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The endothelial glycocalyx layer (EGL) is a macromolecular layer that lines the inner
surface of blood vessels. It is believed to serve a number of physiological functions in
the microvasculature, including protection of the vessel walls from potentially harmful
levels of fluid shear, as a molecular sieve that acts to regulate transendothelial mass
transport, and as a transducer of mechanical stress from the vessel lumen. To best
fulfil some of its roles, it has been suggested that the EGL redistributes, so that it
is thickest at the cell–cell junctions. It has also been suggested that the majority of
mechanotransduction occurs through the solid phase of the EGL, rather than via its
fluid phase. The difficulties associated with measuring the distribution of the EGL
in vivo make these hypotheses difficult to confirm experimentally. Consequently, to
gauge the impact of EGL redistribution from a theoretical standpoint, we compute the
flow through a porous-lined microvessel, the endothelial surface of which has been
informed by confocal microscopy images of a postcapillary venule. Following earlier
studies, we model the poroelastohydrodynamics of the EGL using biphasic mixture
theory, taking advantage of a recently developed boundary integral representation of
these equations to solve the coupled poroelastohydrodynamics using the boundary
element method. However, the low permeabilities of the EGL mean that viscous
effects are confined to thin layers, thereby also enabling an asymptotic treatment of the
dynamics in this limit. In this asymptotic regime, we also consider a two-layer Stokes
flow model for the lumen flow to approximate the effect of red blood cells within the
lumen. We demonstrate that redistribution of the EGL can have a substantial impact
upon microvessel haemodynamics. We also confirm that the bulk of the mechanical
stress is indeed carried through the solid phase of the EGL.

Key words: blood flow, boundary integral methods, low-Reynolds-number flows

1. Introduction
Cardiovascular disease (CVD) is a leading cause of mortality worldwide. An early

marker of this disease involves endothelial dysfunction: the endothelium loses the
ability to maintain homoeostasis and, thus, vessel health is compromised. A key to
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protecting vessel health occurs at the interface between circulating blood and the
endothelium. Strategically located at this interface is the endothelial glycocalyx layer
(EGL). This layer is a hydrated gel-like layer of membrane-bound macromolecules
that is expressed on the luminal surface of, and regulated by, vascular endothelial
cells. This layer is present throughout the circulatory system and has been a focus
of recent research due to the increasing understanding of the role it plays in the
physiology and pathophysiology of blood vessels (Curry & Adamson 2012; Tarbell,
Simon & Curry 2014).

The EGL is thought to protect the vascular wall from stresses produced by direct
exposure to blood flow, or from CVD risk factors, such as hypercholesterolaemia.
However, the EGL is more than an inert physical barrier; it plays essential roles in
transducing biological signals and mechanical cues from outside the cell to inside
the cell. For example, the composition and physical extent of the EGL influence the
bioavailability of the signalling molecule nitric oxide (NO). Diminished bioavailability
or abnormalities in NO signalling are hallmarks of endothelial dysfunction, which
can lead to an increased susceptibility to CVD. The susceptibility of the vessel wall
to disease is attributable to the adaptive capacity of the vascular wall to the local
microenvironment, which includes the near-wall microfluidics.

The EGL is also speculated to have an important effect in diabetes. Using a dye
tracer method, Nieuwdorp et al. (2006) found that acute hyperglycaemia appears
to halve the EGL volume in healthy volunteers. Acute hyperglycaemia occurs
when an excessive concentration of glucose is present in the blood. In diabetics,
hyperglycaemia leads to increased rates of vascular dysfunction. Perrin, Harper &
Bates (2007) reviewed the possible role that the EGL has in controlling microvascular
permeability and its role in diabetic vascular dysfunction.

The exact thickness of the EGL in the microvasculature is still a matter of debate,
as some studies have shown the EGL to have a thickness of up to 0.4–0.5 µm (Vink
& Duling 1996), while others have measured an average thickness of 1.5 µm (Yen
et al. 2012). However, despite this relatively thin surface glycocalyx, recent studies
have shown that the EGL has a substantial impact on microvascular haemodynamics.
This can be seen through the manner in which the EGL alters the blood velocity
profiles within microvessels, which has been shown to occur in venules from mouse
cremaster muscle by Long et al. (2004) using microparticle image velocimetry. This
alteration of the blood velocity profiles has important implications, as it modifies the
fluid shear stress borne by the endothelium.

The EGL is also believed to play a vital role in regulating transendothelial mass
transport. For a long time the classic Starling principle has been used to describe
the balance of hydrostatic and osmotic pressure across the endothelium. However,
the advent of more precise measurements for tissue oncotic pressure revealed
inconsistencies with the classic Starling principle (Michel 1997), which led Michel
(1997) and Weinbaum (1998) to suggest revisions to the Starling principle and
then Hu & Weinbaum (1999) to develop a two-dimensional mathematical model
for this revision. Experiments on frog mesentery capillaries (Hu et al. 2000) and
later Adamson et al. (2004) definitively showed support for the revised Starling
principle over its classical version in rat mesenteric venules. Under this revised
Starling principle, it is the EGL that acts as the molecular sieve that forms the
osmotic barrier rather than the whole endothelial wall. Imaging experiments by
Squire et al. (2001) showed structures in the EGL that could account for the EGL’s
role as a molecular sieve. The structures proposed consist of a square array of 20 nm
spaced fibre-like core proteins, of length 150–400 nm. Spaced every 20 nm along
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these fibres are molecular structures 10–12 nm in diameter, which might represent
aggregated glycosaminoglycans (GAGs) or plasma proteins. It was shown that this
structural arrangement better accounts for the measured EGL reflection coefficients
than those predicted assuming GAG side chains between the fibres. Weinbaum et al.
(2003) subsequently demonstrated that a hexagon lattice, rather than a square one,
better accounts for the hydraulic resistivity of the EGL. They also argued that the
EGL’s sieving capabilities imply an inherent bending rigidity to the core proteins,
which also helps to maintain the EGL’s structural configuration in the presence of
Brownian effects. For a more complete review of this area, see Levick & Michel
(2010).

The transmural flux of fluid itself through the endothelium primarily takes place
through interendothelium clefts which are approximately O(0.01) µm in width
(Clough & Michel 1998) (although, in fact, flow takes place through even smaller gaps
in the tight junction strands that sit within the clefts). There has been recent interest
in better understanding these fluxes in connection with the transport of low-density
lipoproteins (LDLs) from the blood, across the endothelium and into the vessel wall.
Here, they can form lipid-rich plaques, which lead to the onset of diseases such as
atherosclerosis. The plasma that carries the LDLs is much more easily able to transit
the endothelium than the LDLs themselves, and this leads to an LDL accumulation
(concentration polarisation layer) on the endothelium. This in turn is believed to
result in a greater transport of LDL into the vessel wall. The fact that plasma flow
is localised to these interendothelium clefts led some to speculate that this would
provide a mechanism for spatially heterogeneous concentration polarisation layers
in the vasculature. Vincent, Sherwin & Weinberg (2008) modelled the flux through
the intercellular clefts in a two-dimensional geometry of periodically repeating cells,
before later incorporating this into an LDL transport model (Vincent, Sherwin &
Weinberg 2009). Their results predicted that for physiologically relevant parameters,
diffusion would overcome any tendency of the LDLs to localise about the clefts,
leading to a largely homogeneous coating of LDLs on the endothelium. However,
this conclusion was drawn in the absence of an EGL, which, when included in
the model, was shown to have the potential for heterogeneous LDL layers on the
endothelium. The exact extent and form of the heterogeneity, however, were seen
to depend upon the as-yet-unknown interactions between the LDLs and the EGL
(Vincent, Sherwin & Weinberg 2010).

On this subject, it is perhaps worth noting the earlier study by Vink, Constantinescu
& Spaan (2000), who showed that oxidised LDLs appear to cause degradation of the
EGL in the microvasculature of hamster cremaster muscle. Another study showed that
a high-fat high-cholesterol diet reduced the EGL thickness in mouse arteries (van den
Berg et al. 2006). This association between the EGL and atherosclerosis is reviewed
more fully in Gouverneur et al. (2006), with emphasis on the effects of fluid shear
stress reducing the EGL thickness, diminishing its protective effect in the vasculature.

The EGL is also implicated in the immune response, having been found to be
involved in the leukocyte adhesion cascade. This cascade is a sequence of adhesion
and activation events, which begins with capture of a leukocyte and ends with the
extravasation of the leukocyte. One issue with this cascade is that the endothelial
adhesion molecules appear to be buried deep within the EGL (Ley 2008). Therefore,
Smith et al. (2003) suggested that capture may be initiated at the entrance of
postcapillary venules, where the EGL is sufficiently compressed as a leukocyte
exits a capillary. In the absence of such EGL compression, the depth through
which microvilli of the leukocyte can penetrate into the EGL becomes critical to
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whether it becomes adhered, or rolls freely through the vessel. As these microvilli
are comparable in length to the EGL thickness, adhesion is geometrically possible.
However, resistance to penetration from the EGL must also be factored in. Using
a spherical model to predict the viscous forces on the microvilli, as developed by
Feng, Ganatos & Weinbaum (1998), Zhao, Chien & Weinbaum (2001) predicted
that the microvilli would only penetrate 1–20 nm into the EGL, when the latter
was modelled as fibres with GAG side chains. Under the revised ultrastructural
model of Weinbaum et al. (2003) with aggregated GAGs (see above), the penetration
depths could perhaps be a factor of three smaller. In either case, it is likely that a
non-compressed EGL forms a barrier to leukocyte capture, except possibly in regions
of low shear (such as postcapillary venules) or flow reversal. To promote capture in
other regions, modification of the EGL may be a necessary first step of the leukocyte
adhesion cascade. As a result, restoration of the EGL has the potential to become a
therapeutic strategy.

Mechanotransduction of forces from the blood flow to the endothelium is yet
another process thought to be mediated by the EGL. It has been established that
the endothelial cell morphology changes in the presence of blood flow, becoming
more elongated in the direction of the flow than in the absence of flow (Nerem,
Levesque & Cornhill 1981; Barbee, Davies & Lal 1994). It is believed that this cell
remodelling is caused by transmission of fluid shear stresses to the actin cortical
cytoskeleton of the endothelial cells via the EGL which is anchored to the dense
peripheral actin band within the cell. This, in turn, can cause the adherens junctions
between endothelial cells to rupture, leading to reorganisation of the endothelium.
Due to the fact that fluid shear stress is much diminished by the presence of the
EGL, it is now thought that much of the mechanical stress is carried through the solid
components of the EGL. Indeed, a force balance model developed by Tarbell & Shi
(2013) (for a glycocalyx-coated cell in an extracellular matrix) predicts solid stresses
that are one to two orders of magnitude larger than the fluid stresses. Using the
ultrastructural model proposed by Squire et al. (2001) as a starting point, Weinbaum
et al. (2003) investigated what magnitude forces and torques the EGL could be
capable of exerting upon the underlying cortical cytoskeleton, by explicitly modelling
the core proteins as fluid-damped linearly elastic beams. By fitting to the EGL
recovery times measured following the passage of a cell through the vessel, they
predicted a flexural rigidity of 700 pN nm2 for the EGL’s core proteins (more recent
estimates obtained using nonlinear beam models have put this value at 490 pN nm2

(Han et al. 2006)). They found that although the drag on a single core protein was
too small to be likely to generate any significant deformation of the underlying actin
cortical cytoskeleton, the combined drag from an entire EGL brush (which consists of
multiple core proteins emanating from a common focal point) could generate forces
capable of disturbing an endothelial cell’s actin arrangement. Furthermore, the torque
transmitted by the brushes to the actin cortical cytoskeleton could be significant. More
recently, Dabagh et al. (2014) have employed multiscale modelling to examine the
stress amplifications through various components within a monolayer of endothelial
cells, including a (uniform) EGL, adherens junctions, cell nuclei and various other
intracellular organelles. They found that a 250–600 fold increase of stress can occur
at the adherens junctions under 10 dyne cm−2 of applied shear stress.

