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A set A of positive integers is a Bh-set if all sums of the form a1 + · · · + ah, with

a1, . . . , ah ∈ A and a1 � · · · � ah, are distinct. We provide asymptotic bounds for the number

of Bh-sets of a given cardinality contained in the interval [n] = {1, . . . , n}. As a consequence

of our results, we address a problem of Cameron and Erdős (1990) in the context of Bh-sets.

We also use these results to estimate the maximum size of a Bh-set contained in a typical

(random) subset of [n] with a given cardinality.
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1. Introduction

We deal with a natural extension of the concept of Sidon sets. For a positive integer h � 2,

a set A of integers is called a Bh-set if all sums of the form a1 + · · · + ah, where ai ∈ A

and a1 � · · · � ah, are distinct. We obtain Sidon sets letting h = 2. A central classical

problem on Bh-sets is the determination of the maximum size Fh(n) of a Bh-set contained

in [n] := {1, . . . , n}. Results by Chowla, Erdős, Singer and Turán [5, 9, 10, 30] from the

1940s yield that F2(n) = (1 + o(1))
√
n, where o(1) is a function that tends to 0 as n → ∞.

In 1962, Bose and Chowla [2] showed that Fh(n) � (1 + o(1))n1/h for h � 3. On the other

hand, an easy argument gives that for every h � 3,

Fh(n) � (h · h! · n)1/h � h2n1/h. (1.1)

Successively better bounds of the form Fh(n) � chn
1/h were given in [4, 6, 8, 15, 21, 22, 24,

29]. Currently, the best known upper bound on the constant ch is given by Green [11],

who proved that

c3 < 1.519, c4 < 1.627, and ch � 1

2e

(
h +

(
3

2
+ o(1)

)
log h

)
,

where o(1) → 0 as h → ∞. The interested reader is referred to the classical monograph

by Halberstam and Roth [12] and to a recent survey by O’Bryant [25] and the references

therein.

We study two problems related to the classical question of estimating Fh(n). The first one

is a natural generalization, to Bh-sets, of the problem of estimating the number of Sidon sets

contained in [n], proposed by Cameron and Erdős [3]. Second, we investigate the maximum

size of a Bh-set contained in a random subset of [n], in the spirit of [18, 19, 23]. This second

problem belongs to the study of extremal properties of random subsets contained in [n]. A

well-known result was given in [20] which provided a version of Roth’s theorem [26] on 3-

term arithmetic progressions for random subsets of [n]. Recently, Conlon and Gowers [7]

and Schacht [28] proved the far reaching generalizations including a version of Szemerédi’s

theorem [31] on k-term arithmetic progressions for random subsets of [n]. We present

and discuss our results in detail in Section 2.

Our notation is standard. We write a � b as shorthand for the statement a/b → 0 as

n → ∞. We omit floor 	 
 and ceiling � � symbols when they are not essential. We are

mostly interested in large n; in our statements and inequalities we often tacitly assume

that n is larger than a suitably large constant.

2. The main results

Our main results are presented in two separate sections. We first discuss enumeration

results and then we move on to their probabilistic consequences.

2.1. A generalization of a problem of Cameron and Erdős

Let Zh
n be the family of Bh-sets contained in [n]. In 1990, Cameron and Erdős [3] proposed

the problem of estimating |Z2
n |, that is, the number of Sidon sets contained in [n]. We

investigate the problem of estimating |Zh
n | for arbitrary h � 2. Recalling that Fh(n) is the
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maximum size of a Bh-set contained in [n], one trivially has

2Fh(n) � |Zh
n | �

Fh(n)∑
i=0

(
n

i

)
� (1 + Fh(n))

(
n

Fh(n)

)
.

Since (1 + o(1))n1/h � Fh(n) � chn
1/h for some constant ch, we have

2(1+o(1))n1/h � |Zh
n | � nc

′
hn

1/h

, (2.1)

for some constant c′
h. We improve the upper bound on |Zh

n | in (2.1) as follows.

Theorem 2.1. For every h � 2, we have |Zh
n | � 2Cn1/h

, where C = C(h) is a constant that

depends only on h.

The case h = 2 in Theorem 2.1 was established in [18] and later given another proof

in [27]. Our proof of Theorem 2.1 is based on the solution of a refined version of the

question. Let Zh
n (t) be the family of Bh-sets contained in [n] with t elements. Theorem 2.1

is obtained from the following result, which estimates |Zh
n (t)| for all t � n1/(h+1)(log n)2.

Theorem 2.2. For every h � 2 and any t � n1/(h+1)(log n)2,

|Zh
n (t)| �

(
chn

th

)t

, (2.2)

where ch = e6(2h)2h.

The derivation of Theorem 2.1 from Theorem 2.2 is given in Section 3, and Theorem 2.2

is proved in Section 4.2.

We now turn to lower bounds for |Zh
n (t)|. The bound in (2.4) in Proposition 2.3(ii) below

complements (2.2) in Theorem 2.2. On the other hand, Proposition 2.3(i) shows that for

small t, say, t � n1/(2h−1), the Bh-sets in [n] form a much larger proportion of the total

number
(
n
t

)
of t-element sets (see (2.3)). Note that for large t, namely, t � n1/(h+1)(log n)2,

Theorem 2.2 tells us that this proportion is, very roughly speaking, of the order of(
n

th

)t(
n

t

)−1

�
(
n

th

)t

/

(
n

t

)t

= t−(h−1)t.

Proposition 2.3. The following bounds hold for every h � 2.

(i) For any δ > 0, there exists an ε > 0 such that, for any t � εn1/(2h−1),

|Zh
n (t)| � (1 − δ)t

(
n

t

)
. (2.3)

(ii) There are constants c′
h and ε′ = ε′(h) > 0 such that, for all t � ε′n1/h,

|Zh
n (t)| �

(
c′
hn

th

)t

. (2.4)
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The combination of the lower bounds in Proposition 2.3 and the upper bound of

Theorem 2.2 naturally partitions the range of t into three intervals.

• For t � n1/(2h−1), Proposition 2.3(i) tells us that |Zh
n (t)| is, up to a multiplicative factor

of (1 − o(1))t, equal to the number
(
n
t

)
of all t-element subsets of [n]. In this range,

one might therefore say that Bh-sets are ‘relatively abundant’.

