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In this paper we study travelling front solutions of a certain food-limited population
model incorporating time-delays and di® usion. Special attention is paid to the
modelling of the time delays to incorporate associated non-local spatial terms which
account for the drift of individuals to their present position from their possible
positions at previous times. For a particular class of delay kernels, existence of
travelling front solutions connecting the two spatially uniform steady states is
established for su± ciently small delays. The approach is to reformulate the problem
as an existence question for a heteroclinic connection in R4 . The problem is then
tackled using dynamical systems techniques, in particular, Fenichel’ s invariant
manifold theory. For larger delays, numerical simulations reveal changes in the front’ s
pro¯le which develops a prominent hump.

1. Introduction

The di¬erential equation

dN(t)

dt
= rN(t)

K ¡ N (t)

K + ® N (t)
; (1.1)

where r, K and ® are positive constants, was ­ rst proposed by Smith [12] as a
mathematical model for populations of Daphnia (water ®ea) and a derivation of
this equation is given in [10]. The equation has also been used in the study of the
e¬ects of environmental toxicants on populations [8]. The above type of equation
is often referred to as a food-limited or resource-limited model.

The time-delay version of the model

dN (t)

dt
= rN(t)

K ¡ N (t ¡ ½ )

K + ® N(t ¡ ½ )
; ½ > 0; (1.2)

has been studied by several investigators in recent years. Gopalsamy et al . [5] inves-
tigated the N = K equilibrium, showing it to be globally stable if r½ er½ < 1, and
they followed up their investigation in [6] by allowing the coe¯ cients r and ® to
become periodic functions of t (see also [9]). More recently, global stability in a
slightly more general equation was studied by So and Yu [13].
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There has been relatively little investigation of the consequences of allowing spa-
tial dispersal in such food-limited models, but, in a recent paper, Feng and Lu [3]
studied the following food-limited model without time delay,

@u(x; t)

@t
¡ Au(x; t) = r(x)u(x; t)

K(x) ¡ u(x; t)

K(x) + ® (x)u(x; t)
(1.3)

and the time-delay model

@u(x; t)

@t
¡ Au(x; t) = r(x)u(x; t)

K(x) ¡ au(x; t) ¡ bu(x; t ¡ ½ )

K(x) + a® (x)u(x; t) + b® (x)u(x; t ¡ ½ )
; (1.4)

where x = (x1; x2; : : : xn) 2 « » Rn, with « bounded, and the operator A, given
by

A =

nX

i;j = 1

¬ ij(x)
@2

@xi@xj
+

nX

j = 1

­ j(x)
@

@xj
;

is uniformly strongly elliptic and has coe¯ cient functions that are uniformly H�older
continuous in ·« . Of course, this includes the operator A = r2 (the Laplacian),
usually seen in reaction-di¬usion equations. Feng and Lu studied both of the above
problems under a general boundary condition that includes both the zero-Dirichlet
and zero-Neumann cases, establishing a global convergence result to a non-zero
steady-state (which may be x dependent), under certain assumptions that, in the
case of (1.4), included the condition that a > b. It would be interesting to investigate
the global stability in the case a = 0.

Travelling front solutions have not yet been investigated in the literature for
this particular type of population model, although there has recently been a great
deal of interest in travelling front solutions of other scalar time-delay models. For
example, travelling front solutions of the well-known Nicholson’s blow®ies equation
were shown to exist by So and Zou [14] for discrete time delays and by Gourley [7]
for a certain class of distributed delays. A general method for establishing existence
of such solutions in reaction-di¬usion equations (including coupled systems) with
discrete delays was developed by Wu and Zou [15], although their approach does not
apply to the particular type of delay (i.e. delays with associated spatial averaging)
considered in the present paper. Furthermore, in this paper we also want to study
distributed delays.

Since we wish to study wavefront solutions, we shall take the parameters r, K
and ® to be constant. However, we wish the delay to be incorporated in a way that
allows for associated spatial averaging due to the di¬usion, and which also allows
the discrete delay considered in other works to emerge as a particular case. Since
the above-mentioned parameters will be constant in the present paper, and since
we work on the in­ nite one-dimensional spatial domain x 2 ( ¡ 1; 1), certain non-
dimensionalizations will be possible and we may study, without loss of generality,
the equation

@u

@t
(x; t) = u(x; t)

µ
1 ¡ (f ¤ u)(x; t)

1 + ® (f ¤ u)(x; t)

¶
+

@2u

@x2
(x; t); (1.5)
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where the parameter ® > 0 and the spatio-temporal convolution f ¤ u is de­ ned by

(f ¤ u)(x; t) =

Z t

¡1

Z 1

¡1
f (x ¡ y; t ¡ s)u(y; s) dyds (1.6)

and we make the usual normalization assumption on the kernel f , namely
Z 1

0

Z 1

¡1
f (x; t) dxdt = 1;

so that the kernel does not a¬ect the spatially uniform steady states, which in this
model will be u ² 0 and u ² 1.