The role of the EGL in endothelial remodelling was further highlighted by Florian
et al. (2003), who demonstrated a drop in NOx production by the endothelial cells
when the heparan sulphate component of the EGL was degraded by heparinase. Since
endothelial cells produce NOx in response to applied shear stresses, this implies that
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the endothelial cells had become partially desensitised to shear forces under these
conditions. This notion was later further supported by the study of Thi et al. (2004),
who showed that the dense peripheral actin band (DPAB) was no longer disrupted in
the presence of fluid shear when the EGL heparan sulphate had been degraded by
heparinase. Moreover, Yao, Rabodzey & Dewey (2007) showed that endothelial cells
do not align to the flow direction under similar treatment by heparinase. The same
study also showed that the EGL appears to be thicker at the cell–cell junctions when
subjected to laminar flow, as compared with a relatively uniform thickness over the
whole cell under no flow conditions. They hypothesised that this is due to the EGL
redistributing to the cell–cell junctions to reduce the shear stress gradients experienced
by endothelial cells under flow.

In elucidating all of the above EGL functions, the difficulty in measuring in vivo
the distribution of the EGL, and the shear stresses exerted upon the vessel walls,
means that models have played an important role. Explicit modelling of the EGL’s
complex structure is, of course, not practical, and instead effective continuum models
are used. One of the earliest models for the flow through microvessels that accounts
for the EGL was developed by Barry, Parkerf & Aldis (1991). Flow in the lumen
was modelled using the full Navier–Stokes equations, whereas the behaviour of the
EGL was described using biphasic mixture theory. Here, the EGL is separated into
two components, a solid phase and a fluid phase. Wei et al. (2003) later used a similar
biphasic mixture theory model to consider the influence upon the haemodynamics of
the endothelial topology, by considering a two-dimensional vessel with poroelastic-
lined wavy walls. Here, the aspect ratio of the vessel was considered to be such that
a lubrication theory approximation could be applied. This constraint was relaxed in
the subsequent model of Sumets et al. (2015), who developed a boundary integral
representation of the full biphasic mixture theory equations. However, in all of these
modelling studies, two-dimensional vessel geometries were assumed.

There have been a number of studies that have considered three-dimensional
geometries, often for the cases where a cell occupies the vessel. The influence of a
spherical cell in the vessel upon EGL dynamics was modelled by Wang & Parker
(1995) using biphasic mixture theory, although in this case the EGL coated the cell
rather than the vessel walls. The EGL-lined vessel in the presence of an (uncoated)
cell was considered shortly afterwards by Damiano et al. (1996), who took advantage
of a thin cell–vessel gap to justify a lubrication theory approximation. Damiano (1998)
and Secomb, Hsu & Pries (1998) both extended the original model by Damiano et al.
(1996) to allow for more general axisymmetric shapes for red blood cells rather than
assuming simple spheres.

Near the vessel walls under normal flow conditions it has been shown that there
is a cell-depleted layer several microns thick (the exact thickness depending upon the
vessel diameter and haematocrit) (Kim et al. 2007). Therefore, in vessels larger than
20 µm in diameter, this has led to the development of two-layer viscosity models as
an alternative to explicitly considering the presence of red blood cells (Pries et al.
1994). In such models, the fluid within the lumen consists of a high-viscosity core to
capture the presence of red blood cells, and a lower-viscosity outer (or cell-depleted)
region. A modification of this two-layer model treats the viscosity of the cell-depleted
layer as initially unknown, and larger in magnitude than that of blood plasma alone.
This factors in the occasional intrusion of red blood cells into the cell-depleted layer
(Sharan & Popel 2001). Smith et al. (2003) and Long et al. (2004) have also fitted
velocity profiles from in vivo experimental data obtained using microparticle image
velocimetry data. This allowed them to deduce information about the EGL thickness,
as well as to deduce viscosity profiles in the lumen.
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The cell-depleted layer forms when there is sufficient flow through the vessel.
However, when this flow is especially slow or arrested, the effective radius of the
red blood cells increases, such that they can penetrate into the EGL. Then, when the
flow again increases, the red blood cells can pop out of the EGL (Vink & Duling
1996). Complete consideration of such effects requires modelling of the red blood
cells as elastic bodies, although Feng & Weinbaum (2000) were able to describe
the essential role of lubrication pressures in the EGL by considering a planar cell
geometry. Secomb, Hsu & Pries (2001) subsequently developed a model that included
membrane resistance and elastic bending resistance to shear deformations of the cell.
This allowed them to consider a wide range of red blood cells under various velocity
conditions, and to illustrate their effects on red blood cell deformation.

Other EGL models have been used to predict the deformation of the EGL in
the wake of a leukocyte (Damiano & Stace 2005) and finite-strain deformation of
the EGL (Han et al. 2006). However, the models of EGL-lined microvessels to
date have typically assumed idealised geometries, for example axisymmetric tubes
with a circular cross-section, sinusoidal undulations or two-dimensional channels.
While these undoubtedly provide some important initial insights into the dominant
dynamics within the EGL, our intention here is to investigate three-dimensional vessel
geometries that are informed by biological data. In what follows, we first demonstrate
the ability of a low-permeability EGL model to well approximate the hydrodynamics
of the EGL. Using this model, we then predict the fluid and solid shear stresses
exerted upon the endothelium for a selection of EGL configurations. In doing so, it
is hoped that we will be able to inform the current discussion around the impact of
EGL redistribution and mechanical transduction through the EGL.

2. Model formulation
A schematic of the model geometry is shown in figure 1. Blood flows through a

tube that is lined by endothelial cells, making its surface topology non-uniform. In
what follows, we represent this endothelial surface by Sw. It is assumed to be rigid and
non-permeable. The region bounded by this endothelial surface, and through which
blood flows, can be divided into two parts, regions I and II. Region I is the vessel
lumen through which blood flows unhindered, and its volume will denoted by Vl.
Region II is the EGL, which we model as a porous medium, and has volume denoted
as Ve. These two regions are separated by the surface Si which forms the interface
between the blood flow within the lumen and that within the EGL. The ends of the
domain are bounded by inlet and outlet surfaces S0 and S∞ respectively.

Following earlier studies, for example, Wei et al. (2003), we model the fluid flowing
through the vessel as an incompressible Newtonian fluid with no body forces. This is
effectively modelling the blood plasma, which can be considered as a Newtonian fluid,
since for vessels at these scales blood cells need to be modelled explicitly (following
several earlier studies, we focus here upon the blood plasma alone). The density of
blood plasma, ρl, is roughly of the order of that of water, and so ρl ≈ 103 kg m−3.
Similarly, its viscosity µl ≈ 10−3 Pa s.

The characteristic length of the microvessel is L, and its average radius is R ∼
30 µm. In what follows, all distances will be non-dimensionalised on this radius, i.e.
x= x∗/R. A typical velocity for flow through the vessel is U= 1 mm s−1 (Long et al.
2004). Using these values, we find that the Reynolds number is Re=UR/ν= 10−2� 1
(where ν = 10−6 m2 s−1 is the kinematic viscosity of blood plasma, assumed here to
be similar to that of water). Hence, the flow in both the lumen and the EGL can be
assumed to be linear.
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Region II (EGL) Region I (lumen)

Endothelium
Endothelial

cell

Region II (EGL)
Region I (lumen)

Endothelium

Endothelial

cell

(a)

(b)

FIGURE 1. Diagrams showing the geometry. We modelled a microvessel as a tube with
a non-uniform wall shape, due to the presence of endothelial cells and the EGL. The
vessel itself can be divided into two regions, Region I is the free lumen (represented by
the volume Vl). Region II is the porous EGL, which is represented by the volume Ve.
These two regions are separated by the surface Si, which forms the interface between the
two regions. The apical side of the endothelium is represented by the surface Sw. We
consider two possible EGL distributions. (a) Model A: the EGL has redistributed to the
relatively flat regions between cell nuclei. The minimum EGL thickness, tmin, occurs at the
top of the endothelial cells. (b) Model B: the non-redistributed EGL, which has constant
thickness tmin with respect to the endothelial cells.

2.1. Region I: the lumen

In the lumen, we non-dimensionalise flow velocities by u∗l = ul1PR2/µlL, where 1P
is the average pressure drop between the inlet and the outlet of the microvessel, and
lumen pressures and stresses by P∗l = Pl1PR/L, σ ∗l = σl1PR/L. Under these non-
dimensionalisations, the flow in the lumen, Vl, satisfies Stokes flow,

∇2ul =∇Pl, ∇ · ul,= 0. (2.1a,b)

This flow can be expressed in the following boundary integral form (Pozrikidis 2002):

(ul(x0))j = − 1
4π

∫
S1

fi(x)G(1)
ij (x− x0) dS(x)

+ 1
4π
−
∫

S1

(ul(x))i T (1)ijk (x− x0)nk(x) dS(x), (2.2)

(with repeated indices denoting summation). The symbol −
∫

denotes that the second
integral is defined in the sense of a Cauchy principal integral, and i, j, k = 1, . . . , 3.
Here, x0 ∈ S1, where S1 represents the entire surface bounding region I. The unit
normal vector in this equation, n, is taken to be the inward pointing normal. Moreover,
f (x)=σl ·n is the traction vector, and G(1)

ij and T (1)ijk are the three-dimensional Stokeslet
and stresslet for Stokes flow respectively, as given by Pozrikidis (2002).

The above formulation assumes that only plasma flows through the lumen, which
may be intermittently the case in capillaries, where red blood cells flow through in
single file. However, in larger microvessels such as postcapillary venules, multiple red
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blood cells may be present at any point along the vessel. A cell-depleted layer has
been observed in such vessels, where the concentration of red blood cells is low (Kim
et al. 2007). This has led to the development of two-layer models. These two-layer
models involve prescribing a spatially varying viscosity, which takes larger values in
the core of the lumen where red blood cells are present, and a lower value in the
cell-depleted layer close to the vessel wall. Such models have been shown to well
approximate the experimentally observed distribution of red blood cells in the vessel
(Pries et al. 1994). We will present some results where such a two-layer viscosity
profile has been used, in order to gauge the potential influence of red blood cells
in the lumen upon the EGL’s impact. We use the model of Sharan & Popel (2001),
where the viscosity in the cell depletion layer is an emergent quantity, and is greater
than that of plasma alone, due to the occasional intrusion of red blood cells into this
depletion layer. Although Sharan & Popel (2001) developed their two-layer model in
the absence of an EGL, we shall see that in the low-permeability physiological regime,
the lumen flow at the EGL interface satisfies the same conditions as on a solid surface
(see 3.1), at leading order. As such, we take the thickness of the cell-depleted layer
to be independent of the depth of the EGL.

