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1. Introduction

The present paper is a continuation of the work [13]. Our goal is to study the boundary
behaviour of certain classes of functions on almost complex manifolds with boundary. It
is well known that non-constant holomorphic functions do not exit (even locally) on an
almost complex manifold (M, J) (of complex dimension > 1) with an almost complex
structure J in general position. This makes it natural to study the functions satisfying
suitable assumptions on the ∂J -part of their differential: indeed, in this case, the problem
of existence does not arise. Various aspects of the boundary behaviour of functions in C

n

whose ∂ (with respect to the standard complex structure) part of the differential is of
some prescribed growth, have been explored by several authors [2, 5, 8–10]. Their results
admit important applications in several complex variables.

We extend some of the well-known results on boundary values of bounded holomorphic
functions (see [1, 2, 4, 11]) of several complex variables to the almost complex case. Note
that our main results are new also in the case of the space C

n equipped with the standard
complex structure. The main result is Theorem 3.2 establishing a Fatou type theorem for
domains with generic corners (wedges). I also mention that, despite the fact the obtained
results concern the classes of functions much larger than the holomorphic ones, the pres-
ence of an (almost) complex structure is crucial. In particular, this is due to the fact that
we are working with low-dimensional submanifolds of the boundary which are transverse
to an almost complex structure (totally real manifolds). Also, pseudoholomorphic curves
(introduced in [3]) are our main technical tool. We note that the main difficulty of the
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proof is that in the case of wedge-type domains the Chirka–Lindelöf principle does not
assure a non-tangential convergence. This obstacle is a principal difference with respect
to the case of smooth boundaries and it considerably complicates the proof. This is the
main motivation for the present paper.

The paper is organized as follows. Section 2 is preliminary and contains a brief presen-
tation of the theory of almost complex manifolds and their properties. In § 3, we present
our main result. Section 4 contains its proof.

2. Preliminaries: almost complex manifolds and their maps

Here, we briefly recall basic notions concerning almost complex manifolds; a detailed
presentation is contained for example in [13]. Everywhere through this paper, we assume
that manifolds and almost complex structures are of class C∞ (the word ’smooth’ means
the regularity of this class); we notice however that the main results remain true under
considerably weaker regularity assumptions.

Let M be a smooth manifold of real dimension 2n. An almost complex structure J
on M is a smooth map which associates to every point p ∈ M a linear isomorphism
J(p) : TpM → TpM of the tangent space TpM such that J(p)2 = −Id; here Id denotes
the identity map of TpM . Thus, every linear map J(p) is a complex structure (in the
usual sense of Linear Algebra) on a real vector space TpM . A couple (M, J) is called an
almost complex manifold of complex dimension n.

A basic example is given by the standard complex structure Jst = J
(2)
st on M = R

2; it
is represented in the canonical coordinates of R

2 by the matrix

J
(2)
st =

(
0 −1
1 0

)
(1)

More generally, the standard complex structure Jst on R
2n is represented by the block

diagonal matrix Jst = diag(J (2)
st , . . . , J

(2)
st ) (here and below, we drop the notation of

dimension). Putting iv := Jv for v ∈ R
2n, we identify (R2n, Jst) with C

n; we use the nota-
tion z = x + iy = x + Jy for the standard complex coordinates z = (z1, . . . , zn)∈ C

n.
Let (M, J) and (M ′, J ′) be smooth almost complex manifolds. A C1-map f : M ′ →

M is called (J ′, J)-complex or (J ′, J)-holomorphic if it satisfies the Cauchy–Riemann
equations

df ◦ J ′ = J ◦ df. (2)

For example, a map f : C
n → C

m is (Jst, Jst)-holomorphic if and only if each compo-
nent of f is a usual holomorphic function. In this special case, Equation (2) coincides with
the usual Cauchy–Riemann equations in their real form. Note that in general, the first-
order PDE elliptic system (2) does not split on independent equations for components
of f .

Every almost complex manifold (M, J) can be viewed locally as the Euclidean
unit ball B

n (or any other domain) in C
n equipped with a small (in any Cm-norm)

almost complex deformation of Jst. The following well-known statement is often very
useful.
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Lemma 2.1. Let (M, J) be an almost complex manifold of complex dimension n.
Then, for every point p ∈ M , every m ≥ 0 and λ0 > 0 there exists a neighbourhood U of p
and a coordinate diffeomorphism z : U → B

n such that z(p) = 0, dz(p) ◦ J(p) ◦ dz−1(0) =
Jst, and the direct image z∗(J) := dz ◦ J ◦ dz−1 satisfies ||z∗(J) − Jst||Cm(Bn) ≤ λ0.

