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Bâtiment 307, F-91405 Orsay Cedex, France

(e-mail: thiebout.delabie@gmail.com)
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Abstract. The aim of the article is to provide a characterization of the Haagerup property
for locally compact, second countable groups in terms of actions on σ -finite measure
spaces. It is inspired by the very first definition of amenability, namely the existence of an
invariant mean on the algebra of essentially bounded, measurable functions on the group.
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1. Introduction
Throughout this article, G denotes a locally compact, second countable group (lcsc group
for short); we assume furthermore that it is non-compact, because the compact case is not
relevant to the Haagerup property [5], which is the central theme of these notes.

The latter property is often interpreted as a weak form of amenability or as a strong
negation of Kazhdan’s property (T), depending on the context.

A way to see that it is a weak form of amenability is to consider the following
characterization: recall that G has the Haagerup property if and only if there exists a
sequence of normalized, positive-definite functions (ϕn)n≥1 on G such that ϕn converges
to the constant function 1 uniformly on compact subsets of G as n→∞, and each
ϕn ∈ C0(G), i.e. ϕn→ 0 at infinity. In turn, G is amenable if and only if each ϕn can
be chosen with compact support.

Nowadays, there are several characterizations of the Haagerup property: apart from
the ones presented in the monograph [5], we can mention for instance the ones involving
actions on median spaces or on measured walls as in [4]. In fact, the characterization
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presented here has no direct relationship with the latter ones; it rests rather on strongly
mixing actions on probability spaces: see Theorem 1.6.

The present article has its origin in the characterization of amenability given by its
original definition: the lcsc group G is amenable if and only if the algebra L∞(G) has a
G-invariant mean with respect to the action of G on itself by left translation.

Observe that such an action is a special case of proper actions that we recall now. Let�
be a locally compact space. Suppose that the lcsc group G acts continuously on �. Then
the action is proper if for all compact subsets K , L ⊂�, the set

{g ∈ G : gK ∩ L 6=∅}

is relatively compact in G. Then a question arises: which lcsc groups admit proper actions
on locally compact spaces� equipped with an invariant measure and such that L∞(�) has
an invariant mean? Here is the answer.

PROPOSITION 1.1. Let G be a lcsc group and let � be a locally compact space on which
G acts properly and which admits a G-invariant, regular Borel measure µ. If L∞(�) has
an invariant mean, then G is amenable.

Indeed, it is a well-known fact that the existence of an invariant mean on L∞(�) is
equivalent to the fact that, for every compact set L ⊂ G and every ε > 0, there exists a
continuous function ξ on � with compact support such that ‖ξ‖2 = 1 and

sup
g∈L
|〈π�(g)ξ |ξ〉 − 1|< ε,

where π� denotes the natural unitary representation of G on L2(�) associated to the action
of G on �. As the latter is proper and ξ has compact support, the coefficient function
ϕ = 〈π�(·)ξ |ξ〉 has compact support too and thus the constant function 1 is a uniform
limit on compact sets of compactly supported positive-definite functions, which means
that G is amenable.

Thus, G is amenable if and only if it admits a proper, measure-preserving action on
some locally compact space � so that L∞(�) admits a G-invariant mean.

As properness of actions is too strong to characterize the Haagerup property, we
consider the setting of measure-preserving actions on measure spaces equipped with
invariant measures. It turns out that the following property is well adapted to our situation.

Definition 1.2. Let (�, B, µ) be a measure space on which a lcsc group G acts by Borel
automorphisms which preserve µ. Then we say that the corresponding dynamical system
(�, B, µ, G) is a C0-dynamical system if, for all A, B ∈ B such that 0≤ µ(A), µ(B) <
∞, one has

lim
g→∞

µ(g A ∩ B)= 0.

Remark 1.3. Let (�, B, µ, G) be a C0-dynamical system. Then every G-invariant set
A ∈ B such that µ(A) <∞ is automatically of measure zero. In particular, if µ is finite,
then it is equal to zero. Moreover, the action of G is not ergodic in general. Indeed, let Z
act by translations on R equipped with Lebesgue measure µ. Then

A := {x + k : x ∈ (0, 1/2), k ∈ Z} =
⊔
k∈Z
(k, k + 1/2)

2350

https://doi.org/10.1017/etds.2020.45 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.45


Haagerup property and infinite measures

is Z-invariant and µ(A)= µ(Ac)=∞. The action is C0 since it is proper, as it is the
restriction to Z of the action of R on itself.

Remark 1.4. Let (�, B, µ, G) be a (measure-preserving) dynamical system; then it is a
C0-dynamical system if and only if the permutation representation π� of G on L2(�) is a
C0-representation. Hence, we infer that if G admits a C0-dynamical system (�, B, µ, G)
such that L∞(�) has a G-invariant mean, then G has the Haagerup property.

Then the goal of the present article is to prove the converse.

THEOREM 1.5. Let G be a lcsc group which has the Haagerup property. Then there exists
a C0-dynamical system (�, B, µ, G) such that L∞(�) has a G-invariant mean. More
precisely:
(1) the measure µ is σ -finite, G-invariant, and the Hilbert space L2(�, µ) is separable;
(2) for all measurable sets A, B ∈ B such that 0≤ µ(A), µ(B) <∞, we have

lim
g→∞

µ(g A ∩ B)= 0;

in other words, π� is a C0-representation;
(3) there exists a sequence of unit vectors (ξn)⊂ L2(�, µ) such that ξn ≥ 0 for every n

and, for every compact set K ⊂ G, one has

lim
n→∞

sup
g∈K
〈π�(g)ξn|ξn〉 = 1;

in other words, the dynamical system (�, B, µ, G) has an invariant mean.

The proof of Theorem 1.5 will occupy the rest of the article. It relies on the
characterization of the Haagerup property stated in [5, Theorem 2.2.2] that we recall now.

THEOREM 1.6. [5, Theorem 2.2.2] Let G be a lcsc group. Then it has the Haagerup
property if and only if there exists a standard probability space (S, BS, ν) on which G acts
by Borel automorphisms which preserve ν, and (S, BS, ν) has the following additional
two properties:
(a) the action of G on S is strongly mixing, which means that for all A, B ∈ BS ,

lim
g→∞

ν(g A ∩ B)= ν(A)ν(B);

(b) the action admits a non-trivial asymptotically invariant sequence: there exists a
sequence (An)n≥1 ⊂ BS such that ν(An)= 1/2 for every n and such that, for every
compact set K ⊂ G,

lim
n→∞

sup
g∈K

ν(g An 4 An)= 0.