2.2. Region II: the EGL
Region II consists of the EGL, which is a porous medium that allows vessel fluid
to flow through it, but not freely. We model the poroelastohydrodynamics in the EGL
using biphasic mixture theory (Drew 1983; Ehlers & Bluhm 2002; Kolev 2002), which
consists of a fluid phase and a solid phase. We shall consider each phase in turn.

2.2.1. Fluid phase
Since elastic velocities can be assumed to be small in this setting, the fluid phase of

the EGL can be modelled using Brinkman’s equations (Hariprasad & Secomb 2012).
Non-dimensionalising volume-averaged flow velocities in the EGL according to u∗f =
uf1PR2/µf L, and pressures and stresses by P∗e = Pe1PR/φf L, σ ∗f = σf1PR/L (where
φf is the fluid fraction in the EGL), the flow equations in the EGL consequently take
the non-dimensional form

∇2uf − λ2uf =∇Pe, ∇ · uf = 0, (2.3a,b)

where λ2=R2/KP, KP is the Darcy permeability within the EGL and µf is the dynamic
viscosity of the fluid in the EGL. (Weinbaum et al. (2003) give an expression for
the permeability in terms of the radius and spacing of the core proteins in the EGL’s
ultrastructure.) We shall use δ to denote a characteristic EGL thickness.

As was the case for Stokes flow in the lumen, there is a boundary integral
representation for Brinkman flow in the EGL (Pozrikidis 1992),

(uf (x0))j = − 1
4π

∫
S2

gi(x)G(2)
ij (x− x0) dS(x)

+ 1
4π
−
∫

S2

(uf (x))i T (2)ijk (x− x0)nk(x) dS(x), (2.4)

where G(2)
ij and T (2)ij are the Brinkman flow Stokeslet and stresslet respectively, as given

by Pozrikidis (1992), and g(x)= σf · n. Here, x0 ∈S2, where S2 represents the entire
surface bounding region II.
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2.2.2. Solid phase
The solid phase of the EGL can be modelled as a linear elastic solid with

extra forcing terms due to momentum transfer between the two phases (Damiano
et al. 1996). Non-dimensionalising the solid displacements in the EGL according to
u∗s = us1PR2/µsL and the stresses by σ ∗s = σs1PR/L, Navier’s equation in the EGL
takes the form

1
1− 2ν

∇(∇ · us)+∇2us = φs

φf
∇Pe − λ2uf , (2.5)

where ν is the Poisson’s ratio of the solid phase of the EGL. The pressure forcing
on the right-hand side of (2.5) arises due to the presence of the fluid phase in the
EGL, and the fluid velocity forcing arises due to momentum transfer between the two
phases.

As before, there is a boundary integral representation for Navier’s equation, with

(us(x0))j = − 1
8π(1− ν)

∫
S2

hi(x)G(3)
ij (x− x0) dS(x)

+ 1
8π(1− ν)−

∫
S2

(us(x))i T (3)ijk (x− x0)nk(x) dS(x)

− (1− 2ν)φs

8π(1− ν)φf

∫
S2

∂Pe

∂n
(x)
(x− x0)j

r
dS(x)

− (1− ν)φs

4π(1− ν)φf

∫
S2

Pe(x)
(
δjk

r
+ (x− x0)j(x− x0)k

r3

)
nk dS(x)

− λ2

8π(1− ν)
∫

S2

fi(x)G(4)
ij (x− x0) dS(x)

+ λ2

8π(1− ν)
∫

S2

(uf (x))i T (4)ijk (x− x0)nk(x) dS(x), (2.6)

where G(3)
ij and T (3)ij are the linear elasticity Green’s functions, as given by Pozrikidis

(2002), h(x)= σs ·n, and G(4)
ij and T (4)ij are given by Sumets et al. (2015). The forcing

terms have been converted to boundary integrals using the approach developed by
Sumets et al. (2015).

2.3. Boundary conditions
The flow boundary conditions on the surface of the endothelium, which is assumed
to be impermeable and stationary, are the usual no-slip and no-penetration conditions

uf = 0 on Sw. (2.7)

Similarly, the solid phase is assumed to be attached to the endothelium, and so the
solid phase is assumed to have no displacement on the surface of the endothelium,

us = 0 on Sw. (2.8)

The flow boundary conditions on the interface between the EGL and the lumen are
as those given in Damiano et al. (2004). Specifically, the homogenised velocity (fluid
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and solid velocity weighted by their respective volume fractions) is assumed to be
continuous across the interface,

φf uf + φsu̇s = ul on Si. (2.9)

Under the assumption that we can neglect the elastic velocities (which are very small
in this context), as we did in the momentum transfer terms, this leads to our second
boundary condition for the fluid phase,

φf uf = ul on Si. (2.10)

The traction on the interface is shared between the two phases according to the
volume fractions. For the fluid phase, this gives

σf · n= φf σl · n on Si, (2.11)

where σl = −PlI + (∇ul + (∇ul)
T) and σf = −PeI + (∇uf + (∇uf )

T) (T denotes a
transpose) are the stress tensors for flow within the lumen and the EGL respectively,
I is the 3 × 3 identity matrix and n is the inward unit normal to the surface Si for
each region respectively. Similarly, for the solid phase this gives(

σs − φs

φf
PeI

)
· n= φsσl · n on Si, (2.12)

where σs = 2ν/(1 − 2ν)(∇ · us)I + (∇us + (∇us)
T) is the stress tensor of a linear

elastic solid and σs − (φs/φf )PeI is the total stress tensor of the solid phase of the
EGL. Combination of (2.11) and (2.12) gives (σf + σs− (φs/φf )PeI) · n= σl · n, which
shows that the total traction of the biphasic mixture balances the traction exerted on
the interface by the fluid flow inside the lumen.

We are also required to specify flow conditions on the inlet, S0, and outlet, S∞,
surfaces,

u(S0)=U0, u(S∞)=U1, (2.13a,b)

where here u represents either ul or uf , depending upon whether S0 or S∞ intersects
region I or II respectively. See (4.1) in § 4.1 for the form of these inlet and outlet
conditions.

Similarly, we specify displacement conditions on the portions of the inlet and outlet
surfaces that intersect with the EGL, S ′

0 and S ′
∞ respectively,

us(S
′

0)=V0, us(S
′
∞)=V1. (2.14a,b)

We prescribe specific forms for these displacements in (4.2).

3. Low-permeability limit (λ� 1)
When the EGL has very low permeability, λ� 1, we expect viscous effects to be

confined to thin layers close to solid surfaces and interfaces. Consequently, numerical
treatment of the full flow equations (2.2) and (2.4) becomes challenging and expensive.
Hence, in this regime we pursue a complementary asymptotic description of the
poroelastohydrodynamics. We begin in §§ 3.1 and 3.2 by considering the flows in the
lumen and fluid phase of the EGL, before treating the solid phase of the EGL in
§ 3.3. Finally, we consider a two-layer viscosity model for the flow in the lumen in
§ 3.4.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

33
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.337


822 T. C. Lee, D. S. Long and R. J. Clarke

3.1. Lumen
In the lumen, we approximate the flow velocity and pressure by the following
expansion (where we are required go to O(λ−2) in ul in order to satisfy the continuity
of velocity conditions):

ul = u(0)l + λ−1u(1)l + λ−2u(2)l +O(λ−3), Pl = P(0)l + λ−1P(1)l +O(λ−2), (3.1a,b)

where (i= 1, . . . , 3)
0=−∇P(i) +∇2u(i). (3.2)

As we shall see from the scalings in the EGL, leading-order flow is required to satisfy
homogeneous boundary conditions,

u(0)(Si)= 0. (3.3)

Moreover, the first-order flow correction must satisfy no-penetration conditions at the
interface,

u(1)(Si) · n= 0. (3.4)
However, as will be shown in § 3.2.3, non-zero tangential components at the interface
are driven by flows within a viscous layer adjacent to the lumen–EGL interface.

3.2. EGL: fluid phase
The flow in the EGL can be considered to consist of three distinct asymptotic regions:
(i) a core flow, which is governed by pressure (i.e. a Darcy flow, where viscous effects
are negligible); (ii) a thin viscous region adjacent to the endothelium, which ensures
that the no-slip condition is satisfied; (iii) a thin viscous region adjacent to the lumen–
EGL interface, where continuity of traction is enforced. We consider each of these
regions in turn below.

3.2.1. EGL core
In the fluid phase of the EGL core, we rescale according to

uf = λ−2u(0)f +O(λ−3), P= P(0)e +O(λ−1). (3.5a,b)

The leading-order flow in the EGL is consequently governed by Darcy’s equations,

u(0)f =−∇P(0)e , ∇ · u
(0)
f = 0. (3.6a,b)

This flow is entirely driven by the kinematics, and can be reformulated in terms of
pressure alone. Taking the divergence of the momentum equation yields

∇2P(0)e = 0. (3.7)

On the endothelial surface, we can satisfy the impermeability condition

∇P(0)e (Sw) · n= 0, (3.8)

but not the no-slip condition. Enforcement of this condition also necessitates the
presence of another thin viscous region, this time adjacent to Sw.

The pressure problem described in (3.7)–(3.8) can also be formulated in the well-
known boundary integral form for a harmonic function:

p(x0)=
∫

S2

∇p(x) · n(x)G(x, x0) dS(x)−−
∫

S2

∇G(x, x0) · n(x)p(x) dS(x), (3.9)

where x0 ∈S2, G(x, x0)= 1/2πr, with r= |x− x0|.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

33
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.337


Impact of endothelial glycocalyx layer redistribution 823

3.2.2. EGL layer I: endothelial surface
In order to satisfy the no-slip condition, let us consider a local Cartesian coordinate

system (x1, x2, x3), where x3 lies in a direction normal to the surface. If we rescale
according to

x1 = X1, x2 = X2, x3 = λ−1X3, uf = (λ−2Uf , λ
−2Vf , λ

−3Wf ), (3.10a−d)

the Brinkman equations (2.3), at leading order in λ, take the form

Uf =−∂Pe

∂X1
+ ∂

2Uf

∂X2
3
, Vf =−∂Pe

∂X2
+ ∂

2Vf

∂X2
3
, 0= ∂Pe

∂X3
,

∂Uf

∂X1
+ ∂Vf

∂X2
+ ∂Wf

∂X3
= 0.

(3.11a−d)

These are subject to the following boundary and matching conditions:

Uf (X3 = 0)= 0, Vf (X3 = 0)= 0, Wf (X3 = 0)= 0, (3.12a−c)

(Uf (X3→∞), Vf (X3→∞))= vs, Wf (X3→∞)= 0, (3.13a−c)

where vs(x1, x2) = (us, vs) = vf − (vf · n)n is the slip velocity induced in the Darcy
region described by (3.7)–(3.8). The leading-order flow in this viscous region is
consequently given by

(Uf (X3), Vf (X3))= vs(1− exp(−X3)), Wf = (∇‖ · vs)(1− X3 − exp(−X3)),

(3.14a,b)

where ∇‖ = (∂/∂x1, ∂/∂x2). The leading-order tractions are then given by

σ · n(Sw)= (λ−1∂Uf /∂X3, λ
−1∂Vf /∂X3,−Pe)= (λ−1us(Sw), λ

−1vs(Sw),−Pe). (3.15)

3.2.3. EGL layer II: EGL interface
Here, we instead define (x1, x2, x3) to be a local coordinate system on the EGL

interface, with x3 in the direction of the local unit normal. In order to enforce
continuity of the tangential components of traction, i.e. φf t · σl · n(Si) = t · σf · n(Si),
where t is a local unit tangent, we rescale according to

x1 = X1, x2 = X2, x3 = λ−1X3, Pe = P(0)e + (λ−1), (3.16a−d)

uf = λ−1U(0)
f + λ−2U(1)

f +O(λ−3)+O(λ−4),

vf = λ−1V (0)
f + λ−2V (1)

f +O(λ−3)+O(λ−4),

wf = λ−2W (0)
f + λ−3W (1)

f +O(λ−4).