A simple proof is contained for example in [13].
In what follows we often denote the direct image z∗(J) of J again by J , viewing it as a

matrix representation of J in the local coordinate system (z). Of course, the coordinate
map z is (J, z∗(J))-biholomorphic. However, in general, z∗(J) does not coincide with Jst

in a neighbourhood of the origin in C
n. Recall that an almost complex structure J is called

integrable if (M, J) is locally biholomorphic in a neighbourhood of each point to an open
subset of (Cn, Jst). In the case of complex dimension 1, every almost complex structure
is integrable. In the case of complex dimension > 1 integrable almost complex structures
form a highly special subclass in the space of all almost complex structures on M . An
efficient criterion of integrability is provided by the classical theorem of Newlander–
Nirenberg [6]: the entries of J must satisfy some PDE system.

In the special case where M ′ has the complex dimension 1, the solutions f of (2) are
called J-complex (or J-holomorphic or pseudoholomorphic) curves. Note that we view
here the curves as maps, i.e., we consider parametrized curves. We use the notation
D = {ζ ∈ C : |ζ| < 1} for the unit disc in C (i.e., B

1) always assuming that it is equipped
with the standard complex structure Jst. Considering Equation (2) with M ′ = D, we
call such a map f a J-complex disc or a pseudoholomorphic disc or just a holomorphic
disc when a structure J on the target space is fixed. If a disc f is continuous up to the
boundary bD of D, then the restriction of f on bD is called the boundary of f . Let γ be
a non-empty subset of bD and let K be a subset of M . If f(γ) ⊂ K, we say that f is
attached or glued to K along γ. In this paper, γ usually will be the upper half-circle.

A fundamental fact is that pseudoholomorphic discs always exist in a suitable neigh-
bourhood of any point of p ∈ M ; furthermore, one can choose such a disc tangent to any
prescribed direction v ∈ TpM . These discs depend smoothly on the deformation of J , p
and v. Furthermore, one can view them as a small deformation of discs in usual complex
lines. This is the classical Nijenhuis–Woolf theorem (see [7]). For the proof and other
applications, it is convenient to rewrite Equation (2) in local coordinates similarly to the
complex version of the usual Cauchy–Riemann equations.

Our considerations are local, so assume that we are in a neighbourhood Ω of 0 in C
n

with the standard complex coordinates z = (z1, . . . , zn). We assume that J is an almost
complex structure defined on Ω and J(0) = Jst. Let a C1-map

z : D → Ω,

z : ζ �→ z(ζ)

be a J-complex disc. Equation (2) can be rewritten in the equivalent form

zζ − A(z)zζ = 0, ζ ∈ D. (3)

where we use the notation zζ = ∂z/∂ζ. Here, a smooth map A : Ω → Mat(n, C) is defined
by the equality L(z)v = Av for any vector v ∈ C

n and L is an R-linear map defined by
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L = (Jst + J)−1(Jst − J). It is easy to check that the condition J2 = −Id is equivalent
to the fact that L is C-linear. The matrix A(z) is called the complex matrix of J in the
local coordinates z (see [14]). Locally the correspondence between A and J is one-to-one.
Note that the condition J(0) = Jst means that A(0) = 0.

If t are other local coordinates and A′ is the corresponding complex matrix of J in the
coordinates t, then, as it is easy to check, we have the following transformation rule:

A′ = (tzA + tz)(tz + tzA)−1 (4)

(see the proof in [14]).
For the convenience of readers, I sketch here the proof of the above-mentioned

Nijenhuis–Woolf theorem because this standard construction will be used below in the
proof of the main results. Recall that for a complex function f the Cauchy–Green
transform Tf is defined by

Tf(ζ) =
1

2πi

∫
D

f(ω)dω ∧ dω

ω − ζ
(5)

This classical integral operator has the following properties:

(i) T : Cr(D) → Cr+1(D) is a bounded linear operator for every non-integer r > 0
(a similar property holds in the Sobolev scale). Here, we use the usual Hölder
norm on the space Cr(D).

(ii) (Tf)ζ = f , i.e., T solves the ∂-equation in the unit disc.

(iii) the function Tf is holomorphic on C \ D.

Now, fix a real non-integer r > 1. Let z : D → C
n, z : D 
 ζ �→ z(ζ) be a J-complex disc.

Since the operator
ΨJ : z −→ w = z − TA(z)zζ

takes the space Cr(D) into itself, we can write equation (3) in the form

ΨJ(z) = h

where h is an arbitrary holomorphic (with respect to Jst) vector-function. Thus, the disc
z is J-holomorphic if and only if the disc h = ΨJ(z) : D −→ C

n is Jst-holomorphic. When
the norm of A is small enough (which is assured by Lemma 2.1), then the operator ΨJ is
a small deformation of the identity and by the implicit function theorem, this operator
is invertible. Hence we obtain a one-to-one correspondence between J-holomorphic discs
and usual Jst-holomorphic discs. This easily implies the existence of a J-holomorphic disc
in a given tangent direction through a given point of M (choosing a suitable complex
linear disc as h), as well as a smooth dependence of such a disc on a deformation of a
point or a tangent vector, or on an almost complex structure; this also establishes the
interior elliptic regularity of discs.

