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Fully developed plane channel flow rotating in the spanwise direction has been studied
analytically and numerically. Linear stability analysis reveals that all cross-flow modes
are stable for supercritical rotation numbers, Ro > Roc, where Roc will approach 3
from below for increasing Reynolds number. Plane Tollmien–Schlichting (TS) waves
are independent of rotation and always linearly unstable for supercritical Reynolds
numbers. Direct numerical simulation (DNS) of the laminarization process reveals
that the turbulence is damped when Ro approaches Roc. Hence, the laminarization
is dominated by linear mechanisms. The flow becomes periodic for supercritical
Reynolds numbers and rotation rates, i.e. when Ro > Roc and Re > Rec. At such
rotation rates, all oblique (cross-flow) modes are damped and when the disturbance
amplitude becomes small enough, the TS modes start to grow exponentially. Secondary
instabilities are initially blocked by the rotation since all cross-flow modes are linearly
stable and the breakdown to turbulence will be strongly delayed. Hence, the TS
waves will reach extremely high amplitudes, much higher than for typical turbulent
fluctuations. Eventually, the extreme-amplitude state with TS-like waves will break
down to turbulence and the flow will laminarize due to the influence of the rapid
rotation, thus completing the cycle that will then be repeated. This flow is strongly
dominated by linear mechanisms, which is remarkable considering the extremely high
amplitudes involved in the processes of laminarization of the turbulence at Ro > Roc

and the growth of the unstable TS waves.

Key words: instability, rotating turbulence, transition to turbulence

1. Introduction
Turbulent flow is in general strongly influenced by system rotation as well as

local rotation originating from e.g. streamline curvature. This occurs in swirling or
recirculating flows for example, when the principal directions of the flow (e.g. the
eigenvectors of the strain rate tensor) are rotating when following a mean streamline.
This is of practical importance in engineering flows like rotor-machinery flows, flow
over curved surfaces and in curved or rotating pipes and channels as well as in

† Email address for correspondence: stefan.wallin@foi.se
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FIGURE 1. Geometry and mean flow of turbulent channel flow.

swirling flows, appearing in a wide variety of applications. Also, in geophysical flows
the influence of rotation is of great importance.

Fully developed turbulent plane channel flow rotating in the spanwise direction
has often been used for illustrating rotational effects on turbulent flow. The flow is
destabilized by the Coriolis force on the pressure side and stabilized on the opposite
side, the suction side. Moreover, this flow has many similarities with turbulent flow
over curved surfaces and turbulent shear flows with buoyancy effects. The flow is
illustrated in figure 1. The Coriolis force pushes the flow towards the lower side of the
channel at y=−δ which is called the pressure side. Experimental studies by Johnston,
Halleen & Lezius (1972) and Nakabashi & Kitoh (1996) as well as numerical studies
by Kristoffersen & Andersson (1993) and Lamballais, Lesieur & Métais (1996) have
established that for moderate rotation rates the turbulence is strongly enhanced on
the pressure side and is damped or even laminarized on the suction side. Numerical
simulations by Wu & Kasagi (2004) with a rotation vector combining all three unit
directions revealed other interesting aspects of rotating flows. However, the spanwise
component of the rotation vector dominates over the other components in terms of the
influence on the flow.

The differences in turbulence level between the two sides result in an asymmetric
mean velocity profile that has a core-region slope close to twice the system rotation
rate (∂U/∂y = 2Ω). This means that the mean-flow absolute vorticity, defined as the
vorticity measured in the inertial non-rotating frame, will vanish in this region. In the
present study, the Reynolds and rotation numbers are defined as

Re≡ Ubδ

ν
, Ro≡ 2Ωδ

Ub
, (1.1)

where δ is the channel half-height, Ub is the bulk (or mean) velocity, Ω is the channel
spanwise rotation rate and ν is the kinematic viscosity of the fluid.

Non-rotating plane Poiseuille flow is linearly stable up to a critical Reynolds
number where the so-called Tollmien–Schlichting waves become unstable. The critical
Reynolds number was derived by Lakin, Ng & Reid (1978) as Rec = 3846.5
and by Orszag (1971) as Rec = 3848.15 using accurate numerical solutions of the
Orr–Sommerfeld equations, which is slightly higher than the earlier value Rec = 3570
derived by Lin (1955). In the original formulations the critical Reynolds number was
based on the centreline velocity, which is 3/2 times the bulk velocity used in the
present definition. Even a small amount of rotation will strongly enhance the flow
instability and the critical transitional Reynolds number decreases down to Rec ≈ 44
for the rotation number Ro = 0.5. This was determined using numerical solutions
of linear stability by Lezius & Johnston (1976) and also later by Alfredsson &
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Persson (1989), who also verified the stability analysis results experimentally. The
much lower critical Reynolds number associated with the Coriolis instability in the
rotating case indicates that such a mechanism is much stronger than the corresponding
Tollmien–Schlichting instabilities, also noted by Alfredsson & Persson (1989).

Streamwise roll cells have been observed by Alfredsson & Persson (1989) in
moderately rotating flows for Reynolds numbers in good agreement with the linear
theory. For increasing Reynolds number, secondary instabilities become visible before
breakdown to turbulence. The formation of these secondary instabilities around
nonlinear high-amplitude roll cells was analysed by Wall & Nagata (2006) and the
resulting unstable structures were found to be in good agreement with observations in
the experiments by Alfredsson & Persson (1989).

Roll-cell-like structures are also visible in fully turbulent flows observed
experimentally by Johnston et al. (1972) and in numerical simulations by Kristoffersen
& Andersson (1993) as well as by Grundestam, Wallin & Johansson (2008). However,
Grundestam et al. did not observe steady roll cells, although roll-cell-like structures
could be seen in snapshots of the flow field. These structures vanished in the time-
averaged results. Coexistence of roll cells and turbulent secondary flow has also been
observed in rotating Couette flow numerically by Bech & Andersson (1997) as well
as experimentally by Tsukahara, Tillmark & Alfredsson (2010) in agreement with
the analysis of Nagata (1998) of secondary instabilities around the nonlinear high-
amplitude roll cells. Roll-cell-like modes are strongly linearly unstable in such flows
and a significant amount of energy will be fed into such modes even after the flow
has broken down to turbulence due to secondary and tertiary instabilities. Hence, these
modes are also visible in fully developed turbulence. Similar coherent structures and
turbulent secondary flow can coexist as well for flows not only with Coriolis forces,
but also with buoyancy and Lorentz forces as shown from direct numerical simulations
(DNS) by Brethouwer, Duguet & Schlatter (2012).

For higher rotation rates the flow will also start to laminarize on the pressure
side and for Ro = 3 the roll cells are completely stabilized by the rotation, see
Lezius & Johnston (1976). The stability parameter introduced by Bradshaw (1969),
B = 2Rol(2Rol − 1), can be used for assessing the possibility of inviscid instabilities.
Rol =Ω/U′ (U′ = ∂U/∂y) is here the local rotation number in the channel, also used
by Grundestam et al. (2008), although Bradshaw analysed rotating homogeneous shear
flow. For B> 0 the flow is rotationally stable, which is the case if the rotation number
Ro> 3 for a parabolic velocity profile.