 (3.17)

The leading-order flow in this viscous layer is then governed by

U(0)
f =

∂2U(0)
f

∂X2
3
, V (0)

f =
∂2V (0)

f

∂X2
3
, 0= ∂P(0)e

∂X3
,

∂U(0)
f

∂X1
+ ∂V (0)

f

∂X2
+ ∂W (0)

f

∂X3
= 0,

(3.18a−d)
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subject to the boundary condition

(U(0)
f (X3 = 0), V (0)

f (X3 = 0))= 1
φf
(u(1)l (Si), v

(1)
l (Si)), W (0)

f (X3 = 0)= 1
φf

w(2)
l (Si),

(3.19a,b)

and matching conditions which recognise that the flow in the EGL is an order of
magnitude smaller than in this viscous layer,

U(0)
f (X3→∞)= 0, (3.20)

where U(0)
f = (U(0)

f , V (0)
f ,W (0)

f ). These are solved by

U(0)
f =

1
φf

u(1)l (Si) exp(−X3), V (0)
f =

1
φf
v
(1)
l (Si) exp(−X3), (3.21a,b)

W (0)
f =

1
φf

(
∇‖ · (u

(1)
l , v

(1)
l )
)

exp(−X3). (3.21c)

Continuity of traction at O(1) then gives at this order

φf (σ
(0)
l )13 =

∂U(0)
f

∂X3
(X3 = 0)=−u(1)l

φf
, φf (σ

(0)
l )23 =

∂V (0)
f

∂X3
(X3 = 0)=−v

(1)
l

φf
,

(3.22a,b)

φf (σ
(0)
l )33 =−P(0)e (3.22c)

for x on Sw. As can be seen, enforcing continuity of tangential components of
traction provides boundary conditions for the correction to the leading-order flow
in the lumen. Continuity of the normal component of traction provides the required
remaining boundary condition for pressure in the Darcy region. The ability of this
viscous layer to ensure continuity of tangential velocities at O(λ−2) in light of the slip
velocities induced in the Darcy region at Si requires us to consider the corrections to
this leading-order flow. Moreover, continuity of normal velocity gives a permeability
condition for the O(λ−2) lumen flow,

w(2)
l (Si)=∇‖ · (u(1)l (Si), v

(1)
l (Si)). (3.23)

The flow corrections in this region are governed by

U(1)
f =−

∂P(0)e

∂ x̄1
+ ∂

2U(1)
f

∂X2
3
, V (1)

f =−
∂P(0)e

∂ x̄2
+ ∂

2V (1)
f

∂X2
3
,

∂P(1)e

∂X3
= ∂

2W (0)
f

∂X2
3
−W (0)

f ,

(3.24a−c)

∂U(1)
f

∂X1
+ ∂V (1)

f

∂X2
+ ∂W (1)

f

∂X3
= 0. (3.24d)

The resulting flows allow us to bring to rest the slip flow generated on the interface
within the Darcy region,

U(1)
f =

(
u(2)l (Si)+ ∂P(0)e

∂X1

)
exp(−X3)− ∂P(0)e

∂X1
, (3.25)
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V (1)
f =

(
v
(2)
l (Si)+ ∂P(0)e

∂X2

)
exp(−X3)− ∂P(0)e

∂X2
, (3.26)

which can be seen to match to the flow in the EGL. We also note that continuity of
tangential traction at O(λ−1),

(σ
(1)
l (Si))13 =

∂U(1)
f

∂X3
(X3 = 0)=−

(
u(2)l (Si)+ ∂P(0)e

∂X1

)
, (3.27)

(σ
(1)
l (Si))23 =

∂V (1)
f

∂X3
(X3 = 0)=−

(
v
(2)
l (Si)+ ∂P(0)e

∂X2

)
, (3.28)

together with (3.23), provides boundary conditions with which to solve the O(λ−2)

flow in the lumen (although we do not need to do so here). As such, we have shown
how the leading-order EGL flow consistently matches with the leading-order flow in
the lumen, through flows within a thin viscous layer on the interface.

3.3. EGL: solid phase
Since the solid phase of the EGL is driven by flow in its fluid phase, there is an
analogous three-layer asymptotic structure to the elastic displacements (see § 3.2).

3.3.1. EGL core
In the core EGL, we expand the solid displacements according to

us = u(0)s + λ−1u(1)s +O(λ−2), Pe = P(0)e + λ−1P(1)e +O(λ−2). (3.29a,b)

Combined with the rescaling of fluid quantities within the EGL (3.5), the leading-order
elasticity equations then take the form

1
1− 2ν

∇(∇ · u(0)s )+∇2u(0)s =
φs

φf
∇P(0)e − u(0)f . (3.30)

Upon substitution of the leading-order flow in the EGL core (3.6), we obtain

1
1− 2ν

∇(∇ · u(0)s )+∇2u(0)s =
1
φf
∇P(0)e . (3.31)

The boundary conditions on the elastic displacements are determined by the viscous
flows in the asymptotic layers of the EGL’s fluid phase. As we shall see in the next
sections, the displacement boundary condition remains the same on the endothelium,
giving

u(0)s (Si)= 0. (3.32)

However, on the interface, the traction condition changes due to the presence of the
forcing terms in the equation. At leading order, this traction boundary condition is(

σ (0)
s −

1
φf

P(0)e I

)
· n= σ

(0)
l · n on Si. (3.33)
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3.3.2. EGL layer I: endothelial surface
We use the same local Cartesian coordinate system as before (3.10). Within

this layer, no O(1) displacements are driven by fluid forcing. Therefore, the O(1)
elastic displacements in the EGL core satisfy a zero displacement condition on the
endothelium, as given in (3.32).

However, in order to match the leading-order traction coming from the core and
understand how this traction is transmitted to the endothelium, we must still consider
the O(λ−1) displacements. As such, in this layer we rescale the solid displacements
according to

us = (λ−1Us, λ
−1Vs, λ

−1Ws). (3.34)

The governing equations (2.5) at O(λ) take the form

∂2U(0)
s

∂X2
3
= 0,

∂2V (0)
s

∂X2
3
= 0,

∂2W (0)
s

∂X2
3
= 0, (3.35a−c)

subject to the following boundary and matching conditions:

Us(X3 = 0)= 0, Vs(X3 = 0)= 0, Ws(X3 = 0)= 0, (3.36a−c)

(
∂Us

∂X3
(X3→∞), ∂Vs

∂X3
(X3→∞), ∂Ws

∂X3
(X3→∞)

)
= (n · σs)(Sw). (3.36d)

This is solved by

U(0)
s = (σs)13(Sw)X3, V (0)

s = (σs)23(Sw)X3, W (0)
s =

(3− 4ν)
(1− 2ν)

(σs)33(Sw)X3.

(3.37a−c)

This shows that the leading-order traction is simply transmitted through this layer
unchanged.

3.3.3. EGL layer II: EGL interface
Again, we use the same coordinate and pressure rescalings as used for the fluid

phase in this layer (3.16). We approximate the solid displacement as in the core using
the expansion

us = (U(0)
s , V (0)

s ,W (0)
s )+ (λ−1U(1)

s , λ
−1V (1)

s , λ−1W (1)
s )+O(λ−2). (3.38)

The governing equations (2.5) at O(λ2) take the form

∂2U(0)
s

∂X2
3
= 0,

∂2V (0)
s

∂X2
3
= 0,

∂2W (0)
s

∂X2
3
= 0. (3.39a−c)

These equations are solved by displacements that are linear in X3. However, the linear
term in these equations would give rise to O(λ) tractions, which cannot be matched
at the interface by the O(1) lumen tractions. This means that these linear terms must
be zero. Hence, the O(1) elastic displacements in this layer are constant and do not
contribute to the traction.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

33
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.337


Impact of endothelial glycocalyx layer redistribution 827

As such, in order to understand how the traction is transmitted through this layer,
we must consider the first-order corrections. The governing equations (2.5) at O(λ)
take the form

∂2U(1)
s

∂X2
3
=−U(0)

f ,
∂2V (1)

s

∂X2
3
=−V (0)

f ,
∂2W (1)

s

∂X2
3
= 0, (3.40a−c)

where the fluid velocities U(0)
f and V (0)

f are given by (3.21). These are solved by

U(1)
s = (σl)13(Si)X3 + B1 − 1

φf
u(1)l (Si) exp(−X3), (3.41)

V (1)
s = (σl)23(Si)X3 + B2 − 1

φf
v
(1)
l (Si) exp(−X3), (3.42)

W (1)
s = B3, (3.43)

where the Bi (i= 1, 2, 3) are given by matching the first-order correction to the core
elastic displacements. These equations give the traction boundary condition for the
core elastic region as (

σs − 1
φf

PeI

)
· n= σl · n on Si. (3.44)

3.4. Lumen (two-layer model)
Whereas in capillaries, red blood cells pass through intermittently and must be treated
individually (which is beyond the scope of what we do here), in larger postcapillary
venules, the persistent presence of multiple red blood cells may have an influence
on the bulk properties of the fluid which can be captured using a two-layer viscosity
model (Pries et al. 1994; Sharan & Popel 2001). Therefore, in addition to the model
given in § 2.1, which considers the flow of plasma alone through the lumen, we also
consider an extended model that seeks to capture these effects.

In this two-layer model, the blood flow is still modelled as a Stokes flow. However,
within a microvessel, the red blood cells tend to move away from the vessel wall,
leading to a red-blood-cell-rich core layer at the centre of the vessel and a cell-free
layer surrounding this core. Due to the presence of red blood cells, this core layer
has a higher viscosity than blood plasma, which we will call µc. The cell-free layer
viscosity, µo, is lower than this core layer viscosity, although it is still modelled to be
higher than the plasma viscosity to account for the periodic invasion of red blood cells
from the core into this outer layer (Sharan & Popel 2001). These viscosities, along
with the cell-free layer thickness, can be chosen to fit experimental data (Sharan &
Popel 2001).

One of the advantages of the asymptotic formulation is that this can be carried out
in a computationally tractable manner, since the flow in the lumen decouples from the
flow within the EGL at leading order.

Non-dimensionalising as in § 2.1, with the fluid velocity of each layer non-
dimensionalised on its respective viscosity, we find that the governing equations
in non-dimensional form are

∇2uc =∇Pc, ∇ · uc = 0 in Vc, (3.45a,b)

∇2uo =∇Po, ∇ · uo = 0 in Vo, (3.46a,b)
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where the c and o subscripts denote quantities in the core and cell-free layers
respectively. The non-dimensional boundary conditions at the interface, Sc, between
these two layers are

uc = µo

µc
uo on Sc, (3.47)

σc · n= σo · n on Sc, (3.48)

which give continuity of velocity and traction respectively. It should be noted that the
viscosity ratio in (3.47) is due to the difference in non-dimensionalisations between
the two velocities. The outer boundary conditions between the lumen and the EGL
remain the same as given in § 3.1. Analytic solutions of this model for a circular tube
are given in (4.5).