Now, we can define the ∂J -operator on an almost complex manifold (M, J). Consider
first the situation when J be an almost complex structure defined in a domain Ω ⊂ C

n;
one can view this as a local coordinate representation of J in a chart on M .
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A C1 function F : Ω → C is (J, Jst)-holomorphic if and only if it satisfies the Cauchy–
Riemann equations

Fz + FzA(z) = 0, (6)

where Fz = (∂F/∂z1, . . . , ∂F/∂zn) and Fz = (∂F/∂z1, . . . , ∂F/∂zn) are viewed as row-
vectors. Generally, the only solutions to (6) are constant functions unless J is integrable
(then A vanishes identically in suitable coordinates). Note also that (6) is an overde-
termined linear PDE system while (3) is a quasilinear PDE for a vector function
on D.

Every 1-differential form φ on (M, J) admits a unique decomposition φ = φ1,0 + φ0,1

with respect to J . In particular, if F : (M, J) → C is a C1-complex function, we have
dF = dF 1,0 + dF 0,1. We use the notation

∂JF = dF 1,0 and ∂JF = dF 0,1 (7)

To write these operators explicitly in local coordinates, we find a local basic in the space of
(1,0) and (0,1) forms. We view dz = (dz1, . . . , dzn)t and dz = (dz1, . . . , dzn)t as vector-
columns. Then, the forms

α = (α1, . . . , αn)t = dz − Adz and α = dz − Adz (8)

form a basis in the space of (1,0) and (0,1) forms respectively. Indeed, it suffices to note
that for 1-form β is (1,0) (respectively (0, 1)) for if and only if for every J-holomorphic disc
z the pull-back z∗β is a usual (1,0) (respectively (0, 1)) form on D. Using the equations,
(3) we obtain the claim.

Now, we decompose the differential dF = Fzdz + Fzdz = ∂JF + ∂JF in the basis α, α
using (8) and obtain the explicit expression

∂JF = (Fz(I − AA)−1 + Fz(I − AA)−1A)α (9)

It is easy to check that the holomorphy condition ∂JF = 0 is equivalent to (6) because
(I − AA)−1A(I − AA) = A. Thus

∂JF = (Fz + FzA)(I − AA)−1α

We note that the term (I − AA)−1 as well as the forms α affect only the non-essential
constants in local estimates of the ∂J -operator near a boundary point which we will
perform in the next sections. So, we may assume that in local coordinates this operator
is simply given by the left-hand expression of (6).

3. Main result

First, we introduce the main class of domains for this paper.

https://doi.org/10.1017/S0013091522000335 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091522000335


On the Fatou theorem for ∂J -subsolutions in wedges 765

Let M be an almost complex manifold. A generic manifold E of real codimension k in
M can be defined as

E = {p ∈ M : ρj(p) = 0, j = 1, . . . , k} (10)

where ρj : M → R are smooth real functions satisfying

∂Jρ1 ∧ . . . ∧ ∂Jρk �= 0 (11)

near E. This condition means that the complex linear parts (with resect to J) of differen-
tials of ρj are C-linearly independent. Precisely as in the case of an integrable structure,
this means that the tangent space TpE spans TpM , i.e., the complex hull of TpE coincides
with TpM . If additionally k = n (the maximal possible value of k compatible with the
assumption (11)), then E is totally real. It is equivalent to the fact that for every p the
holomorphic tangent space TpE ∩ J(TpE) is trivial.

A domain W = W (E) of the form

W (E) = {p ∈ M : ρj(p) < 0, j = 1, . . . , k} (12)

is called a wedge with the edge E. Of course, if k = 1 we have the usual smoothly bounded
domains.

Let Ω be a bounded domain in an almost complex manifold (M, J). We always assume
that Ω is a wedge W (E) of type (12) with the edge E.

Fix a hermitian metric on M compatible with J ; a choice of such metric will not affect
our results because it changes only constant factors in estimates. We measure all distances
and norms with respect to the chosen metric.

Let p ∈ E be a point of the edge. Fix local coordinates z on M near p such that p = 0
in these coordinates. A cone K ⊂ Ω with the vertex p is defined as the set of z ∈ Ω such
in the above local coordinates K is a usual circular cone with vertex at the origin and
directed by some ray l ⊂ Ω.