Furthermore, we assume that S is a compact metric space on which G acts continuously,
and ν has support S, according to (the proof of) [1, Lemma 1.3] that we recall for the
reader’s convenience.

LEMMA 1.7. [1, Lemma 1.3] Let X be a standard Borel G-space with a G-invariant
probability measure µ. Then there exists a compact metric space Y , on which G acts
continuously, and a G-invariant probability measure ν, whose support is Y , such that
L2(X, µ) and L2(Y, ν) are G-isomorphic.
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We end this introduction with a brief sketch of the proof of Theorem 1.5. It uses
elementary measure theory (see [3] on this subject) but it is quite long and involved.

We start with the infinite-product space X =
∏

n≥1 S, where S satisfies all properties
of Theorem 1.6 and Lemma 1.7. We equip X with the diagonal action of G and with
a suitable family F of subsets containing all sets of the form B =

∏
n Bn such that the

infinite product
∏

n 2ν(Bn) converges, where Bn ∈ BS for every n. We construct a measure
µ on σ(F), the σ -algebra generated by F , that satisfies µ(B)=

∏
n 2ν(Bn) for every B

as above.
One of the reasons of the choices of such sets and measure µ is that one can extract

from the family (An) in condition (b) of Theorem 1.6 a sequence (Xm)m ⊂ F so that the
associated sequence of unit vectors ξm = χXm satisfies condition (3) of Theorem 1.5. They
are unit vectors since ν(An)= 1/2 for every n.

In order to prove that condition (2) holds, consider two subsets A =
∏

n An and B =∏
n Bn such that the infinite products

∏
n 2ν(An) and

∏
n 2ν(Bn) converge. Given ε > 0,

choose first N large enough so that

1
2 − ε < ν(An), ν(Bn) <

1
2 + ε

for every n ≥ N . Then, using the strong mixing property of the action of G on S (condition
(a) in Theorem 1.6), we choose a suitable positive number ε′ > 0, an integer m > 0, and
a compact set K ⊂ G such that, for every g /∈ K , ν(g An ∩ Bn)≤ ν(An)ν(Bn)+ ε

′ for all
N ≤ n ≤ N + m. Hence, we get

µ(g A ∩ B)≤
N−1∏
n=1

2ν(An) ·
∏

n>N+m

2ν(An) ·

N+m∏
n=N

2(ν(An)ν(Bn)+ ε
′)

=µ(A)
N+m∏
n=N

2ν(An)ν(Bn)+ 2ε′

2ν(An)
< ε

since the quotients (2ν(An)ν(Bn)+ 2ε′)/2ν(An) belong to some interval (0, δ) for a
convenient value of δ < 1 such that δm+1 < ε/µ(A).

It turns out that the σ -algebra σ(F) generated by F is too large, so that the dynamical
system (X, σ (F), µ, G) is not σ -finite, and, as observed by A. Calderi and A. Valette (cf.
Remark 2.9), the associated representation πX on L2(X, µ) is not continuous.

Thus, we need to divide the proof of Theorem 1.5 into two parts: in the first one,
we prove that (X, σ (F), µ, G) is a C0-dynamical system as stated in Definition 1.2 on
the one hand, and we construct a sequence of unit vectors that satisfy condition (3) in
Theorem 1.5 on the other hand. In the case where G is discrete, it is very simple to restrict
our dynamical system to a σ -finite one, so that the proof is complete with the former
additional assumption. All this is contained in §2.

In the last part of the proof, which is the subject of §3, we define a sub-σ -algebra
σ(Fc) of σ(F) and a measure µc so that, for every A ∈ σ(Fc), µc(A) <∞, we have
limg→e µc(g A 4 A)= 0. This implies the continuity of the permutation representation
πX : G→U (L2(X, σ (Fc), µc)), and finally the latter property is used to prove that we
can restrict our dynamical system to get a σ -finite measure.
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2. Proof of Theorem 1.5, Part 1
For the rest of the article, G denotes a (non-compact) lcsc group with the Haagerup
property. According to Theorem 1.6 and Lemma 1.7, let (S, BS, ν) be a compact metric
space equipped with a probability measure ν whose support is S, and G acts continuously
on S and preserves ν and which satisfies conditions (a) and (b) of Theorem 1.6.

Then put X =
∏

n≥1 S = {(sn)n≥1 : sn ∈ S ∀ n}. If S is any non-empty family of subsets
of X , we denote by σ(S) the σ -algebra generated by S.

Here is the starting point of our construction.

Definition 2.1. Let X be as above.
(1) We denote by F0 the family of subsets of X of the form A =

∏
n≥1 An , where An ∈

BS for all n such that the infinite product
∏
∞

n=1 2ν(An) exists, i.e. the sequence of
partial products (

∏N
n=1 2ν(An))N≥1 converges to some limit in [0,∞)†. We also set

F0,+ =

{
B =

∏
n

Bn ∈ F0 : ν(Bn) > 0 ∀n
}
.

(2) We define the following sequence (Fn)n≥1 of collections of subsets of X by
induction: for n ≥ 1, set Fn = {B \ A : A, B ∈ Fn−1}. Finally, we set

F :=
⋃
n≥0

Fn .

Observe that ∅ ∈ F0 and hence also that Fn ⊂ Fn+1 for every n.

LEMMA 2.2. For all A, B ∈ F0, one has A ∩ B ∈ F0.

Proof. Let A, B ∈ F0. Let us write A =
∏

n An and B =
∏

n Bn as above. Then
ν(An ∩ Bn)≤min(ν(An), ν(Bn)) for every n. If there exists an integer n such that
min(ν(An), ν(Bn))= 0, then the product

∏
∞

n=1 2ν(An ∩ Bn) converges trivially and A ∩
B ∈ F0. Suppose then that ν(An) > 0 for every n and consider the product of conditional
probabilities

aN =

N∏
n=1

ν(Bn|An)=

N∏
n=1

ν(An ∩ Bn)

ν(An)
.