If the kernel f is taken to be

f (x; t) = ¯ (x) ¯ (t ¡ ½ ); (1.7)

then (1.5) becomes

@u

@t
(x; t) = u(x; t)

µ
1 ¡ u(x; t ¡ ½ )

1 + ® u(x; t ¡ ½ )

¶
+

@2u

@x2
(x; t); (1.8)

which is the reaction-di¬usion analogue of (1.2). However, it has become recognized
in recent years that, in fact, one cannot simply incorporate di¬usion into a delay
equation (or, indeed, insert a delay of the kind in (1.8) into a reaction-di¬usion
equation) and still have a model that makes sense ecologically. It is an implicit
assumption in any di¬usion equation that individuals in the population are moving
around randomly with no preferred direction. Simple linear di¬usion implies that
an individual occupying a particular point in space at a particular time could have
been anywhere in the domain (even in an in­ nite domain) at a given time in the
past, though with a higher probability of being somewhere nearby than somewhere
further away. To allow for this, one can instead take f to be

f (x; t) =
1p
4 º t

e¡x2=(4t) ¯ (t ¡ ½ ); (1.9)

which, when inserted into (1.5), gives

@u

@t
(x; t) = u(x; t)

µ
1 ¡

R 1
¡1 (1=

p
4 º ½ )e¡(x¡y)2=(4 ½ )u(y; t ¡ ½ ) dy

1 + ®
R 1

¡1 (1=
p

4 º ½ )e¡(x¡y)2=(4 ½ )u(y; t ¡ ½ ) dy

¶
+

@2u

@x2
(x; t):

(1.10)
One can now see that the movement of individuals to their present position from
where they have been at previous times is accounted for by a spatial convolution
with a kernel that spreads normally with a dependence on the delay. A derivation
of this type of formulation, using probabilistic arguments, is given in [1].

The type of equation discussed in the previous paragraph, whether with spatial
convolution or not, is called a discrete-delay equation. In the literature, one fre-
quently also encounters distributed-delay equations. These are equations where the
entire past history of the population density contributes to its current growth rate
(but usually with a greater emphasis to recent densities), rather than just the den-
sity ½ time units ago, as in (1.8) or (1.10). Of course, the formulation (1.5), (1.6)
allows both discrete and distributed delays.
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We are interested in travelling front solutions, both for distributed delays and for
discrete delays. The study of travelling front solutions is a challenging problem in
delay di¬erential equations, since the ordinary di¬erential equations (ODEs) that
any travelling wave solutions must satisfy are usually posed in a high-dimensional
(possibly in­ nite-dimensional) space and so one must ­ nd a way to attack this
problem of the dimensionality of the phase space. In the present paper, we can make
progress for the distributed-delay case by studying a particular class of kernels of
the form,

f(x; t) =
1p
4 º t

e¡x2=(4t) 1

½
e¡t=½ ; (1.11)

in which the parameter ½ is representative of the delay, as can be seen by substi-
tuting the kernel into (1.5). For this class of kernels, the phase space of the system
of travelling wave ODEs is four dimensional. A travelling wave front can be char-
acterized as a heteroclinic connection in this phase space, and the existence of such
a connection can then be established for su¯ ciently small ½ (small delay) by using
dynamical systems theory and, in particular, Fenichel’s invariant manifold theory.

In this paper we shall also study the discrete-delay equation (1.10). In this case,
the travelling wave equations are not posed in a ­ nite-dimensional space and the
aforementioned dynamical systems techniques are not applicable. Neither are any of
the available methods for discrete-delay equations, such as those of [15], since they
cannot handle the spatial convolution. In this case, we are not able to rigorously
establish the existence of fronts, but can obtain some information via a formal
asymptotic analysis for large values of the front’s speed.