A non-tangential approach to E at p can be defined as the limit along the sets K.
Clearly, this notion is independent of the choice of local coordinates.

Definition 3.1. A function F : Ω → C admits a non-tangential limit L at p ∈ E if

lim
K�z→p

F (z) = L

for each cone K ⊂ Ω with vertex at p.

As above, this definition is independent of a choice of local coordinates and metrics.
The main result of the present paper is the following version of the Fatou theorem.

Theorem 3.2. Let (M, J) be an almost complex manifold of complex dimension n ≥ 1
and W (E) be a wedge with a totally real edge E in M . Suppose that F ∈ L∞(W (E)) is
a complex function of class C1 on W (E) and ∂JF is bounded on W (E). Then, F admits
a non-tangential limit almost everywhere on E.

Of course, the interesting case arises only for n > 1. Note that this result is new also in
the case where M = C

n and J coincides with the standard complex structure Jst. Note
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also that in the case where the edge E is not totally real but only a generic manifold with
non-zero tangent space, the convergent regions are tangent to E along the holomorphic
tangent space of E, as usual in this type of problems (see [1, 2, 11, 13]). The assumption
of the boundedness of ∂JF also may be weakened. We drop the technical details focusing
our presentation on the key case.

4. Proof of Theorem 3.2

Our approach is based on the works [1, 4, 11, 13]. The proof of Theorem contains several
steps.

4.1. One-dimensional case

Recall some boundary properties of subsolutions of the ∂-operator in the unit disc.
Denote by W k,p(D) the usual Sobolev classes of functions admitting generalized partial

derivatives up to the order k in Lp(D) (in fact we need only the case k = 0 and k = 1).
In particular W 0,p(D) = Lp(D). We will always assume that p > 2.

Denote also by ‖ f ‖∞= supD |f | the usual sup-norm on the space L∞(D) of complex
functions bounded on D.

Lemma 4.1. Let f ∈ L∞(D) and fζ ∈ Lp(D) for some p > 2. Then

(a) f admits a non-tangential limit at almost every point ζ ∈ bD.

(b) if f admits a limit along a curve in D approaching bD non-tangentially at a boundary
point eiθ ∈ bD, then f admits a non-tangential limit at eiθ.

(c) for each positive r < 1 there exists a constant C = C(r) > 0 (independent of f)
such that for every ζj ∈ rD, j = 1, 2 one has

|f(ζ1) − f(ζ2)| ≤ C(‖f ‖∞ +‖fζ ‖Lp(D))|ζ1 − ζ2|1−2/p (13)

The proof is contained in [13].
Sometimes it is convenient to apply the part (c) of Lemma on the disc ρD with ρ > 0.

Let g ∈ L∞(ρD) and gζ ∈ Lp(ρD). The function f(ζ) := g(ρζ) satisfies the assumptions
of Lemma 4.1 on D. Let 0 < α < ρ and let |τj | < α, j = 1, 2. Set ζj = τj/ρ. Then, |ζj | <
r = α/ρ < 1, j = 1, 2. Applying (c) Lemma 4.1 to f , we obtain:

|g(τ1) − g(τ2)| ≤ (C(r)/ρ1−2/p)(‖g ‖∞ +ρ ‖ gζ ‖Lp(ρD))|τ1 − τ2|1−2/p (14)

Note that C = C(r) = C(α/ρ) depends only on the quotient r = α/ρ < 1. If r is separated
from 1, the value of C is fixed.

4.2. Attaching discs to a totally real manifold

Our proof of Theorem 3.2 uses the properties of a family of pseudoholomorphic discs
constructed in [12]. For the sake of completeness, I briefly recall this construction; the
proofs are contained in [12]. Note also that this construction is well known in the case of
the standard complex structure.
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(a) First consider the model case where M = C
n with J = Jst and E = iRn = {xj =

0, j = 1, . . . , n}. Denote by W the standard wedge W0 = {z = x + iy : xj < 0, j =
1, . . . , n}.
Consider the family of complex lines in C

n:

l : (c, t, ζ) �→ (ζ, ζt + ic) ∈ C
n (15)

Here, ζ ∈ C; the variables c = (c2, . . . , cn) ∈ R
n−1 and t ∈ R

n−1
+ = {t = (t2, . . . , tn)

∈ R
n−1 : tj > 0}) are viewed as parameters. Hence we wite l(c, t, ζ) = l(c, t)(ζ).

Denote by V the wedge V = R
n−1 × R

n−1
+ . Also let Π = {Re ζ < 0} be the left

half-plane; its boundary bΠ coincides with the imaginary axis iR. The following
properties of the above family are easy to check:

(a1) the images l(c, t)(bΠ) form a family of real lines in iRn = E. For every fixed
t ∈ R

n−1
+ , these lines are disjoint and

∪c∈Rn−1 l(c, t)(bΠ) = E.