As pointed out by Grundestam et al. (2008) the linear stability analysis cannot
predict whether turbulence would or could be sustained for Ro > 3 or if fully
developed turbulence will laminarize when the rotation number is increased above
3. The validity of linear stability analysis based on the turbulent mean flow was
investigated by Lezius & Johnston (1976), and by arguing that the turbulence scales
are small and disordered they believed that the linear analysis could be valid. That
would then also explain that the region of zero absolute mean-flow vorticity in the
central part of the channel is governed by linear stability. The roll-cell-like structures
are unsteady and will vanish when averaged in time and are, thus by definition, part
of the turbulence. However, these structures will strongly influence the mean flow
and cannot be considered as small or disordered and the validity of linear stability
can be disputed. On the other hand, studies of rotating homogeneous turbulent shear
flow have confirmed neutral stability for Rol ≈ 0.5, see e.g. the numerical studies by
Bardina, Ferziger & Reynolds (1983), Salhi & Cambon (1997) and Brethouwer (2005).
The region of zero absolute vorticity was also addressed by Tanaka et al. (2000) by
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stability analysis and by Yanase et al. (2004) using DNS and also Hamba (2006) using
turbulence modelling arguments.

In the study performed by Grundestam et al. (2008), DNS of fully developed
rotating channel flow were performed for a range of Ro up to 2.49. From this study,
an increased damping of the turbulence kinetic energy can be seen for increasing
Ro above 0.5. This is a monotonic trend that persists up to Ro = 2.49, which was
the highest rotation number considered among the fully developed turbulent cases.
Grundestam et al. complemented these turbulent simulations with a simulation initiated
with a laminar flow with a superimposed perturbation and a system rotation rate
set to give Ro = 3.0 for a laminar flow. An initial decay of this perturbation was
indeed observed and this was interpreted as an indication that the flow should
laminarize for some Ro < 3.0. Laminarization of strongly rotating flow was also
observed from the DNS by Lamballais et al. (1996). However, streamwise waves,
so-called Tollmien–Schlichting modes, are independent of rotation and it was found
that these modes could start growing when all cross-flow modes (modes with non-
zero spanwise wavenumber) were damped by rotation leading to a saturated state.
Similarly, the cross-flow modes can be damped by a strong spanwise Lorentz force,
resulting in a saturated state with high-amplitude spanwise-independent secondary flow,
see Krasnov et al. (2008). These flows have close similarities with the simulation
of two-dimensional channel flow transition by Jimenez (1990). In strongly rotating
channel flow at higher Reynolds numbers, the high-amplitude instabilities may break
down to three-dimensional turbulence that will be damped by the rotation. Such cyclic
behaviour was observed numerically by Brethouwer, Schlatter & Johansson (2011).

The intention of the present study is to thoroughly investigate the details of the
possible laminarization scenarios. First, we will address the laminarization process
by linear stability mechanisms and also quantify the Reynolds number dependence
of the critical rotation number by using linear stability analysis and DNS. Then,
for supercritical Ro when the three-dimensional turbulence is suppressed, we will
establish and study the saturated state with mainly two-dimensional large-amplitude
secondary flow and eventually the breakdown to turbulence. In particular we will study
how linear mechanisms govern both the laminarization of turbulence as well as the
saturated supercritical state.

2. Method
2.1. Governing equations and flow case setup

Fully developed rotating channel flow is governed by the incompressible
Navier–Stokes equations, i.e. conservation of momentum and mass for the
instantaneous velocity and pressure fields: (ũi = [ũ, ṽ, w̃] and p̃)

∂ ũi

∂t
+ ũj

∂ ũi

∂xj
=− ∂ p̃

∂xi
+ 1

Re
∇2ũi + 2εijkũjΩk,

∂ ũi

∂xi
= 0, (2.1)

where εijk is the permutation tensor. The variables are normalized by the channel
half-width (δ) and the bulk velocity (Ub). Moreover, the centrifugal contribution is
absorbed into the pressure.

The flow is homogeneous in the streamwise (x) and spanwise (z) directions and
is rotating in the (x,y)-plane with the rotation vector Ωi = Ωδi3, see figure 1. The
flow may be driven by a pressure gradient, or a volume force which is equivalent
in incompressible flows. Alternatively, the flow may be driven by a constant mass
or volume flux. Dynamically, these two approaches are different, in particular if
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transitional flow events are present, like turbulence bursts. In the case of a pressure- or
force-driven flow, the mass flow may then be reduced locally in time and the turbulent
spot may be damped. Such events will probably have a more energetic development in
mass- or volume-driven flows. In this study, the flow is driven by a constant pressure
gradient in the x-direction, which is balanced by the wall skin friction τwall = ρu2

τ in
statistically steady flows. The wall skin-friction velocity is defined as

uτ =
√
ν

∣∣∣∣dU

dy

∣∣∣∣
wall

. (2.2)

In rotating turbulent channel flows, the wall skin friction is, in general, unequal for the
two walls and a quadratic mean is used,

uτ =
√
(u2
τ -p + u2

τ -s)/2, (2.3)

where uτ -p and uτ -s are the skin-friction velocities at the pressure (unstable) and suction
(stable) sides, respectively. An alternative Reynolds number based on the skin friction
is defined as

Reτ = uτδ

ν
. (2.4)

For laminar flow, the solution is only a function of y, and is given by a rotation-
independent parabola, U(y) = 3(1 − y2)/2. Here, there is a simple relation between
the two different Reynolds numbers, 3Re = Re2

τ . In turbulent flows no such analytic
relation exists and Re is, in general, smaller than in the case of laminar flow for a
given pressure gradient or Reτ .

2.2. Linear stability theory
The following linear stability analysis follows the work by Lezius & Johnston (1976).
The classical transition scenario in channel flows is governed by exponential growth
of unstable linear modes until turbulent breakdown occurs. Linear stability analysis is
based on eigenanalysis of the Navier–Stokes equations linearized around the steady
laminar base flow. The velocity and pressure fields are decomposed into the base flow
and a small perturbation:

ũi = Ui(y)+ ui(x, t), p̃= P(x)+ p(x, t), (2.5)

and since the flow is driven by a constant pressure gradient, the mean pressure is a
linear function of the x coordinate. The centrifugal acceleration term due to system
rotation is absorbed into the mean pressure P(x).

The decomposition is then inserted into the Navier–Stokes equations (2.1) and the
base solution is subtracted. The linearized equations for rotating channel flow in
terms of the equations for the wall-normal velocity fluctuations v and the y-vorticity
η ≡ ∂u/∂z− ∂w/∂x are[(

∂

∂t
+ U

∂

∂x

)
∇2 − d2U

dy2

∂

∂x
− 1

Re
∇4

]
v =−Ro

(
∂2

∂x2
+ ∂2

∂z2

)
u− Ro

∂2v

∂x∂y
, (2.6a)[(

∂

∂t
+ U

∂

∂x

)
− 1

Re
∇2

]
η =

(
Ro− dU

dy

)
∂v

∂z
. (2.6b)

The boundary conditions are v = ∂v/∂y= η = 0 at the walls (y=±1).
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The equations together with the boundary conditions form a sixth-order eigenvalue
problem. The solution is obtained by assuming wave-like solutions

ui(x, t)= ûi(y)ei(αx+βz−ωt), (2.7a)

η(x, t)= η̂(y)ei(αx+βz−ωt). (2.7b)

Equation (2.6) can then be written as

ω
(
D2 − k2

)
v̂ = α (U (D2 − k2

)− U′′
)
v̂ + i

Re

(
D2 − k2

)2
v̂ + βRoη̂, (2.8a)

ωη̂ = αUη̂ + i
Re

(
D2 − k2

)
η̂ + β (U′ − Ro

)
v̂, (2.8b)

where D ≡ d/dy, U′ ≡ DU, U′′ ≡ D2U and k2 ≡ α2 + β2. These are the
Orr–Sommerfeld and Squires equations, which in the case of rotation (Ro 6= 0) form a
fully two-way coupled system.