• For t between n1/(2h−1) and n1/(h+1)(log n)2, a trivial though loose upper bound follows

from the monotonicity of |Zh
n (t)|, that is, |Zh

n (t)| � |Zh
n (n1/(h+1)(log n)2)|, which is then

bounded by Theorem 2.2. We note that the lower bound, given by Proposition 2.3(ii),

is quite far from the upper bound. In the final section of this paper we present

Conjecture 7.1, which states that the upper bound should essentially match the lower

bound of Proposition 2.3(ii).

• For t � n1/(h+1)(log n)2, Theorem 2.2 and Proposition 2.3(ii) determine |Zh
n (t)| up to

a multiplicative factor of the form ct. In this range of t, Bh-sets are therefore much

scarcer than in the first range.

2.2. Almost Bh-sets

We now consider a generalization of the notion of a Bh-set. For a set S of integers and

an integer z, let

rS,h(z) = |{(a1, . . . , ah) ∈ Sh : a1 + · · · + ah = z and a1 � · · · � ah}|. (2.5)

Definition 1. A set S is called a Bh[g]-set if rS,h(z) � g for all integers z.

Observe that a Bh[1]-set is simply a Bh-set and hence this definition extends the notion

of Bh-sets. Let Fh,g(n) denote the maximum size of a Bh[g]-set contained in [n]. It is not

hard to see that

(1 + o(1))n1/h � Fh(n) � Fh,g(n) � (gh · h!)1/hn1/h. (2.6)

Our final result in this section gives a lower bound for the cardinality of Zh,g
n (t), the family

of t-element Bh[g]-sets contained in [n].

Theorem 2.4. Fix an integer h � 2 and a function g = g(n). For every fixed δ > 0 and

integer 1 � t � (n1−h!/g)1/h, we have

(1 − δ)t
(
n

t

)
� |Zh,g

n (t)| �
(
n

t

)
. (2.7)

Notice that the bounds of Theorem 2.4 and Proposition 2.3(i) are the same, but the

ranges of t for which each applies differ drastically. Indeed, for g � h!, one can take t

quite close to n1/h in Theorem 2.4, and of course this is essentially best possible, as can

be seen from (2.6). In effect, unlike in the case of Bh-sets, apart from a very narrow range

of t, Bh[g]-sets with t-elements are either ‘relatively abundant’ or simply do not exist.

The proof of Theorem 2.4 is given in Section 6.
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2.3. Probabilistic results

Let [n]m be an m-element subset of [n] chosen uniformly at random. We are interested in

estimating the cardinality of the largest Bh-sets contained in [n]m. Our bounds for the size

of the families Zh
n (t) presented in Section 2.1 will be useful in investigating this problem.

It will be convenient to have the following definition.

Definition 2. For an integer h � 2 and a set R, let Fh(R) denote the maximum size of a

Bh-set contained in R.

The asymptotic behaviour of the random variable F2([n]m) was investigated in [18, 19].

Our goal here is to study Fh([n]m) for arbitrary h � 3. A standard deletion argument

implies that, with probability tending to 1 as n → ∞, or asymptotically almost surely (a.a.s.

for short), we have

Fh([n]m) = (1 + o(1))m if m = m(n) � n1/(2h−1),

where o(1) denotes some function that tends to 0 as n → ∞. On the other hand, if we

apply the results of Schacht [28] and Conlon and Gowers [7] to Bh-sets, we have that

a.a.s.

Fh([n]m) = o(m) if m = m(n) � n1/(2h−1).

Thus n1/(2h−1) is the threshold for the property that Fh([n]m) = o(m).

The following abridged version of our results yields quite precise information about

Fh([n]m) for a wide range of m and non-trivial but looser bounds for n1/(2h−1) � m �
nh/(h+1); see also Figure 1.

Theorem 2.5. Fix h � 3 and let 0 � a � 1 be a fixed constant. Suppose m = m(n) = na+o(1).

Then a.a.s.

nb1+o(1) � Fh([n]m) � nb2+o(1), (2.8)

where

b1(a) =

⎧⎪⎪⎨⎪⎪⎩
a for 0 � a � 1/(2h − 1),

1/(2h − 1) for 1/(2h − 1) < a � h/(2h − 1),

a/h for h/(2h − 1) < a � 1,

(2.9)

and

b2(a) =

⎧⎪⎪⎨⎪⎪⎩
a for 0 � a � 1/(h + 1),

1/(h + 1) for 1/(h + 1) < a � h/(h + 1),

a/h for h/(h + 1) < a � 1.

(2.10)

We prove the upper bounds in Theorem 2.5 (that is, (2.8) and (2.10)) in Section 3.

The lower bounds (that is, (2.8) and (2.9)) are proved in Section 5. Theorem 2.5 determ-

ines b = b(a) for which Fh([n]m) = nb+o(1) when m = na+o(1) whenever a � 1/(2h − 1) or
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a

b2

b1

11
2h−1

1
h+1

h
2h−1

h
h+1

1/h

1/(2h − 1)

1/(h + 1)

Figure 1. The graphs of b1 = b1(a) and b2 = b2(a) from the statement of Theorem 2.5.

a � h/(h + 1). An interesting open question is the existence and determination of b = b(a)

such that Fh([n]m) = nb+o(1) for 1/(2h − 1) � a � h/(h + 1); see Conjecture 7.2 in Section 7.

As in the previous section, we now move on to consider Bh[g]-sets.

Definition 3. For integers h � 2 and g � 1 and a set R, let Fh,g(R) denote the maximum

size of a Bh[g]-set contained in R.

As a natural extension of Theorem 2.5, we investigate the random variable Fh,g([n]m).

Trivially, we have

Fh,g([n]m) � min{m, Fh,g(n)}. (2.11)

Surprisingly, as our next result shows, one can obtain a matching lower bound for this

trivial upper bound, up to an no(1) factor, as long as one allows g to grow with n, however

slowly.

Theorem 2.6. Let h � 2 be an integer and suppose g(n) → ∞ as n → ∞. Let 0 � a � 1 be

a fixed constant and suppose m = m(n) = na+o(1). Then a.a.s.

Fh,g([n]m) = nb+o(1), (2.12)

where

b(a) =

{
a for 0 � a � 1/h,

1/h for 1/h � a � 1.
(2.13)

The upper bound on Fh,g([n]m) contained in Theorem 2.6 follows from (2.11). The lower

bound follows from the following more precise result, which is proved in Section 6.

Theorem 2.7. Fix an integer h � 2 and a function g = g(n). For every fixed ε > 0 and 1 �
m � (ε/3h)(n1−h!/g)1/h, we a.a.s. have Fh,g([n]m) � (1 − ε)m.