2. The distributed-delay case

In this section, equation (1.5) will be considered for the case when

f(x; t) =
1p
4 º t

e¡x2=(4t) 1

½
e¡t=½ ; (2.1)

with ½ , which measures the delay, being a positive parameter. This case is known
in the literature as the weak generic delay case and is possibly the simplest case to
which the methods of the present section will apply. For this kernel, if we de­ ne
v = f ¤ u, i.e.

v(x; t) =

Z t

¡1

Z 1

¡1

1p
4 º (t ¡ s)

e¡(x¡y)2=(4(t¡s)) 1

½
e¡(t¡s)=½ u(y; s) dyds; (2.2)

it is straightforward to see that v satis­ es

@v

@t
=

1

½
(u ¡ v) +

@2v

@x2
;

and thus it is possible to reformulate the integro-di¬erential equation (1.5) as the
system

ut = u

µ
1 ¡ v

1 + ® v

¶
+ uxx; vt =

1

½
(u ¡ v) + vxx: (2.3)
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Of course, this is not a delay di¬erential system. The delay in the original problem
now plays its role through the parameter ½ . This method of conversion of an integro-
di¬erential system into a coupled system of non-delay equations is called the linear
chain technique and has been used by many investigators over the years, though only
relatively recently for spatio-temporal delay kernels such as (2.1). It is impossible
to carry out any such technique on an equation with discrete delay.

Our intention is to establish the existence of travelling wavefront solutions of (2.3)
connecting the two uniform steady-states (u; v) = (0; 0) and (1; 1), for su¯ ciently
small delay. We ­ rst need to establish the existence of such solutions when the
delay is zero. Allowing ½ to approach zero, it can be seen that v ! u (this can be
most easily seen by examining (2.2)). Thus, in this limit, we arrive at the non-delay
version of the model,

ut = u

µ
1 ¡ u

1 + ® u

¶
+ uxx: (2.4)

Converting to travelling wave form in the usual manner by setting u(x; t) = U (z)
with z = x ¡ ct, c > 0, yields the following second-order ODE for U (z),

U 00 + cU 0 + U

µ
1 ¡ U

1 + ® U

¶
= 0; (2.5)

where primes denote di¬erentiation with respect to z. We seek solutions such that
U ( ¡ 1) = 1 and U (1) = 0. Any such wavefront will move from left to right along
the z-axis (c > 0). Since (2.5) is a second-order ODE, it is possible to establish
existence of such fronts by using phase-plane techniques. The details are standard
and will be omitted. We summarize the results as follows.

Theorem 2.1. For any c > 2, there exists a function U (z) that satis¯es (2.5),
together with U ( ¡ 1) = 1 and U(1) = 0, and which is strictly monotonical ly
decreasing for all z 2 ( ¡ 1; 1).

When the delay ½ is non-zero, the governing equations are (2.3) and we now aim
to show that travelling front solutions of these equations exist for small ½ > 0.
Converting to travelling wave form, by setting

u(x; t) = U (z); v(x; t) = V (z); z = x ¡ ct;

we have

U 00 + cU 0 + U

µ
1 ¡ V

1 + ® V

¶
= 0;

V 00 + cV 0 +
1

½
(U ¡ V ) = 0:

9
>>=

>>;
(2.6)

This system is invariant under the transformation (c; z) ! ( ¡ c; ¡ z) and thus we
may assume, without loss of generality, that c > 0. Solutions are sought satisfying
U ( ¡ 1) = 1, U (1) = 0, V ( ¡ 1) = 1 and V (1) = 0. It is convenient to introduce
the new variables

~U = U 0 + 1
2cU; ~V = V 0 + 1

2 cV;
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in terms of which (2.6) can be reformulated as

d

dz

0

BB@

U
~U

V
~V

1

CCA =

0

BBBBBBB@

~U ¡ 1
2cU

1
4c2U ¡ 1

2 c ~U ¡ U

µ
1 ¡ V

1 + ® V

¶

~V ¡ 1
2cV

1
4 c2V ¡ 1

2c ~V +
1

½
(V ¡ U)

1

CCCCCCCA

: (2.7)

This system has two equilibria, both of which are independent of ½ , namely

(U; ~U; V; ~V ) = (0; 0; 0; 0) and (1; 1
2 c; 1; 1

2 c);

and we are seeking a heteroclinic connection between these. The plausibility of
this can be seen by a simple dimension-counting argument. For system (2.7), the
linearized or Jacobian matrix J is given by