In other words, for every t, this family (depending on the parameter c) forms
a foliation of E by parallel lines.

(a2) one has

∪(c,t)∈V l(c, t)(Π) = W0.

(a3) For every fixed t ∈ R
n−1
+ , one has

∪c∈Rn−1 l(c, t)(Π) = Et = {z ∈ C
n : Re (zj − tjz1) = 0, j = 2, . . . , n} ∩ W0

and the union is disjoint. Every Et is a real linear (n + 1)-dimensional half-space
contained in W0 and bEt = E.

(a4) the family (Et), t ∈ R
n−1
+ is disjoint in W0 and its union coincides with W0.

In what follows we will use these properties locally in a neighbourhood of the origin. It
is convenient to reparametrize the family of complex half-lines l(c, t) by complex discs.
Consider the Schwarz integral:

Sφ(ζ) =
1

2πi

∫
bD

ω + ζ

ω − ζ
φ(ω)

dω

ω
(16)

For a non-integer r > 1 consider the Banach spaces Cr(bD) and Cr(D) (with the usual
Hölder norm). It is classical that S is a bounded linear map in these classes of functions.
For a real function φ ∈ Cr(bD) the Schwarz integral Sφ is a function of class Cr(D)
holomorphic in D; the trace of its real part on the boundary coincides with φ and its
imaginary part vanishes at the origin.

To fill W0 by complex discs glued to iRn along the (closed) upper semi-circle
bD+ = {eiθ : θ ∈ [0, π]} we have to reparametrize the above family of complex lines. Set
also bD− := bD \ bD+. Fix a smooth real function φ : bD → [−1, 0] such that φ|bD+ = 0
and φ|bD− < 0.
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Consider now a real 2n-parametric family of holomorphic discs z0 = (z0
1 , . . . , z0

n) : D →
C

n with components

z0
j (c, t)(ζ) = xj(ζ) + iyj(ζ) = tjSφ(ζ) + icj , j = 1, . . . , n (17)

Here, tj > 0 and cj ∈ R are parameters
Obviously, every z0(c, t)(D) is a subset of l(c, t)(Π) and z0(bD+) = l(c, t)(bΠ). Thus,

the family z0(c, t) is a (local) biholomorphic reparametrization of the family l(c, t). As
a consequence, the properties (a1)–(a5) also hold for the family z0(c, t). Notice also the
following obvious properties of this family:

(a6) for every j, one has xj |bD+ = 0 and xj(ζ) < 0 when ζ ∈ D (by the maximum
principle for harmonic functions).

(a7) the evaluation map Ev0 : (c, t, ζ) �→ z0(c, t)(ζ) is one-to-one from V × D to W0.

In the general case consider a totally real manifold E and the wedge W = W (E) given
by (12). Applying the implicit function theorem in suitable local coordinates, one can
assume that E is defined by the vector equation x = h(y) where h(0) = 0, and dh(0) = 0.
Using the Cauchy–Green operator and the Schwarz integral, one can write a nonlinear
integral equation such that its solutions of the form

(c, t, ζ) �→ z(c, t)(ζ) (18)

are J-complex discs glued to E along bD+. Since h(y) = o(|y|), the family z(c, t) is a
small deformation of the family z0(c, t) in any Cm norm, m > 1. This follows by the
implicit function theorem solving the above-mentioned integral equation (see details in
[13]). Hence, the geometric properties of obtained discs remain similar to the above
model case: indeed, the properties of linear discs (a1)–(a5) are stable under small
perturbations.

(b) For reader’s convenience, we state explicitly the properties of the family (18).
Fix δ > 0. The family z(c, t) : D → W of pseudoholomorphic discs smooth on D

and smoothly depending on real parameters t = (t2, . . . , tn), tj > 0 and c ∈ R
n−1,

satisfies the following properties:
(b1) the images z(c, t)(bD+) form a family of real curves in E. For every fixed

t ∈ R
n−1
+ , these curves are disjoint and

∪c∈Rn−1z(c, t)(bD+) = E.

In other words, for every t, this family (depending on the parameter t) forms
a foliation of E. Furthermore, every disc is contained in W = W (E).

(b2) one has the inclusion

Wδ = {z : ρj − δ
∑
k �=j

ρk < 0} ⊂ ∪(c,t)∈V z(c, t)(D).
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(b3) For every fixed t ∈ R
n−1
+ , the union

Et := ∪c∈Rn−1z(c, t)(D) ⊂ W

is a real generic (n + 1)-dimensional manifold with boundary bEt = E.

(b4) the family (Et), t ∈ R
n−1
+ is disjoint and its union contains Wδ.

