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We study standing waves on the surface of a tangential discontinuity in an
incompressible plasma. The plasma is moving with constant velocity at one side
of the discontinuity, while it is at rest at the other side. The moving plasma is
ideal and the plasma at rest is viscous. We only consider the long wavelength limit
where the viscous Reynolds number is large. A standing wave is a superposition of
a forward and a backward wave. When the flow speed is between the critical speed
and the Kelvin–Helmholtz threshold the backward wave is a negative energy wave,
while the forward wave is always a positive energy wave. We show that viscosity
causes the standing wave to grow. Its increment is equal to the difference between
the negative energy wave increment and the positive energy wave decrement.
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1. Introduction

The concept of negative energy waves is very useful in studying stability. It was first
proposed by L. Chua in 1951 (Pierce 1974) in application to electron beams. Later
this concept became very popular in plasma physics (e.g. Kadomtsev, Mikhailovskii
& Timofeev 1965; Mikhailovskii 1974; Nezlin 1976). In hydrodynamics the concept
of negative energy waves was first used in the pioneering article by Benjamin (1963).
However this concept became popular in hydrodynamics much later, not least owing
the article by Cairns (1979) where it was applied to the stability of shear flows.
An excellent review of the theory of negative energy waves in hydrodynamics is
given by Ostrovskii, Rybak & Tsimring (1986) (see also Stepanyants & Fabrikant
1989; Fabrikant & Stepanyants 1998). To our knowledge, Ryutova (1988) was the
first to consider negative energy waves in magnetohydrodynamics. She studied
the propagation of kink waves along thin magnetic tubes in the presence of a
homogeneous parallel flow outside the tube and applied the results to space physics.
After that the application of the theory of negative energy waves to problems of
space physics were considered by many authors (e.g. Joarder, Nakariakov & Roberts
(1997), Ruderman & Wright (1998), Andries & Goossens (2001); see also reviews
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by Ruderman & Belov (2010) and Taroyan & Ruderman (2011)). The main property
of negative energy waves is that they become unstable in the presence of dissipation.

To our knowledge all studies of negative energy waves dealt with propagating
waves. A simple general rule was obtained to recognise that a propagating wave
becomes a negative energy wave in a particular reference frame. It is a negative
energy wave when, due to the effect of flow, its phase speed changes the sign. Then
a question arises: If the negative energy wave instability exits in a bounded wave
guides where the waves are standing rather than propagating? The answer to this
question is not so obvious. Consider a simplest case of a wave guide where there are
only two wave modes that propagate in the opposite direction in the absence of flow.
Assume now that there is a siphon flow in this wave guide. If the flow velocity is high
enough, both waves propagate in the same direction, and the wave that propagates in
the direction opposite to the flow direction in the reference frame moving together
with the flow becomes a negative energy wave. The wave propagating in the flow
direction is a positive energy wave. If there is dissipation in the system then the
negative energy wave starts to grow, but the positive energy wave starts to decay.
However the two waves cannot do this independently because the ratio of their
amplitudes in the standing wave remains constant. Hence, the standing wave will
grow or decay depending on which of the two effects dominate, the negative energy
wave growth or the positive energy wave decay.

An example of a bounded wave guide with siphon flow is a coronal magnetic loop
with the footpoints frozen in the dense photospheric plasma. Usually the velocity of
siphon flows observed in coronal loops is below the negative energy wave instability
threshold if we assume that the magnetic field lines in the loop are not twisted.
However, the magnetic twist can substantially decrease the instability threshold.

In this paper we do not consider any applications. Our aim is to answer the main
question: whether the negative energy wave instability occurs in bounded wave guides.
For this we consider a very simple problem of stability of the magnetohydrodynamic
(MHD) tangential discontinuity in an incompressible plasma viscous at one side of
the discontinuity and inviscid at the other side. The article is organised as follows.
In the next section the problem is formulated and the main equations and boundary
conditions are given. In § 3 the stability of standing waves is studied. Section 4
contains the summary of the obtained results and conclusion.