As 0≤ ν(Bn|An)≤ 1 for every n, one has 0≤ aN+1 ≤ aN ≤ 1 for every N , and the
bounded, decreasing sequence (aN )N≥1 converges, say, to a ∈ [0, 1]. Then the sequence

N∏
n=1

2ν(An ∩ Bn)= aN ·

N∏
n=1

2ν(An)

converges to a ·
∏
∞

n=1 2ν(An). �

LEMMA 2.3. The family F is a semiring of subsets of X, i.e.:
(i) if A, B ∈ F , then A ∩ B ∈ F;
(ii) if A, B ∈ F , then B \ A ∈ F .

† Recall that an infinite product
∏

n un of complex numbers converges if limN→∞
∏N

n=1 un exists and is
different from 0, and it converges trivially if the limit equals 0. Thus, we require that the infinite product∏
∞
n=1 2ν(An) either converges or converges trivially.
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In particular, the set of all finite, disjoint unions of elements of F is a ring of subsets of X.
It is the ring generated by F and is denoted by R(F). Moreover:
(iii) for every A ∈ F , there exists B ∈ F0 such that A ⊂ B.

Proof. (i) We prove by induction on n ≥ 0 that for all A, B ∈ Fn , one has A ∩ B ∈ F . The
claim is true for n = 0 by Lemma 2.2. Thus, let us assume that the claim is true for n ≥ 0,
and let A, B ∈ Fn+1. Then there exist A1, A2, B1, B2 ∈ Fn such that A = A1 \ A2 and
B = B1 \ B2. Then, by the induction hypothesis, there exists m ≥ n such that A1 ∩ B1 ∈

Fm . As
A ∩ B = (A1 ∩ Ac

2) ∩ (B1 ∩ Bc
2)= ((A1 ∩ B1) \ A2) \ B2,

this shows that A ∩ B ∈ Fm+2 ⊂ F since (A1 ∩ B1) \ A2 ∈ Fm+1.
Assertion (ii) follows readily from the definitions, and (iii) is established by induction

on n. �

The next step consists in defining a suitable measure µ on the σ -algebra σ(F)= σ(F0)

generated by F (or equivalently by F0).
In order to do that, we associate to every element B =

∏
n Bn ∈ F0,+ the probability

measure PB on the σ -algebra σ(C) generated by the family C of all cylinder sets in X =∏
n S. We observe for future use that F0 ⊂ σ(C) and hence that σ(F)⊂ σ(C) as well.
Then PB is the product probability measure

⊗
n νn,B , where νn,B is the probability

measure on BS given by

νn,B(E) :=
ν(E ∩ Bn)

ν(Bn)
= ν(E |Bn)

for every E ∈ BS and for every n. As is well known, if C =
∏

n Cn with Cn ⊂ S Borel for
every n, then PB(C)=

∏
∞

n=1 νn,B(Cn) because C =
⋂

N C (N ), where C (N )
= C1 × C2 ×

· · · × CN × S × S × · · · ∈ C and PB(C (N ))=
∏N

n=1 νn,B(Cn) for all N .
We define now a premeasure µ on F .

Definition 2.4. For A ∈ F0, A =
∏

n An , set µ(A) :=
∏
∞

n=1 2ν(An). For A ∈
⋃

n≥1 Fn ,
let B ∈ F0 be such that A ⊂ B; then set

µ(A)=

{
PB(A)µ(B) if B ∈ F0,+,

0 if µ(B)= 0.

We need to check that µ is well defined.

LEMMA 2.5. Let A ∈ F .
(i) If there exists B ∈ F0 such that A ⊂ B andµ(B)= 0, then PC (A)µ(C)= 0 for every

C ∈ F0,+ such that A ⊂ C.
(ii) If B, C ∈ F0,+ are such that A ⊂ B ∩ C, one has

PB(A)µ(B)= PC (A)µ(C). (2.1)
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Proof. (i) If B and C are as above, then

0≤ PC (A)µ(C)= PC (A ∩ B)µ(C)

≤ PC (B ∩ C)µ(C)

=

∞∏
n=1

ν(Bn ∩ Cn)

ν(Cn)
·

∞∏
n=1

2ν(Cn)

= lim
N→∞

N∏
n=1

2ν(Bn ∩ Cn)

2ν(Cn)
· 2ν(Cn)

=

∞∏
n=1

2ν(Bn ∩ Cn)≤

∞∏
n=1

2ν(Bn)= 0.

(ii) Observe first that if B, C ∈ F0,+ are such thatµ(B)= µ(C)= 0, then equality (2.1)
holds trivially. By (i), it also holds if µ(B)µ(C)= 0. Thus, it remains to prove that
(2.1) holds when A ⊂ B ∩ C with B, C ∈ F0,+ and µ(B)µ(C) > 0.

We assume first that A =
∏

n An ∈ F0; then

PB(A)µ(B)=
∞∏

n=1

ν(An ∩ Bn)

ν(Bn)
·

∞∏
n=1

2ν(Bn)

= lim
N→∞

N∏
n=1

2ν(An ∩ Bn)

2ν(Bn)
2ν(Bn)

=

∞∏
n=1

2ν(An ∩ Bn︸ ︷︷ ︸
=An

)

=µ(A).

Similarly, we get PC (A)µ(C)= µ(A).
In the last part of the proof, we fix B, C ∈ F0,+ such that µ(B)µ(C) > 0, and we define

two measures µ(B) and µ(C) on the σ -algebra σ(C) (which contains σ(F)) by

µ(B)(E) := PB(B ∩ E)µ(B) for all E ∈ σ(C)

and similarly for µ(C). Then µ(B)(X)= PB(B)µ(B)= µ(B) <∞ (respectively
µ(C)(X)= µ(C)), so that they are both finite measures on σ(C).

Set A := {A ∈ σ(F) : µ(B)(A ∩ B ∩ C)= µ(C)(A ∩ B ∩ C)}. Then the second part
shows that F0 ⊂A and, in particular, since B ∩ C ∈ F0, one has that µ(B)(B ∩ C)=
µ(C)(B ∩ C), which implies that X ∈A.

Let us check that if A ∈A, then Ac
∈A: indeed, as B ∩ C = (Ac

∩ B ∩ C) t (A ∩
B ∩ C),

µ(B)(Ac
∩ B ∩ C)=µ(B)(B ∩ C)− µ(B)(A ∩ B ∩ C)

=µ(C)(B ∩ C)− µ(C)(A ∩ B ∩ C)

=µ(C)(Ac
∩ B ∩ C).