We remark that Theorem 2.7 above is closely related to Theorem 2.4 in the previous

section. Indeed, we shall derive the latter from the former at the end of Section 6.
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3. Proof of Theorem 2.1 and proof of the upper bounds in Theorem 2.5

We first derive Theorem 2.1 from Theorem 2.2.

Proof of Theorem 2.1. The total number of subsets of [n] having fewer than n1/(h+1)(log n)2

elements is 2o(n1/h). Therefore, we may focus on Bh-sets of cardinality at least n1/(h+1)(log n)2.

In particular, by Theorem 2.2,

|Zh
n | � 2o(n1/h) +

∑
t�n1/(h+1)(log n)2

(
chn

th

)t

. (3.1)

Since the function t �→ (chn/t
h)t is maximized when t = (chn)1/h/e, it follows from (3.1)

that, for an appropriate choice of the constant C = C(h),

|Zh
n | � 2o(n1/h) + n ·

(
chn

chn/eh

)(chn)1/h/e

� 2o(n1/h) + n · exp

(
h(chn)1/h

e

)
� 2Cn1/h

.

We now turn to the proof of the upper bound on Fh([n]m) contained in Theorem 2.5.

We start with the following easy remark.

Remark 4. At times, it will be convenient to work with the binomial random set [n]p,

which is a random subset of [n], with each element of [n] included independently with

probability p. The models [n]m and [n]p, with p = m/n, are fairly similar. If some property

holds for [n]p with probability 1 − o(1/
√
pn) then the same property holds a.a.s. for [n]m

(this follows from Pittel’s inequality; see [14, p. 17]).

The following theorem is a direct corollary of Theorem 2.2.

Theorem 3.1. For every p � n−1/(h+1)(log n)2h, we have that a.a.s.

Fh([n]p) � O(h2(pn)1/h).

Moreover, the probability that the inequality above fails is at most exp(−c(pn)1/h) for some

constant c = c(h) > 0.

Proof. The probability that Fh([n]p) � t is the same as the probability that there exists a

Bh-set of cardinality t in [n]p. Hence, the union bound yields

P[Fh([n]p) � t] � pt|Zh
n (t)|.

Let t = (2chnp)1/h, where ch = e6(2h)2h is the constant given in Theorem 2.2. By the

assumption p � n−1/(h+1)(log n)2h, we have that

t � (2chn
h/(h+1)(log n)2h)1/h = (2ch)

1/hn1/(h+1)(log n)2

� n1/(h+1)(log n)2,
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which satisfies the assumption of Theorem 2.2. Theorem 2.2 gives that

P[Fh([n]p) � t] � pt|Zh
n (t)| �

(
pchn

th

)t

=

(
1

2

)t

= exp(−(log 2)(2ch)
1/h(np)1/h),

which completes the proof of Theorem 3.1.

We now prove the upper bound on Fh([n]m) given in Theorem 2.5 (see (2.8) and (2.10)).

Let us first recall that Remark 4 links the binomial random set [n]p, appearing in

Theorem 3.1, to the random set [n]m that appears in Theorem 2.5. In what follows, we

establish (2.8) and (2.10) in Theorem 2.5 using Theorem 3.1. We analyse three ranges of a

separately.

(i) 0 � a � 1/(h + 1): From the trivial bound Fh([n]m) � m, we see that we may take

b2(a) = a.

(ii) 1/(h + 1) < a � h/(h + 1): It is clear that, in probability, Fh([n]m) is non-decreasing

in m. Hence, b2(a) may be taken to be non-decreasing in a as well. Since, as we

show next, we may take b2(h/(h + 1)) = 1/(h + 1), this monotonicity lets us take

b2(a) = 1/(h + 1) in this range of a.

(iii) h/(h + 1) < a � 1: In this range, b2(a) = a/h follows from Theorem 3.1. Indeed, if

p � n−1/(h+1)(log n)2h, then with probability at least

1 − exp(−c(pn)1/h) � 1 − o

(
1

√
pn

)
we have Fh([n]p) � C(pn)1/h for some constant C > 0. Remark 4 implies that, a.a.s.,

Fh([n]m) � Cm1/h for all m � nh/(h+1)(log n)2h, giving that we may take b2(a) = a/h for

a > h/(h + 1), as claimed.

4. Upper bounds for the number of Bh-sets of a given cardinality

We prove Theorem 2.2 in this section. For the case where h = 2, Theorem 2.2 was shown

in [18] (see Theorem 2.1 of [18]). Hence, we assume that h � 3 in this section. We follow

a strategy that may be described very roughly as follows. Suppose a Bh-set S ⊂ [n] of

cardinality s is given and one would like to extend it to a larger Bh-set of cardinality s′.

We shall show that if s is not too small, then the number of such extensions is very

small. To prove Theorem 2.2, we shall apply this fact iteratively, considering a sequence

of cardinalities s < s′ < s′′ < · · · .

4.1. Bounding the number of extensions of Bh-sets

We use a graph-based approach to bounding the number of extensions of a large Bh-set

to a larger Bh-set. This approach is inspired by the work of Kleitman and Winston [17]

and Kleitman and Wilson [16]. We start with the following simple observation. If two

distinct elements x, y ∈ [n] \ S satisfy

x + a1 + · · · + ah−1 = y + b1 + · · · + bh−1

for some {a1, . . . , ah−1}, {b1, . . . , bh−1} ∈
(

S

h − 1

)
, (4.1)

then S ∪ {x, y} is clearly not a Bh-set. This motivates our next definition.
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Definition 5. The collision graph CGS is a graph on the vertex set [n] \ S whose edges

are all pairs of distinct elements x, y ∈ [n] \ S that satisfy (4.1).

Clearly, by the construction of CGS , we have that if I ⊆ [n] \ S is such that I ∪ S is a

Bh-set, then I is an independent set in CGS .

One of our main tools is the following lemma, implicit in the work of Kleitman and

Winston [17], which provides an upper bound on the number of independent sets in

graphs that have many edges in each sufficiently large vertex subset (see (4.3)). Lemma 4.1

in the version presented below is stated and proved in [18, 19], where it is used to bound

the number of Sidon subsets of [n]. For other applications of this lemma to problems in

additive combinatorics, we refer the reader to [1].

Lemma 4.1. Let δ and β > 0 and q ∈ N be numbers satisfying

eβqδ > 1. (4.2)

Suppose that G = (V , E) is a graph satisfying

eG(A) � β |A|2 for all A ⊂ V with |A| � δ |V |. (4.3)

Then, for every m � 1, there are at most(
|V |
q

)(
δ|V |
m

)
(4.4)

independent sets in G of size q + m.