4.3. Around the Chirka–Lindelöf principle

Here, we introduce an analog of the Chirka–Lindelöf principle [1] for wedges in almost
complex manifolds. This is one of the main technical tools of our proof. Note that in [1] the
situation is considered in full generality (for integrable complex structures) with minimal
assumptions on the regularity of domains. It is observed there that in the case of domains
with piecewise smooth boundaries, for a bounded holomorphic function an existence of
a boundary limit along a smooth curve (transverse to the boundary) does not imply an
existence of a non-tangential limit at a boundary point. This is a serious difference with
respect to smoothly bounded domains and one of the main technical obstacles in the
proof of our main result. Nevertheless, in the non-smooth case, the convergence along a
curve implies an existence of the limit along any curve with the same tangent line at a
boundary point.

Let W = W (E) be a wedge with the edge E in an almost complex manifold (M, J) of
dimension > 1 and let p be a point of E.

A curve γ : [0, 1[→ W (E) is called p-admissible if the following assumptions are
satisfied:

(i) γ of class C∞[0, 1] and p = γ(1) ∈ E;

(ii) γ is not tangent to any face {ρj = 0}, j = 1, . . . , n at p. In particular, γ is not
tangent to E.

Proposition 4.2. Let W (E) be a wedge with the edge E in an almost complex mani-
fold (M, J) of dimension > 1, and let F satisfies assumptions of Theorem 3.2. If F has a
limit along a p-admissible curve γ1 at p ∈ E, then F has the same limit along each curve
in W (E) tangent to γ1 at p.

Proof. Let γ2 be another curve satisfying the assumptions (i), (ii) and such that γ1

and γ2 have the same tangent line at p. Without loss of generality assume that p = 0 (in
local coordinates).

It follows by the Nijenhuis–Woolf theorem that there exists a family zt(ζ) : D → C
n, of

embedded J-holomorphic discs near the origin in C
n satisfying the following properties:

(iii) the family zt is smooth on D × [0, 1]

(iv) for every t ∈ [0, 1], the disc zt transversally intersects each curve γj at a unique
point corresponding to some parameter value ζj(t) ∈ D, t ∈ [0, 1[, j = 1, 2. In other
words γj(t) = zt(ζj(t)). Furthermore, ζ1(t) = 0, i.e., this point is the center of the
disc zt.
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In the case of the standard complex structure each, such a disc is simply an open piece
(suitably parametrized) of a complex line intersecting transversally the both of curves γj .
Recall that the curves are embedded near the origin and tangent at the origin so such
a family of complex lines obviously exist. The J-holomorphic discs are obtained from
this family of lines by a small deformation described in the proof of the Nijenhuis–Woolf
theorem in § 2.

Furthermore, because of the condition (iii), the restrictions F ◦ zt have ζ- derivatives
bounded on D uniformly with respect to t. Indeed, it follows by the Chain Rule and (3)
that

(F ◦ z)ζ = (Fz + FzA)zζ

and now we use the assumption that ∂JF is bounded.
Since the curves γj are tangent at the origin, we have

|ζ2(t)| = o(1 − t) (19)

as t → 1.
The curve γ1 is admissible, so we have

dist(γ1(t), bW ) = O(1 − t)

as t → 1. Hence, there exists ρ(t) = O(1 − t) as t → 1 such that zt(ρ(t)D) is contained in
W . Fix a real r > 0 which appears in (14). Applying (14) to the composition f := F ◦ zt(ζ)
on the disc ρ(t)D, we obtain

|f(0) − f(ζ2(t))| ≤ (C/O(1 − t)1−2/p)(‖f ‖∞ +O(1 − t) ‖ fζ ‖∞)o((1 − t)1−2/p → 0
(20)

as t → 1. Note that by (19) for every t, the point ζ2(t) is contained in (1/2)ρ(t)D; hence,
the constant C is independent of t (see remark after (14)). This concludes the proof. �

4.4. Convergence along families of rays

Under some additional assumptions, one can assure a non-tangential convergence. Fix
local coordinates such that E = iRn, W = W (E) = {xj < 0, j = 1, . . . , n}, J(0) = Jst.
Such a change of coordinates is always possible by Lemma 2.1. Through the remaining
part of this paper, we assume that such local coordinates are fixed.

Let z(c, t)(ζ) be a J-complex disc constructed in § 4.2. It follows by Lemma 4.1 that
the composition F ◦ z(c, t) admits non-tangential limits almost everywhere on bD+.

Let p ∈ E. Assume F ◦ z(c, t) admits a radial limit at point ζ0 ∈ bD+ and z(c, t)
(ζ0) = p. The image γp of this radial segment by disc z(c, t) in general is not a segment
of some real line in C

n, but only an admissible curve. Hence it follows by Proposition 4.2
that F admits the same limit along the real ray lp ⊂ W with vertex at p and tangent to
γp at p. It is enough to consider the case p = 0.