4. Numerical simulation
4.1. Microvessel geometry

Our vessel geometry is informed by confocal microscopy images of a postcapillary
venule, taken from mouse cremaster muscle. An image of the data can be seen in
figure 2(a). Images were supplied by Dr Bodkin and Professor Nourshargh, Centre for
Microvascular Research, William Harvey Research Institute, Barts and The London
Medical School, Queen Mary University of London. The experimental method used
to image the vessel is described in detail in Woodfin et al. (2011) and Colom et al.
(2015). The experimental method used to collect the data is summarised as follows. A
relatively straight postcapillary venule from mouse cremaster muscle was exteriorised,
and a Z-stack of images was collected by confocal microscopy using a single-beam
Leica TCS-SP5 confocal laser-scanning microscope. The cell–cell junctions had been
previously stained by intrascrotal injection of Alexa Fluor 555-labelled monoclonal
antibody (mAb) to Platelet and Endothelial Cell Adhesion Molecule 1 (PECAM-1),
which allows the cell–cell junctions of the endothelial cells to be visualised.

From these data, we first extracted the cell–cell junctions as line segments in
three-dimensional space, using the data visualisation package AMIRA. It was found
that the endothelial surface was largely elliptical in shape (excluding a small section
at one end of the microvessel), with a major axis of 36.2 µm and a minor axis
of 22.8 µm (see figure 2b, where the fit was carried out using the fitellipse.m
routine in Matlab (Brown 2007)). Hence, we hereafter assume this elliptical
representation of the microvessel basal surface in our numerical computations. In
order to minimise entry and exit length effects (which are expected to scale with
the vessel radius at these low Reynolds numbers), we also added vessel extensions
to smoothly transition the geometry between the perfectly circular inlet and outlet,
and the non-uniform endothelial surface. This also allowed us to prescribe the
following analytic expressions for the inlet and outlet flow boundary conditions:
U0 =U1 = (0, 0,U), where (Damiano et al. 1996)

U(r)=


λ2(φf )

2

[(
α

2λ
+ K1(α/λ)

K0(1/λ)

)
J0(α)

J1(α)
+ K0(α/λ)

K0(1/λ)
− 1
]
+ 1

4
(r2 − α2), 0 6 r 6 α,

λ2(φf )

[(
α

2λ
+ K1(α/λ)

K0(1/λ)

)
J0(r)
J1(α)

+ K0(α/λ)

K0(1/λ)
− 1
]
, α 6 r 6 1,

(4.1)
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FIGURE 2. (a) AMIRA visualisation of cell–cell junctions in a postcapillary venule
taken from mouse cremaster muscle, obtained by Bodkin and Nourshargh using confocal
microscopy. (b) The cell–cell junction data (red crosses), as viewed down the longitudinal
axis. The microvessel shape can be seen to be well approximated by a fitted elliptical
cylinder (black line, with its corresponding major axis shown as a blue line). (c,d) Plots
showing the triangularisation used for the microvessel. The colour rendering denotes cell
height and the green dashed line denotes the area of the cell that is raised due to cell
nuclei. These show an EGL mesh of 250 000 (c) and 1 000 000 (d) elements shown on the
same section of vessel. (e) An example synthesised endothelium, with colour renderings
indicating heights (dominated by the cell nuclei – see also figure 9 in appendix B).

with J0(x)= I0(x/λ)− εK0(x/λ) and J1(x)= I1(x/λ)+ εK1(x/λ). Here, K0 and K1 are
modified Bessel functions, ε = I0(1/λ)/K0(1/λ) and α = 1− δ0, where δ0 is the EGL
thickness at the inlet and outlet.

In addition, we also specify the inlet and outlet displacement conditions V0=V1=
(0, 0, V), where
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V(r)= 1
4
(r2 − 1)+ 1

φf
U(r), α 6 r 6 1. (4.2)

For the asymptotic model, we prescribe analytic solutions for the inlet and outlet
as before. In the lumen, we specify Poiseuille conditions,

U(r)= 1
4
(r2 − α2), 0 6 r 6 α, (4.3)

while the boundary condition for flow in the EGL is a constant pressure condition.
The inlet and outlet displacement conditions are given by

V(r)= 1
4
(r2 − 1)+ α2 ln(r), α 6 r 6 1. (4.4)

For the two-layer Stokes model, the inlet and outlet boundary conditions are given
by

U(r)=


1
4
(r2 − β2)+ µc

4µo
(β2 − α2), 0 6 r 6 β,

1
4
(r2 − α), β 6 r 6 α,

(4.5)

where β = 1− ro, ro is the cell-free layer thickness.
Experimental constraints meant that confocal microscopy data were only available

for the lower half of the vessel, and cell membrane surfaces were not readily
obtainable. As such, we synthesised cells in a manner that observed the spatial
statistics seen in the biological data, as well as the cell profiles reported in the earlier
literature. (It should be noted that we performed a statistical analysis of the resulting
cell patterns, in order to confirm that they reproduced the distributions seen in the
biological data.) More details can be found in appendix B. In figure 2(e) we include
an example synthesised endothelium geometry.

We consider two possible scenarios for the EGL distribution in vivo. Model A
considers an EGL that has redistributed to the relatively flat regions between cell
nuclei, producing a poroelastic layer that varies in thickness. Here, the EGL is
thinnest at the cell peaks, where it has depth tmin, and thickest between the cells,
where its depth is α0tmin, where α0 is some amplitude factor that alters the shape
of the redistributed EGL (see figure 1a for an illustration). It should be noted
that a typical value of α0 is not currently well known, due to the experimental
challenges associated with visualising the EGL in vivo, and so in what follows
we have performed simulations using different values of α0. For the same reasons,
we have chosen a cubic interpolation for the EGL profile between cell peaks and
cell–cell junctions. However, we have checked that the trends reported are not overly
sensitive to this choice by performing additional simulations using linear interpolants.
By contrast, in model B, the EGL follows the topology of the endothelial surface,
and has constant thickness tmin throughout the vessel (see figure 1b). For comparison,
we have also considered a bare vessel, which does not contain an EGL at all.

Finally, we consider some scenarios where the flow in the lumen consists of a
higher-viscosity inner region and a lower-viscosity outer region, as discussed in § 3.4.
Such two-layer models have been shown to well approximate the influence of red
blood cells outside of a cell-depleted region in the lumen. We choose to implement
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the profiles proposed by Sharan & Popel (2001), where the lower viscosity in the cell-
depleted layer remains higher than that of plasma alone, to take account of occasional
red blood cell intrusion into this layer. We choose a cell-depleted layer that follows the
topology of the EGL interface, with its thickness being that predicted by earlier studies
(Pries et al. 1994; Sharan & Popel 2001). Using a discharge haematocrit of 45 % and
a vessel radius of 29.47 µm, we find a cell-free layer thickness of ro = 4.3 µm, a
core viscosity of µc = 3.71µpl and a cell-free layer viscosity of µo = 1.45µpl (where
µpl indicates the plasma viscosity).

4.2. Boundary element scheme
The governing boundary integral equations were solved numerically by first discretising
the vessel surfaces into triangular elements (as can be seen in figure 2) and then
assuming a constant basis function across these triangular elements. The required
integrals were then computed using numerical quadratures, and the resulting linear
system was solved iteratively and in parallel over multiple cores using GMRES with
a Jacobi preconditioner. This process is described in more detail in appendix A along
with a description of how these solvers were verified, and indicative values of mesh
sizes and solution times.

5. Results
In what follows, we present the predicted wall shear stresses exerted upon the vessel

endothelium. In doing so, we are able to make some predictions around the degree to
which stresses are carried through the solid phase, as compared with the fluid phase.
We can also comment upon the extent to which EGL redistribution affects the shear
stresses exerted upon the endothelium, as a function of EGL permeability, λ, and
minimum EGL thickness, tmin.

The physiological range of Darcy permeability in a normal EGL is believed to be
of the order KP≈ 10−13–10−12 cm2 (Weinbaum, Tarbell & Damiano 2007). In order to
gauge whether this flow regime lies within the asymptotic regime described in § 3.2,
we compare predictions from this analysis with those obtained using the full Stokes–
Brinkman system (2.1), (2.3), (2.7)–(2.11).

In figure 3, we plot the median of the integrated fluid shear stress on each
cell, as a function of Darcy permeability, KP, for several different minimum EGL
thicknesses (tmin = 0.25, 0.5, 1, 1.5 µm). It should be noted that these stresses
have been normalised on permeability, λ, to best show convergence to the asymptotic
limits; the non-normalised stresses themselves strictly decrease with resistivity, and the
peaks observed in these curves carry no particular physical significance. Furthermore,
these have been calculated for both the redistributed EGL (model A, a) and the
non-redistributed EGL (model B, b). Alongside are included the predictions from the
asymptotic analysis (3.15). Numerical solution of the full Stokes–Brinkman equations
becomes increasingly more difficult as the permeability decreases, which in practice
limits the Darcy permeabilities that we can compute to KP 6 10−9.5 cm2. Nevertheless,
for tmin= 0.5, 1 and 1.5 we can see a clear indication that the stresses are converging
towards the asymptotic predictions well before the Darcy permeabilities expected of
a normal EGL. For tmin = 0.25, the transition to the asymptotic limit is beyond the
hydraulic resistivities for which we can solve the full Stokes–Brinkman equations
(however, it is reasonable to expect that it will do so, albeit more slowly, given that
the asymptotic analysis holds for general tmin, and is shown to capture the limiting
behaviour at the larger values of tmin). Moreover, given that the peak stress has
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FIGURE 3. Median of the integrated per cell longitudinal shear stresses divided by λ, as a
function of λ, for (a, model A) a redistributed EGL and (b, model B) a non-redistributed
EGL, when α0 = 1.8. These are plotted as lines with markers. Also included is the
asymptotic shear stress in the limit of large KP, (3.15), plotted as dashed lines without
markers.

been reached by KP = 10−12 cm2, it seems reasonable to suppose that the asymptotic
regime would be reached by KP = 10−13–10−12 cm2. (It should be noted that this
convergence is not overly sensitive to the precise measure used, e.g. here the median
of per cell integrated longitudinal shear stress.) Since the coupling between the fluid
and solid phases is one-way (i.e. the fluid phase drives the solid phase, but in turn
is not driven by the solid phase), in this regime it therefore also seems reasonable to
utilise the form for the elastic phase driven by the asymptotic flow approximations
(3.31)–(3.33).
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These plots also show that not only does the fluid shear stress decrease with
EGL thickness, as might be expected given the EGL’s anticipated role in protecting
the vessel wall from damaging levels of shear stress, but that the Brinkman–Stokes
solutions converge more rapidly for thicker EGLs, and we note that this is also the
case for EGLs that have redistributed.

