = (n1, n2, . . . , ni, . . . , nk)ordered) =
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As Y can be viewed as the joint distribution of the random
variables Yi (i = 1, 2, …, k) ‘number of white balls in box i’ and
noting that the pmf of Y is the pmf of a multivariate hypergeo-
metric distribution with parameters N, (m, m, …, m) and n,

where N = km and
∑k
i=1

ni = n, we have (Bishop et al., 1975):

E[Yi] = nm
N

, Var[Yi] = nm
N

1−m
N

( )N − n
N − 1

and

Cov(Yi,Yi′ ) = − nm2

N2

N − n
N − 1

(i = i′).

Suppose now that the tuple has repeated elements (i.e. some
elements have the same number of white balls):

n1, . . . , n1︸
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Then the number of tuples with the same set of elements in dif-
ferent orders is k!

k1!k2!...kj!
.

Finally, the probability of the unordered set (n1, n2, …, ni, …,
nk)unordered is given by:

P(X = (n1, n2, . . . , ni, . . . , nk)unordered)

= k!
k1!k2! . . . kj!
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The unordered set (n1, n2,…, ni,…, nk)unordered corresponds to
a partition2 of n into at most k parts of maximum size m.
Closed-form formulas have been developed for easily calculating
the number of partitions p(n, k) of n into at most k parts for
some small values of k [Andrews (2003) provides formulas of
p(n, k) which are easy to compute for k≤ 9]. For the number,
u(n, k, m), of partitions of n into k parts with maximum size
m, some results are provided in Appendix A to facilitate its com-
putation in some situations. When no closed-form formula is
available for a particular triplet (n, k, m), one way to get u(n, k,
m) is to enumerate all the partitions of n into at most k parts,
to suppress those with ni > m, and to count the remaining
ones. Figure 1 provides u(n, k, m) for m = 100, k = 2, 3, 4, and
for n = 1, 2, …, km. We can see the symmetry of the plots around
km/2 for each k and that the number of all the possible values of X
increases slowly for k = 2 reaching a maximum of 51, whereas it
increases rapidly for k = 4 reaching a maximum of 29,920. For
m = 50 and k = 8, the maximum for n = 200 is very large and is
equal to 16,909,449.

The first property related to the probability of the unordered
set (n1, n2, …, ni, …, nk)unordered is:

P(X = (n1, n2, . . . , ni, . . . , nk)unordered)

= P(X = (m− n1,m− n2, . . . ,m− ni, . . . ,m− nk)unordered)

The proof of this property is obvious from the combinatorial
identity n

k

( ) = n
n−k

( )
.

The second property is the link with the hypergeometric dis-
tribution when k = 2. We have:

If n1 = n2, P(X = (n1, n2)unordered) = pn1 , else P(X =
(n1, n2)unordered) = 2pn1 , where pn1 is from the hypergeometric

pmf: pn1 =
n
n1

( )
N−n
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( )
N
m( ) . The proof of this property is obvious

from the equality
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We now define the random variable S2n1,n2,..,nk =
1

k−1

∑k
i=1 Yi − n

k

( )2
. Multiple unordered sets can lead to the

same realization of S2n1,n2,..,nk . For example, for n = 12, k = 4 and
m = 10, the observed variance of the elements of the unordered
sets (6,4,1,1), (6,3,3,0) and (5,5,2,0) is the same and is equal to
6. The distribution of S2n1,n2,..,nk can therefore be assessed through

1A tuple is an ordered set of elements. When there are two elements, the tuple is called
an ordered pair and when there are three elements, it is called a triplet.

2‘A partition is a way of writing an integer as a sum of positive integers where the
order of the addends is not significant, possibly subject to one or more additional con-
straints. By convention, partitions are normally written from largest to smallest addends.’
(Weisstein, 2018). For example, 8 = 4 + 2 + 1 + 1.
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the distribution of X by summing the probabilities of the
unordered sets with the same observed variance. Figure 2 provides
example pmf and cumulative distribution function (cdf) of
S2n1,n2,..,nk given n = 12, k = 4 and m = 10.

The third property is:

E[S2n1,n2,..,nk] =
nm(N − n)
N(N − 1)

.