Remark 6. When we apply Lemma 4.1 to CGS , we shall take m � q to take advantage of

the upper bound (4.4). In condition (4.3), there is a trade-off between β (larger is better)

and δ (smaller is better) which needs to be optimized.

We wish to show that CGS satisfies (4.3) with good parameters β and δ. To that end,

we shall make use of another auxiliary graph, which we now define.

Definition 7. Let C̃GS be a multigraph version of CGS , where the multiplicity of

a pair {x, y} of distinct x, y ∈ [n] \ S is given by the number of pairs ({a1, . . . , ah−1},
{b1, . . . , bh−1}) ∈

(
S

h−1

)2
that satisfy (4.1).

Lemma 4.2. For every Bh-set S with s � h elements and A ⊂ [n] \ S with |A| � h2hn/sh−1,

we have

e
C̃GS

(A) � s2h−2

h2hn
|A|2, (4.5)

where the edges in C̃GS are counted with multiplicity.

The proof of Lemma 4.2 will be given in Section 4.3. In view of Lemma 4.2, if the

maximal multiplicity of an edge in C̃GS is at most r, then the graph CGS satisfies the
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conditions of Lemma 4.1 with V = [n], β = s2h−2/(h2hrn) and δ = h2h/sh−1. Consequently,

we are interested in bounding the multiplicity of the edges of C̃GS .

Proposition 4.3. For every Bh-set S of cardinality s, the maximal multiplicity of an edge

in C̃GS does not exceed sh−2.

We postpone the proof of Proposition 4.3 to Section 4.4. The following is an immediate

corollary of Lemma 4.2 and Proposition 4.3.

Corollary 4.4. If S is a Bh-set with s elements, then for any A ⊂ [n]\S with |A| � h2hn/sh−1,

eCGS
(A) � sh

h2hn
|A|2.

4.2. Proof of Theorem 2.2

The case h = 2 of Theorem 2.2 is proved in [18], and we therefore restrict ourselves

to h � 3 here. We shall in fact prove the following: for every h � 3 and

t � h2n1/(h+1)(log n)1+1/(h+1), (4.6)

we have that

|Zh
n (t)| �

(
22he6h2hn

th

)t

.

In view of (1.1), we have Zh
n (t) = 0 for t > h2n1/h. Hence we assume

t � h2n1/h, (4.7)

that is, h2n1/(h+1)(log n)1+1/(h+1) � t � h2n1/h. Let

s0 = h2(n log n)1/(h+1) (4.8)

and let K be the largest integer satisfying t2−K � 2s0. We define three sequences (sk)0�k�K ,

(qk)0�k�K and (mk)0�k�K as follows. We let

q0 = s0/2 and m0 = t2−K − s0 − q0. (4.9)

For k = 1, . . . , K , we let

sk = t2−K+k−1, (4.10)

qk = q02−hk, (4.11)

mk = sk+1 − sk − qk. (4.12)

We will bound the number of sequences S0 ⊂ · · · ⊂ SK ⊂ SK+1 of Bh-sets with |SK+1| = t

and |Sk| = sk for all k = 0, . . . , K , from which a bound on |Zh
n (t)| will easily follow. Although

we will only use the trivial bound
(
n
s0

)
for the number of choices for S0, we will then

employ Lemma 4.1 to obtain a non-trivial bound on the number of extensions of Sk to

Sk+1 for all k.
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Let us now estimate the number of extensions of a Bh-set Sk to a larger Bh-set Sk+1 for

some k = 0, . . . , K . By Corollary 4.4, the graph CGSk is such that for all A ⊂ [n] \ Sk with

|A| � h2hn/sh−1
k ,

eCGSk
(A) � βk|A|2, where βk =

shk
h2hn

.

Let

δk = h2h/sh−1
k � 1/n (4.13)

and observe that

eβkqk = exp

(
shk
h2hn

· q0

2hk

)
(4.10)

� exp

(
(2ks0)h · s0

h2hn · 2hk+1

)
� exp

(
sh+1

0

2h2hn

)
(4.8)

� n
(4.13)

� δ−1
k .

Consequently, CGSk , δk , βk and qk satisfy the conditions of Lemma 4.1. Note that Sk+1 \ Sk
must be an independent set in CGSk with cardinality sk+1 − sk = qk + mk . Therefore, by

Lemma 4.1, the number of extensions of Sk into a Bh-set Sk+1 is at most(
n

qk

)(
δkn

mk

)
. (4.14)

In order to obtain an upper bound of (4.14), we first claim that(
δ0n

m0

)
�

(
δ0n

3s0

)
(4.15)

and (
δkn

mk

)
�

(
δkn

sk

)
(4.16)

for all 1 � k � K . Indeed, inequality (4.15) follows from the fact that m0 = s1 − s0 − q0 �
4s0 − s0 � 3s0 and also 3s0 � δ0n/2. Inequality (4.16) follows from the fact that for all

1 � k � K , mk � sk � δkn/2 as

sk

δk

(4.13)
=

shk
h2h

� shK
h2h

(4.10)
=

(t/2)h

h2h

(4.7)

� n

2h
.

Hence, (
n

q0

)(
δ0n

m0

)
�

(
n

q0

)(
δ0n

3s0

)
�

(
n

q0

)(
n

3s0

)
� nq0n3s0 ,

and for all 1 � k � K(
n

qk

)(
δkn

mk

)
�

(
n

qk

)(
δkn

sk

)
� nqk

(
eδkn

sk

)sk

= nqk
(
eh2hn

shk

)sk

.

Applying (4.14) iteratively implies that

|Zh
n (t)| �

(
n

s0

) K∏
k=0

(
n

qk

)(
δkn

mk

)
� n4s0+

∑K
k=0 qk

K∏
k=1

(
eh2hn

shk

)sk

. (4.17)
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Finally, since

K∑
k=0

qk
(4.11)
= q0

K∑
k=0

2−hk � 2q0
(4.9)
= s0

(4.6),(4.8)

� t

log n

and

K∏
k=1

(
eh2hn

shk

)sk
(4.10)
=

K∏
�=1

(
eh2hn

(t2−�)h

)t2−�

�
[
2h

∑ ∞
�=1 �2−� ·

(
eh2hn

th

)∑ ∞
�=1 2−�]t

=

(
22heh2hn

th

)t

,

Theorem 2.2 follows from (4.17).