We will not present here the spatial distributions of both fluid and elastic stresses
for all scenarios considered, although it is perhaps illustrative to show a couple
of the limiting cases. (The complete set of stress profiles can be found in the
electronic supplementary material available at http://dx.doi.org/10.1017/jfm.2016.337).
Specifically, we consider the fluid and elastic wall shear stresses in the cases where
KP= 10−7 cm2 (λ−1= 10−3.5), with minimum EGL thickness tmin= 1.5 µm (figure 4),
and tmin = 0.25 (figure 5). In what follows, we will concentrate on the longitudinal
component (which aligns with the longitudinal axis of the vessel). In most cases,
the azimuthal components are much smaller in magnitude than the longitudinal
components, and so are omitted for brevity (but can be found in the electronic
supplementary material). In each case, we consider an EGL that has redistributed
(a,c), as well as one that has not redistributed (b,d). In this limit of asymptotically
low permeability, the fluid and elastic shear stresses are found by solving (3.15)
and (3.31)–(3.33) respectively. In these stress plots, we have chosen an amplitude
factor of α0 = 1.8, although additional simulations have shown that the results are
not overly sensitive to the value of this parameter except in the cases where a large
α0 value causes the EGL to protrude further into the vessel between the cell nuclei
than at the cell peaks, i.e. the EGL bulges out between the nuclei (see table 1 for a
more comprehensive survey). In these cases, the distribution of shear stress is altered;
however, this can only occur for a very thick EGL, and as such we do not believe
this to be a physiologically realistic scenario, and so have not included plots of these
distributions. Furthermore, we do not see any substantial sensitivity to the choice of
interpolants (in this case, linear or cubic) for the EGL profile between cells.

For the thickest EGL considered, tmin = 1.5 µm (which is towards the top end
of the experimentally inferred range, Yen et al. (2012)), in figure 4 we note that
there are significant differences in the shear stresses exerted upon the endothelial
surface when the EGL redistributes. Notably, we have a maximum wall fluid shear
stress for a redistributed EGL the magnitude of which is approximately 54 % of
that experienced when the EGL is non-redistributed. The situation is similar for the
elastic shear stress exerted upon the wall, where the shear stress experienced at the
peak of the cell in the redistributed case is approximately 76 % of that experienced
without EGL redistribution. There are also noticeable differences between the spatial
structures of the stresses exerted by the fluid and solid phases. Elastic shear stresses
are clearly elevated in regions closer to the minor axis of the vessel. Fluid shear
stresses are also affected by the elliptical shape of the vessel, although to a lesser
extent, being most noticeable in the maximum shear stresses at the peaks of the cell
nuclei. Furthermore, in the fluid phase, a region of reduced shear stress is observable
immediately upstream and downstream of the cell nuclei, leading to crescent-like
patterns of reduced shear. For the case of the non-redistributed EGL, the fluid shear
stress can actually become negative in these regions. This is indicative of a point
of inflection forming in the flow, which is often associated with eddies in the flow
(Wei et al. 2003; Sumets et al. 2015). Regions of negative shear stress do not occur
upstream and downstream of every cell nucleus, but only those near to the minor axis
of the vessel. This may be expected, as these cells experience the steepest gradients
in shear stress. However, we see that redistribution of the EGL tends to suppress
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FIGURE 4. Longitudinal component of (a,b) fluid shear stress, gz, and (c,d) elastic shear
stress, hz, exerted upon the endothelium in the low-permeability limit (KP = 10−12 cm2,
λ = 103.5) when the minimum EGL thickness is tmin = 1.5, α0 = 1.8. These stresses
are computed using the asymptotic expression (3.15) and (3.31)–(3.33) respectively.
We consider both a redistributed EGL of varying thickness (model A, a,c), and a
non-redistributed EGL (model B, b,d).

these regions of negative shear, and presumably the occurrence of any associated
eddies. We also find that this trend does not appear to be specific to the particular
shape of the redistributed EGL that we have considered here. In the solid phase, there
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TABLE 1. The maximum magnitude of the longitudinal shear stress for solid and fluid
stress, normalised on the solid stress value for a non-redistributed EGL with tmin = 1.5,
which has a non-dimensional stress value of 1.708. The values given for the fluid stress are
10−3 smaller than those for the solid stress. Stress values are given for a non-redistributed
EGL and three cases of a redistributed EGL with amplitude factor α0 = 1.8, 2.2 and 3.4
respectively. The highlighted cells denote cases where the EGL protrudes further into the
vessel between the cell nuclei as compared with at the cell nuclei. For the case of a bare
vessel (no EGL), the fluid shear stress is 0.80 of the reference stress.

are also regions of reduced shear; however, these are seen to be more symmetrical
around the perimeter of the cell nuclei. Moreover, the elastic stresses remain positive,
even when the EGL is non-redistributed.

As mentioned above, an EGL with tmin = 1.5 µm is towards the higher end of
the expected range of EGL thicknesses, and so it is instructive to see the extent to
which these effects persist for thinner EGLs. In figure 5, we consider an EGL with
tmin= 0.25. Here, redistribution of the EGL is seen to produce only a small change in
the shear stresses exerted upon the wall by either the fluid phase or the solid phase,
although the difference between the magnitudes of the fluid shear and the elastic shear
does remain comparable to that exerted in the presence of the thicker EGL. We also
note that the magnitudes of the fluid stresses are approximately 42 % greater than was
the case when tmin = 1.5. By contrast, the elastic stresses are smaller for the thinner
EGL.

We note that for this thinner EGL, the shear stress in the azimuthal direction
becomes appreciable when compared with the longitudinal shear stress. In table 2,
we see that for tmin = 0.25, the azimuthal shear stress is now approximately half of
the magnitude of the longitudinal shear stress. This is compared with azimuthal fluid
shear stresses that are four times smaller than the longitudinal stresses when tmin= 1.5.
However, for the solid phase we find that the azimuthal elastic shear stresses remain
10 times smaller than the longitudinal components.

These results, along with results for other EGL thicknesses, are summarised in
tables 1 and 2. Plots for these omitted EGL thicknesses are available in the electronic
supplementary material. We also consider some alternative values for α0. The trends
reported above with regard to the dependence of the fluid and elastic stresses upon
EGL thickness and redistribution hold (except in the cases where the EGL bulges out
between the cell nuclei), although the overall magnitude of the stresses is reduced
as α0 is increased, as would be expected. These differences in overall magnitude are
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FIGURE 5. Longitudinal component of (a,b) fluid shear stress, gz, and (c,d) elastic
shear stress, hz, exerted upon the endothelium in the low-permeability limit (KP =
10−12 cm2, λ = 103.5) when the minimum EGL thickness is tmin = 0.25, α0 = 1.8.
These stresses are computed using the asymptotic expression (3.15) and (3.31)–(3.33)
respectively. We consider both a redistributed EGL of varying thickness (model A, a,c),
and a non-redistributed EGL (model B, b,d).

summarised in table 1, with the cases where the EGL bulges out between the cell
nuclei highlighted.
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TABLE 2. The maximum magnitude of the azimuthal shear stress for solid and fluid stress,
normalised on the same value as table 1. See the caption of table 1 for further information.

For reference, we also performed some computations for a bare vessel, i.e. no EGL.
Interestingly, the maximum fluid shear stress in the absence of an EGL is 0.80 of
the reference stress, i.e. the elastic stress where there is an EGL with tmin = 1.5 and
α0= 1.8. This is less than the total shear stress borne by the wall (which is equivalent
to the solid stress, as the fluid shear stresses are so small) for even the thinnest non-
redistributed EGL considered. Redistribution of the EGL does appear to lower the total
shear stresses to levels below those observed in the absence of an EGL for the larger
values of α0, although the maximum total stress for a redistributed EGL with α0= 1.8
remains roughly equal to the maximum fluid shear stress in the absence of an EGL,
except for tmin = 1.5.

This suggests that the EGL does not reduce stress, so much as change the way
it is experienced by the wall. In the case of a bare vessel, all of the stress is in
the form of fluid shear stress experienced directly on the wall. However, when an
EGL is present, practically all of the stress borne by the wall is in the form of solid
stress (the fluid shear stress is 10−3 smaller than the solid stress). This means that
when an EGL is present, rather than experiencing fluid shear stress directly, the shear
stress is experienced on the macromolecular network that makes up the EGL. This is
then transmitted into the wall and endothelial cells by the membrane-bound proteins
that are anchored to endothelial cells and the underlying cortical cytoskeleton. This,
in turn, assists remodelling of the endothelial cells, which become aligned with the
flow direction.

Using the fluid velocities obtained from the asymptotic treatment, we also make
comparisons with the fluid velocities found in Weinbaum et al. (2003). By considering
the radius and spacing of core proteins in the EGL’s ultrastructure, Weinbaum et al.
(2003) obtain a Darcy permeability of KP = 3 × 10−14 cm2, which corresponds to
λ = 104.2. Using this λ and redimensionalising our flow results using the pressure
drop per unit length 1P/L = 40 kPa m−1 (Long et al. 2004), a fluid dynamic
viscosity of µf = 10−3 Pa s and a vessel radius of R = 30 µm gives a centreline
velocity of approximately 9 mm s−1, compared with the 1.4 mm s−1 value obtained
in Weinbaum et al. (2003). The slip velocity at the outer edge of the EGL from
the Darcy region is between 2.7 µm s−1 (at cell peaks along the minor axis) and
0.9 µm s−1 (in between the cells along the major axis), compared with 3 µm s−1 in
Weinbaum et al. (2003). Finally, the velocity within the EGL is no longer uniform
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TABLE 3. The maximum magnitude of the longitudinal elastic shear stress for the two-
layer Stokes model, normalised on the solid stress value for a non-redistributed EGL with
tmin = 1.5, which has a non-dimensional stress value of 1.563 (note that this differs from
tables 1 and 2). Stress values are given for a non-redistributed EGL and a redistributed
EGL with amplitude factor α0= 1.8, 2.2 and 3.4 respectively. The highlighted cells denote
cases where the EGL protrudes further into the vessel between the cell nuclei as compared
with at the cell nuclei.

in our model due to the undulating geometry; we find an average velocity within the
EGL of roughly 0.3 nm s−1, compared with the nearly uniform velocity of 6 nm s−1

in Weinbaum et al. (2003). These velocities are of a similar order of magnitude to
ours, but quantitatively different. This is probably due to the smaller vessel used in
Weinbaum et al. (2003), and a different vessel shape in our study.

We have also performed some computations using the two-layer model of Sharan
& Popel (2001), which approximates the presence of red blood cells in the vessel
lumen. The maximum magnitudes for this model are shown in table 3. In these
simulations, we have only considered the solid stress as it has previously been shown
to be dominant. Under the two-layer model, we see the same trend in how the wall
shear responds to changes in the EGL thickness and redistribution as observed for the
flow of plasma alone. For example, from the first two rows in tables 1 and 3, it can
be seen that the relative increases in solid stress with EGL thickness are comparable,
as too are the relative decreases in stress under redistribution. (Of course, the absolute
values are different between the two models, which is unsurprising given that in the
Sharan & Popel (2001) model, even the cell-depleted layer has a viscosity greater
than that of pure plasma, to account for the occasional intrusions of red blood cells.)

Finally, we are also able to consider the net flux of fluid into the EGL, as previously
investigated by Wei et al. (2003). In figure 6, we plot this flux for both a redistributed
EGL (a) and a non-redistributed EGL (b). At higher permeabilities, there is evidently
marginally more net flux into a redistributed EGL than into a non-redistributed
EGL. We see that the flux into the EGL decreases as its permeability decreases, as
would reasonably be expected, although this is observed to occur less rapidly for a
redistributed EGL.