J(U; ~U; V; ~V ) =

0

BBBBBBB@

¡ 1
2c 1 0 0

1
4 c2 ¡

µ
1 ¡ V

1 + ® V

¶
¡ 1

2c
(1 + ® )U

(1 + ® V )2
0

0 0 ¡ 1
2 c 1

¡ 1

½
0 1

4 c2 +
1

½
¡ 1

2c

1

CCCCCCCA

:

Thus

J(0; 0; 0; 0) =

0

BBBBB@

¡ 1
2 c 1 0 0

1
4 c2 ¡ 1 ¡ 1

2 c 0 0

0 0 ¡ 1
2c 1

¡ 1

½
0 1

4 c2 +
1

½
¡ 1

2c

1

CCCCCA
;

whose eigenvalues ¶ satisfy

( ¶ 2 + c¶ + 1)

µ
¶ 2 + c¶ ¡ 1

½

¶
= 0:

We are assuming here that c > 2, so that monotone travelling fronts exist for
the unperturbed problem. Under this assumption, we therefore have three negative
eigenvalues and one positive one and thus dim W s (0; 0; 0; 0) = 3, where W s denotes
the stable manifold.

We can also compute the eigenvalue equation for the other equilibrium state
(1; 1

2c; 1; 1
2c). Its eigenvalues ¶ satisfy

Q( ¶ ; ½ ) := ½ ¶ 4 + 2c½ ¶ 3 + ( ½ c2 ¡ 1) ¶ 2 ¡ c¶ +
1

1 + ®
= 0

and we are interested in the situation when the delay ½ is small. When it is zero,
we are solving Q( ¶ ; 0) = 0, which has two real roots of opposite sign. When ½ is
positive but small, simple graphical arguments will show that the above two roots
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change little, but two new real roots appear, both large in magnitude but opposite
in sign. Thus dim W u (1; 1

2c; 1; 1
2c) = 2, where W u denotes the unstable manifold.

The sum of the dimensions of the stable and unstable manifolds computed is
­ ve, while the phase space has dimension four. This lends plausibility to the idea
that they might intersect along a one-dimensional curve in R4. Our aim now is to
rigorously establish the existence of this curve, which is a heteroclinic connection
between the two equilibrium points of (2.7) and corresponds to the travelling front
we are seeking.

A further transformation of the variables is now necessary. With minimal risk of
confusion of notation we shall switch to lowercase letters. We introduce the small
parameter

" =
p

½

and de­ ne
u = U; ~u = ~U; v = V; ~v = " ~V :

We also move to subscript notation for the derivatives, since a new independent
variable is going to be introduced shortly. With this notation, the system (2.7)
becomes

uz = ~u ¡ 1
2cu;

~uz = 1
4 c2u ¡ 1

2c~u ¡ u

µ
1 ¡ v

1 + ® v

¶
;

"vz = ¡ 1
2 "cv + ~v;

"~vz = v ¡ u + 1
4"2c2v ¡ 1

2 "c~v:

9
>>>>>>=

>>>>>>;

(2.8)

It can easily be veri­ ed that when " = 0, system (2.8) reduces to the second-order
ODE for fronts in the non-delay case. System (2.8) is referred to as the slow system.
Note that when " = 0 it does not de­ ne a dynamical system in R4. This problem
may be overcome by the transformation

z = "² ;

under which the system becomes

u ² = "(~u ¡ 1
2 cu);

~u ² = "

µ
1
4
c2u ¡ 1

2
c~u ¡ u

µ
1 ¡ v

1 + ® v

¶¶
;

v ² = ¡ 1
2
"cv + ~v;

~v ² = v ¡ u + 1
4 "2c2v ¡ 1

2"c~v:

9
>>>>>>=

>>>>>>;

(2.9)

This is called the fast system. The slow and fast systems are equivalent when " > 0.
In the slow system (2.8), note that if " is set to zero, then the ®ow of that system

is con­ ned to the set

M0 := f(u; ~u; v; ~v) 2 R4 : ~v = 0 and v = ug;

which is a two-dimensional invariant manifold for (2.8), with " = 0. What we claim
is that M0 is a normally hyperbolic manifold in the sense of Fenichel [4] and that
the hypotheses of Fenichel’s invariant manifold theorem are satis­ ed. For " > 0
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su¯ ciently small, this theorem then furnishes us with a manifold M", which is close
to M0 and which is invariant for the ®ow when " > 0. The restriction of (2.8) to
this manifold M" then yields a two-dimensional system of ODEs, which we shall
then analyse using a perturbation argument, together with Fredholm orthogonality
theory, to establish the existence of the heteroclinic connection we are seeking.