Finally, it is straightforward to check that A is a monotone class. It implies that it is a
σ -algebra which contains F0 and hence A= σ(F). �
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As a consequence of Lemma 2.5 and Caratheodory’s theorem, we have the following
result.

PROPOSITION 2.6. The premeasure µ : F→ R+ is σ -additive and thus it extends to
a measure still denoted by µ on the σ -algebra σ(F). However, µ is not σ -finite; in
particular, it is infinite.

Proof. Let (A(k))k≥1 ⊂ F be a sequence of pairwise-disjoint sets such that A :=⊔
k≥1 A(k) still belongs to F . Choose B ∈ F0 such that A ⊂ B. Then, as A(k) ⊂ B

for every k, if µ(B)= 0, one has, by Lemma 2.5, µ(A(k))= µ(A)= 0 for every k. If
µ(B) > 0, one has

µ(A)= PB(A)µ(B)=
∑

k

PB(A(k))µ(B)=
∑

k

µ(A(k))

since PB is σ -additive. Thus, by Caratheodory’s theorem (see for instance [3, Theorem
11.1]), µ extends to a measure still denoted by µ on σ(F).

In order to prove that µ is not σ -finite, let us choose A ∈ BS such that ν(A)= 1/2,
and set A0 = A and A1 = Ac. Next, for every sequence ε := (εn)n≥1 ⊂ {0, 1}N

∗

=: E ,
set Aε :=

∏
n Aεn ∈ F0. Then µ(Aε)= 1 for every ε ∈ E and Aε ∩ Aε′ =∅ for all

ε 6= ε′. If µ was σ -finite, then E would be countable: indeed, there would exist an
increasing sequence X1 ⊂ X2 ⊂ · · · ⊂ X such that

⋃
k Xk = X and µ(Xk) <∞ for every

k. Then, for k ≥ 2, set Ek = {ε ∈ E : µ(Xk ∩ Aε)≥ 1/2}. Then |Ek | ≤ 2µ(Xk) is finite.
As limk→∞ µ(Xk ∩ Aε)= µ(Aε)= 1 for every ε, it follows that E =

⋃
k Ek would be

countable, which is not the case. �

Now we consider the diagonal action of G on (X, σ (F), µ), i.e.

g · (sn)n≥1 = (gsn)n≥1

for g ∈ G and (sn)n≥1 ∈ X =
∏

n S.

LEMMA 2.7. The action of G on X defined above is measurable. In particular, G acts by
measurable automorphisms on (X, σ (F), µ) and it preserves µ.

Proof. Let α : G × X→ X be defined by α(g, (xn)n≥1)= (gxn)n≥1. To prove that α is
measurable, it is sufficient to see that the preimage of any element of F0 is measurable.

Let A ∈ F0 with A =
∏

n≥1 An . For m ≥ 1, we define a permutation function βm :

G × X→ G × X by

(g, (xn)n≥1) 7→ (g, (xm, x1, x2, . . . , xm−1, xm+1, xm+2, . . .),

which is clearly measurable.
Let us consider now α−1(A); we have

α−1(A)= {(g, (xn)n≥1) : α((g, (xn)n≥1)) ∈ A}

= {(g, (xn)n≥1) : (gxn)n≥1 ∈ A}

=

⋂
k≥1

{(g, (xn)n≥1) : gxk ∈ Ak}.
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For fixed k, since the action γ : G × S→ S given by γ (g, s)= gs is continuous and hence
measurable, we have

{(g, (xn)n≥1) : gxk ∈ Ak} = β
−1
k (γ−1(Ak)× S × S × · · · ) ∈ B(G)× σ(F).

Whence

α−1(A)=
⋂
n≥1

β−1
n

(
γ−1(An)×

∏
k≥2

S
)
∈ B(G)× σ(F).

In particular, if B ∈ σ(F) and for g ∈ G fixed, then

gB = (g−1)−1 B ∈ σ(F).

This ends the proof of the measurability of the action of G.
Finally, if A =

∏
n An ∈ F0, then g A =

∏
n g An , and the equalityµ(g A)= µ(A) holds

since the action of G is diagonal and ν is preserved by the action of G on S.
If A ∈ F , let B ∈ F0,+ be such that A ⊂ B, so that µ(A)= PB(A)µ(B), according to

Definition 2.4. Then g A ⊂ gB, so that

µ(g A)= PgB(g A)µ(gB)= PB(A)µ(B)= µ(A)

for the following reason: for every cylinder set C = C1 × · · · × CN × S × · · · ∈ σ(C),
one has

PgB(gC)=
N∏

n=1

ν(gCn ∩ gBn)

ν(gBn)
= PB(C).

This equality holds first for every element of the algebra generated by cylinder sets and
hence for every element C ∈ σ(C) by uniqueness of probability measures which coincide
on given algebras of sets. In particular, one has µ(g A)= µ(A) for every A ∈ F and hence
in the algebra R(F).

Next, the construction of the extension of µ to σ(F) is given by

µ(E)= inf
{∑

m≥1

µ(Bm) : (Bm)m≥1 ⊂R(F), E ⊂
⋃
m

Bm

}
for every E ∈ σ(F). Thus, if g ∈ G is fixed, one has

µ(gE)= inf
{∑

m≥1

µ(Bm) : (Bm)m≥1 ⊂R(F), E ⊂
⋃
m

g−1 Bm

}
= µ(E)

because the ring R(F) is G-invariant and every countable covering of E ∈ σ(F) in the
definition of µ(E) above can be taken of the form

E ⊂
⋃
m

g−1 Bm

with (Bm)⊂R(F) by G-invariance of R(F). �

We are now ready to prove the first part of Theorem 1.5 in the general case, namely the
existence of a C0-dynamical system with almost invariant vectors, and to finish the proof
in the case where G is discrete (hence countable).
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PROPOSITION 2.8. The dynamical system (X, σ (F), µ, G) is a C0-dynamical system,
namely, for all A, B ∈ σ(F) such that 0< µ(A), µ(B) <∞, one has

lim
g→∞

µ(g A ∩ B)= 0, (2.2)

and there exists a sequence of unit vectors (ξn) ∈ L2(X, σ (F), µ) such that ξn ≥ 0 for
every n and, for every compact set K ⊂ G, one has

lim
n→∞

sup
g∈K
〈πX (g)ξn|ξn〉 = 1. (2.3)

Moreover, if G is discrete, there exists a G-invariant subset � ∈ σ(F) such that the
restriction of µ to � is σ -finite and the corresponding Hilbert space L2(�, µ) contains
the sequence (ξn) and is separable.