The other velocity components can be derived from v̂ and η̂ by using the
incompressibility relation as

k2û= iαDv̂ − iβη̂, (2.9a)

k2ŵ= iβDv̂ + iαη̂. (2.9b)

The equations are discretized in the y-direction by using Chebyschev polynomials
with the aid of the MATLAB Chebyschev suite by Weideman & Reddy (2000). The
eigenvalues (in terms of ω) and the corresponding eigenvectors (or eigenmodes) are
found by solving the discrete generalized eigenvalue problem

ωBq= Aq (2.10)

where

B =
[
D2 − k2 0

0 I

]
, q=

{
v̂

η̂

}
(2.11)

and

A=
[
α
(

U
(
D2 − k2

)− U′′ + iRe−1
(
D2 − k2

)2
)

βRo

β
(
U′ − Ro

)
αU + iRe−1

(
D2 − k2

)] . (2.12)

Here, D is the discrete d/dy operator.

3. Predictions by linear stability theory
3.1. Neutral stability

The DNS of rotating turbulent channel flow by Grundestam et al. (2008) is here used
as the reference case. The channel flow is driven by a constant pressure gradient,
thus the Reynolds number based on the friction velocity is constant and for the DNS
it is Reτ = 180. The corresponding Reynolds number based on the bulk velocity is,
however, dependent on the level of turbulence. In the limit of a laminar flow the
Reynolds number is maximal and reaches Re = 10 800, which is used for the present
linear stability analysis.

For the given Reynolds number, the most unstable modes that give the highest
critical rotation number are sought in the α–β plane. Figure 2(a) shows the critical
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FIGURE 2. The neutral curves for different cross-flow modes for Re = 10800: (a) α = 0
(—-), 1, 2, 3, 5, 7 and 10 (- - -, as marked in the figure) and (b) a zoom in to the two most
amplified modes: I with α = 0 (—) and II with α = 2.7 (- - -).
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FIGURE 3. The amplification factor for Ro= 2.799 and Re= 10800 for α = 0 (—), 1.0, 2.0,
2.2, 2.4, 2.6, 2.7, 2.8 and 3.0 (- - -, as marked).

rotation number as function of the spanwise wavenumber, β, for different streamwise
wavenumbers, α. The most critical modes are found to be the steady roll cells
aligned in the streamwise direction (mode I) and a slightly inclined unsteady mode
(mode II). The neutral curves in terms of critical rotation number for different
spanwise wavenumbers, β, are shown in figure 2(b) for these two modes. Mode I has
a critical rotation number of Roc = 2.803 with α = 0 and β = 33 while for mode II,
Roc = 2.805 with α = 2.7 and β = 19. Thus, the inclined mode is the most critical one.
No cross-flow mode that is more critical has been found. Tollmien–Schlichting modes
will be considered later in this section.

For Ro= 2.799, which is slightly below the critical rotation number for both mode I
and II, the amplification factor should be positive for both these modes. This is
verified in figure 3. It is also seen in the same figure that mode II is amplified for
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a rather broad range of streamwise wavenumbers α between approximately 2.3 and
2.9 and that the maximum amplification rate is ∼2 × 103. The particular value of
Ro = 2.799 corresponds to the least unstable DNS conducted within this study. The
aim is to compare full nonlinear DNS with linearized methods close to the limit of
vanishing turbulence.

3.2. Reynolds number dependence
To analyse the Reynolds number dependence of the critical rotation number and
associated wavenumbers, we will first analyse the stability equations for Reynolds
number approaching infinity. Equation (2.8) can then be written by eliminating η̂ as

(ω − αU)2
(
D2 − k2

)
v̂ + (ω − αU) αU′′v̂ = β2Ro

(
U′ − Ro

)
v̂. (3.1)

Moreover, we will assume that the governing mechanism is local so that the
dependence on y can be expressed through the wavenumber γ and the ansatz (2.7)
becomes ui(x, t)= ûi exp[i (αx+ βz+ γ y− ωt)]. We then have

(ω − αU)2v̂ − (ω − αU)
αU′′

K2
v̂ = β2

K2
Ro
(
Ro− U′

)
v̂, (3.2)

where K2 ≡ α2 + β2 + γ 2.
First, for steady roll cells (mode I) α = 0 and the second term on the left-hand side

will vanish. This term can also be neglected for type II modes since α � K. Then,
the possibility of exponential growth of the solution is governed by the sign of the
right-hand side and the solution is stable for B∗ = Ro(Ro − U′) > 0. B∗ = U′2B is
directly related to the Bradshaw (1969) parameter B discussed in the introduction. The
flow is a parabola, thus U′(y)=−3y for −16 y6 1. Assuming that locality in y holds,
all type I modes are stable for Ro> 3, which is also approximately the critical rotation
number for cross-flow modes of type II. This simplified analysis is in accordance with
the non-local stability analysis in the previous section that gives Roc→ 3 as Re→∞.

The critical Ro that was found for Re = 10 800 is significantly lower than the
inviscid stability limit at Ro = 3. That means that there is a region close to the lower
wall where the flow is inviscidly unstable but is probably stabilized by viscosity. Let
us assume that the thickness d of this region is related to the wall viscous length scale
so that d+ ≡ duτ−p/ν is reasonably constant for different Re. Also, we know that d+

cannot be much larger than around 10 for significant viscous effects. An estimate of
the critical rotation number, Roc, is then determined as B∗ = 0 for y = −1 + d, or
Roc = U′ = 3(1 − d). In terms of the wall viscous length scale d = d+/

√
3Re, which

gives

Roc = 3− d+
√

3Re−1/2. (3.3)

The critical rotation number for Re= 10800 is Roc = 2.805, which gives d+ = 11.7.
The simplified analysis gives that the critical rotation number will approach Ro = 3,

for increasing Reynolds numbers, as Re−1/2 because of vanishing viscous effects. The
Reynolds number dependence was investigated by computing the neutral curves for
Reynolds numbers ranging from 103 to 106 corresponding to Reτ = 55–1732. For each
Reynolds number, the most critical mode was identified. Mode II (α 6= 0) is the most
critical for all investigated Reynolds numbers except for the lowest (Re = 103) where
mode I, steady roll cells, is the most critical one. The deviation from Ro= 3 is plotted
in figure 4 in terms of 1/(3− Roc) and remarkably closely follows a power law for all
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FIGURE 4. (a) The neutral curves for stationary modes (α = 0) for Re = 1000, 3000, 5633,
10 800, 20 000, 105, 106 from left to right. The largest Ro and corresponding critical β
for each Re is shown as © with a connected line, and the most critical Ro for α 6= 0 is
shown as • with a connected dashed line. (b) The critical α (�), β (•) and Ro (�) (as
1/(3− Ro)) versus Re with symbols for the same Re cases as in (a) and the lines representing
the least-squares fit to the data. Also the most critical β (©) for α = 0 is shown.

but the lowest Reynolds number. A linear least-squares fit, excluding Re= 103, gives

Roc = 3− 8.40Re−0.405. (3.4)

A relation for the thickness of the viscous layer is obtained by relating the least-
squares fit to the simplified analysis in (3.3), which gives d+ = 4.85Re0.095. The
evaluated d+ has a small, but significant, Reynolds number dependence and will
vary between 9 and 18 for Re from 103 to 106. Thus, d+ is in the range where
viscous effects are expected to be of importance. However, the difference in the
Reynolds number dependence indicates that there could be additional mechanisms not
considered in the simplified analysis. However, it can be concluded that the simplified
analysis, in general, is supported by the numerical data.