Verifying normal hyperbolicity of M0 involves checking that the linearization
of the fast system (2.9), restricted to M0, has precisely dim M0 eigenvalues on
the imaginary axis, with the remainder of the spectrum being hyperbolic. The
linearization of (2.9) restricted to M0 is given by the matrix

0

BB@

0 0 0 0

0 0 0 0

0 0 0 1
¡ 1 0 1 0

1

CCA ;

the eigenvalues of which are 0, 0, 1, ¡ 1. Thus we have the correct number of
eigenvalues on the imaginary axis and normal hyperbolicity of M0 is veri­ ed.

By Fenichel’s theory, we know that a two-dimensional invariant manifold M"

exists with the properties described above. It can be written in the form

M" := f(u; ~u; v; ~v) 2 R4 : ~v = g(u; ~u; ") and v = u + h(u; ~u; ")g;

where the functions g and h, which we must determine, satisfy

g(u; ~u; 0) = h(u; ~u; 0) = 0: (2.10)

To determine these two functions we use the fact that M" is an invariant manifold
for the ®ow of (2.8). Substitution yields that g and h satisfy

"

·µ
1 +

@h

@u

¶
(~u ¡ 1

2 cu) +
@h

@~u

µ
1
4c2u ¡ 1

2c~u ¡ u

µ
1 ¡ u ¡ h

1 + ® u + ® h

¶¶¸
= ¡ 1

2 "c(u + h) + g

and

"

·
@g

@u
(~u ¡ 1

2 cu) +
@g

@~u

µ
1
4c2u ¡ 1

2 c~u ¡ u

µ
1 ¡ u ¡ h

1 + ® u + ® h

¶¶¸
= h + 1

4"2c2(u+ h) ¡ 1
2"cg:

Exploiting the smallness of ", we may attempt solutions of these in the form of
regular perturbation series in ". In view of (2.10), such series may be started at the
" term, so we try

g(u; ~u; ") = "g1(u; ~u) + "2g2(u; ~u) + ¢ ¢ ¢ ;

h(u; ~u; ") = "h1(u; ~u) + "2h2(u; ~u) + ¢ ¢ ¢ :

Substituting and comparing coe¯ cients of " and "2 gives us

g1(u; ~u) = ~u; g2(u; ~u) = 0;

h1(u; ~u) = 0; h2(u; ~u) = ¡ u

µ
1 ¡ u

1 + ® u

¶
:

9
>=

>;
(2.11)
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Although g and h have both been calculated, it is really only h that we need and
it is given by

h(u; ~u; ") = ¡ "2u

µ
1 ¡ u

1 + ® u

¶
+ O("3) (2.12)

=: ¡ "2H(u) + O("3): (2.13)

The slow system, restricted to M", is then given by

uz = ~u ¡ 1
2 cu;

~uz = 1
4c2u ¡ 1

2 c~u ¡ u

µ
1 ¡ u ¡ h(u; ~u; ")

1 + ® u + ® h(u; ~u; ")

¶
;

9
>=

>;
(2.14)

where h is given by (2.12).
It is easily veri­ ed that when " = 0, system (2.14) reduces to the corresponding

ODE for travelling fronts of the non-delay problem (equation (2.5)) and also that
for any " > 0, system (2.14) has equilibrium points (u; ~u) = (0; 0) and (1; 1

2
c) and

we wish now to establish the existence of a heteroclinic connection between these
two critical points. We know that such a connection exists when " = 0 (theorem 2.1)
and we shall seek a solution of (2.14) that is a perturbation of this.

Let (u0; ~u0) be the solution of (2.14) when " = 0. To solve the system for " > 0
small, we try

u = u0 + "2 ¿ + ¢ ¢ ¢ ; ~u = ~u0 + "2Á + ¢ ¢ ¢ :

Substituting, we ­ nd that, to lowest order, the di¬erential equation system deter-
mining ¿ and Á is

d

dz

µ
¿

Á

¶
+

0

@
1
2
c ¡ 1

1 ¡ 2u0 ¡ ® u2
0

(1 + ® u0)2
¡ 1

4
c2 1

2
c

1

A
µ

¿

Á

¶
=

0

@
0

¡ (1 + ® )u0H(u0)

(1 + ® u0)2

1

A ; (2.15)

and we seek to prove that this system has a solution satisfying ¿ (§1) = 0 and
Á(§1) = 0.