6. Conclusions
In this study, we have used a biphasic mixture theory model to investigate the

impact that redistribution of the EGL to the regions between the cell nuclei has upon
the shear stresses experienced by a microvessel’s endothelium. Furthermore, we have
conducted these simulations in geometries that we feel better reflect vessel physiology
than those used in earlier related modelling studies. Such a redistribution is believed
to play an important role in protecting the endothelial cells that line the vessel from
damaging levels of fluid shear stress (Yao et al. 2007). At the same time, however,
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FIGURE 6. Volume flux through the interface divided by the total inlet volume flux against
λ for EGL thicknesses of tmin= 0.25, 0.5,1 and 1.5 for (a) a redistributed EGL and (b) a
non-redistributed EGL.

the EGL is believed to play a role in transferring mechanical stresses from the flow
in the vessel lumen. Consequently, it is believed that much of the solid stress is carried
through the solid phase of the EGL, rather than its fluid phase (Weinbaum et al. 2007).
In addition, we also considered a two-layer viscosity model to investigate the effect of
red blood cells in the lumen on this solid stress. Under this model, we found similar
trends in stress response to EGL redistribution and thickness to those predicted by the
single-layer model.

Our computations have provided some quantitative insights into the influence of the
EGL on fluid shear stresses in a physiologically realistic setting, where experimental
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measurements are highly challenging. At one end of the physiological range, for
minimum EGL thickness (at the peaks of the cell nuclei), 1.5 µm, we observe that
redistribution of the EGL can lead to a 46 % reduction in fluid shear stress. However,
as the EGL becomes thinner, its redistribution makes less impact upon the surface
shear stresses. For example, when tmin = 0.5 µm, redistribution produces only a 26 %
reduction in fluid shear stress, and almost no reduction at all when tmin = 0.25 µm.
We see that the magnitude of the fluid shear stress on the endothelium increases as
the EGL becomes thinner. We also note the degree to which this stress reduction is
a function of the shape of the redistributed EGL.

Similarly, EGL redistribution leads to a reduction in the elastic shear stresses exerted
upon the endothelium, although to a lesser extent than in the fluid phase. Moreover,
these elastic stresses reduce in magnitude as the EGL becomes thinner, perhaps due
to a decreased volume of solid phase that is exposed to the flow forcing. Furthermore,
the elastic stresses are much larger (by three orders of magnitude) than the fluid shear
stresses in this very-low-permeability environment, which seems to add some weight
to the idea that the bulk of mechanical stress is carried through the solid phase of the
EGL, rather than its fluid phase.

Perhaps unexpectedly, a non-redistributed EGL is seen to lead to higher total
shear stresses (i.e. fluid stresses plus elastic stresses) than in a vessel where no EGL
is present (and where there is only fluid shear stress). The EGL itself consists of
a network of membrane-bound proteins, and so in practice the form of the stress
transduction through the solid phase of the EGL is likely to be a function of the
EGL’s complex structural geometry. For instance, cytoskeletal reorganisation has
been shown to depend on an intact EGL, and this is believed to be caused by an
integrated torque being transmitted through the EGL to a cell’s dense peripheral
actin band (DPAB) (Thi et al. 2004). Therefore, it would seem from these findings
that the redistributed EGL fulfils its protective role by converting fluid shear stresses
into stresses in the solid matrix rather than by eliminating stress per se, and these
solid stresses can in turn remodel the cells so that they are aligned with the flow
direction. Redistribution of the EGL can lead to total shear stresses lower than those
experienced by these bare vessels. Here, the elastic shear stresses dominate over the
contribution from the fluid shear stresses. However, as the minimum EGL thickness
tmin becomes smaller, the thickness of the layer between cell nuclei (as measured by
α0) must become greater for this to be the case. A summary of the impact of EGL
redistribution for the different cases considered is given in tables 1–3.

We also observe the appearance of regions of negative fluid shear stress immediately
upstream and downstream of the cell nuclei. This phenomenon has been noted in
previous two-dimensional models of EGL-lined microvessels, and has been shown
to be associated with flow eddies (Wei et al. 2003; Sumets et al. 2015). Such
regions of recirculating flow have the ability to increase the residence time of blood
components, and therefore have consequences for microvascular health. We observed
that redistribution of the EGL was able to suppress these negative fluid shear stress
regions for thicker layers (tmin = 1.5 µm), although not for the thinner EGLs.

The heterogeneous nature of the EGL (and difficulty in measuring its thickness)
has been highlighted in experiments conducted by Ebong et al. (2011), using rapid
freezing/freeze substitution transmission electron microscopy (RF/FS TEM), where the
vitrified water surrounding the cells is replaced by acetone through freeze substitution
to better preserve the EGL. This level of structural complexity (ultrastructure) is of
course lost under a volume-averaged biphasic mixture theory representation. On the
other hand, it is not really computationally feasible to conduct explicit simulations of
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the entire EGL lining in a given microvessel. However, it may be possible to derive a
more representative non-isotropic continuum-level description of the EGL by applying
homogenisation theory to a computationally manageable portion of the EGL, and this
is an avenue that we intend to pursue in future work. Doing so may allow us to make
more refined predictions of the integrated forces and torques transmitted through the
EGL and into the actin cortical skeleton, as per Weinbaum et al. (2003). Moreover, it
could be valuable to examine effects such as leukocyte microvillus penetration into the
EGL, which is implicated in leukocyte capture (Zhao et al. 2001). Developments in
experimental methods continue to elucidate the EGL’s ultrastructure and biochemical
organisation (see Tarbell et al. (2014) for a more complete review of recent advances
in this area), and these will be crucial to the development of any future physiologically
faithful EGL models. In a similar vein, in vivo confocal microscope data of an entire
vessel endothelium, where both the cell membrane and cell nuclei can be extracted
in postprocessing, would remove the need for the type of endothelial reconstruction
undertaken here.

It should be noted that in this study we have not considered transmural plasma
flux through the interendothelium clefts. The small size of these clefts, which are
O(0.01) µm in width (Clough & Michel 1998), makes it unlikely that their fluxes
could be modelled explicitly within a macroscopic length of vessel. Here, a multiscale
approach might instead prove fruitful. One possibility might be to conduct the type of
homogenisation discussed above, but using two small length scales, the smallest scale
being comparable with the EGL’s brush microstructure, and the second small scale
being based upon the size of an endothelial cell. Where appropriate, interendothelial
flux conditions could be applied. As discussed in the introduction, this could prove
useful for examining the EGL’s role in aggregating LDLs onto the endothelium. This
has previously been modelled in idealised vessel geometries (Vincent et al. 2009,
2010), and is considered of importance due to the associations with conditions such
as atherogenesis.

In situations where the EGL becomes significantly deformed (say due to the passage
of white blood cells), it may be necessary to consider finite-strain elastic deformations
of the glycocalyx. Here, the immersed boundary method may prove useful (Peskin
1972) (and also possibly for solving the unit cell problem for flow around individual
EGL brushes, required as part of homogenisation). The deformability of red blood
cells themselves has also been shown to be important to events such as the pop out
phenomenon (Secomb et al. 2001), whereby red blood cells that initially penetrate
into the EGL when the flow is slow can deform and leave the EGL when flow
speeds increase. Although we have used a two-layer viscosity model in this study
to consider the aggregated effect of red blood cells confined to a core region of the
lumen, incorporation of the possibility for pop out would require explicit treatment
of individual nonlinearly elastic cells. It would also of course be valuable to be able
to explicitly simulate the transport of a population of red blood cells through the
EGL-lined vessel. This would provide a test (in the context of an EGL-coated vessel)
of the two-layer viscosity model of Sharan & Popel (2001), where the outer viscosity
accounts for occasional intrusion of red blood cells into the cell-depleted layer. One
way to achieve this is through the moving particle semi-implicit (MPS) method, which
can be used to explicitly model red blood cells in the lumen (Gambaruto 2015). As is
demonstrated by the two-layer viscosity model, the decoupling of the EGL from the
lumen allows more sophisticated models to be used for the lumen without drastically
increasing the overall computational cost of the simulations.

It is worth noting that there are several physical mechanisms other than EGL
elasticity that are believed to play a role in the EGL restoring to its original
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configuration after being deformed. For example, differences in the concentrations
of the plasma proteins in the EGL and lumen fluids can generate oncotic pressures,
which are capable of restoring the EGL back to an equilibrium configuration following
a disturbance to its shape (say from a passing cell) (Secomb et al. 1998). Moreover,
the charged nature of the fluid that hydrates the EGL is believed to be capable of
generating an electrostatic restoring force (Damiano & Stace 2005). As such, these
effects should be included when modelling an EGL undergoing a dynamic response
to some macroscopic event.
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Appendix A. Boundary element scheme
For the purposes of numerically solving the governing boundary integral equations,

a planform representation of the basal surface of the microvessel was decomposed into
a mesh of irregular triangular elements in Matlab, using the mesh2d routine (Engwirda
2009). This triangular mesh was then projected onto the elevated endothelium surface,
as well as the EGL–lumen interface.

We assume that the flow quantities are constant on each of the N triangular elements
within the surface meshes (i.e. a constant basis function), meaning that the boundary
integral equations for coupled Stokes–Brinkman flows (2.1), (2.3), (2.7)–(2.11) can be
expressed in the following discretised form:

u(m)j =−
1

4π

N∑
l=1

f (l)i S(ml)
ij +

1
4π

N∑
l=1

u(l)i T (ml)
ijk nk, (A 1a)

S(ml)
ij =

∫
E(l)

Sij(x− x(m)0 ) dS(x), T (ml)
ijk =

∫
E(l)

Tijk(x− x(m)0 ) dS(x) (A 1b,c)

(m= 1, . . . ,N), where E(l) represents the surface of the lth triangular element, defined
by vertices x(l)1 , x(l)2 and x(l)3 , and Sij denotes either the Stokes flow Stokeslet, S(1)ij ,
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or the Brinkman flow Stokeslet, S(2)ij , as appropriate (similarly for Tijk). Here, x(m)0 is
the collocation point on the mth element, and u(m) and f (l) are the flow velocities and
tractions on the mth and lth elements respectively.

Similarly, the boundary integral representation of pressure (3.9) can be discretised
as

p(m) =
N∑

l=1

q(l)G(ml) −
N∑

l=1

p(l)Q(ml), (A 2a)

G(ml) =
∫

E(l)
G(x− x(m)0 ) dS(x), Q(ml) =

∫
E(l)
∇G(x− x(m)0 ) · n dS(x), (A 2b,c)

where q=∇p · n.
Finally, the boundary integral representation for the asymptotic form of the solid

phase can be expressed in a similar form as

(us)
(m)
j =

1
8π(1− ν)

(
−

N∑
l=1

h(l)i H(ml)
ij +

N∑
l=1

(us)
(l)
i K(ml)

ijk nk

)

− 1− 2ν
8π(1− ν)φf

N∑
l=1

q(l)L(ml)
j +

1
4πφf

N∑
l=1

p(l)M(ml)
jk nk, (A 3a)

H(ml)
ij =

∫
E(l)

Hij(x− x(m)0 ) dS(x), K(ml)
ijk =

∫
E(l)

Kijk(x− x(m)0 ) dS(x), (A 3b,c)

L(ml)
ij =

∫
E(l)

(x− x(m)0 )j

r
dS(x), M(ml)

ijk =
∫

E(l)

δjk

r
+ (x− x(m)0 )j(x− x(m)0 )k

r3
dS(x),

(A 3d,e)

where Hij and Kijk denote the Green’s functions for Navier’s equation (see Sumets
et al. 2015).