The corresponding critical wavenumbers, α and β, increase with increasing
Reynolds number and a linear fit gives αc = 0.475Re0.185 and βc = 0.453Re0.402. Also
here the lowest Reynolds number is excluded from the fit. The spanwise wavenumber
β is related to the size of the structures, and with the assumption that the structures
must exist within the unstable near-wall region then βc ∼ 1/d ∼ Re1/2. The critical
streamwise wavenumber is not directly related to the wall-normal extent of the near-
wall region, resulting in a weaker Reynolds number dependence compared with the
critical wall normal and cross-flow wavenumbers.

3.3. Tollmien–Schlichting modes
The stability analysis shows that all cross-flow modes are stable for rotation numbers
greater than 3. However, by inspecting the Orr–Sommerfeld equation (2.8), the terms
containing the rotation number are all multiplied by the spanwise wavenumber β
and with β = 0 the influence of rotation is broken. Modes with β = 0 are the so-
called Tollmien–Schlichting (TS) modes which, thus, are independent of rotation. The
Reynolds number used in the DNS study is larger than the critical Re for channel
flow, and unstable TS modes will exist. Figure 5(a) shows the amplification rate for
different streamwise wavenumbers (α) for plane TS modes (β = 0) and inclined modes
with β ranging from 0.1 to 2.0. A slight increase in α rapidly damps the TS mode and
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FIGURE 5. The amplification factor for TS modes. (a) Amplification factor for Ro = 2.80,
Re = 10800 and small β = 0 (—), 0.1, 0.2, 0.5, 1.0 and 2.0 (- - -, as marked). (b) The
amplification factor for TS waves (Reτ = 105, 107.4, 130, 180, 360 and 590 from left to right
in the upper part of the figure).

there is only a narrow interval in α where the TS modes are unstable. The influence
on the Reynolds number is shown in figure 5(b) where the critical streamwise
wavenumber α decreases with increasing Re and the corresponding unstable α interval
will change. The critical Reynolds number for the TS modes found by Orszag (1971)
and Lakin et al. (1978) corresponds to Reτ = 107.4, which is verified in this figure
showing a maximum amplification factor close to zero.

The breakdown to turbulence for the TS modes in the rotating case will be different
from the breakdown in non-rotating channel flow. The reason is that the secondary
modes that are generated in the pre-transitional phase will have β 6= 0, and then the
coupling terms in the Orr–Sommerfeld equation (2.8) will be activated. For Ro > Roc

these modes will be linearly stable and the mechanisms for activating the secondary
modes must be nonlinear.

TS waves are known to be stabilized by nonlinear streamwise vortices (see e.g.
Fransson et al. 2005; Bagheri & Hanifi 2007) and therefore TS modes are not easily
activated in turbulent flows. Also, the growth rate of the TS modes is almost two
orders of magnitude lower (<1 %) than that for the most amplified roll cells. However,
for rotation rates larger than critical, the TS waves have the possibility of growing
after the other disturbances have reached sufficiently low amplitudes. This will be
further discussed later in relation to the corresponding numerical simulation.

4. Simulations
Direct numerical simulations have been performed to confirm the predictions from

linear stability theory and further investigate the behaviour in the finite-amplitude,
nonlinear, regime. All simulations were performed with the pseudo-spectral flow solver
by Lundblad, Henningson & Johansson (1992). It is based on the velocity–vorticity
formulation and solves for the wall-normal vorticity and the Laplacian of the wall-
normal velocity. In this formulation, the fluctuating pressure is eliminated from the
governing equations and hence no pressure solver is needed during the simulation.
Fourier series expansions are used in the periodic streamwise and spanwise directions
(x and z) while Chebychev series are used in the wall-normal direction (y). Time
integration is done using a Crank–Nicolson scheme for the linear terms and a four-
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Re Reτ nx × ny × nz Lx/δ Lz/δ Init

3675 105 120× 97× 96 4π 2π ini
3675 105 240× 97× 96 8π 2π ext
5633 130 120× 161× 96 3π 1.5π ini
10800 180 192×201×160 3π 1.5π ini
10800 180 192×201×160 4π 2π ini
10800 180 384×201×160 16π 2π ext
10800 180 384×201×160 8π 2π ext
10800 180 384×201×320 8π 8π ext
10800 180 192×201×160 8π 8π ext
10800 180 384×201×160 8π 4π ext
10800 180 384×201×320 16π 16π ext
10800 180 96× 201× 96 4π 4π ini

TABLE 1. Simulation parameters: ni indicates the resolution in direction i, Lx and Lz denote
the size of the computational box in the streamwise and spanwise directions, and Init
denotes the type of initialization, explained in the text.

stage Runge–Kutta method for the nonlinear terms. The flow in all simulations is
driven by a constant pressure gradient. In this way the value of Reτ is predetermined
for the fully developed flow.

Simulations were done for three different Reynolds numbers, Reτ = 105, 130 and
180, for a series of rotation numbers in the critical regime of each Reynolds number.
Depending on the purpose of the simulations, different sizes of computational domains
have been used. These are listed in table 1 where Lx/δ and Lz/δ denote the streamwise
and spanwise lengths of the computational box in terms of the channel half-width,
respectively. nx × ny × nz denotes the resolution in the streamwise, wall-normal and
spanwise direction, respectively. The purpose of these simulations will be further
discussed in the two sections below.

Simulations presented in § 5, indicated with ‘ini’ in table 1 in the column ‘Init’,
were initialized using the following procedure. First, a fully developed non-rotating
turbulent channel flow was obtained, initiated with a velocity field consisting of a
parabolic profile with a pair of streamwise counter-rotating vortices described by
Henningson, Lundbladh & Johansson (1993). Then, the system rotation was gradually
increased step by step. After each increase in system rotation, the solution was
advanced long enough in time to attain a statistically steady state. This was especially
important when the critical Ro-regime was approached since the rotation number is,
for a particular system rotation, determined by the bulk velocity, which in turn is the
quantity that requires the largest number of iterations to attain its steady-state value.
Statistically steady-state solutions were obtained for all subcritical Ro.

The simulations presented in § 6 with streamwise box lengths of 8πδ and 16πδ were,
on the other hand, initialized by extending the velocity field from the corresponding
4πδ-simulation. These are marked ‘ext’ in the ‘Init’ column of table 1.

5. Critical Ro and structures
Linear stability is usually only indicative concerning the critical condition for

transition to turbulence and, in particular, concerning laminarization of turbulent flow.
Typically, the transition to turbulence occurs at Reynolds numbers lower than those at
which linear instabilities first appear. Plane Couette and pressure-driven circular pipe
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Re Reτ Rou Ros Roc

3675 105 2.690 2.710 2.698
5633 130 2.722 2.752 2.746
10800 180 2.799 2.811 2.805

TABLE 2. Unstable and stable Ro obtained through simulations. Roc denotes critical Ro
predicted by linear stability analysis.

flows are extreme in this sense since these flows are linearly stable for all Reynolds
numbers. Still transition to turbulence occurs in these flows even in situations with
minimal initial perturbations. Laminarization of turbulent flow is usually even less
related to linear stability and turbulent flow may persist for Reynolds numbers lower
than those at which transition to turbulence first occurs.