4.3. Proof of Lemma 4.2

Let S be a Bh-set with s elements. Let A ⊂ [n] \ S be an arbitrary subset with |A| �
h2hn/sh−1. Consider the auxiliary bipartite graph Γ defined as follows. The vertex classes

of Γ are A and a disjoint copy of [hn]. The edge set of Γ is defined as

E(Γ) ={
(x, u) ∈ A × [hn] : u = x + a1 + · · · + ah−1 for some {a1, . . . , ah−1} ∈

(
S

h − 1

)}
.

Note that, because S is a Bh-set, for fixed x and u, there is at most one solution to

u = x + a1 + · · · + ah−1 with {a1, . . . , ah−1} ∈
(

S
h−1

)
. We will now argue that the multiplicity

of a pair {x, y} ∈
(
A
2

)
in the multigraph C̃GS is the number of paths of length two

connecting x to y in Γ. Indeed, there is a bijection between pairs

({a1, . . . , ah−1}, {b1, . . . , bh−1}) ∈
(

S

h − 1

)2

that satisfy (4.1) and paths xuy in Γ, where

u = x + a1 + · · · + ah−1 = y + b1 + · · · + bh−1.

Consequently, e
C̃GS

(A) is the number of paths of length two in Γ containing two vertices in

the class A. By Jensen’s inequality applied to the convex function f(α) =
(
α
2

)
= α(α − 1)/2,

e
C̃GS

(A) �
∑
u∈[hn]

(
degΓ(u)

2

)
� hn

(
e(Γ)/hn

2

)
.

On the other hand,

e(Γ) =
∑
x∈A

degΓ(x) = |A|
(

s

h − 1

)
�

(
s

h

)h−1

|A|.
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It follows that e(Γ) � hhn, and thus

e
C̃GS

(A) � hn

(
e(Γ)/hn

2

)
� e(Γ)

(
e(Γ) − hn

2hn

)
� e(Γ)2

hn

(
hh − h

2hh

)
� e(Γ)2

3hn
� s2h−2

h2hn
|A|2.

This concludes the proof of Lemma 4.2.

4.4. Proof of Proposition 4.3

Let S be a Bh-set of cardinality s and let x �= y ∈ [n] be arbitrary. By definition, the

multiplicity of {x, y} in C̃GS is the number of pairs of sets {a1, . . . , ah−1}, {b1, . . . , bh−1} ∈(
S

h−1

)
such that

y − x = a1 + · · · + ah−1 − (b1 + · · · + bh−1).

Since x �= y, we clearly have {a1, a2, . . . , ah−1} �= {b1, b2, . . . , bh−1}. Hence, we may assume,

without loss of generality, that ah−1 /∈ {b1, . . . , bh−1}. Let us now bound the number of

possible sets in the following way: first, pick arbitrary values of a1, . . . , ah−2 ∈ S , then find

values (if any exist) ah−1, b1, . . . , bh−1, with ah−1 /∈ {b1, . . . , bh−1}, that satisfy

y − x − a1 − a2 − · · · − ah−2 = ah−1 − (b1 + · · · + bh−1).

We claim that for each fixed sequence a1, . . . , ah−2 ∈ S there is at most one such

completion (up to the order of elements bi) that satisfies the above equality. Indeed,

suppose that we also have a′
h−1, b

′
1, . . . , b

′
h−1 ∈ S such that

a′
h−1 − (b′

1 + · · · + b′
h−1) = ah−1 − (b1 + · · · + bh−1).

Then, since S is a Bh-set, the following is a (multi)set equality:

{ah−1, b
′
1, . . . , b

′
h−1} = {a′

h−1, b1, . . . , bh−1}.

Moreover, since ah−1 /∈ {b1, . . . , bh−1}, we have a′
h−1 = ah−1, which implies that we also

have {b′
1, . . . , b

′
h−1} = {b1, . . . , bh−1}.

In conclusion, fixing any of the sh−2 choices for a1, . . . , ah−2 ∈ S completely determines

both ah−1 and {b1, . . . , bh−1}. The proposition follows.

5. Lower bounds

In this section, we establish the lower bounds in Theorem 2.5 and prove Proposition 2.3.

For conciseness, we shall be somewhat sketchy when dealing with routine arguments.

First, we show that a simple deletion argument (given in Lemma 5.1 below) yields that if

m � n1/(2h−1), then Fh([n]m) = (1 − o(1))m. This immediately implies that in Theorem 2.5,

for 0 � a < 1/(2h − 1), one may take b1(a) = a (see (2.8) and (2.9)). Since F3([n]m) is

non-decreasing in probability with respect to m, for a � 1/(2h − 1), we may take b1(a) =

1/(2h − 1). Moreover, as an easy corollary of Lemma 5.1, we will also derive Proposi-

tion 2.3(i).
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In the second part of this section, following the strategy of [18, 19], for every t = o(n1/h),

we will describe a deterministic construction of a large subfamily of Zh
n (t). The existence

of such a subfamily will immediately imply Proposition 2.3(ii). Moreover, we shall show

that if 1 � m � n, then a.a.s. the set [n]m contains a Bh-set with Ω(m1/h) elements from

the constructed subfamily. This yields that in Theorem 2.5, we may take b1(a) = a/h for

all 0 � a � 1. Note that, in the range 1/(2h − 1) � a � h/(2h − 1), this is superseded by

the bound obtained in the first part, that is, b1(a) = 1/(2h − 1).

Lemma 5.1. If 1 � m = o(n1/(2h−1)), then we a.a.s. have m � Fh([n]m) � (1 − o(1))m.

Proof. Let 1 � m � n1/(2h−1) and let X be the random variable that counts the number

of solutions to

a1 + · · · + ah = b1 + · · · + bh with {a1, . . . , ah} �= {b1, . . . , bh} (5.1)

and ai, bi ∈ [n]m for all i ∈ [h]. Let p = m/n. It follows from the linearity of expectation

that

E[X] = O

(2h−1∑
k=2

pk+1nk
)

= O
(
p2hn2h−1

)
= o(m).

Hence, by Markov’s inequality, we a.a.s. have X = o(m). Since deleting from [n]m one

element from the set {a1, b1, . . . , ah, bh} for each of the X solutions to (5.1) yields a Bh-set,

the lemma follows.

Proof of Proposition 2.3(i). Fix a constant δ > 0. Choose β > 0 sufficiently small that

(1 − β)(1 − δ/2) � 1 − δ and
(

(1+β)t
βt

)
� (1 + δ/2)t for all t. Let ε > 0 be a small constant.

