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ABSTRACT. Extreme weather events such as droughts and floods have potentially
damaging implications for developing countries. Previous studies have estimated
economic losses during hypothetical or single historical events, and have relied on
historical production data rather than explicitly modeling climate. However, effective
mitigation strategies require knowledge of the full distribution of weather events and
their isolated effects on economic outcomes. We combine stochastic hydrometeorological
crop-loss models with a regionalized computable general equilibrium model to estimate
losses for the full distribution of possible weather events in Malawi. Results indicate that,
based on repeated sampling from historical events, at least 1.7 per cent of Malawi’s gross
domestic product (GDP) is lost each year due to the combined effects of droughts and
floods. Smaller-scale farmers in the southern region of the country are worst affected.
However, poverty among urban and nonfarm households also increases due to national
food shortages and higher domestic prices.

1. Introduction
Extreme weather events, such as droughts and floods, can severely
undermine economic growth and poverty reduction, especially in
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food-insecure, low-income countries. Such events usually have higher-
order or ‘economywide’ implications beyond directly-affected sectors
or regions, as production chains are disrupted, assets depreciate, and
consumer demand declines (Van der Veen, 2004). A number of studies
have estimated the economywide losses occurring during extreme events,
but these studies typically consider either hypothetical events (e.g.,
Arndt and Bacou, 2000; Narayan, 2003; Boyd and Ibarrarán, 2008) or
specific historical events (e.g., Horridge et al., 2005). However, a range
of possible events should ideally be considered when designing disaster
relief programs or large-scale investments (Rose, 2004a). Moreover, future
climate change may alter the frequency and severity of historical events
(Salinger, 2005). This uncertainty underlines the importance of considering
the full distribution of possible extreme weather events when evaluating
mitigation options (Freeman et al., 2004).

Existing studies usually rely on historical data to determine losses
during extreme weather events. However, it is essential to disentangle
weather shocks from other influences on production, such as policies and
world commodity prices. This limitation is likely to be most binding in
lower-income countries, especially those that have undergone significant
policy reforms, or where the public sector dominates climate-sensitive
sectors, such as agriculture (Rose, 2004b).

Given these gaps in the literature, we develop an integrated analytical
framework that evaluates the economic losses for the full distribution of
extreme weather events. We apply this framework to Malawi, which is a
typical low-income country and depends heavily on rain-fed agriculture
for the livelihoods of its largely rural population. We first estimate direct
crop production losses using stochastic drought and flood models that
isolate the effects of climate shocks from other influencing factors. We
focus on agriculture when estimating direct losses, given its importance
for national income and household poverty in Malawi. To estimate both
direct and indirect impacts, we develop a regionalized computable general
equilibrium (CGE) model (section 3). This model is linked to a survey-
based microsimulation module, which measures changes in the distri-
bution of household incomes and poverty – another overlooked dimension
in the literature (Rose, 2004b). We then report the simulation results
for both floods and droughts in Malawi (section 4). We conclude by
summarizing our findings and identifying areas for further research.

2. Estimating direct production losses

2.1. Hydrometeorological hazard and risk
We develop probabilistic models to estimate the direct impact of weather
events on agricultural crop production. These models capture two aspects
of drought and flood impacts: hazard and risk. Hydrometeorological
‘hazard’ is defined by (a) the severity of an event and (b) the probability
of that event occurring within a given year. This is measured by an event’s
‘return period’ (RP), which is the expected length of time between the
reoccurrence of two events with similar characteristics. In our analysis, we
evaluate weather events across the full spectrum of RPs.
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‘Risk’ is the quantification of potential losses during a particular event.
It explicitly considers the exposure of different entities (e.g., farmers) to
weather events. Exposure or risk depends on many factors, including the
severity of weather events, the location of farmers, and their cropping
patterns. For example, farmers above a floodplain are not exposed to
floods and hence are unaffected by flooding. Some farmers may, however,
be above the RP5 flood line but below the RP15 line. Farmers’ cropping
patterns also matter since some crops are more drought-tolerant than
others given their physiological characteristics. Similarly, some crops may
be irrigated and thus less affected by periods of low rainfall. We consider
each of these aspects of exposure when estimating crop production losses.

2.2. Measuring drought impacts
Although several definitions of meteorological drought exist in the
literature, there is agreement that it should be seen as an ‘abnormal’
event. Droughts should not be confused with normal desiccation caused
by dry spells (Agnew, 2000). For an event to be declared a drought, the
precipitation or soil moisture levels must be sufficiently below the long-
run mean. A variety of indexes exist for identifying droughts (Heim,
2002 provides a review). We use the Standard Precipitation Index (SPI)
developed by McKee et al. (1993), which is based on precipitation data.
This index permits the measurement of drought intensity, magnitude, or
severity as well as its duration. Moreover, the probability of an event
occurring within a certain year can be estimated on the basis of historical
data (Heim, 2002).

Precipitation data are taken from 45 weather stations distributed across
Malawi’s eight agro-ecological zones. We assume that rainfall at each
station follows a gamma distribution Xi ∼ �(αi , βi ) where αi and βi
are shape and scale parameters of rainfall (Xi) at weather station i.
This probability distribution function is generally considered a good
fit for precipitation distributions (McKee et al., 1993). The parameters
are estimated using maximum likelihood estimation and the cumulative
distribution function is then transformed into a standard normal random
variable Zi ∼ N(0, 1) with a zero mean and a standard deviation of one.
The Z-score of this distribution is the SPI. In the analysis here, a drought is
declared when rainfall levels drop below 75 per cent of the long-run mean
at a particular weather station; the lower the Z-score, the more severe the
drought.