2. Problem formulation and governing equations

We consider an incompressible infinitely electrically conducting plasma. In Cartesian
coordinates (x, y, z) the unperturbed state is an MHD tangential discontinuity. The
unperturbed magnetic field and velocity are B = Bex and U = U0ex, where ex is the
unit vector in the x-direction. The equilibrium density ρ and the quantities B and U0

are given by

ρ =

{
ρ1, z< 0,
ρ2, z> 0,

B=
{

B1, z< 0,
B2, z> 0,

U0 =

{
0, z< 0,
U, z> 0.

(2.1a−c)

The plasma motion is described by the ideal MHD equations in the incompressible
plasma approximation,
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∇ · v = 0, ∇ · b= 0, (2.2a,b)

∂v

∂t
+U

∂v

∂x
=−

1
ρ
∇P+

B
µ0ρ

∂b
∂x
+ ν0∇

2v, (2.2c)

∂b
∂t
+U

∂b
∂x
= B

∂v

∂x
, (2.2d)

where v = (u, v, w) is the velocity perturbation, b = (bx, by, bz) the magnetic field
perturbation, P the total pressure (plasma plus magnetic) perturbation, µ0 the magnetic
permeability of free space and ν0 the kinematic viscosity equal to ν at z< 0 and 0 at
z> 0.

We write the equation of the perturbed tangential discontinuity as z= ζ (t, x, y). The
perturbations must satisfy the kinematic boundary conditions and the conditions of the
stress continuity at z= 0:

w1 =
∂ζ

∂t
, (2.3a)

w2 =
∂ζ

∂t
+U

∂ζ

∂x
, (2.3b)

P2 = P1 − 2ρ1ν
∂w1

∂z
, (2.3c)

∂u1

∂z
+
∂w1

∂x
= 0,

∂v1

∂z
+
∂w1

∂x
= 0, (2.3d,e)

where the indices 1 and 2 refer to quantities below (z < 0) and above (z > 0) the
discontinuity. In addition, we assume that all perturbations tend to zero as |z| →∞.
Finally, we assume that the magnetic field lines are frozen in the immovable plasma at
two planes orthogonal to the x-axis at x= 0 and x= L. In terms of the velocity and
magnetic field perturbation this condition is written as Ub⊥ − Bv⊥ = 0 at x = 0, L,
where b⊥ and v⊥ are the components of the magnetic field and velocity perturbation
orthogonal to the x-axis (see e.g. Ruderman 2010). In particular, it follows that

ζ = 0 at x= 0, L. (2.4)

3. Instability of standing waves
Ruderman & Goossens (1995) used the system of (2.2) and boundary conditions

(2.3) to derive the equation describing the propagation of surface waves on the
tangential discontinuity. This equation reads

(ρ1 + ρ2)
∂2ζ

∂t2
+ 2ρ2U

∂2ζ

∂t∂x
+ ρ2(U2

−U2
c )
∂2ζ

∂x2
= 4νρ1∇

2 ∂ζ

∂t
, (3.1)

where

U2
c =

ρ1V2
1 + ρ2V2

2

ρ1
=
ρ1V2

KH

ρ1 + ρ2
, V2

1,2 =
B2

1,2

µ0ρ1,2
. (3.2a,b)

This equation is only valid in the long wavelength approximation, that is when
Re = LV0/ν � 1 where V0 = (V1 + V2)/2. When U > VKH the discontinuity is
subject to the Kelvin–Helmholtz instability. Equation (3.1) describes two wave
modes propagating in the opposite directions in the absence of flow. They are
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called the forward wave mode and the backward wave mode, respectively. Ruderman
& Goossens (1995) showed that the backward mode becomes a negative energy wave
when U > Uc. This mode is unstable due to the presence of viscosity. The forward
mode is always a positive energy wave that decays due to the presence of viscosity.
When Uc <U < VKH the increment of the negative energy wave is

γ− =
2ρ1νk2C−√

ρ1ρ2(V2
KH −U2)

, (3.3)

and the decrement of the positive energy wave is

γ+ =
2ρ1νk2C+√

ρ1ρ2(V2
KH −U2)