Assume that t � εn1/(2h−1). Lemma 5.1 with m = (1 + β)t implies that if ε is sufficiently

small, then Fh([n]m) � t with probability at least 1 − β. It follows that, for large enough n,

we have

|Zh
n (t)| � (1 − β)

(
n

(1 + β)t

)(
n − t

βt

)−1

= (1 − β)

(
n

t

)(
(1 + β)t

βt

)−1

� (1 − β)(1 − δ/2)t
(
n

t

)
� (1 − δ)t

(
n

t

)
, (5.2)

as required.

In order to construct a large family of Bh-sets for larger t, we will use the following

theorem of Bose and Chowla [5] (with the statement adapted for our purposes).

Theorem 5.2. Fix an integer h � 2. For every m, there exists a Bh-set Y ⊂ Zm with |Y | =

Ω(m1/h).
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From Theorem 5.2 we obtain the following corollary.

Corollary 5.3. Let n and m satisfy n � 3hm and suppose that Y ⊂ Zm is a Bh-set. Then,

there exists at least (
n

3hm

)|Y |

Bh-sets of cardinality |Y | in [n].

More precisely, there are pairwise disjoint sets I0, . . . , Im−1 ⊂ [n], each of cardinality � �
n/(3hm), with the following property: for any Bh-set Y ⊂ Zm, all sets S ⊂ [n] with |S | = |Y |
such that |S ∩ Ij | = 1 for all j ∈ Y are Bh-sets.

Proof. Let k = 	n/m
 and � = 	n/(2hm)
 � n/(3hm) � 1. Define the integer intervals

Ij = [jk + 1, jk + �], j = 0, 1, . . . , m − 1

and note that by construction they are all pairwise disjoint subsets of [n]. Let S be an

arbitrary set which contains a single element of each Ij with j ∈ Y and no additional

elements.

We claim that S is a Bh-set. Indeed, suppose that

a1 + · · · + ah = b1 + · · · + bh

for some a1, b1, . . . , ah, bh ∈ S with a1 � a2 � · · · � ah, b1 � b2 � · · · � bh. For i = 1, . . . , h,

let ui ∈ Y be the unique index such that ai ∈ Iui . Set u =
∑h

i=1 ui and notice that

a1 + · · · + ah ∈ [ku + h, ku + �h] ⊂ [ku + 1, k(u + 1)].

Now for i = 1, . . . , h, let vi ∈ Y be the unique index such that bi ∈ Ivi , and set v =
∑h

i=1 vi.

Notice that the same argument as above yields

b1 + · · · + bh ∈ [kv + 1, k(v + 1)],

which thus means that u1 + · · · + uh = u = v = v1 + · · · + vh. Since Y is a Bh-set, we have

{u1, . . . , uh} = {v1, . . . , vh}. Since the elements ai and bi are in increasing order, the same

holds for the ui and vi and thus ui = vi for all i. Moreover, by construction, |S ∩ Ij | = 1

for all j ∈ Y , which means that {ai} = S ∩ Iui = S ∩ Ivi = {bi} for all i = 1, . . . , h.

The above argument shows that S is a Bh-set. Since there are �|Y | choices for the

construction of S , the corollary follows.

The proof of Proposition 2.3(ii) easily follows from Corollary 5.3.

Proof of Proposition 2.3(ii). From Theorem 5.2 we obtain a constant C satisfying

that for all values of t, there exists m = m(t) � Cth such that there exists a Bh-set of

cardinality t in Zm. We may also assume that m(·) is monotone.

Let ε′ > 0 be such that m(ε′n1/h) � n/(3h). It follows that for any t � ε′n1/h, there is a

Bh-set Y ⊂ Zm(t) with |Y | = t. Since m(t) � n/(3h), applying Corollary 5.3 to Y shows that
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there are at least (
n

3hm(t)

)t

�
(

n

3hCth

)t

Bh-sets of cardinality t in [n], which establishes the proposition with c′
h = 1/(3hC).

Next, we show that Corollary 5.3 also yields the lower bound in Theorem 2.5.

Lemma 5.4. For any 1 � m � n, we a.a.s. have Fh([n]m) = Ω(m1/h).

Proof. Lemma 5.1 implies that Fh([n]m) = Ω(m1/h) for m � n1/(2h−1). We now assume

that m � n1/(2h), which covers the remaining range of m (with plenty to spare). It will be

convenient for us to use the model [n]p with p = m/n rather than [n]m (recall Remark 4).

Without loss of generality we may assume that n � 3hm, since we just need to adjust

the constant hidden in the Ω in the bound from the statement of the lemma. Let Ij ,

j = 0, . . . , m − 1, be sets obtained from Corollary 5.3. From Theorem 5.2, we may obtain

a Bh-set Y ⊂ Zm with |Y | = Ω(m1/h).

Consider, for each j ∈ Y , the intersection of the random set [n]p and Ij . The probability

q that this intersection is empty satisfies

q = (1 − p)|Ij | � exp(−p |Ij |) = exp

(
−p

n

3hm

)
= exp

(
− 1

3h

)
.

Notice that q is bounded away from 1 by a constant depending only on h. Let r be the

random variable denoting the number of sets Ij , j ∈ Y , that intersect [n]p, namely

r = |{j ∈ Y : Ij ∩ [n]p �= ∅}|.

Since the sets Ij are disjoint, r is a binomial random variable with parameters |Y | and

1 − q. Also note that by collecting an element from each set Ij , j ∈ Y , that intersects [n]p,

we have a Bh-set which is a subset of the random set, thus

Fh([n]p) � r.

By Chernoff’s bound, we have that r � (1 − q)|Y |/2 with probability

1 − exp(−c |Y |) � 1 − exp(−c′m1/h) = 1 − o(
√
pn),

for some constants c, c′ > 0. In particular, with probability 1 − o(
√
pn) there is a Bh-set

S ⊂ [n]p with cardinality r = Ω(|Y |) = Ω(m1/h). The lemma follows from Remark 4.

6. Proofs of Theorems 2.4 and 2.7

We need some preparation for the proofs of Theorems 2.4 and 2.7. For the remainder of

this section, we fix an integer h � 2 and a function g = g(n). Since we are only proving

asymptotic results, we shall make the technical assumption that n is relatively prime to h!.

Furthermore, it will be more convenient for us to work with modular arithmetic, that

is, we consider addition modulo n. Clearly, any modular Bh[g]-subset of Zn naturally
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corresponds to a Bh[g]-subset of [n] and hence the claimed lower bound results for [n]

follows from the corresponding results for Zn.