It proves convenient to perform the necessary integrations in a barycentric
coordinate system (ξ, η), defined on each element by (Pozrikidis 2002)

y(m) = y(m)1 (1− ξ − η)+ y(m)2 ξ + y(m)3 η (A 4)

(m= 1, . . . ,N), where y(m)j = x(m)j − x0 ( j= 1, . . . , 3). Hence, for example,∫
E(l)

Sij(x− x(m)0 )dS (x)= J
∫ 1

0

∫ 1−ξ

0
Sij(ξ , η) dξ dη, (A 5)

where J is the Jacobian for the barycentric transformation. For numerical integration
when the collocation point lies on the element of integration, we transform from the
barycentric coordinate system to a polar coordinate system (Pozrikidis 2002),

ξ = ρ cos θ, η= ρ sin θ. (A 6a,b)

Consequently,

J
∫ 1

0

∫ 1−ξ

0
Sij(ξ , η)dξ dη= J

∫ π/2

0

∫ (sin θ+cos θ)−1

0
Sij(ρ, θ)ρdρ dθ, (A 7)
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which is advantageous, since the Jacobian ρ now cancels the 1/ρ singular behaviour
in Sij, hence regularising the integral, and allowing standard quadrature methods to
be applied. The double-layer potentials (i.e. those involving Tijk) are only defined
in a Cauchy principal value, and hence formally have a non-regularisable singularity.
However, under the assumption of a constant basis and flat elements, where normals
are perpendicular to x–x0 when both x and x0 lie on the same element, their
contribution is exactly zero.

From (A 1), we hence obtain the linear system

Ax= b. (A 8)

Here, x is a vector that contains the unknown velocities and tractions on the
discretised endothelium and lumen–EGL interface, and b is a vector of prescribed
tractions and velocities on these surfaces (multiplied by appropriate coefficients Sij,
Tijk). Similarly, (A 2) yields the linear system

By= c, (A 9)

where y and c are respectively vectors of unknown and known pressures, and pressure
fluxes, q, on the discretised surfaces and interfaces.

Once the pressures have been calculated, the slip velocities are calculated using the
boundary integral representation

∇p(x0) · t(x0)= 1
2π
−
∫

S

∇p(x) · n(x)
(x− x0) · t(x0)

r3
dS(x)

− 1
2π
=
∫

S

p(x)
(

t(x0) · n(x)
r3

− 3
[(x− x0) · t(x0)][(x− x0) · n(x)]

r5

)
dS(x),

(A 10)

where =
∫

denotes a Hadamard finite part integral. For the flat triangular elements
used here, the Hadamard finite part integral evaluates to zero due to the x–x0 being
tangential to the normal vector for singular integrals. The Cauchy principal value
integral is evaluated using the quadrature given by Guiggiani & Gigante (1990).

The equations for the solid phase elasticity (A 3) also form a similar linear system,

Cz= d, (A 11)

where z is the vector of unknown solid displacements and tractions, and d is the
vector of known solid displacements and tractions along with the known pressures and
pressure fluxes. The Cauchy principal value integrals present in (A 3) are evaluated in
the same fashion as was done for the slip velocities.

The integrals (A 5) and (A 7) are computed using an h-adaptive quadrature from the
Cubature package (Johnson 2013). This computes all elements of the Green’s tensor
at once, which leads to fast quadrature speeds. These linear systems (A 8), (A 9) and
(A 11) are constructed and solved using the Portable Extensible Toolkit for Scientific
Computation (PETSc) (Balay et al. 1997, 2014a,b). PETSc allows construction of
matrices in parallel across multiple CPU cores (this step is embarrassingly parallel,
and so scales linearly). The matrix for the Brinkman–Stokes coupled solver is stored
in compressed sparse row format to exploit the sparsity resulting from the coupled
system, while the matrices for the Laplacian and linear elasticity solvers are stored in
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a dense format. The linear systems are solved iteratively, and in parallel over multiple
cores, using GMRES with a Jacobi preconditioner.

The Brinkman–Stokes coupled solver was verified by simulating a uniform circular
tube and comparing with the analytic solution given by (4.1). The Laplacian solver
for pressure was verified using a uniform tube with two different constant pressures
prescribed at the entry and exit, and impermeability on the sides of the vessel, which
reproduced the expected linear pressure drop. The linear elasticity solver was similarly
verified using a uniform tube.

In terms of the mesh sizes used for these simulations, the Brinkman–Stokes coupled
simulations were run using a mesh size of 67 000 triangular elements, and their
convergence was checked using simulations with a mesh size of 140 000 triangular
elements. These simulations took approximately 2000 CPU hours and 30 000 CPU
hours each respectively. Low-permeability flow simulations were conducted on meshes
containing 130 000 triangular elements for the lumen and 250 000 for the EGL,
taking approximately 400 CPU hours each. The convergence of these simulations
was checked using a simulation with a mesh size of 510 000 triangular elements
for the lumen and 1 000 000 triangular elements for the EGL, taking approximately
5000 CPU hours each. The solid phase asymptotics simulations were conducted
using a mesh size of 140 000 triangular elements and checked with a mesh size of
250 000 triangular elements. Excluding the time taken to solve the fluid phase, the
low-resolution simulations for the elastic phase took approximately 250 CPU hours
each, while the high-resolution checks took approximately 1000 CPU hours each. The
two-layer Stokes model was solved using a similar mesh size to the Brinkman–Stokes
coupled simulations and then these results were interpolated to be used in mesh sizes
required for the EGL simulations.

Appendix B. Construction of the microvessel endothelium

In order to generate a complete endothelium, we first determined the centroids of
the cells in the confocal microscopy data. For regions of the microvessel where we
did not have biological data, we used a Strauss hard-core Gibbs point particle model
(Baddeley 2010; Baddeley et al. 2013) to generate cell distributions with the same
spatial statistics. This choice of point process model generates spatial distributions that
are characterised by two parameters: a minimum separation distance between points
(the hard-core distance), and an interaction radius, which moderates the degree of
repulsion between points (which consequently have average separations greater than
the hard-core distance).

This point particle model was implemented using the spatstat library (Baddeley &
Turner 2005) within the statistical package R. As spatstat assumes an isotropic point
pattern, whereas endothelial cells are elongated in nature (hence have centroids that
are spatially non-isotropic), we performed this operation on a domain scaled by the
mean aspect ratio of the cells, defined to be the major axis over the minor axes, in
the confocal microscope data, which we measured to be 1.80. Using a combination
of goodness-of-fit experimentation and profile pseudolikelihood (Baddeley 2010)
on the confocal microscope data, we found the appropriate hard-core distance and
interaction radius to be 13.45 µm and 16.5 µm respectively. The remaining required
parameters, such as the density of the points and strength of repulsion in the Strauss
process, were determined automatically in spatstat using the Huang–Ogata one-step
approximation to maximum likelihood. The point particle model was generated using
periodic boundaries, so that points were taken to repeat periodically outside of the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

33
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.337


846 T. C. Lee, D. S. Long and R. J. Clarke

0 5 10 15 20

0 5 10 15 20

5

 0

10

15

20

0

0.2

0.4

0.6

0.8

1.0

r

L(r)

G(r)

(a)

(b)

(c)

FIGURE 7. (a) Cell centroids simulated throughout the entire vessel surface, as computed
using the R spatstat package (Baddeley & Turner 2005) (black circles), also including
the original cell centroids obtained from the biological data (red dots). (b,c) Monte Carlo
envelopes for 99 simulations of the fitted model were generated to test the goodness of fit
of the point particle model. The shaded regions show (b) the nearest-neighbour distance
distribution function and (c) the L-function. In both cases, the simulated centroids (black
lines) lie within the envelopes, hence offering statistical support for the appropriateness of
the spatial distribution of the simulated centroids. The red lines show the mean value for
each envelope.
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FIGURE 8. (a) A bubble-growing algorithm is used to construct cell basal surfaces
(red lines) from centroids taken from the biological data. Also overlaid are the cell–cell
junctions obtained from the data. (b) The normalised cell height profile (solid line) as a
function of an arclength parameter s obtained by fitting a 10th-order polynomial to scaled
digitised biological data provided by Barbee et al. (1994) (black dots). When used to
create the topology of endothelial cells, ranges of heights and widths are informed by
biological data.

simulation window. The height (y-axis) of this window of simulation was chosen to
be the circumference of the ellipse fitted to the biological data (187.6 µm). In order
to remove any effects from the periodicity in the longitudinal axis, the simulation
was performed over a distance greater than required, and then truncated. An example
of a point pattern obtained using this method is shown in figure 7(a). It should be
noted that the original centroids (red dots) are retained in the synthesised points.

This model’s goodness of fit was tested by creating Monte Carlo envelopes of
the nearest-neighbour distance distribution function and L-function (a measure
of interaction based on pairwise distance) for 99 simulations of the fitted model
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FIGURE 9. (a) Cell height data and (b,c) characteristic shape profiles taken through
two orthogonal sections of an unsheared bovine aortic endothelial cell. The heights were
measured using atomic force microscopy. Figure reproduced from Barbee et al. (1994)
(with permission). The figure illustrates the relatively localised elevated topology about
the cell nucleus and also the profile used to create the cell nucleus topology.

(Illian et al. 2008; Baddeley 2010). As shown in figure 7(b,c), the values of these
functions from the original centroid data (black lines) are found to lie within these
envelopes (shaded regions), which we take as a basis for accepting the point particle
model as a reasonable extension to the biological cell centroid data.

Having synthesised cell centroids across the extent of the entire basal surface
of the vessel, we next need to reconstruct the topology of the endothelial cells.
The basal surfaces of these cell nuclei were generated using a bubble-growing
algorithm (Holcombe 2011), whereby ellipses with mean aspect ratios matching the
biological data for sheared endothelial cells were expanded from their centroids until
contact was made with a neighbouring nucleus. This produces the type of localised
elevated topology about the cell nucleus observed in experiments (see figure 9). In
figure 8(a), we show cell nuclei generated using this method for the biologically
obtained (i.e. non-synthesised) centroids (red lines), and observe that these appear
to be a reasonable fit within the biological cell–cell junctions (black lines). The
topologies of the endothelial cell nuclei above these basal surfaces are modelled
upon digitised height profiles taken from Barbee et al. (1994) (figure 9), which we
fitted to a 10th degree polynomial using a least squares routine in Matlab. The first
and second derivatives of the polynomial were taken to be zero at the endpoints,
in order to ensure smooth connectivity. An example resulting profile can be seen
in figure 8(b). Here, s measures the Euclidean distance in the basal surface from
the centroid of the cell, i.e. s = 0 at the centroid of the cell, and s = 1 at the cell
edge. The maximum height for each cell was sampled from a normal distribution
with a mean of 1.77 µm and a standard deviation of 0.52 µm, informed by values
reported for sheared endothelial cells by Barbee et al. (1994) (the normal distribution
was truncated to within one standard deviation). An example endothelium topology
generated using this process is shown in figure 2(e).
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