Lemma 4.3. Let Λ ⊂ W be the set of rays with vertex at 0. Assume that Λ is the
uniqueness set for holomorphic (with respect to the standard structure Jst) functions.
Suppose that F (z) admits a limit along any ray from Λ as z → 0. Then, F admits a limit
along any ray contained in a cone K ⊂ W . If the limits are the same for all rays from Λ,
the F admits a non-tangential limit at 0.
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Proof. We present the proof in three steps.
Step 1. Consider a sequence of functions Fk(z) = F (z/k), k = 1, 2, ..... We need the

following analog of the Montel compactness principle: �

Lemma 4.4. The family (Fk) contains a subsequence converging uniformly on
compacts in any cone K to a function F 0 holomorphic with respect to Jst.

This is a consequence of Lemma 4.1. Indeed, it suffices to prove the equicontinuity. By the
Nijenhuis–Woolf theorem any ball small enough is foliated by the pseudoholomorhic discs
through the center (of course, this foliation is singular at the center of the ball). Such
a foliation is a small deformation of the foliation of the ball by complex lines through
its center. Thus, we apply Lemma 4.1 to the restriction of Fk on each disc and conclude
that the sequence (Fk) is equicontinuous on this ball. This implies the above-mentioned
compactness of this family and proves Lemma 4.4

We continue the proof of Lemma 4.3. Passing to the limit we obtain that ∂Jst
F 0 = 0

in the sense of distributions which implies that F 0 is a usual holomorphic function (with
respect to Jst). Indeed we have

|Fz(z) + A(z)Fz(z)| ≤ C

Hence for ε > 0 we obtain

|Fz(εz) + A(εz)Fz(εz)| ≤ C

Therefore,
|εFz(εz) + A(εz)εFz(εz)| ≤ εC

and as a consequence
|(F (εz))z + A(εz)(F (εz))z| ≤ εC

Since F (εz) → F 0(z) converges in the sense of distributions as ε → 0 and A(0) = 0, we
obtain that F 0

z = 0 in the sense of distributions and so F 0 is a usual holomorphic function.
Step 2. Since F admits a limit along any ray from Λ, we obtain that F 0 is constant

along such a ray. Thus, given α > 0 one has F 0(αz) = F 0(z) for all z ∈ Λ. But Λ is a
uniqueness set. Therefore, the last identity (with fixed α) holds for all z ∈ W and F 0 is
constant already along any ray in W . This implies that F admits a limit along each ray.

Step 3. If the limits are the same, say, L, along all rays from Λ and Λ is the uniqueness
set, we obtain that F 0 = L on Λ and hence F 0 ≡ L on W . This implies Lemma.

4.5. Limits along rays almost everywhere

Now, we study the existence of limits along rays. Fix a family lz of rays smoothly
depending on z ∈ E = iRn such that lz ⊂ W .

Lemma 4.5. Let Kz ⊂ W be a family of open cones smoothly depending on z, with
vertex at z and directed by lz. For almost every z ∈ E the function F admits a limit
along any ray in Kz.

Note that at this moment, we do not yet claim that the limits are the same
independently of a ray with the same vertex.
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Proof. We begin with the model flat case where J = Jst. Consider the family of flat
complex discs z(c, t) given by (17). Let Sn−1 denote the unit sphere in R

n. Denote by Σ
a countable dense set in Sn−1 ∩ R

n
+. Set Σ = ∪j∈Ntj and fix some tj . By Lemma 4.1, the

restriction of F on every disc z(c, tj) admits a non-tangential limit almost everywhere
on bD+, i.e., on the full measure subset Yj in bD+. Note that the image of every ray with
vertex in bD+ by z(c, tj) belongs to R

n + ic (and its parallel translation to 0 belongs to
R

n). When c runs over a neighbourhood of 0, the images z(c, tj)(Yj) sweep a full measure
set Xj in E = iRn. The intersection X = ∩jXj of such sets is again a full measure set
in E = iRn. For every point p ∈ X and every j the function F admits a limit along the
ray with vertex at p and parallel to tj . But Σ is dense in Sn−1 ∩ R

n
+ so for every fixed

p ∈ X, these rays form a uniqueness set for usual holomorphic functions. Therefore, we
can apply Lemma 4.3 at p.

The proof in the general case of any almost complex structure J follows by a pertur-
bation argument. Indeed, indeed, we fill W by discs z(c, v) of the form (18) constructed
in § 4.2. In general, the images of rays by z(c, v) are not rays in W , but they are the
admissible curves. By Proposition 4.2, the function F admits a limit along any ray tan-
gent to such curve at its boundary point on E. Then, the above argument goes through
literally. This completes the proof. �

4.6. Non-tangential limits

Here, we conclude the proof of theorem establishing the following

Lemma 4.6. F admits non-tangential limits almost everywhere on E.