Proof. Assume first that A, B ∈ F0, and write A =
∏

n An and B =
∏

n Bn , so that

µ(A)=
∏
n≥1

2ν(An) and µ(B)=
∏
n≥1

2ν(Bn).

Let ε > 0 be fixed and take ε′ > 0 small enough in order that δ := 1/2+ ε′ +
ε′/(1/2− ε′) < 1.

Since 0< µ(A), µ(B) <∞, there exists N large enough such that

1
2 − ε

′ < ν(An), ν(Bn) <
1
2 + ε

′ for all n ≥ N .

Since δ < 1, there exists m large enough such that δm+1 < (ε/µ(A)). The action of G
on (S, ν) being strongly mixing, there exist compact sets Kn ⊂ G for all n ∈ {N , . . . ,
N + m} such that

|ν(g An ∩ Bn)− ν(An)ν(Bn)| ≤ ε
′ for all g ∈ G \ Kn .

Set K =
⋃N+m

n=N Kn , which is compact. Then we have for all g ∈ G \ K ,

µ(g A ∩ B)≤
N−1∏
n=1

2ν(An) ·

N+m∏
n=N

2(ν(An)ν(Bn)+ ε
′) ·

∏
n≥N+m+1

2ν(An)

=µ(A) ·
N+m∏
n=N

2ν(An)ν(Bn)+ 2ε′

2ν(An)

=µ(A)
N+m∏
n=N

(
ν(Bn)+

ε′

ν(An)

)

<µ(A)
N+m∏
n=N

(
1
2
+ ε′ +

ε′

1/2− ε′

)
=µ(A)δm+1 < ε.

Thus, we have
lim

g→∞
µ(g A ∩ B)= 0 for all A, B ∈ F0.
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The same claim holds for A, B ∈ F since there exist C, D ∈ F0 such that A ⊂ C and
B ⊂ D andµ(g A ∩ B)≤ µ(gC ∩ D)→ 0 as g→∞. Moreover, equality (2.2) also holds
for all elements of the ring R(F).

Finally, if A, B ∈ σ(F) are such that 0< µ(A), µ(B) <∞, by construction of the
measureµ on σ(F), if ε > 0 is given, there exist two sequences (Ck)k≥1, (D`)`≥1 ⊂R(F)
such that

A ⊂
⋃
k≥1

Ck and B ⊂
⋃
`≥1

D`

and

µ(A)≤
∑

k

µ(Ck) < µ(A)+ ε and µ(B)≤
∑
`

µ(D`) < µ(B)+ ε.

Choose first N large enough so that
∑
`>N µ(D`) < ε/3. Then, as

g A ∩ B ⊂
( N⋃
`=1

g A ∩ D`

)
∪

(⋃
`>N

D`

)
,

we get

µ(g A ∩ B)≤
N∑
`=1

µ(g A ∩ D`)+ ε/3.

Choose next M large enough so that
∑

k>M µ(Ck) < ε/3N . Then, as

g A ∩ D` ⊂
( M⋃

k=1

gCk ∩ D`

)
∪

(⋃
k>M

gCk

)
for every 1≤ `≤ N and, since µ is G-invariant, we get

µ(g A ∩ B)≤
N∑
`=1

M∑
k=1

µ(gCk ∩ D`)+ 2ε/3

for every g ∈ G. By the previous part of the proof, there exists a compact set K ⊂ G such
that

µ(g A ∩ B) < ε for all g ∈ G \ K .

This ends the proof of the first claim of the proposition.
Let us prove now the existence of the sequence (ξn)⊂ L2(X, σ (F), µ) which

satisfies (2.3).
The probability standard space (S, ν) contains an asymptotically invariant sequence

(An)n≥1 ⊂ BS such that ν(An)=
1
2 for all n and, for every compact set K ⊂ G,

sup
g∈K

ν(g An ∩ An)→
1
2 as n→∞. (2.4)

Since G is a locally compact, second countable group, we choose an increasing sequence
of compact sets (Kn)n≥1 ⊂ G such that G =

⋃
n≥1 Kn and such that for every compact

set K ⊂ G, there exists m ≥ 1 such that K ⊂ Km . Consequently, by (2.4), for all m, k ≥ 1
there exists an integer n(k, m) such that

|ν(g An(k,m) ∩ An(k,m))−
1
2 | ≤

1
2 (1− e−1/m2k

) for all g ∈ Km .
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Then we set for all m
ξm = χ

∏
k≥1 An(k,m) ∈ L2(X, µ).

By construction, 0≤ ξm ≤ 1 and ‖ξm‖2 = 1 for all m.
Now let K be a compact subset of G; then, for every integer m ≥ 1 such that K ⊂ Km ,

we have

1≥ 〈πX (g)ξm |ξm〉 =

∫
X
χ∏

k≥1 An(k,m)(g
−1x)χ∏

k≥1 An(k,m)(x) dµ(x)

=

∫
X
χ∏

k≥1(g An(k,m)∩An(k,m))(x) dµ(x)

=µ

(∏
k≥1

(g An(k,m) ∩ An(k,m))

)
=

∏
k≥1

2ν(g An(k,m) ∩ An(k,m))

≥

∏
k≥1

2
(

1
2
−

1
2
(1− e−1/m2k

)

)
=

∏
k≥1

e−1/m2k

= e−
∑
∞

k=1 (1/m2k )
= e−1/m

→m→∞ 1

uniformly on K , where the first inequality follows from the Cauchy–Schwarz inequality.
Assume now that G is discrete and hence countable; set

�=
⋃
g∈G

⋃
m≥1

g · Xm,

where Xm =
∏

k An(k,m) is the support of ξm for every m. Then � is G-invariant, the
restriction of µ to � is σ -finite, and L2(�, µ) is separable since G is countable, and it
contains the sequence (ξm) by construction. �

Thus, the proof of Theorem 1.5 is complete in the case where G is discrete and hence
we will focus on the case where G is not discrete.