Recall the definition of rS,h (see (2.5) in Section 2.3). Observe that S is a Bh[g]-set if

and only if rS,h(z) � g for every z ∈ Zn. In order to show that rS,h(z) � g for every z ∈ Zn,

we define the following.

For every 1 � � � h and λ > 0 and S ⊂ Zn, let

ES,�(λ) =
∑
z∈Zn

exp(λ rS,�(z)). (6.1)

Clearly, for every z ∈ Zn, we have that rS,h(z) � λ−1 log(ES,h(λ)). Hence, in order to bound

rS,h(z) for every z ∈ Zn, it suffices to bound ES,h(λ) for some appropriate choice of λ. We

remark that the definition (6.1) is heavily inspired by moment generating functions studied

in probability theory. Indeed, if z is sampled uniformly over Zn, then rS,� becomes a

random variable whose moment generating function is E[eλrS,�] = 1
n
ES,�(λ).

The following claim bounds the average increase of ES,�(λ) as we add some y ∈ Zn to S .

Claim 6.1. Let h � 2 be fixed, and let n be a number relatively prime to h! and � ∈ [h].

Then, for any ∅ �= S ⊂ Zn and λ > 0, we have

Ey∈Zn
[ES∪{y},�(λ) − ES,�(λ)] � 1

n
ES,�(λ)(ES,�−1(�λ) − n). (6.2)

Proof. Note first that

rS∪{y},�(z) � rS,�(z) + 1[z = �y] +

�−1∑
i=1

rS,�−i(z − iy). (6.3)

Hence,∑
y∈Zn

ES∪{y},�(λ) =
∑
y∈Zn

∑
z∈Zn

exp(λ rS∪{y},�(z)) (6.4)

�
∑
y∈Zn

∑
z∈Zn

exp

{
λ

(
rS,�(z) + 1[z = �y] +

�−1∑
i=1

rS,�−i(z − iy)

)}

=
∑
z∈Zn

{
exp(λ rS,�(z))

∑
y∈Zn

exp(λ1[z = �y])

�−1∏
i=1

exp(λ rS,�−i(z − iy))

︸ ︷︷ ︸
Q(z,λ)

}
.

We will now use a variation1 of Hölder’s inequality (see, e.g., [13, p. 22]):

m∑
i=1

∣∣∣∣ �∏
j=1

aij

∣∣∣∣ �
�∏

j=1

( m∑
i=1

|aij |�
)1/�

. (6.5)

1 This form can be obtained from the original as follows. For � = 2, it is a special case of Hölder’s inequality

with reciprocals 1/2 + 1/2 = 1. For � � 3 it follows by induction using Hölder’s inequality with reciprocals

�−1 + (�/(� − 1))−1 = 1 applied to
∑m

i=1 |xiyi|, where xi = ai,1 and yi =
∏�

j=2 aij .
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It follows from the above Hölder’s inequality that, for every z ∈ Zn, the inner sum Q(z, λ)

on the right-hand side of (6.4) is bounded from above by

Q(z, λ) �
(∑

y∈Zn

exp(λ1[z = �y])�
)1/� �−1∏

i=1

(∑
y∈Zn

exp(λ rS,�−i(z − iy))�
)1/�

.

Recalling that we require that h! and n are co-prime and thus that each i ∈ [�] is co-prime

with n, it follows that, for fixed z and i, the map y �→ z − iy is a permutation of Zn. In

particular, in the rightmost sum above, we can substitute w for z − iy, simplifying the

expression to ∑
w∈Zn

exp(λ rS,�−i(w))� = ES,�−i(�λ).

For the same reason, there exists only a single value y ∈ Zm such that z = �y, and thus

all but one term of the sum
∑

y∈Zn
exp(λ1[z = �y])� are equal to 1, the only other term

being equal to e�λ. Consequently, we have

Q(z, λ) �
(

(n + e�λ − 1)

�−1∏
i=1

ES,�−i(�λ)

)1/�

.

Note that the bound we have obtained on Q(z, λ) is independent of z, and hence (6.4)

implies that ∑
y∈Zn

ES∪{y},�(λ) � ES,�(λ)

(
(n + e�λ − 1)

�−1∏
i=1

ES,�−i(�λ)

)1/�

. (6.6)

Observe that since S �= ∅, then

ES,�−1(�λ) = max{n + e�λ − 1, ES,1(�λ), . . . , ES,�−1(�λ)}. (6.7)

Indeed, fix some arbitrary x ∈ S and notice that rS,�−1(z) � rS,�−1−i(z − ix) for all 1 � i �
� − 2, and since z �→ z − ix is a permutation of Zn, we have ES,�−1(�λ) � ES,�−1−i(�λ). It is

also clear that ES,�−1(�λ) � n + e�λ − 1 since, for all x ∈ S , we have rS,�−1((� − 1) · x) � 1.

From (6.6) and (6.7) we conclude that for every non-empty S and all λ > 0,∑
y∈Zn

ES∪{y},�(λ) � ES,�(λ)ES,�−1(�λ). (6.8)

This gives inequality (6.2), and hence, the claim is proved.

We now set

λ� =
h! log(2n)

�! g
(6.9)

for each � ∈ [h].

Definition 8. We shall call y ∈ Zn \ S an ε-good extension of a set S if, for all 2 � � � h,

ES∪{y},�(λ�) � ES,�(λ�)

(
1 +

2h

ε

ES,�−1(λ�−1) − n

n

)
. (6.10)
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Claim 6.2. Let h � 2, ε > 0, and let n be a number relatively prime to h!. Moreover, suppose

that S ⊂ Zn satisfies 1 � |S | � εn/6. Then there are at least (1 − 2ε/3)n elements y ∈ Zn \ S

that are ε-good extensions of S .

Proof. Inequality (6.2) in Claim 6.1 implies that the number of elements y ∈ Zn which

satisfy

ES∪{y},�(λ�) − ES,�(λ�) � 2h

ε
· 1

n
ES,�(λ�)(ES,�−1(�λ�) − n)

is at most εn/(2h). Together with the fact that �λ� = λ�−1, we have that the number

of y ∈ Zn that violate (6.10) for a fixed � is at most εn/(2h). Since � can be any integer

between 2 and h, there are at most εn/2 violators. Recalling that |S | � εn/6, we obtain

that the number of y ∈ Zn \ S that fail to be ε-good is at most εn/2 + εn/6 = (2ε/3)n.