Working in the space L2 of square integrable functions, with inner product
Z 1

¡1
(x(z); y(z)) dz;

(¢; ¢) being the Euclidean inner product on R2, Fredholm theory states that (2.15)
will have a solution if and only if

Z 1

¡1

0

@x(z);

0

@
0

¡ (1 + ® )u0(z)H(u0(z))

(1 + ® u0(z))2

1

A

1

A dz = 0

for all functions x(z) in the kernel of the adjoint of the operator L de­ ned by the
left-hand side of (2.15). It is easy to verify that the adjoint operator L ¤ is given by

L ¤ = ¡ d

dz
+

0

B@
1
2c ¡ 1

4 c2 +
1 ¡ 2u0 ¡ ® u2

0

(1 + ® u0)2

¡ 1 1
2 c

1

CA ;
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and thus to compute ker L ¤ we have to ­ nd all x(z) satisfying

dx

dz
=

0

B@
1
2 c ¡ 1

4c2 +
1 ¡ 2u0(z) ¡ ® u2

0(z)

(1 + ® u0(z))2

¡ 1 1
2 c

1

CA x; (2.16)

the general solution of which will be di¯ cult to ­ nd because the matrix is, of course,
non-constant. However, we are only looking for solutions satisfying x(§1) = 0 and,
in fact, the only such solution is the zero solution. Recall that u0(z) is the solution
of the unperturbed problem and although we have no explicit expression for it, we
do know that it tends to zero as z ! 1. Letting z ! 1 in (2.16), the matrix
becomes a constant matrix, with eigenvalues ¶ satisfying

¶ 2 ¡ c¶ + 1 = 0

and, since c > 2, the eigenvalues are therefore both real and positive. So, as z ! 1,
any solution of (2.16) other than the zero solution must be growing exponentially
for large z. So the only solution satisfying x(§1) = 0 is the zero solution. This
means, of course, that the Fredholm orthogonality condition trivially holds and so
solutions of (2.15) exist. This completes the proof that a heteroclinic connection
exists between the two equilibrium points (0; 0; 0; 0) and (1; 1

2c; 1; 1
2c) of (2.7) and

we may summarize our ­ ndings in the following theorem.

Theorem 2.2. For any ¯xed c > 2, equation (1.5), for the case when the kernel f
is given by (2.1), possesses a travelling front solution u(x; t) = U (x ¡ ct) satisfying
U ( ¡ 1) = 1 and U (1) = 0, provided the delay ½ is su± ciently small.

Finally, we remark that it is actually very unusual for a Fredholm orthogonality
condition to hold trivially by virtue of the kernel of the adjoint operator consisting
only of the zero vector, as is the case in this application. Indeed, ker L can be shown
to contain more than just the zero vector. The operator L is, in fact, an operator
of non-zero index. Its index, given by

dim ker L ¡ dim ker L ¤

can be shown to be 1.
The question remains as to whether the fronts continue to persist when the delay

is not so small, and what they look like in this case. We can gain some information
by a numerical simulation of the system (2.3), with a di¬usivity d scaled in to give
greater control of the propagation speed and to improve numerical stability. Thus
we simulate

ut = u

µ
1 ¡ v

1 + ® v

¶
+ duxx; vt =

1

½
(u ¡ v) + dvxx (2.17)

on a large spatial domain x 2 [0; 2000], with homogeneous Neumann boundary
conditions and initial conditions appropriate for the study of wavefront problems,
which we take to be

u(x; 0) = v(x; 0) = 1 ¡ H(x ¡ 200);
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Figure 1. Numerical simulation of (2.17) on the domain x 2 [0; 2000] with homogeneous
Neumann boundary conditions and initial data as described in the text. Parameter values
were d = 50, ® = 0:5 and ½ = 2.

H(x) being Heaviside’s function. For small values of the delay ½ , we observed rapid
evolution to a monotone wavefront solution looking very similar to the correspond-
ing solution to the non-delay problem. However, as the delay was increased, mono-
tonicity was eventually lost and the front then developed quite a prominent hump,
the height of which increased with the delay (see ­ gure 1).