The proof of this property is as follows:3

Application to the germination test

Germination tests are performed in laboratories to predict the
emergence of seedlings in field conditions from seeds sampled
from the same lot. ISTA has developed rules for testing germin-
ation for a wide range of plant species (ISTA, 2018). The test is usu-
ally based on 400 seeds tested in replicates of 100 seeds. Fewer than

400 seeds can be tested (e.g. two replicates of 100 seeds), but not
less than 100 in replicates of 25 or 50 seeds.

In the ISTA rules, replicate results are used to assess the reli-
ability of the germination test: the range of the germination results
in the replicates is compared with limits developed by Miles
(1963). These replicate results are also used to form variance
ratios for assessing over-dispersion or under-dispersion
(Deplewski et al., 2016). In light of the theoretical results devel-
oped in the previous section, new insights regarding these two
tools are apparent.

Distribution of the variance ratio

Let k be the number of replicates, m the number of seeds per
replicate, N the total number of seeds used in the test (N =
km) and ni the number of germinating seeds in replicate i
(
∑k

i=1 ni = n). The variance ratio f is defined as the ratio of
the observed variance between the replicates to the theoretical
binomial variance:

f = s2

s2B

Fig. 1. Graph of u(n, k, m) (log10 scale) vs n for k = 2, 3,
4 and m = 100 (see text for details). The maximum
values of u(n, k, m) are displayed at the peaks of the
three curves.
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3Var[Yi − Yi′ ] = E[([Yi − Yi′ ]− E[Yi − Yi′ ])
2]. We have: E[Yi − Yi′ ] = E[Yi]

−E[Yi′ ] = 0. Therefore: Var[Yi − Yi′ ] = E[(Yi − Yi′ )
2]
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Fig. 2. Graphs of (a) the probability mass function of S2n1 ,n2 ,..,nk and (b) the cumulative distribution function of S2n1 ,n2 ,..,nk for n = 12, k = 4 and m = 10.

Fig. 3. Graphs of the probability mass function and the
cumulative distribution function of F for germination
tests performed on four replicates of 100 seeds and for
p. equal to (a, b) 50%, (c, d) 70%, (e, f) 90% and (g, h)
95%. The variance ratios are truncated at 6 for all graphs,
with maximums (a, b) 133.33, (c, d) 107.94, (e, f) 44.44 and
(g, h) 21.05.
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Table 1. Mode, median, 95% credible interval (CI) and 90% CI of the variance
ratio for germination tests performed on four replicates of 100 seeds