Proof. Recall again that E = iRn. Fix a unit vector v such that z + l belongs to W ,
where z ∈ E and the ray l is directed by v. Consider a family of cones Kz with the
vertex z and directed by the vector l; we assume that Kz smoothly depends on z. By
Lemma 4.5 there exists a full measure subset Ẽ of E such that the function F admits
a limit F ∗ along the ray z + l with vertex at z ∈ Ẽ. Consider the sequence of functions
fm(z) = sup0<t≤1/m |F (z + tv) − F ∗(z)|, where z ∈ Ẽ and m > 0, m ∈ N. This sequence
converges to a function 0 for almost every z ∈ Ẽ. Applying the Egorov theorem, we
conclude that for each δ > 0 there exists a subset Eδ ⊂ Ẽ such that

(i) m(Ẽ \ Eδ) < δ (here m(X) denotes the Lebesgue n-measure of the subset
X ⊂ E = iRn).

(ii) the sequence (fm) converges uniformly to 0 on E \ Eδ.

In particular, the functions F (z + (1/m)v) are continuous on E and converge to F ∗ as
m → ∞. Hence, the function F ∗ is continuous on Ẽ \ Eδ as the uniform limit of a sequence
of continuous functions. Note also that (by Lemma 4.5) one can assume that the function
F admits a limit along any ray (not only l) with vertex at each point z of Ẽ \ Eδ. Recall
that by the Lebesgue theorem almost every point of Ẽ \ Eδ is a density point with the
density equal to 1. We claim that F admits a non-tangential limit at such a point.

Assume that 0 ∈ Ẽ \ Eδ is a density point. Also, we may assume that the limit of F
along l at 0 is equal to 0, i.e., F ∗(0) = 0. Let (zk) be a sequence in an arbitrary ray l1
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in K0, (zk) is converging to 0. We prove that there exists a subsequence (zkq ) such that
F (zkq ) → 0 as q → ∞. This obviously implies the claim.

Set rk = |zk|. Then, the point z̃ = zk/rk belongs to l1, |z̃| = 1. Passing again to a
subsequence, assume that z̃ is independent of k. Consider the sequence of functions
F̃k(z) = F (rkz). It follows from Lemma 4.4 that one can extract a subsequence F̃kq

(in what follows we skip the subindex q) converging uniformly on compacts of K0 to a
function F̃ which is a usual holomorphic function on K0. Since F admits a limit along
every ray at the origin, the function F̃ is constant along every ray with vertex at the
origin (as in the proof of Lemma 4.3). It suffices to show that F̃ = 0. Indeed, in this case,
we obtain

lim
k→∞

F (zk) = lim
k→∞

F̃k(zk/rk) = F̃ (z̃) = 0.

Consider the set Λ formed by the real half-lines L = p + l, p ∈ Ẽ \ Eδ. Clearly, Λ is
contained in the subspace spanned by E and l. Λ is a generic (with respect to Jst) half-
space contained in W , with the boundary E. Consider a sequence of points (qk) contained
in a ray l2 ⊂ Λ (with the vertex at the origin) and converging to 0. We choose the sequence
(qk) such that rkqk = pk + wk, where pk ∈ Ẽ \ Eδ and a vector wk belongs to the ray l.
Since 0 is a density point, the set of rays in Λ admitting such a sequence, is a full measure
subset of Λ. The sequence rkqk tends to 0, hence the sequences pk and wk tend to 0 as
well. Therefore,

lim
k→∞

F̃k(qk) = lim
k→∞

F (rkqk) = lim
k→∞

F (pk + wk)

In view of the uniform convergence of the sequence of functions (fk) (introduced at the
beginning of the proof of Lemma) on Ẽ \ Eδ, and the continuity of the function F ∗ at
0, the last limit is equal to F ∗(0) = 0. Hence, F̃ = 0 on the ray l2 Thus, the function
F̃ vanishes on a full measure subset of Λ which is the uniqueness set for holomorphic
functions. Hence, F̃ = 0 on K0 and F tends to 0 along any ray. By Lemma 4.3 F admits
a non-tangential limit 0 at the origin. Hence, F admits a non-tangential limit almost
everywhere on Ẽ \ Eδ because almost all points are density points (with the density 1).

Finally, consider the sets Ek = Eδ for δ = 1/k. The intersection Σ = ∩kEk has the
measure 0 and F admits limits almost everywhere outside Σ. We conclude that F admits
non-tangential limits almost everywhere on E. This completes the proof. �
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