. (3.4)

In these expressions k2
= k2

x + k2
y , kx and ky are the x and y-component of the wave

vector, C± =ω/kx and ω is the wave frequency. The quantity C± is given by

C± =
ρ2U ±

√
ρ1ρ2(V2

KH −U2)

ρ1 + ρ2
. (3.5)

We now consider a solution to (3.1) in the form of standing wave satisfying the
boundary conditions (2.4). We assume that Uc < U < VKH . We only consider waves
standing in the y-direction and take ζ proportional to cos(kyy). The characteristic time
of variation of the wave amplitude is equal to the characteristic period of oscillations
times Re. In accordance with this we introduce the ‘slow’ time T= εt, where ε=Re−1.
We also introduce the scaled shear viscosity ν̄ = ε−1ν. Then (3.1) is transformed to

(ρ1 + ρ2)
∂2ζ

∂t2
+ 2ρ2U

∂2ζ

∂t∂x
+ ρ2(U2

−U2
c )
∂2ζ

∂x2

+ 2ε
(
(ρ1 + ρ2)

∂2ζ

∂t∂T
+ ρ2U

∂2ζ

∂x∂T

)
− 4εν̄ρ1

(
∂2

∂x2
− k2

y

)
∂ζ

∂t
=O(ε2). (3.6)

We look for the solution to this equation in the form of series

ζ = ζ1 + εζ2 +O(ε2). (3.7)

Substituting this expression in (3.6) and collecting terms of the order of unity yields

(ρ1 + ρ2)
∂2ζ1

∂t2
+ 2ρ2U

∂2ζ1

∂t∂x
+ ρ2(U2

−U2
c )
∂2ζ1

∂x2
= 0. (3.8)

It follows from (2.4) that ζ1 must satisfy the boundary conditions

ζ1 = 0 at x= 0, L. (3.9)

We look for the solution to the boundary value problem constituted by (3.8) and the
boundary conditions (3.9) in the form

ζ1 = A(T)[cos(ωt− k+x)− cos(ωt− k−x)], (3.10)
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where k±=ω/C±. It is straightforward to verify that this expression satisfies (3.8). It
also satisfies the condition ζ1= 0 at x= 0. The condition ζ1= 0 at x=L can be written
as

sin
(
ωt−

L(k+ + k−)
2

)
sin

L(k+ − k−)
2

= 0. (3.11)

It follows from this equation that L(k− − k+)= 2πn, which leads to

ω=
2πnC+C−

L(C+ −C−)
=

πn(U2
−U2

c )

LU
, n= 1, 2, . . . . (3.12)

When there is no viscosity equation (3.10) with A= const. gives an exact solution
to (3.1) with ν = 0. The presence of viscosity causes the variation of the wave
amplitude A with time. To determine this variation we proceed to the next-order
approximation. Collecting terms of the order of ε in (3.8) and using (3.10) and (3.12)
yields

(ρ1 + ρ2)
∂2ζ2

∂t2
+ 2ρ2U

∂2ζ2

∂t∂x
+ ρ2(U2

−U2
c )
∂2ζ2

∂x2

=
dA
dT

√
ρ1ρ2(V2

KH −U2)[k+ sin(ωt− k+x)+ k− sin(ωt− k−x)]

+ 4ν̄ωρ1A[(k2
y + k2

+
) sin(ωt− k+x)− (k2

y + k2
−
) sin(ωt− k−x)]. (3.13)

It follows from (2.4) that ζ2 must satisfy the boundary conditions

ζ2 = 0 at x= 0, L. (3.14)

The left-hand side of (3.13) coincides with (3.8). This implies that ζ1 is a solution
to the homogeneous counterpart of the boundary value problem constituted by (3.13)
and the boundary conditions (3.14). Then the inhomogeneous boundary value problem
has solutions only if the right-hand side of (3.13) satisfies the compatibility condition,
which is the condition that it is orthogonal to ζ1. To obtain the compatibility condition
we multiply (3.13) by ζ1, integrate with respect to x and use (3.11) and the boundary
conditions (3.14). Then, after long but straightforward calculation we obtain

sin
(

2ωt−
L(k+ + k−)