The turbulence in fully developed channel flow has been found to be strongly
damped by spanwise rotation. The previous study by Grundestam et al. (2008)
indicated that complete laminarization of the flow may be closely related to the critical
rotation number, Ro< 3, for which cross-flow modes may become linearly unstable. In
this section we will verify that the laminarization of fully developed turbulent channel
flow is governed by linear mechanisms and that the critical rotation number, Roc,
derived in the previous section can be verified also in the nonlinear case studied by
DNS.

The governing mechanism in the laminarization process is the stabilization of the
cross-flow modes by rotation. TS modes are, however, always unstable for Reτ > 107,
but will be damped by the nonlinear turbulence. When approaching the critical rotation
number, Roc, the TS modes may start growing when the turbulence is damped below
some critical level. Neither the critical rotation number Roc nor the flow structures and
statistics near Roc can be studied when the TS modes are active. For this reason, the
unstable TS mode will be artificially disabled in the first part of the study. Hence,
the streamwise box size was chosen to be 3πδ in order not to allow the presence of
the amplified TS wave in the solution with α ∼ 1, see figure 5, since the resolved
streamwise wavenumbers will be α = 2n/3, where n is an integer. Hence, no discrete
α modes will be present within the range of unstable streamwise wavenumbers for
Reτ 6 180 among the Reynolds numbers studied in figure 5. Here, we will use
Reτ = 180, 130 and 105, see table 2. The case with Reτ = 105 was chosen due to
the stable character of all TS modes. Hence, no further restriction of the computational
box is needed and a 4π box is used for that case.

5.1. Reynolds number dependence of critical Ro

The critical rotation number, Roc, is determined for each Reynolds number by
increasing Ro step by step from a fully turbulent state until the flow laminarizes.
The results from the simulations are consistent with the predictions made by linear
stability theory. The pre- and post-critical rotation numbers, Rou and Ros respectively,
obtained in the DNS, are given in table 2 together with the critical rotation numbers
obtained from linear stability analysis. The results are also illustrated in figure 6 where
figure 6(a) is a graphical representation of table 2 where predictions made by linear
theory for a range of Re are included. Figure 6(b) displays additional information
about the bulk velocity as function of Ro, obtained through the preceding simulations
at lower Ro and from Grundestam et al. (2008). The value of Ub/Ulam

b approaches
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FIGURE 6. (a) Roc as a function of Re from stability analysis (—), and simulations for Rou
(©) and Ros (×). (b) Normalized Ub as a function of Ro for Reτ = 180 (—), 130 (- - -) and
105 (· · ·), where each symbol represents one DNS.
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FIGURE 7. Normalized Reynolds stresses for (a) Ro= 2.799 and (b) Ro= 2.49: uu/U2
b (—),

vv/U2
b (- - -) and ww/U2

b (· · ·).

unity when the flow becomes laminar and one can note the gradual laminarization for
increasing Ro. Ulam

b is defined as the bulk velocity for a particular Reτ and is related to
uτ as Ulam

b = Reτuτ/3. The results clearly demonstrate that the critical rotation number
is dependent on the Reynolds number, an issue that was merely touched upon by
Grundestam et al. It should be pointed out that the critical rotation numbers derived
from linear stability are extremely well captured by the DNS with an accuracy of
∼1 %. Moreover, it should be emphasized that the rotation number was increased
step by step, starting from a non-rotating fully developed turbulent state, until the
flow laminarizes. Hence, the DNS not only confirms the linear stability analysis, but
also shows that the nonlinear turbulent flow will laminarize according to the critical
rotation number given by linear stability.

When the results from the simulations are analysed for subcritical values of Ro, the
flow solution shows many of the characteristics that can be seen for much smaller Ro.
For example, the uv-profile is negative in a region close to the wall on the pressure
side of the channel and the wall-shear velocity is higher on this side. In figure 7 where
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the diagonal Reynolds stresses are shown, the same type of behaviour can be seen as
in the previous simulations for lower Ro by Grundestam et al. (2008). The part of
the domain where y/δ > −0.5 is not shown since the Reynolds stress levels are small
in comparison to those close to the wall at y/δ = −1. As a comparison, the diagonal
Reynolds stresses for the case of Ro = 2.49, from Grundestam et al. are displayed in
figure 7(b). Note that the peak value of vv/U2

b is a factor of ∼200 times larger for
Ro = 2.49 than the corresponding value for Ro = 2.799 in figure 7(a). Despite this
difference in magnitude the character of the stress distributions is rather similar for the
two cases. The two flow cases are fundamentally different. At Ro = 2.49 the flow can
be seen as fully turbulent. The case of Ro= 2.799, on the other hand, has structures of
rather different character. This is further discussed in the section below.

For supercritical Ro the simulation shows a flow which has essentially laminar
features, e.g. equal skin-friction velocities on the two sides of the channel, the mean
velocity profile is close to that of the laminar flow and the Reynolds stresses are
negligible. It is also evident from the simulations that once the rotation number has
been increased to supercritical values, the time scale of the laminarization process is
relatively short.

The particular box size, 3πδ×2δ×1.5πδ, used in this simulation allows the existence
of modes with α = 2n/3 and β = 4m/3 where n and m are integers. Hence, no mode
in the simulation exactly matches the most critical modes of (α = 2.62, β = 19)
and (α = 0, β = 33) obtained with the linear analysis. The closest numerical modes
are (α = 2.67, β = 18.66) and (α = 0, β = 33.33) respectively. This is discussed
further below. Moreover, the box width of 1.5πδ was found sufficient by verifying
relaminarization of the turbulent state at Ro = Roc by the use of larger (3πδ and 6πδ)
spanwise box sizes.

5.2. Structures and eigenmodes
The two most critical modes, I and II, for Ro = 2.799 from the linear stability
analysis are here further investigated. The rotation number is reduced to Ro = 2.49
while keeping the critical wavenumbers α and β constant in order to have a strong
amplification of these modes. The chosen wavenumbers may, however, not be the most
amplified for the lower rotation rate. Analysis of these modes at Ro = 2.49 shows
two amplified eigenmodes (positive imaginary values) for each mode, see figure 8.
Mode I has the largest amplification factor of over 0.5. The real value of these
eigenvalues is zero corresponding to a pure amplification without harmonic content.
The amplification rate for mode II, which has the highest critical rotation number, is
slightly lower. This implies that the most critical mode is not the most amplified for
this lower rotation number. The real value of the unstable eigenvalues for mode II
is non-zero indicating that these modes are not stationary in space. The amplification
rate for the most unstable modes is remarkably high. A growth rate of 0.5 implies
that the amplitude is doubled in less than 1.4δ/Ub time units. For Ro = 2.799, on
the other hand, there is just one amplified eigenmode for each critical mode and the
amplification factors are much lower than for Ro = 2.49. The non-stationary nature of
the II mode also applies for Ro= 2.799.

It is interesting to compare the flow field obtained from the finite-amplitude
simulations with the physical properties of the unstable eigenmodes. From figure 7
it is clear that the streamwise velocity fluctuations in the DNS have the smallest
magnitude. It can also be noted that the spanwise fluctuations are significant only in
a narrow region close to the wall and that the streamwise velocity fluctuations are
at least one order of magnitude smaller. Thus, the wall-normal velocity plotted in
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FIGURE 8. (a) Eigenmodes for the critical α = 2.63 and β = 19.0 and (b) the most amplified
α = 0, β = 33.0 eigenmodes, at Ro= 2.49 (top) and Ro= 2.799 (bottom) for Re= 10 800.