3. The discrete-delay case

In the discrete-delay case, i.e. the delayed term involves evaluation of the density u
exactly ½ time units ago, the original equation (1.5) becomes

@u

@t
(x; t) = u(x; t)

µ
1 ¡

R 1
¡1 (1=

p
4 º ½ )e¡(x¡y)2=(4 ½ )u(y; t ¡ ½ ) dy

1 + ®
R 1

¡1 (1=
p

4 º ½ )e¡(x¡y)2=(4 ½ )u(y; t ¡ ½ ) dy

¶
+

@2u

@x2
(x; t):

(3.1)
As in the distributed-delay case, this equation involves a convolution in space to
allow for the movement of individuals to their present position from their possible
positions at previous times.

Equation (3.1) is much more di¯ cult to study than the distributed-delay equation
with exponentially decaying kernel that was the focus of attention in the previous
section. This is because there is no way to recast (3.1) as a non-delay equation. The
travelling wave equations are in­ nite dimensional and thus the search for travelling
front solutions is a much deeper and more di¯ cult problem. There are, however,
some results on existence of such solutions for discrete-delay equations without
associated spatial non-localness (i.e. all terms in the equation are evaluated at the
same point in space) (see, for example, [15]). The methods are based on upper
and lower solutions, require a certain quasimonotonicity assumption and are very
di¬erent from the methods described in the previous section.
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We can, however, employ some simple asymptotics to try to resolve some ques-
tions on the monotonicity or otherwise of travelling front solutions to (3.1) and how
this depends on the delay ½ . Seeking travelling wave solutions for (3.1), by setting
u(x; t) = U (z) = U(x ¡ ct), we ­ nd that the travelling wave equations can be cast
into the form

U 00(z) + cU 0(z) + U (z)

µ
1 ¡

R 1
¡1 (1=

p
4 º ½ )e¡w2=(4 ½ )U(z ¡ w + c½ ) dw

1 + ®
R 1

¡1 (1=
p

4 º ½ )e¡w2=(4½ )U (z ¡ w + c½ ) dw

¶
= 0;

(3.2)
and we are interested in rightward moving waves (c > 0); thus the boundary con-
ditions are U ( ¡ 1) = 1 and U (1) = 0. A great deal of information on the mono-
tonicity or otherwise of such fronts for large values of c can be gained by using the
method developed by Canosa [2] for the Fisher equation. Although the method is
an asymptotic analysis as the front speed approaches in­ nity, it is known that for
Fisher’s equation the method generates a solution that is accurate to within a few
percent of the true solution, even at the minimum wave speed. The method has
also been applied to other reaction-di¬usion equations, including coupled systems,
with very good results [11].

Linearizing (3.2) far ahead of the front, where U ! 0, gives

U 00(z) + cU 0(z) + U (z) = 0;

and thus we assume, as in Fisher’s equation, that c > 2 to ensure we are studying
ecologically realistic fronts that are positive for all values of z. Following Canosa’s [2]
approach, we introduce the small parameter

" = 1=c2

and seek a solution in the form

U (z) = g( ± ); ± =
p

"z:

Equation (3.2) then becomes

"g00( ± )+g0( ± )+g( ± )

µ
1 ¡

R 1
¡1 (1=

p
4 º ½ )e¡w2=(4½ )g( ± ¡

p
"w + ½ ) dw

1 + ®
R 1

¡1 (1=
p

4º ½ )e¡w2=(4½ )g( ± ¡
p

"w + ½ ) dw

¶
= 0 (3.3)

and the integral term in (3.3) can be expanded in a Taylor series to give

g( ± + ½ )

Z 1

¡1

1p
4 º ½

e¡w2=(4 ½ ) dw + 1
2 "g00( ± + ½ )

Z 1

¡1

w2

p
4 º ½

e¡w2=(4 ½ ) dw + ¢ ¢ ¢ ;

which equals
g( ± + ½ ) + "½ g00( ± + ½ ):

Thus equation (3.3) can be approximated by

"g00( ± ) + g0( ± ) + g( ± )

µ
1 ¡ g( ± + ½ ) ¡ "½ g00( ± + ½ )

1 + ® g( ± + ½ ) + ® "½ g00( ± + ½ )

¶
= 0;

the boundary conditions for which are g( ¡ 1) = 1 and g(1) = 0. In order to ­ x the
position of the front in the moving frame, we may also take g(0) = 1

2 without loss

https://doi.org/10.1017/S0308210500001530 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500001530