Germination percentage Variance ratio

51–99% 1–50% Mode Median 95% CI 90% CI

99 1 0.67 0.48 0–1.98 0–1.89

98 2 0.34 0.74 0–2.72 0.01–2.27

97 3 0.69 0.66 0–2.85 0.03–2.43

96 4 0.52 0.73 0.01–2.97 0.04–2.33

95 5 0.42 0.73 0.02–2.93 0.05–2.53

94 6 0.83 0.76 0.02–3.02 0.05–2.47

93 7 0.72 0.71 0.02–2.98 0.06–2.54

92 8 0.63 0.76 0.03–3.02 0.06–2.47

91 9 0.57 0.75 0.03–2.99 0.07–2.58

90 10 0.52 0.77 0.03–3.10 0.07–2.55

89 11 0.48 0.78 0.03–3.03 0.08–2.51

88 12 0.44 0.77 0.03–3.06 0.09–2.59

87 13 0.41 0.75 0.04–3.07 0.10–2.56

86 14 0.39 0.72 0.04–3.04 0.11–2.53

85 15 0.37 0.74 0.04–3.06 0.11–2.55

84 16 0.35 0.79 0.04–3.04 0.11–2.58

83 17 0.33 0.78 0.04–3.12 0.10–2.57

82 18 0.59 0.78 0.04–3.07 0.10–2.57

81 19 0.56 0.78 0.04–3.12 0.10–2.58

80 20 0.54 0.77 0.05–3.09 0.10–2.55

79 21 0.52 0.76 0.05–3.06 0.10–2.59

78 22 0.51 0.76 0.05–3.12 0.10–2.59

77 23 0.49 0.77 0.06–3.10 0.10–2.57

76 24 0.48 0.76 0.06–3.09 0.10–2.59

75 25 0.46 0.78 0.06–3.08 0.10–2.58

74 26 0.45 0.78 0.06–3.09 0.10–2.58

73 27 0.44 0.78 0.07–3.07 0.10–2.57

72 28 0.43 0.80 0.07–3.07 0.10–2.57

71 29 0.42 0.79 0.07–3.12 0.09–2.61

70 30 0.41 0.78 0.07–3.10 0.09–2.60

69 31 0.41 0.78 0.06–3.09 0.10–2.58

68 32 0.40 0.78 0.06–3.10 0.10–2.59

67 33 0.39 0.79 0.06–3.09 0.10–2.59

66 34 0.39 0.78 0.06–3.07 0.10–2.58

65 35 0.38 0.78 0.06–3.09 0.10–2.59

64 36 0.38 0.77 0.06–3.10 0.10–2.59

63 37 0.37 0.77 0.06–3.09 0.10–2.59

62 38 0.37 0.76 0.06–3.09 0.10–2.57

61 39 0.36 0.76 0.06–3.10 0.10–2.58

60 40 0.36 0.76 0.06–3.12 0.10–2.57

59 41 0.36 0.76 0.06–3.12 0.10–2.58

(Continued )

Table 1. (Continued.)

Germination percentage Variance ratio

51–99% 1–50% Mode Median 95% CI 90% CI

58 42 0.36 0.76 0.06–3.12 0.10–2.63

57 43 0.35 0.76 0.06–3.11 0.11–2.62

56 44 0.35 0.76 0.06–3.10 0.11–2.61

55 45 0.35 0.76 0.06–3.09 0.11–2.60

54 46 0.35 0.77 0.06–3.10 0.11–2.60

53 47 0.35 0.77 0.06–3.11 0.11–2.59

51-52 48-50 0.35 0.77 0.06–3.10 0.11–2.59

Table 2. Mode, median, 95% credible interval (CI) and 90% CI of the variance
ratio for germination tests performed on four replicates of 50 seeds

Germination percentage Variance ratio

50–99% 1–50% Mode Median 95% CI 90% CI

99 1 0.67 0.67 0–1.88 0–1.75

98 2 0.68 0.48 0–2.00 0–1.91

97 3 1.15 0.71 0–2.42 0–2.14

96 4 0.35 0.74 0–2.66 0.01–2.30

95 5 0.70 0.61 0–2.76 0–2.32

94 6 0.71 0.67 0–2.90 0.03–2.42

93 7 0.51 0.64 0–2.88 0–2.47

92 8 0.54 0.73 0.01–3.00 0.04–2.34

91 9 0.41 0.71 0–2.93 0–2.35

90 10 0.44 0.72 0.02–2.93 0.05–2.52

89 11 0.34 0.71 0–2.97 0–2.48

88 12 0.38 0.78 0.02–3.07 0.05–2.47

87 13 0.29 0.71 0–3.01 0.06–2.52

86 14 0.78 0.73 0.02–2.97 0.05–2.53

85 15 0.26 0.72 0–3.05 0.07–2.53

84 16 0.69 0.70 0.02–3.02 0.06–2.58

83 17 0.24 0.74 0–3.00 0.08–2.49

82 18 0.63 0.76 0.03–3.04 0.06–2.48

81 19 0.22 0.75 0–2.98 0.08–2.55

80 20 0.58 0.75 0.03–3.04 0.06–2.54

79 21 0.20 0.76 0–3.06 0.09–2.52

78 22 0.54 0.76 0.03–3.05 0.07–2.56

77 23 0.64 0.74 0–3.05 0.09–2.55

76 24 0.51 0.77 0.03–3.09 0.07–2.57

75 25 0.60 0.73 0.04–3.04 0.10–2.58

74 26 0.49 0.78 0.03–3.07 0.07–2.54

73 27 0.58 0.72 0.04–3.02 0.10–2.57

72 28 0.46 0.79 0.03–3.03 0.08–2.55

(Continued )
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where s2 = [1/(k− 1)]
∑k

i=1 ( pi − p.)
2, s2B = p.(1− p.)/m, pi =

ni/m and p. =
∑k

i=1 pi
( )

/k = n/N.

Considering the variance from a binomial distribution with
parameter ‘number of trials’ equal to m in the denominator of f is
justified by the fact that the distribution of the number of germin-
ating seeds in a random sub-sample from a representative sample
from a seed lot is also binomial with probability parameter equal
to the proportion of germinating seeds in the lot (see theorem in
Appendix B). We also note that f is the dispersion factor of a simple
binomial generalized linear model (McCullagh and Nelder, 1989):
ni∼ Binomial(m, π), logit(π) = μ.