Remark 2.9. We are very grateful to Alessandro Calderi and Alain Valette for having
kindly communicated the present remark. The associated representation πX of G on
L2(X, σ (F), µ) is not continuous in general. Indeed, if it was continuous, then we would
have

lim
g→e
〈πX (g)ξ |ξ〉 = ‖ξ‖22

for every element ξ ∈ L2(X, µ) and, in particular, limg→e µ(gB ∩ B)= 1 for every
B ∈ F0 with µ(B)= 1. Choose a Borel set A ⊂ S such that ν(A)= 1/2 and set
B =

∏
n A ∈ F0. If g ∈ G is such that ν(g A 4 A) > 0, we have µ(gB ∩ B)= 0 since

ν(g A ∩ A) < 1/2. If we can make g→ e, we have proved that πX is not continuous. It is
the case for G = S = S1 equipped with its normalized Lebesgue measure.

We also observe that, in the case where G is countable, provided that we put X0 =

B =
∏

n A as above and we take�=
⋃

g∈G
⋃

m≥0 g · Xm , the unit vector χB ∈ L2(�, µ)

satisfies the following condition:

ϕB(g) := 〈πX (g)χB |χB〉 =

{
1, g = e,

0, g 6= e.
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This means that ϕB is the positive-definite function δe whose GNS construction (see
[2, Theorem C.4.10]) is the (left) regular representation of G. Hence, the left regular
representation of G is a subrepresentation of π�.

If G is not discrete, we see no reason why π� should contain the regular representation,
as in this case there is no analogue of the function δe.

3. Proof of Theorem 1.5, Part 2
Before proving the last part of our main theorem, let us make the following comment,
which we owe to S. Baaj: recall that if G be a lcsc group that acts measurably on some
measure space (�, µ), where µ is G-invariant and σ -finite, and if L2(�, µ) is separable,
then the associated unitary representation π� is automatically continuous. This follows
from [2, Proposition A.6.1] for instance.

This means that, if we had been able to restrict our action of G to such a measure space,
then the proof of Theorem 1.5 would be complete. Unfortunately, we were unable to do
that and thus we have to proceed as follows: we define a subfamily Fc of F and a measure
µc on σ(Fc) so that the permutation representation on L2(X, σ (Fc), µc) is continuous
and then, using continuity, we are able to restrict the action of G to a σ -finite measure
subspace of X which has all the desired properties.

Before defining the above-mentioned family Fc, we fix an increasing sequence of
compact sets (Kn)n≥1 of G with the following properties: e ∈

◦

K1, Kn ⊂
◦

Kn+1 for every
n ≥ 1, and G =

⋃
n≥1 Kn . We also set K := K1, which is a compact neighbourhood of e.

Definition 3.1.
(1) The family Fc,0 is the collection of sets A =

∏
n An ∈ F0 such that µ(A)=∏

n 2ν(An)= 0 or that

lim
N→∞

∞∏
n=N

2ν(g An ∩ An)= 1

uniformly for g ∈ K .
(2) We define the sequence (Fc,n)n≥1 of collections of subsets of X by induction:

Fc,n := {B \ A : A, B ∈ Fc,n−1}, and we set finally Fc =
⋃

n≥0 Fc,n .
We also denote by σ(Fc) the σ -algebra generated by Fc; it is a sub-σ -algebra of σ(F).

We observe that the sequence (
∏

k≥1 An(k,m))m≥1 constructed in the proof of
Proposition 2.8 is contained in Fc,0. Indeed, we have proved that

2ν(g An(k,m) ∩ An(k,m)) ∈ [e−1/m2k
, 1] for all g ∈ K .

Hence, we get

1≥ lim
N→∞

∞∏
k=N

2ν(g An(k,m) ∩ An(k,m))

≥ lim
N→∞

∞∏
k=N

e−1/m2k

= e−(1/m) limN→∞
∑
∞

k=N (1/2
k )
= 1
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uniformly on K . This proves among others that the associated sequence of vectors
(ξm)m≥1 ⊂ L2(X, σ (Fc), µ) is an almost-invariant sequence of unit vectors.

In order to see that Fc,0 is stable under finite intersections, we need the following
elementary lemma.

LEMMA 3.2. Let (xk)k≥1, (ak)k≥1 ⊂ R+ be sequences such that

lim
N→∞

∏
k≥N

xk = lim
N→∞

∏
k≥N

(1− ak)= 1.

Then
lim

N→∞

∏
k≥N

(xk − ak)= 1.

Proof. There exists N0 so that xk > 2/3 and 0≤ ak < 1/2 for all k ≥ N0. This implies
immediately that

(−2ak + a2
k )xk ≤−

3
2 ak xk ≤−ak

for all k ≥ N0 and we get for all N ≥ N0∏
k≥N

xk(1− ak)
2
≤

∏
k≥N

(xk − ak)≤
∏
k≥N

xk,

which proves the claim. �

LEMMA 3.3. Let A, B ∈ Fc,0. Then A ∩ B ∈ Fc,0.

Proof. Let A, B ∈ Fc,0, where A =
∏

n An and B =
∏

n Bn .
If A or B has measure zero, then µ(A ∩ B)= 0 and A ∩ B ∈ Fc,0. We assume that

µ(A ∩ B) 6= 0. Thus, we have that the five sequences

∞∏
n=N

2ν(g An ∩ An),

∞∏
n=N

2ν(gBn ∩ Bn),

∞∏
n=N

2ν(An ∩ Bn),

∞∏
n=N

2ν(An),

∞∏
n=N

2ν(Bn)

converge to 1 uniformly on K as N →∞.
As ν(An), ν(Bn) 6= 0 for every n, we have that

∞∏
n=N

2ν(g An ∩ An)

2ν(An)
,

∞∏
n=N

2ν(gBn ∩ Bn)

2ν(Bn)
,

∞∏
n=N

2ν(An ∩ Bn)

2ν(An)
and

∞∏
n=N

2ν(An ∩ Bn)

2ν(Bn)

converge to 1 uniformly on K as N →∞.
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Moreover,

1≥ lim
N→∞

∞∏
n=N

2ν(g(An ∩ Bn) ∩ (An ∩ Bn))

2ν(An ∩ Bn)

≥ lim
N→∞

∞∏
n=N

2ν(An ∩ Bn)− 2ν(An ∩ Bn ∩ g Ac
n)− 2ν(An ∩ Bn ∩ g An ∩ gBc

n)

2ν(An ∩ Bn)

≥ lim
N→∞

∞∏
n=N

(
1−

2ν(An \ g An)

2ν(An ∩ Bn)
−

2ν(Bn \ gBn)

2ν(An ∩ Bn)

)
.