We are now in a position to prove Theorem 2.7.

Proof of Theorem 2.7. Fix ε > 0 and assume that 1 � m � (ε/3h)(n1−h!/g)1/h. We may

and shall assume that m � log n, since otherwise the random set [n]m is a.a.s. a Bh-set and

we are done.

Let R be a random m-element subset of Zn. We construct a subset S ⊂ R as follows. Let

(x1, . . . , xm) be a random ordering of the elements of R. Let S1 = {x1}, and for 1 < j � m

let

Sj =

{
Sj−1 ∪ {xj} if xj is an ε-good extension of Sj−1,

Sj−1 otherwise.

We shall show that S = Sm is a Bh[g]-set and that a.a.s. it has at least (1 − ε)m elements.

This will clearly suffice as Sm � Fh,g(R) for all m! orderings of R.

Claim 6.3. The set S = Sm is a Bh[g]-set.

Proof. We shall first prove by induction that for every 1 � � � h and every 1 � j � m,

the following inequality holds:

ϕ(�, j) : ESj ,�(λ�) � n + (2h/ε)�−1eλ1 |Sj |�.

Before proving this, let us show how ϕ(h, m) implies this claim. By (6.13), for every z ∈ Zn,

we have that

exp(λh rS,h(z)) � ES,h(λh) � n + (2h/ε)h−1eλ1mh < 2n

since, recalling the definition of λ1 in (6.9) and the assumption on m, we have

(2h/ε)h−1eλ1mh � (2h/ε)h−1(2n)h!/g(ε/3h)hn1−h!/g < n. (6.11)

Consequently, from the definition of λh in (6.9), we have rS,h(z) � λ−1
h log(2n) = g. In other

words, S is a Bh[g]-set.
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We now resume the proof of the statements ϕ(�, j) by induction. Observe that regardless

of x1, for every � ∈ [h],

ES1 ,�(λ�) = E{x1},�(λ�) = (n − 1) + eλ� � n + eλ1 ,

and hence ϕ(�, 1) holds for all �.

Next, we consider ϕ(1, j) for all j. Note that rS,1(z) = 1[z ∈ S] and therefore, from the

definition of ES,1(λ), we have that

ES,1(λ) = n − |S | + |S |eλ = n + (eλ − 1)|S |. (6.12)

Hence, ϕ(1, j) holds for all j.

Thus, it is enough to prove that if � � 2, then, assuming that ϕ(�′, j ′) holds for all pairs

(�′, j ′) such that �′ < � or j ′ < j, the inequality ϕ(�, j) is satisfied as well. If Sj = Sj−1,

then there is nothing to show, and so we may assume that Sj = Sj−1 ∪ {xj}, where xj
is an ε-good extension of Sj−1. In this case, letting s = |Sj−1|, recalling Definition 8, and

invoking ϕ(�, j − 1) and ϕ(� − 1, j − 1), we have

ESj ,�(λ�) � ESj−1 ,�(λ�)

(
1 +

2h

ε

ESj−1 ,�−1(λ�−1) − n

n

)
� (n + (2h/ε)�−1eλ1s�)

(
1 +

2h

ε

(2h/ε)�−2eλ1s�−1

n

)
= n + (2h/ε)�−1eλ1s� + (2h/ε)�−1eλ1s�−1 +

(2h/ε)2�−2e2λ1s2�−1

n

= n + (2h/ε)�−1eλ1

{
s� + s�−1

(
1 +

(2h/ε)�−1eλ1s�

n

)}
.

Since

(2h/ε)�−1eλ1s� � (2h/ε)h−1eλ1mh
(6.11)

� n, (6.13)

and (s + 1)� � s� + 2s�−1, it follows that

ESj ,�(λ�) � n + (2h/ε)�−1eλ1 (s + 1)�,

thus proving the ϕ(�, j) and concluding the induction step.

Finally, we estimate the probability that |S | < (1 − ε)m. If this is the case, then there

are more than εm indices j for which xj is not an ε-good extension of Sj−1. For each j, at

least (1 − 2ε/3)n elements of Zn \ {x1, . . . , xj−1} are ε-good extensions of Sj−1. Since xj is

a uniformly chosen random element of Zn \ {x1, . . . , xj−1}, letting Bin(N, p) be a binomial

random variable with parameters N and p, we have by Chernoff’s bound

P(|S | < (1 − ε)m) � P(Bin(m, 1 − 2ε/3) < (1 − ε)m) � exp(−cεm)

for some constant cε > 0, and hence |S | � (1 − ε)m with probability 1 − o(1). This com-

pletes the proof of Theorem 2.7.

We now derive Theorem 2.4 from Theorem 2.7 in the same way that we deduced

Proposition 2.3(i) from Lemma 5.1.
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Proof of Theorem 2.4. Fix δ > 0. Let 0 < β � 1/6 be such that

(1 − β)

(
1 − δ

2

)
� 1 − δ and

(
(1 + β)t

βt

)
�

(
1 +

δ

2

)t

.

Now let m = (1 + β)t, and note that we may suppose that m � (β/6h)(n1−h!/g)1/h. It

follows from Theorem 2.7 that Fh,g([n]m) � (1 − β/2)m � t with probability at least 1 − β.

We conclude that

|Zh,g
n (t)| � (1 − β)

(
n

(1 + β)t

)(
n − t

βt

)−1

= (1 − β)

(
n

t

)(
(1 + β)t

βt

)−1

� (1 − β)(1 − δ/2)t
(
n

t

)
� (1 − δ)t

(
n

t

)
, (6.14)

The lower bound in (2.7) follows.

7. Concluding remarks

We close with two conjectures.

Conjecture 7.1. Fix an integer h � 3 and ε > 0. For every t � n1/(2h−1)+ε and every large

enough n, we have

|Zh
n (t)| �

(
n

th−ε

)t

. (7.1)

Note that Proposition 2.3 implies that, if true, Conjecture 7.1 is basically optimal.

Conjecture 7.2. Let h � 3 be an integer. Suppose 0 � a � 1 is a fixed constant and m =

m(n) = (1 + o(1))na. Then a.a.s. Fh([n]m) = nb+o(1), where b = b1(a) and b1(a) is as given

in (2.9).

It is worth mentioning that an argument following the lines of the proof of the upper

bound in Theorem 2.5 shows that Conjecture 7.1 implies Conjecture 7.2. At the time of

writing, we strongly believe that we are able to prove Conjecture 7.1 for h = 3.
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