(y, z)-planes should serve well to illustrate the flow, as shown in figures 9 and 10 for
Ro = 2.49 and 2.799, respectively. For Ro = 2.49, the first and second eigenmodes of
mode I (I1 and I2) are one and two layers of roll cells. The oblique vortices of mode
II are visible in the (y, z)-plane as tilted roll cells and the second eigenmode (II2)
is more tilted than the first (II1). The modal shape from the linear analysis can be
compared with the fully developed nonlinear DNS study of Grundestam et al. (2008)
for the same Ro. The simulation shows streamwise structures that are almost periodical
in the spanwise direction, see figure 9(c). Oblique structures similar to the mode II
first eigenmode (II1) can be seen and also smaller straight structures similar to the
mode I first eigenmode (I1), which is the eigenmode with the highest amplification of
the I modes, are visible. Also the second eigenmode of mode I (I2) can just barely
be seen as triple dots at a few places. Furthermore, the spanwise wavelength and the
wall-normal extension of the structures of the simulation are comparable to those of
the eigenfunctions from the stability analysis. The second eigenmode of mode II (II2),
which has the lowest amplification rate, cannot be identified in the DNS field.

For Ro = 2.799, the analysis reveals two eigenmodes of interest, I1 and II1. Each
eigenmode consists of one layer of roll cells. Mode II1 is slightly tilted and extends
further away from the wall. The resemblance between the physical flow and the
eigenmodes from the stability analysis is striking. In fact, to the eye the simulated
flow looks like a blend of the eigenmodes from the stability analysis. From this point
of view, the case of Ro = 2.799 is very different from that of Ro = 2.49, where
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FIGURE 9. Wall-normal velocity fluctuations for (a) the eigenmode with the critical α = 2.63
and β = 19.0 (II), and (b) the most amplified eigenmodes at Ro = 2.49 (α = 0, β = 33.0) (I),
and (c) from a corresponding snapshot of the DNS by Grundestam et al. (2008) at Ro = 2.49
and Re= 10 800.

many more wavenumbers are excited, see figure 9. Furthermore, figure 7 shows that
for Ro = 2.49 fluctuations are not only localized to a region close to the wall on
the pressure side of the channel, but are present in a region extending beyond the
centreline of the channel.

As the rotation number is increased towards the critical regime, it seems reasonable
to assume that more and more modes will become stable and therefore contain less
and less energy. Consequently, at rotation number Ro = 2.799, just slightly below the
critical Ro only the modes of positive amplification, shown in figure 3, should contain
significant amounts of energy.

Of the unstable modes shown in figure 3 for Ro = 2.799, the dimensions of
the computational box used in the present simulations allow modes of streamwise
wavenumbers α = 0 and 2.67 only. Thus, modes within the regime of 15 . β . 24
with α = 2.67 are linearly unstable and can be expected to be active in the DNS. In
order to study the active modes, (α, β)-planes in Fourier space are considered where
the Fourier components of the kinetic energy have been integrated in the wall-normal
direction. Complementary information regarding the wall-normal energy distribution is
provided through figure 7. Figure 11 shows the integrated energy in Fourier α–β space
for Ro = 2.799 and Ro = 2.49. The domain in the plot has been restricted to where
significant amounts of energy are present for Ro = 2.799. A first inspection reveals
extensive differences between the two cases. For Ro= 2.799, all energy is contained in
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FIGURE 10. Wall-normal velocity fluctuations for (a) the eigenmode with the critical
α = 2.63 and β = 19.0 (II1, left) and the most amplified eigenmodes at Ro = 2.799 (α = 0,
β = 33.0) (I1, right) and (b) from a corresponding snapshot of the DNS by Grundestam et al.
(2008) at Ro= 2.799 and Re= 10 800.
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FIGURE 11. Contour plot of the total y-integrated energy in the Fourier (α, β)-plane for (a)
Ro= 2.799 and (b) Ro= 2.49, normalized by the mean flow kinetic energy.

two areas corresponding to the I1 and II1 modes. For Ro = 2.49, on the other hand, a
large number of modes are excited. One can also note that a wider range of β is active
than for α. It should be noted that the amplitudes are much lower for Ro= 2.799 than
for Ro= 2.49 in figure 11 and for plotting conveniences the colour coding and isolines
are not the same.
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FIGURE 12. Normalized component-wise energy spectra E/U2
b for summation in (a) the

streamwise and (b) spanwise Fourier directions for Ro = 2.799 (upper) and Ro = 2.49
(lower): E11/U2

b (—), E22/U2
b (- - -) and E33/U2

b (· · ·); −5/3-slope marked with a straight
line.

In order to further investigate the flow, energy spectra were investigated. The
anisotropic character of the flow implies that studying the turbulence spectrum as a
function of total wavenumber, K2 = α2 + β2 + γ 2, is not adequate. In fact, for channel
flow no two directions are equal from a statistical point of view. The walls impose
a strong effect on the anisotropy in addition to the effect the pressure-gradient-driven
mean flow has on the turbulence. Therefore, it seems reasonable to study spectra
which are functions of one of the two spectral directions, α and β, while summing
over the other.

The Fourier components have been integrated in the wall-normal direction and
the corresponding spectra are shown in figure 12 for Ro = 2.799 and 2.49. The
two regions around the unstable I1 and II1 modes (β = 33 and 19) are easily
distinguishable for Ro = 2.799 in figure 12(a). One can also note that in analogy with
figure 7, the wall-normal component carries the largest amount of energy while the
streamwise carries the smallest. For Ro = 2.49 the corresponding plot in figure 12(a)
shows a more smooth variation of the distributed energy consistent with turbulent flow
where the largest structures carry the major part of the energy.
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The spectrum for Ro = 2.799, where summation over the spanwise wavenumbers
has been applied, clearly demonstrates the uniqueness of the instability of the II1

mode with a distinct peak at α = 2.67. Peaks are also seen for wavenumbers that are
multiples of α = 2.67 with decreasing amplitude for increasing α. It seems plausible
that they represent the cascade of the II1 mode energy to modes of higher harmonics.
The presence of multiples of α is simply a result of the nonlinear interaction in the
Navier–Stokes equations. The corresponding spectrum for Ro = 2.49 is of completely
different character and shows a smooth behaviour with a monotonically decreasing
amplitude for increasing α.

All in all, this indicates that for Ro = 2.799 the flow does not possess the spectral
properties of a turbulent flow. Instead, a small number of modes are unstable and only
these contribute with fluctuations of significant energy.

6. Saturated states with extreme-amplitude waves
In the previous section, the destabilizing effect of the TS modes was artificially

excluded by choosing the streamwise box length such that the unstable TS modes
could not exist in the computational box. In this section we perform simulations where
we also capture the unstable TS waves by using a computational box that allows the
existence of the linearly unstable α = 1 mode. This computational box was given the
dimensions 8πδ × 2δ × 8πδ, which allows streamwise and spanwise wavenumbers as
multiples of 0.25. The simulation was performed for Reτ = 180 and a rotation rate that
gives Ro= 3.0 for the corresponding laminar parabolic profile.

A precursor simulation, based on the statistically steady Ro = 2.66 case, was
computed using the 4πδ × 2δ × 2πδ box. Then, Rolam was increased to 3.0 leading
to an initial laminarization followed by the growth of the unstable TS waves. In the
analysis of the high-amplitude state we will introduce the Reynolds decomposition of
the velocity field into a mean and a fluctuating part, ũi = Ui + ui, where the fluctuating
part in this case will carry the nonlinear fluctuations in contrast to the definition in
(2.5). Moreover, the different modes will be identified by their (α, β) combination.