Using Lemma 3.2, we will show that

lim
N→∞

∞∏
n=N

(
1−

2ν(An \ g An)

2ν(An ∩ Bn)
−

2ν(Bn \ gBn)

2ν(An ∩ Bn)

)
= 1. (∗)

One has to check that:
(1) limN→∞

∏
∞

n=N (1− (2ν(Bn \ gBn)/2ν(An ∩ Bn)))= 1;
(2) limN→∞

∏
∞

n=N (1− (2ν(An \ g An)/2ν(An ∩ Bn)))= 1.
We prove (1) in detail; as the proof of (2) is similar, we will get (∗). One has

lim
N→∞

∞∏
n=N

(
1−

2ν(Bn \ gBn)

2ν(An ∩ Bn)

)

= lim
N→∞

∞∏
n=N

(
1−

2ν(Bn \ gBn)

2ν(An ∩ Bn)

)
lim

N→∞

∞∏
n=N

2ν(An ∩ Bn)

2ν(Bn)

= lim
N→∞

∞∏
n=N

(
2ν(An ∩ Bn)− 2ν(Bn \ gBn)

2ν(Bn)

)
.

Moreover,

lim
N→∞

∞∏
n=N

(
1−

2ν(Bn \ gBn)

2ν(Bn)

)

= lim
N→∞

∞∏
n=N

(
2ν(Bn)− 2ν(Bn \ gBn)

2ν(Bn)

)

= lim
N→∞

∞∏
n=N

2ν(Bn ∩ gBn)

2ν(Bn)
= 1.

As observed above, this ends the proof. �

Next, exactly the same arguments as those in §2 from Lemma 2.3 to Proposition 2.8
allow us to prove the following facts.

PROPOSITION 3.4. The family Fc has the following properties.
(i) For all A, B ∈ Fc, one has A ∩ B ∈ Fc and A \ B ∈ Fc, so that Fc is a semiring,

and the set of all finite disjoint unions of elements of Fc is the ring generated by Fc,
which is denoted by R(Fc).
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(ii) The diagonal action of G on X =
∏

n≥1 S is σ(Fc)-measurable.
(iii) There exists a measure µc : σ(Fc)→ [0,∞] which is G-invariant and such that

µc(
∏

n An)=
∏

n 2ν(An) for every A =
∏

n An ∈ Fc,0.
(iv) The dynamical system (X, σ (Fc), µc, G) is a C0-dynamical system.
(v) Let (An(k,m))k,m be the family constructed in the proof of Proposition 2.8 and set

Xm =
∏

k An(k,m) and ξm = χXm for every m ≥ 1. Then (ξm)⊂ L2(X, σ (Fc), µc)

is a sequence of almost-invariant unit vectors.

We are ready to prove that the representation πX on L2(X, σ (Fc), µc) is continuous.
To do this, it suffices to prove that, for every A ∈ σ(Fc) such that µc(A) <∞, one has

‖πX (g)χA − χA‖
2
2 =

∫
X
|χg A − χA|

2 dµc =

∫
X
|χg A − χA| dµc = µc(g A 4 A)→0

as g→ e.

PROPOSITION 3.5. Let A ∈ σ(Fc) be such that µc(A) <∞. Then

lim
g→e

µc(g A 4 A)= 0.

Proof. Denote by S the family of sets A ∈ σ(Fc) such that µc(A) <∞ and that
limg→e µc(g A 4 A)= 0. Let us prove the following assertions.

(i) One has Fc ⊂ S, i.e. limg→e µ(g A 4 A)= 0 for every A ∈ Fc.
Indeed, if µ(A)= 0, the claim is obvious. Thus, assume that A =

∏
n An and

lim
N→∞

∞∏
n=N

2ν(g An ∩ An)= 1

uniformly on K . Let (gm)m≥1 be a sequence in K which converges to e. We prove that
µc(gm A ∩ A)→ µc(A) as m→∞; this will prove the claim since we have for every m,

µc(gm A 4 A)=
∫

X
|χgm A − χA| dµc

≤

∫
X
(χA − χgm A∩A) dµc +

∫
X
(χgm A − χgm A∩A) dµc

= 2(µc(A)− µc(gm A ∩ A)).

(Notice that we have used that µc(A) <∞ and that µc is G-invariant.)
As
∏
∞

n=N 2ν(g An ∩ An)→ 1 uniformly on K , there exists N0 such that

∞∏
n=N0+1

2ν(gm An ∩ An)

2ν(An)
∈
(√

1− ε,
√

1+ ε
)

for all m.

As the representation of G on L2(S, ν) is continuous, one has, for every fixed n,

ν(gm An ∩ An)→ ν(An) as m→∞.

Hence, there exists M such that, for every n ∈ {1, . . . , N0},

ν(gm An ∩ An)

ν(An)
∈ [(1− ε)1/2N0 , (1+ ε)1/2N0 ] for all m ≥ M.
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Then one has for every m ≥ M ,∏
n≥1 2ν(gm An ∩ An)∏

n≥1 2ν(An)
=

( N0∏
n=1

2ν(gm An ∩ An)

2ν(An)

)
·

( ∞∏
n=N0+1

2ν(gm An ∩ An)

2ν(An)

)
∈ (1− ε, 1+ ε).