2

)
sin

L(k+ + k−)
2

×

(
dA
dT

√
ρ1ρ2(V2

KH −U2)−
2ν̄ωρ1A(k− − k+)(k−k+ − k2

y)

k−k+

)
= 0. (3.15)

Obviously the first multiplier on the right-hand side of this equation cannot be equal
to zero for all values of t. If we assume that the second multiplier is zero, then it
follows from this condition and (3.13) that C+/C− is a rational number, which is only
possible for a countable set of parameters. Eliminating this set from the consideration
we obtain that the second multiplier is not equal to zero. Hence, the only possibility
left is that the third multiplier is zero, which gives

1
A

dA
dT
=

2ν̄ωρ1(k− − k+)(k−k+ − k2
y)

k−k+
√
ρ1ρ2(V2

KH −U2)
. (3.16)
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Now, returning to the original non-scaled time and shear viscosity we obtain after
some algebra

A= A0eγ t, (3.17)

where A0 is the initial value of A and

γ = 4νρ1

(
π2n2(U2

−U2
c )

ρ2L2U2
−

k2
y

ρ1 + ρ2

)
. (3.18)

We see that for sufficiently small ky satisfying

k2
y <

π2n2(ρ1 + ρ2)(U2
−U2

c )

ρ2L2U2
, (3.19)

γ > 0 and the amplitude of the standing wave grows exponentially.
As we have already seen the standing wave is a superposition of the negative energy

wave with the wave vector k− and the positive energy wave with the wave vector k+.
Using (3.3)–(3.5) to calculate the increment γ− for the first wave and the decrement
γ+ for the second wave we easily obtain

γ = γ− − γ+. (3.20)

4. Summary and conclusions
In this article we studied the dissipative instability of standing waves caused by

the flow. We considered a simple equilibrium where two incompressible plasmas are
separated by a tangential discontinuity. There is the plasma flow with constant velocity
parallel to the discontinuity at one of its sides while the plasma at the other side is
at rest. There is also magnetic field parallel to the flow velocity. The plasma that is
at rest is viscous, while the moving plasma is ideal. We only consider long waves
satisfying the condition that the Reynolds number is large. In the linear approximation
these waves are described by (3.1) derived by Ruderman & Goossens (1995).

When the flow speed U exceeds the Kelvin–Helmholtz threshold VKH the
discontinuity is subject to the Kelvin–Helmholtz instability. When U < VKH there
are two surface wave modes that can propagate on the surface of the discontinuity.
In the absence of flow these modes propagate in the opposite directions. We call the
mode propagating in the flow velocity direction forward, and the mode propagating
in the opposite direction backward. When Uc <U<VKH both modes propagate in the
same direction. In this case the forward mode is a positive energy wave, while the
backward mode is a negative energy wave. In the absence of viscosity both modes
are neutrally stable. However viscosity causes the forward mode to decay, and the
backward mode to grow. This growth of the backward mode is called the negative
energy wave instability.

We assumed that the magnetic field lines are frozen in a dense plasma at two planes
perpendicular to the flow direction lines. These plane are a distance L from each
other. This, in particular, implies that the tangential discontinuity is fixed at two lines
perpendicular to the flow direction that are a distance L from each other. Then we
consider surface waves that are standing both in the direction of the flow velocity and
in direction orthogonal to the flow velocity. A standing wave is a linear superposition
of a forward wave and a backward wave. We restricted our analysis to the case where
Uc < U < VKH and showed that the standing wave can grow due to the presence of
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viscosity. However it is only possible when its wavelength in the direction orthogonal
to the flow velocity is sufficiently large. The increment of the standing wave is equal
to the difference between the increment of the backward wave and the decrement of
the forward wave.

We emphasise that our analysis is only valid for slowly growing waves with the
increment much smaller than the wave frequency. In the case when the increment is of
the order of the wave frequency the stability analysis must be modified substantially.
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