We are interested in the distribution of the discrete random
variable F associated with f. It is easily derived from the distribu-
tion of S2n1,n2,..,nk , as s

2
B is a constant for a given number of n ger-

minating seeds out of N and s2 = 1
m2(k− 1)

∑k

i=1
(ni − n/k)2.

Figure 3 provides the pmf and cdf for germination tests per-
formed using four replicates of 100 seeds and for 50, 70, 90 and
95% germinating seeds. These distributions are highly skewed to
the right and have multiple peaks. Extreme values can be very
large but with a very low probability.

From property 3, the expectation of the variance ratio is:

E[F] = mN2

n(N − n)m2
E[S2n1,n2,..,nk ] =

N
N − 1

.

For a germination test involving 400 seeds, the expectation is
therefore equal to 1.002506. Given that the distribution of F is
highly skewed, a more appropriate measure of central tendency
than the mean is the mode or the median, with the latter being
preferable because of the presence of numerous peaks in the
pmf. For germination percentages of tests involving 400 seeds,
Table 1 provides these measures (which are identical for comple-
mentary percentages due to property 1) along with 95 and 90%
credible intervals4 (CI) computed using linear interpolation as F
is discrete. We can see in Table 1 that the central tendency for
the variance ratio is much lower than the mean: the maximum
of the medians for all germination percentages is not greater
than 0.80, which provides the theoretical explanation for the
mean of the variance ratios being 0.836 as reported by
Deplewski et al. (2016) by averaging variance ratios observed in
51,581 germination tests. Finding a f value around 0.8 should
not therefore be an indication of a particular issue with the test,
and the CIs provided in Table 1 should help in deciding whether
there is really an issue related to under- or over-dispersion.
Table 2 is the counterpart of Table 1 for a germination test involv-
ing four replicates of 50 seeds.

Distribution of the range

The distribution of the range of replicate germination results is
derived from the distribution of X, similarly to the distribution
of the variance ratio. The pmf and the cdf of the range for germin-
ation tests performed on four replicates of 100 seeds and for p.
equal to 50, 70, 90 and 95% are provided in Fig. 4. These distri-
butions are skewed to the right and are more regular than the dis-
tributions of F.

The ISTA tables used to ensure reliability of a germination test
from the range of the germination results in the replicates (table
5B, parts 1 to 3 in ISTA, 2018) were developed by Miles (1963)
as follows: calculation of sMiles = q1−a;k;1

�������������
p(1− p)/m

√
where

p = p. − 0.005 and q1−α;k;∞ is the (1 – α) quantile of a studen-
tized range distribution for k groups and infinite degrees of free-
dom; the tolerated range is then taken as the next larger whole
number than sMiles when the fraction in sMiles is greater than or
equal to 0.8, the next smaller whole number otherwise. In ISTA
tables, α is equal to 0.025.

This calculation of the tolerated range assumes that the repli-
cate results are normally distributed with a binomial variance.
We can now use the theoretical cdf of the range to compute the
(1 – α) quantile of the range distribution. The tolerances from
ISTA table 5B and the 0.975 quantiles of the range are visualized
in Fig. 5. We can see that the ISTA tolerances are conservative
(red points are below blue points for a given germination average,
with very few exceptions for tests with four replicates of 100
seeds), especially when the number of seeds involved in the test
is low. For tests performed with four replicates of 100 seeds, the
approximation due to the normality and the binomial assump-
tions is quite good: the maximum difference is equal to 2.05
(for a germination percentage equal to 99% or 1%), the other dif-
ferences being below 1.15. For tests performed with a lower num-

Table 2. (Continued.)