This shows that (µc(gm A ∩ A)/µc(A))→ 1 and µc(gm A ∩ A)→ µc(A) as m→∞.
(ii) If A, B ∈ S, then A ∩ B ∈ S and A \ B ∈ S. In particular, S is a semiring of subsets

of X which contains Fc.
Indeed, let A, B ∈ S and let g ∈ G. Then

µc(g(A ∩ B)4 (A ∩ B))=
∫

X
|χg AχgB − χAχB | dµc

≤

∫
X
|χg A(χgB − χB)| dµc +

∫
X
|χB(χg A − χA)| dµc

≤ µc(g A 4 A)+ µc(gB 4 B)→ 0

as g→ e. This shows that A ∩ B ∈ S. Next,

µc(g(A \ B)4 (A \ B))=
∫

X
|χg(A\B) − χA\B | dµc

=

∫
X
|χg A(1− χgB)− χA(1− χB)| dµc

=

∫
X
|χg A − χA − (χg AχgB − χAχB)| dµc

≤ µc(g A 4 A)+
∫

X
|χg A − χA|χgB dµc

+

∫
X
χA|χgB − χB | dµc

≤ 2µc(g A 4 A)+ µc(gB 4 B)→ 0

as g→ e, showing that A \ B ∈ S. Lemma 3.3 and these facts imply that Fc ⊂ S.
(iii) Let A1, . . . , An ∈ S. Then their union

⋃n
j=1 A j ∈ S. In particular, S is a ring of

subsets of X which contains the ring generated by Fc.
Indeed, by (ii), we can assume that Ai ∩ A j =∅ for all i 6= j . Setting A =

⊔n
j=1 A j , we

have

µc(g A 4 A)=
∫

X

∣∣∣∣ n∑
j=1

χg A j −

n∑
j=1

χA j

∣∣∣∣ dµc

=

∫
X

∣∣∣∣ n∑
j=1

(χg A j − χA j )

∣∣∣∣ dµc

≤

n∑
j=1

µc(g A j 4 A j )→ 0

as g→ e. This proves (iii).
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(iv) Let A ∈ σ(Fc) be such that µc(A) <∞. Then

lim
g→e

µc(g A 4 A)= 0.

Indeed, fix ε > 0. By construction of the measure µc on σ(Fc) and since S is a ring which
contains the ring R(Fc) generated by Fc,

µc(A)= inf
{∑

i≥1

µc(Ai ) : Ai ∈ Fc ∀i, A ⊂
⋃

i

Ai

}
.

Hence, there exists a sequence (Ai )i≥1 ⊂ Fc such that A ⊂
⋃

i Ai := B and

µc(A)≤
∑

i

µc(Ai ) < µc(A)+
ε

5
. (3.1)

By (ii), we assume that Ai ∩ A j =∅ for all i 6= j . Choose then N large enough so that∑
i>N

µc(Ai ) <
ε

5

and let V ⊂ G be an open neighbourhood of e such that

N∑
i=1

µc(g Ai 4 Ai ) <
ε

5
for all g ∈ V .

Then we have for every g ∈ V ,

µc(g A 4 A)≤
∫

X
|χg A − χgB | dµc +

∫
X
|χgB − χB | dµc +

∫
X
|χB − χA| dµc

≤ 2µc(B \ A)+
∑

i

µc(g Ai 4 Ai )

≤ 2µc(B \ A)+
N∑

i=1

µc(g Ai 4 Ai )+ 2
∑
i>N

µc(Ai ) < ε. �

Remark 3.6. Since µ is not σ -finite, there is no reason that it coincides with µc on σ(Fc),
even if it does on Fc ⊂ F . Furthermore, we had to use µc instead of µ because of equality
(3.1); more precisely, it is not necessarily true that, for A ∈ σ(Fc), one has

µ(A)= inf
{∑

i≥1

µ(Ai ) : Ai ∈ Fc ∀i, A ⊂
⋃

i

Ai

}
.

LEMMA 3.7. Let (�, B, ρ) be a measure space on which a group G acts by measurable
automorphisms, and such that ρ(gB)= ρ(B) for every B ∈ B such that ρ(B) <∞. Then
the action of G preserves ρ, i.e. ρ(gB)= ρ(B) for every B ∈ B.

Proof. If there existed g ∈ G and B ∈ B such that ρ(B)=∞ and ρ(gB) 6= ρ(B), then,
necessarily, we would have ρ(gB) <∞. But this contradicts our hypothesis since then
ρ(g−1gB)= ρ(B) would be finite. �

The next proposition is the last step of the proof of Theorem 1.5.
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PROPOSITION 3.8. There exists a G-invariant subset � ∈ σ(Fc) such that the measure
ρ : σ(Fc)→ [0,∞], defined by ρ(B) := µc(B ∩�) for every B ∈ σ(Fc), is σ -finite and
G-invariant. Furthermore, the Hilbert space L2(�, ρ) is separable and contains the
sequence of unit vectors (ξm) of Proposition 3.4.

Proof. Let D = {g1 = e, g2, . . .} ⊂ G be a countable, dense subset of G. Set Y =⋃
m≥1 Xm , where Xm =

∏
k≥1 An(k,m) as in Proposition 3.4, and set

�=
⋃
h∈D

hY.

Recall that the measure ρ on (X, σ (Fc)) is defined by

ρ(B)= µc(B ∩�)

for every B ∈ σ(Fc), so that ρ is σ -finite. It remains to prove that it is G-invariant. By
Lemma 3.7, it suffices to prove that ρ(gB)= ρ(B) for every g ∈ G and B ∈ σ(Fc) such
that ρ(B) <∞. Then, for every i ≥ 1, set

Bi = (B ∩ gi Y )
∖(i−1⋃

j=1

g j Y
)
,

so that B ∩�=
⊔

i Bi and thus ρ(B)=
∑

i ρ(Bi ) <∞.
Then

ρ(gB)≥ ρ(g(B ∩�))=
∑

i

ρ(gBi ).

For fixed i , let (h(i)n )n≥1 ⊂ D be such that h(i)n → ggi as n→∞. Then ρ(gBi )≥ ρ(gBi ∩

h(i)n g−1
i Bi ) for every n and

ρ(gBi ∩ h(i)n g−1
i Bi )= µc(gBi ∩ h(i)n g−1

i Bi )→ µc(gBi )= µc(Bi )

as n→∞; thus ρ(gBi )≥ µc(Bi ) and hence

ρ(gB)≥
∑

i

ρ(gBi )≥
∑

i

µc(Bi )= µc(B)≥ µc(B ∩�)= ρ(B).

We also get
ρ(B)≤ ρ(gB)≤ ρ(g−1gB)= ρ(B).

Finally, separability of L2(�, ρ) follows from the countability of D and from its density
in G.

The proof is now complete. �
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