Travelling fronts in a food-limited population model 87

of generality. Following the Canosa approach, we attempt a regular perturbation
series solution in the form

g( ± ) = g0( ± ) + "g1( ± ) + ¢ ¢ ¢

and assume that the leading-order term g0 is su¯ cient to give a good qualitative
description of the solution. The di¬erential equation for g0 is

g0
0( ± ) + g0( ± )

µ
1 ¡ g0( ± + ½ )

1 + ® g0( ± + ½ )

¶
= 0; g0(0) = 1

2 : (3.4)

In delay equations, it is quite usual for the equation determining a wavefront to be
an equation of advanced type, as in this case. With a view to examining the potential
onset of a hump in the travelling front pro­ le as ½ is increased (as happened in the
distributed-delay model of the previous section), we now ask the question of whether
the solution of (3.4) is monotone or not. Of course, it is monotone when ½ = 0,
since it is then a one-dimensional ODE. Monotonicity is not immediately lost for
positive ½ ; the delay has to be above a certain critical value. On reversing the
independent variable ± , equation (3.4) becomes the non-dimensionalized version of
the delay equation considered in [5], which is (1.2) of this paper. In [5], conditions
are given that are both necessary and su¯ cient for monotonicity. Thus, drawing
analogy with the approach of [5], we can state that the condition for the solution
of (3.4) to be monotone is that the delay ½ should satisfy

½ 6 ½ c :=
1 + ®

e
: (3.5)

In our model, this criterion would, of course, be an approximate one. Nonethe-
less, the indication is that a non-monotone travelling front with a hump, as in the
distributed-delay case, is to be expected for values of ½ very much bigger than ½ c.
In fact, it can be shown that if ½ is further increased, there is another critical value
at which the u = 1 steady-state of (3.1) loses stability and thus stable permanent
form travelling fronts are no longer to be expected. This does not happen in the
distributed-delay case of the previous section.

4. Conclusion

In this paper we have studied travelling front solutions of Smith’s well-known `food-
limited’ population model with time delay. We considered both discrete and dis-
tributed delays and in both cases we have incorporated spatial averaging, which
is necessary to properly account for the consequences of the motion of individu-
als in a delay model. In the distributed-delay case, for a particular class of ker-
nels, we have proved existence of travelling front solutions for su¯ ciently small
delays by using linear chain techniques to recast the travelling wave equations as a
­ nite-dimensional system of ODEs to which geometric singular perturbation theory
applies. The travelling fronts, which are modelled as heterclinic orbits, are shown to
exist by employing Fenichel’s invariant manifold theory, together with a perturba-
tion method and the Fredholm alternative. The approach also shows that for small
delays the fronts are qualitatively similar to those of the non-delay equation.
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It is important to note that at no stage did we require an explicit expression
for the travelling front solution of the unperturbed problem (i.e. the non-delay
equation). We only needed to know that such a solution exists and its general qual-
itative properties. This is important because it indicates that our approach is prob-
ably quite widely applicable to studying travelling fronts in delay equations, and is
almost certainly also applicable to the study of fronts in time-delayed predator{prey
and competition equations.

Furthermore, although we have con­ ned attention to a very speci­ c nonlinear
reaction term, our approach will generalize to the equation

@u

@t
(x; t) = u(x; t)G((f ¤ u)(x; t)) +

@2u

@x2
(x; t); (4.1)

with f ¤u still given by (1.6) and f some kernel such that the linear chain techniques
will be available. We have concentrated on the case when G in (4.1) is taken to be
G(v) = (1 ¡ v)=(1 + ® v), but in fact all that is really required is that G have
one positive zero. Our approach has also been applied to the Nicholson’s blow®ies
equation [7], which has a very di¬erent nonlinearity (not even containing a factor
of u(x; t)), although in that application a purely temporal delay kernel was used
rather than the spatio-temporal delay considered here. In fact, the applicability
or otherwise of our approach depends rather more on the delay kernel f than on
the function G in (4.1). Thus it remains to consider whether the method can be
extended to other kernels. Certainly if the kernel f is replaced by

f (x; t) =
1p
4º t

e¡x2=(4t) t

½ 2
e¡t=½ ;

known in the literature as the strong generic delay case, linear chain techniques
are still applicable, but the system of travelling wave equations is six dimensional.
Our methods can still be applied in principle, but it will be much more di¯ cult in
practice.

For larger delays, numerical study of the distributed-delay problem and some
simple asymptotics in the discrete-delay case both indicated the formation of a
prominent hump in the front pro­ le the height of which grows with the delay.
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