Germination percentage Variance ratio

50–99% 1–50% Mode Median 95% CI 90% CI

71 29 0.55 0.76 0.04–3.11 0.10–2.55

70 30 0.44 0.78 0.03–3.07 0.09–2.60

69 31 0.53 0.79 0.04–3.10 0.10–2.56

68 32 0.43 0.76 0.03–3.08 0.09–2.60

67 33 0.51 0.79 0.04–3.04 0.10–2.56

66 34 0.42 0.75 0.04–3.09 0.10–2.56

65 35 0.50 0.79 0.05–3.05 0.10–2.55

64 36 0.41 0.74 0.04–3.10 0.10–2.57

63 37 0.49 0.78 0.05–3.05 0.10–2.54

62 38 0.40 0.73 0.04–3.08 0.10–2.54

61 39 0.48 0.77 0.05–3.05 0.09–2.55

60 40 0.39 0.72 0.04–3.05 0.11–2.55

59 41 0.47 0.77 0.05–3.07 0.09–2.56

58 42 0.38 0.73 0.04–3.07 0.11–2.56

57 43 0.46 0.76 0.05–3.08 0.09–2.61

56 44 0.38 0.73 0.04–3.08 0.11–2.59

55 45 0.46 0.76 0.05–3.10 0.09–2.63

54 46 0.38 0.74 0.04–3.08 0.11–2.59

53 47 0.45 0.75 0.05–3.09 0.09–2.63

52 48 0.37 0.74 0.04–3.08 0.11–2.58

51 49 0.45 0.75 0.05–3.09 0.09–2.63

50 50 0.37 0.74 0.04–3.08 0.11–2.58

4A credible interval is a range of values within which an unobserved parameter value
falls with a given probability. In practice, credible intervals are used in the same way as
confidence intervals. In concept, they are different because bounds of credible intervals
are fixed and the parameter of interest is random.
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ber of replicates and a lower number of seeds per replicate, the
approximation is inadequate.

Conclusion

The theoretical results we have obtained using number theory and,
more specifically, the theory of partitions, are of importance in
practical terms. We have focused on applications around the ger-
mination test. The methodology can also be applied to other
seed tests as long as the results are binary, for example, purity tests.

We have thus developed the theoretical distribution of the
variance ratio when the only source of variation is the random
assignment of the seeds in the replicates. This enabled us to
prove that the variance ratio, in the absence of any analytical pro-
blems, is likely to be well below unity. We have also been able to
construct credibility intervals for the variance ratio which could
be used in the area of the validation of new germination test
methods using collaborative studies.

Another theoretical distribution we have derived is the distri-
bution of the range of the germination results in the replicates,

Fig. 4. Graphs of the probability mass function and the cumulative distribution function of the range for germination tests performed on four replicates of 100
seeds and for p. equal to (a, b) 50%, (c, d) 70%, (e, f) 90% and (g, h) 95%. (a, b, c, d) Range truncated at 40, maximum would be 100.

70 Jean-Louis Laffont et al.

https://doi.org/10.1017/S0960258519000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0960258519000011


here again in the absence of any analytical problems. This has
allowed us to compare tolerances derived from a given quantile
of this theoretical distribution with the tolerances derived by
Miles (1963) using a normal and binomial approximation.
Miles’ tolerances which are used in ISTA table 5B are shown
to be conservative (i.e. the risk of falsely rejecting valid germin-
ation tests is below the nominal risk of 2.5%). The tolerances in
table 5B part 1 for tests performed on four replicates of 100
seeds are very close to the exact tolerances. However, the differ-
ences between ISTA tolerances and exact tolerances are in the
order of 1% germination tolerance difference for the tests per-
formed on two replicates of 100 seeds and in the order of 2%
germination tolerance difference for the tests performed on
two replicates of 50 seeds. We therefore recommend an

adjustment of the ISTA table 5B based on the exact theoretical
distribution of the range.

This work, which confirms some practices (i.e. use of ISTA
table 5B part 1 to evaluate the germination range of four replicates
of 100 seeds) and dispels some myths (i.e. why dispersion factor is
often less than 1) could be used in other areas, for example in
group testing (Dorfman, 1943) for finite populations.

The computations in this paper have been performed using R
(R Core Team, 2012) and in particular using the R packages parti-
tions (Hankin, 2006) and ggplot2 (Wickham, 2009).

Acknowledgements. The authors would like to thank the referees and the
editor for detailed comments and corrections leading to a significant improve-
ment of the paper.

Fig. 5. Tolerances from ISTA (2018) table 5B (blue points) and 0.975 quantiles of the range (red points) for germination tests performed on (a) four replicates of 100
seeds, (b) two replicates of 100 seeds and (c) two replicates of 50 seeds.
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Appendix A

Let p(n, k) be the number of partitions of n into at most k parts and let u(n, k,
m) be the number of partitions of n into k parts with maximum size m.

Proposition: u(n, k, m) = u(km – n, k, m).

Proof: Let n = n1 + n2 +… + nk be a partition of n into k parts with max-
imum size m. Then, km− n = (m− nk) + (m− nk−1) +… + (m− n1) is a parti-
tion of km – n into k parts with maximum size m. We have a one-to-one
correspondence of the partitions of n and the partitions of km – n so u(n,
k, m) = u(km – n, k, m).