Due to the existence of unstable α modes in the solution, the flow behaviour in
this simulation is fundamentally different from that observed for the computational box
of length 3πδ in which no unstable α modes exist. The time evolution of the flow
is illustrated in figure 13 by the energy of the most energetic modes at y/δ = 0.72.
Figure 13(a) shows the complete simulation and figure 13(b) is zoomed in around
the second peak. The integrated energy in the y-direction shows basically the same
behaviour. Also shown in the figure are the total kinetic energy of the fluctuations, K,
and the turbulence kinetic energy, Knonrot , for the corresponding non-rotating channel
with the same pressure gradient (same Ulam

b ).
Initially, the flow is dominated by the growth of the (1, 0) mode (α = 1 and β = 0)

until extremely large amplitudes are reached. Since almost all energy is contained
in the (1, 0) mode, it cannot be distinguished from K in the figure. The maximal
magnitude of the energy content is extremely high, almost two orders of magnitude
higher than the turbulence level in the corresponding fully developed non-rotating
turbulent channel flow, Knonrot in the figure. The streamwise wavenumber for the most
amplified mode in the linear limit is about α ≈ 0.9 according to figure 5. During the
initial linear growth the α = 1.0 mode is the most amplified among the modes that
can be captured within the 8π computational box, i.e. with steps of 1α = 1/4. The
importance of the box size will be discussed at the end of this section. The extreme
amplitudes persist for periods of roughly 100 time units, whereafter the flow starts to
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FIGURE 13. Energy for various modes at y/δ = 0.72, box size 8πδ × 2δ × 8πδ. (a) The total
time of the simulation. (b) A close-up around the second peak in (a). Thick black curves: total
fluctuation energy K for the present case (- - -) and corresponding non-rotating turbulent case
(· · ·). Thin black curves: β = 0 modes with α = 1.0 (—), 0.5 (- - -) and 1.5 (-·-). Light blue
curves: additional β = 0 modes with α = 0.25 (—), 0.75 (- - -) and 1.25 (-·-). Red curves:
β = 0.25 modes with α = 0.25 (—) and 0.5 (- - -). Green curves: β = 0.5 modes with α = 1.0
(—), 0.5 (- - -) and 1.5 (-·-). See figure 14 for explanation of the vertical lines.

break down and eventually laminarizes. When all disturbances have been damped to
very low levels, the (1, 0) mode starts to grow again and the extreme-amplitude state
and breakdown is repeated quasi-periodically. The period time is extremely long, of
the order of 2000 time units, which corresponds to around 50 times of flow through
the 8πδ box.

6.1. Periodic breakdown
The breakdown from the extreme-amplitude state will be further analysed. We will
start by visualizing the fluctuating streamwise velocity in figure 14, showing coloured
contour plots of (x, z)-planes at the wall-normal position, y/δ = 0.72. The first five
snapshots are taken closely in time around the second peak in figure 13 and the last
one just before the third peak. These times are indicated in figure 13 as vertical lines.

In the first snapshot, for t∗ = 4827, we clearly see the high-amplitude (1, 0) mode
with a small modulation by the (1.25, 0) mode, which is also visible in figure 13.
The early signs of influence of oblique modes can be seen in the second snapshot
and in the third snapshot, for t∗ = 4909, large-amplitude three-dimensional structures
are formed and develop into turbulence in the next snapshot at t∗ = 4990. Due to the
rapid rotation all β 6= 0 modes are strongly damped and the turbulence will rapidly
decay. It is interesting to note that for t∗ = 5072 very little remains of the initial (1, 0)
mode. The last figure, at t∗ = 7118, shows the flow after a long time when it has been
laminarized and the (1, 0) mode is re-formed just before the third breakdown. With the
present colour scale nothing can be seen in between the last two snapshots.

The first appearance of three-dimensional structures at t∗ = 4909 is clearly seen
in figure 15 from the wall-normal and spanwise components of the fluctuations. The
typical pattern of oblique waves for secondary instabilities of plane waves is seen.

All three-dimensional structures are linearly stable in this case, but the formation
of these structures may be enabled by the extreme amplitude of the α = 1 mode.
This process is visualized in figure 16, which shows the modal energy content at
y/δ = 0.72 for the same times as for the snapshots in figure 14. Initially, for t∗ = 4827,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

30
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.300


Laminarization mechanisms 213

0

5

10

15

20

25

5 10 15 20 25 0

5

10

15

20

25

5 10 15 20 25 0

5

10

15

20

25

5 10 15 20 25

0

5

10

15

20

25

5 10 15 20 250

5

10

15

20

25

5 10 15 20 250

5

10

15

20

25

5 10 15 20 25

–0.2

–0.1

0

0.1

0.2

FIGURE 14. Snapshots of streamwise velocity fluctuations, u/Ulam
b , at y/δ = 0.72 for

t∗ = tUlam
b /δ = 4827, 4876, 4909, 4990, 5072 and 7118. The different times are marked in

figure 13. Same colour scale is valid in all plots.
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FIGURE 15. Snapshots of (a) wall-normal, v/Ulam
b , and (b) spanwise, w/Ulam

b , velocity
fluctuations at y/δ = 0.72 for t∗ = tUlam

b /δ = 4909. Same colour scale as in figure 14.

we can only see the different β = 0 modes where α = 1 dominates. There is also a
small content in the (0.5, 0.25) and (1.0, 0.5) modes, which simply are residues of the
previous breakdown, see figure 13(b). The particular position y/δ = 0.72 is chosen as
a good compromise for illustrating both the primary and secondary instabilities. The
secondary instability turned out to be most clearly visualized at the stable side of
the channel, and the energy content at y/δ = 0.72 also reasonably well represents the
integrated energy of the instabilities.
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FIGURE 16. Contour plots of total energy (log(E(α, β)/(Ulam
b )

2) in the Fourier (α, β)-plane
at the same wall-normal position and time steps as in figure 14. The mean flow (0, 0) is
excluded.

In the next plot in figure 16 for t∗ = 4876 the amplitude of the (1, 0) mode enables
the growth of three-dimensional modes and we can see a series of different β = 0.5
modes. The third plot in figure 16 for t∗ = 4909 shows that the turbulence energy
cascade to higher wavenumbers has started. However, the energy spectrum is still
dominated by the β = 0 modes, but different β = 0.5 modes have grown significantly.
However, in the next plot at t∗ = 4990 the β = 0 modes also start to break down and
cascade into higher modes.

Turning our attention to figure 13(b) we see that the initial breakdown of the (1, 0)
mode consists of three stages. (i) First, the set of β = 0.5 modes (green curves) are
the most rapidly growing three-dimensional modes initially up to t∗ = 4909 while the
β = 0 modes are still growing. (ii) In the next stage up to t∗ = 4990, the β = 0.25
modes are taking over. The differences in β = 0 and β = 0.5 modes are now reduced
indicating energy transfer between these modes. However, the total disturbance energy
is still increasing. (iii) The third stage is a massive breakdown of all modes into
turbulence, which then decays rapidly. However, some of the energy goes in the
opposite direction into the (0.25, 0) mode, which is the most energetic mode at this
final stage at t∗ = 5072.