Formulas for u(n, k, m) when n≤m: If n≤m , u(n, k, m) = p(n, k).
Then we can use closed-form formulas available for p(n, k) for some k’s. For
example (Andrews, 2003): p(n, 2) = ⌊(n + 2)/2⌋, p(n, 3) = ⌊(n + 3)2/12⌉, p(n, 4)
= ⌊(n + 5)(n2 + n + 22 + 18⌊n/2⌋)/144⌉ where ⌊.⌋represents the floor function
and ⌊.⌉ the nearest integer function.

Formula for u(n, 3 , m) when m < n < 2m:

u(n, 3,m) =
⌊
(n+ 3)2

12

⌉
−
⌈
(n−m)(n−m+ 2)

4

⌉

where ⌈.⌉ represents the ceiling function.

Proof: We consider the partitions of n into almost three parts for which n >m.
The number S of such partitions is equal to the sum of the number of
partitions of i = 0, 1, 2, …, (n – m – 1) into almost two parts:
S =∑n−m−1

i=0 ⌊(i+ 2)/2⌋. If (n – m – 1) is odd, the sequence numbers in
S is (1, 1, 2, 2, …, (n−m)/2, (n−m)/2). Then S = 2[(n−m)/2][(n−m)/2
+ 1]/2 = (n−m)(n−m + 2)/4 = ⌈(n−m)(n−m + 2)/4.⌉ If (n – m – 1) is
even, the sequence numbers in S is (1, 1, 2, 2, …, (n−m− 1)/2, (n−m−

1)/2, (n−m + 1)/2). Then S = 2[(n−m− 1)/2][(n−m− 1)/2 + 1]/2 + (n−
m + 1)/2 = (n−m)(n−m + 2)/4 + 1/4. As (n – m) and (n – m + 2) are two
consecutive odd integers, frac[(n – m)(n – m + 2)/4] = 3/4 and as frac(x) =
x-⌈x⌉ + 1 (x > 0), then S = ⌈(n−m)(n−m + 2)/4⌉. Finally, μ(n, 3, m) = p(n,
3)− S = ⌊(n + 3)2/12⌉− ⌈(n−m)(n−m + 2)/4⌉ .

Appendix B

Theorem: If the distribution of the number of successes in a primary sample
of size N is Binomial(N, π), then the distribution of the number of successes in
a subsample (from the primary sample) of size n (n <N) is also Binomial(n, π).

Proof: Consider a very large number of white and black balls with a propor-
tion π of white balls. Let Y be the random variable ‘number of white balls in a
random sample of N balls’. P(Y = k) is then given by the binomial probability:

P(Y = k) = N
k

( )
pk(1− p)N−k = f (k) .

Now let Xi be the random variable ‘number of white balls in a random sub-
sample of n balls from the N balls previously sampled’. The conditional prob-
ability P(Xi = ki | Y = k) is then given by the hypergeometric probability:

P(Xi = ki|Y = k) =
k
ki

( )
N − k
n− ki

( )
N
n

( ) = g(ki|k) .

We now derive the marginal distribution of Xi, g(ki):

g(ki) =
∑N

k=0
g(ki|k)f (k)

=
∑N

k=0

k

ki

( )
N − k

n− ki

( )
N

n

( ) N

k

( )
pk(1− p)N−k

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

=
∑N

k=0

n

ki

( )
N − n

k− ki

( )
pk(1− p)N−k

[ ]

= n

ki

( )∑N

k=0

N − n

k− ki

( )
pk(1− p)N−k

[ ]
.

Noting that N−n
k−ki

( )
= 0 for k < ki or for k >N – n + ki, we have:

g(ki) = n
ki

( )∑N−n+ki

k=ki

N − n
k− ki

( )
pk(1− p)N−k

[ ]

= n
ki

( )
pki (1− p)n−ki

∑N−n+ki

k=ki

N − n
k− ki

( )
pk−ki (1− p)N−k−n+ki

[ ]
.

Now, substituting k – ki by j in the above sum and using the binomial
theorem:

g(ki) =
n

ki

( )
pki (1− p)n−ki

∑N−n

j=0

N − n

j

( )
pj(1− p)N−n−j

[ ]

= n

ki

( )
pki (1− p)n−ki .

The distribution of Xi is therefore a binomial distribution with parameters
n and π which proves the theorem.
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