6.2. Computational box size
The β = 0.5 modes play a key role in the breakdown of the β = 0 modes into
three-dimensional structures and eventually turbulence. By reducing the computational
box size to 2πδ in the spanwise direction the β = 0.5 mode cannot be captured in the
computation. The consequence is that the three-dimensional breakdown is disabled and
the solution will saturate at the extreme-amplitude state, which becomes statistically
steady.
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FIGURE 17. Energy for various modes integrated in the y-direction for the box sizes (a)
4πδ × 2δ × 4πδ and (b) 16πδ × 2δ × 16πδ. Thick curves: total fluctuation energy K for the
present case (- - -) and corresponding non-rotating turbulent case (-·-). Thin curves: β = 0
modes with α = 1.0 (—), 0.5 (- - -) and 1.5 (-·-). Also α = 0.875 (· · ·) is added to (b).

With a box size of 4πδ× 2δ× 4πδ, see figure 17(a), the β = 0.5 modes are captured
but not the β = 0.25 modes. The degree of freedom for energy transfer is hence
reduced, leading to an increased period. By increasing the box size to 16πδ×2δ×16πδ,
see figure 17(b), essentially the same behaviour as for the 8πδ × 2δ × 8πδ box is seen
but with a somewhat decreased period. The 8πδ × 2δ × 8πδ box is hence believed to
be able to capture the essential dynamics of the flow. Some additional combinations
of streamwise and spanwise box sizes and resolution were tested, see table 1, with
essentially the same cyclic behaviour as long as the spanwise box size is at least 4πδ.

6.3. Extreme-amplitude state

The (1, 0) mode will grow exponentially to extreme amplitudes much larger than in
fully developed turbulence. The amplitude is far into the nonlinear regime which will
strongly influence the mean velocity.

In figure 18, the flow is averaged in the homogeneous directions at t∗ = 4827 just
before the three-dimensional breakdown for extracting the Reynolds-averaged statistics
in terms of mean velocity and fluctuation correlations. The mean velocity profile is
rather close to that for laminar flow. This indicates that although the amplitude is
much higher than for turbulent flows, the contribution to the mixing is much weaker
than in turbulent flows.

Among the normal Reynolds stresses, the streamwise and wall-normal components
dominate over the spanwise component. Compared to non-rotating turbulent channel
flow, the magnitude of uu+ and vv+ is higher by at least an order of magnitude.
On the other hand, the uv+ correlation is governed by the momentum equation and
essentially limited to the interval ±1.

Even though the amplitude is extremely large, the shapes of the uu and vv profiles
resemble that of the TS eigenmodes with near-wall peaks for uu and a peak in the
channel centre for vv. The similarity with linear TS modes is striking. Also the TS
modes have a very weak uv correlation, which is related to the amplification rate,
typically of the order of 0.01, see figure 5. The finite-amplitude growth rate observed
for the α = 1 mode is roughly that given by the linear growth rate.
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FIGURE 18. (a) Mean velocity in wall units (—) compared with the parabolic laminar profile
(- - -) and non-rotating turbulent channel flow (-·-). (b) Reynolds stresses in wall units: uu+
(—), vv+ (- - -), ww+ (· · ·). t∗ = 4827.

As a reflection of the amplitudes present here we may note that the peak-to-peak
u-amplitude of the α = 1 mode corresponds to ∼50 % of Ub before breakdown,
signifying the fact that we here consider a saturated nonlinear state of extreme
amplitude.

7. Concluding remarks
We have observed that spanwise rotating channel flow reaches a nonlinear periodic

state for supercritical rotation rates with cyclic growth of disturbances, turbulence
breakdown and relaminarization. The periodic flow is remarkable for several reasons.
First, the fluctuations reach extreme amplitudes before breakdown. Peak r.m.s. of
velocity fluctuations reach values up to 20 % of the bulk velocity. Such extremely
large-amplitude fluctuations, much higher than that of typical turbulence, are rarely
seen. The peak amplitude before turbulence breakdown is much higher than in other
nonlinear non-turbulent states, such as for Görtler, Taylor or Dean vortices, in flows
with Coriolis forces or in flows with buoyancy or Lorentz forces. Secondly, the
period is extremely long, in the order of 1000 time units normalized by the channel
half-height and bulk velocity. Such a time scale is more than sufficient for obtaining
a statistically steady state for the non-rotating channel, and also for collecting the
steady-state statistics.

The periodic state can only exist when all cross-flow modes with β 6= 0 are damped
(through linear mechanisms) by the rotation. This occurs when the rotation number
is larger than the critical value, Roc. In the absence of three-dimensional structures,
two-dimensional TS modes can grow if the Reynolds number is supercritical. The
TS modes will not break down to turbulence in the usual way because of the strong
stabilization of three-dimensional modes needed for the turbulence cascade. Hence,
the TS modes may grow to extremely high amplitudes before the nonlinearity of the
TS modes will override the stabilization by rotation. Secondary instability preceding
turbulence breakdown is dominated by transfer of energy to a series of β ≈ 0.5 modes.
Actually, it was found that these β modes are necessary for the turbulent breakdown
to occur. Disabling the β = 1/2 modes by choosing a smaller 2πδ computational box
in the spanwise direction was shown to prevent breakdown to turbulence and the
flow then saturates at the state of extreme-amplitude TS waves where the growth is
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balanced by viscous dissipative mechanisms. The sensitivity of low β wavenumbers
was found to be strong; although the turbulence breakdown was found to be captured
with a 4πδ × 4πδ box, the period for the cyclic behaviour was significantly larger than
for the larger (8πδ× 8πδ and 16πδ× 16πδ) boxes. Hence most of the results presented
were obtained with the 8πδ×8πδ box, which was judged to be large enough to capture
all essential features of the cyclic growth and breakdown of the flow.

Some aspects of this saturated state were previously observed and documented by
Lamballais et al. (1996), but they did not observe any turbulent breakdown in their
simulation of the most rapidly rotating flow. However, the rotation rate was higher
than in the present study but they also used a rather small 4πδ × 4πδ computational
box. Whether the turbulence breakdown in their simulation is prohibited by the
stronger rotation rate or too small a computational box is not known.

Subcritical rotation rates result in statistically steady turbulent flow with a well-
known asymmetric velocity profile with a linear region which is linearly neutrally
stable. The turbulence is reduced by increasing rotation and will be completely
damped at the critical rotation number, Roc. There is no hysteresis on increasing or
decreasing Ro around Roc which here was shown to be very precisely determined by
linear stability. Hence, linear mechanisms not only govern the transition to turbulence,
but, more surprisingly, the critical rotation number also specifies when the flow will
relaminarize from a fully turbulent state. The linear mechanisms are, thus, not only
strongly unstable for subcritical rotation numbers but also strongly stabilized for
supercritical Ro where no turbulence can be sustained. This is remarkable since in
most cases neutral stability only defines when disturbances can start to grow and
usually the existence of turbulence is not very strongly related to the linear stability.
The linear growth rate can be extremely high, of order unity, for rotation rates slightly
lower than the critical one, which is an explanation for the extremely good comparison
between the theoretically and numerically determined critical rotation numbers.

Linear mechanisms have multiple roles in strongly rotating channel flows. For lower
Ro < Roc the linear part of the asymmetric turbulent velocity profile is governed by
linear stability. Moreover, linearly unstable modes are superimposed on the turbulent
velocity field, being more dominating as Roc is approached. The laminarization of the
flow at Ro= Roc is related to the fact that all cross-flow modes become linearly stable,
which enables the linear, and eventually nonlinear, growth of TS waves to extreme
nonlinear amplitudes with remarkably close resemblance to the linear TS eigenmode.
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