Not all droughts of apparent similar severity have the same impact on
crops. This is because crop production losses depend on when a drought
occurs during a crop’s growing cycle. For example, maize is relatively
tolerant to water deficits during the vegetative and ripening stages, but less
so during the flowering or reproductive stages. In order to make different
drought events comparable, we adjust the SPI to control for timing of the
drought.

Based on the adjusted SPIs, we identify crop seasons 1986/87, 1991/92,
1993/94, 2003/04, and 2004/05 as significant drought years in Malawi.
Regression models are then used to identify whether a statistical, nonlinear
relationship exists between historical drought events of different severities
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(as measured by their adjusted SPIs) and the crop production losses
for different crops observed during those years. Production losses are
calculated as the difference between observed production and expected
production, where the latter is taken as the production level in the closest
‘normal’ or non-drought year.1

The regression coefficients are then used in a stochastic model that
randomly generates a large number of possible drought events across
the full range of RPs. From this, a consistent and continuous relationship
between different drought events and their associated production losses is
defined. This relationship is represented by a ‘loss exceedance curve’ (LEC),
which, in the context of agricultural risk, gives the likelihood or probability
that a certain level of crop loss will be exceeded during a particular drought
event. Per convention, the vertical axis of the LEC shows the ‘exceedance
probability’ (EP), which gives the likelihood of an event of certain severity
or worse occurring. The EP and RP are inversely related, that is, EP =
RP−1. It follows that an event’s severity (in terms of its effect on crop
production) and the likelihood of its occurrence (which is linked to the
rainfall probability distribution) are inversely related; for example, an RP5
event occurs more frequently but it is also less severe than an RP15 event
in terms of its impact on agricultural production.

Figure 1 shows the estimated drought LECs for maize and tobacco
in Malawi.2 Instead of indicating the EP values on the vertical axis as
is customary, RPs of 5, 10, and 20 years (i.e., EPs of 0.2, 0.1, and 0.05,
respectively) are shown for ease of reference. Thus, for example, the
tobacco LEC shows that production falls by at least 4.1 per cent during
an RP10 drought event. We estimate separate LECs for different maize
varieties, namely local maize (LMZ), high-yield varieties (HYV), and
composites (COM). Our results indicate that composite seeds are more
drought-tolerant than other varieties, which is consistent with expectations
(see Denning et al., 2009).3

The LECs allow us to attach a precise probability of occurrence to each
possible weather event.4 Thus, while future weather patterns are uncertain,
expected long-term losses can be predicted with greater certainty. This
expected long-term loss is the ‘average annual loss’ (AAL), which is
obtained by multiplying the probability of an event by its expected loss and
summing over all possible events. The drought AAL for LMZ, HYV, and
COM maize varieties is 7.3, 2.6, and 1.2 per cent, respectively, and 1.2 per
cent for tobacco. These production losses are roughly consistent with those
experienced during an RP7 drought, that is, if there were no interannual
weather variation but total production losses in the long run were the same,
it would be roughly similar to having an RP7 drought every year.

2.3. Measuring flood impacts
The flood risk model adopts a similar approach to the drought model
in that hazard is assessed using estimates of the probability of floods of
different severities occurring. Given Malawi’s topography, floods mostly
occur in the Shire River basin in the southern part of the country, and so we
only estimate production losses for this region. The probabilistic risk model
is based on runoff, which means that observed flood discharges are used to
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Figure 1. Drought loss exceedance curves for maize and tobacco
Source: Results from the stochastic drought model.

identify floods and estimate their probability of occurrence. Stochastically
generated discharges are then routed through a Digital Elevation Model of
the affected floodplain to determine flood extents and depths at a detailed
90 square meter resolution.

The stochastic results from this model were validated using satellite
images of historical flood events (i.e., 1982/83, 1991/92, 1997/98, 2000/01,
2001/02, and 2003/04). Agricultural losses are determined on the basis of
information about farmers’ exposure to flood events. This depends on the
portion of cultivated land in geographic areas likely to be inundated during
floods of different severities. As with the drought analysis, regression
models are used to estimate the relationship between production levels
and historical flood events. Data from the regression models were then
incorporated into a stochastic flood model in order to generate production
losses under a complete distribution of possible flood events (i.e., for all
RPs).

The relationship between flood events and production losses is once
again reflected by crop-specific LECs. Figure 2 shows flood LECs for
maize and tobacco. The three maize varieties are combined in the flood
analysis since physiological differences have little bearing on the extent of
production losses. The AAL due to floods is estimated at 12.7 and 6.0 per
cent for maize and tobacco, respectively. This is roughly equivalent to the
loss experienced during an RP2 flood. Note that these losses only apply to
production in the southern region, an area that accounts for about one-third
of maize and one-quarter of tobacco grown in Malawi.
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Figure 2. Flood loss exceedance curves for maize and tobacco in the southern region
Source: Results from the stochastic flood model.

3. A regionalized CGE model of Malawi
Cochrane (2004) reviews the methods used to estimate indirect losses
from natural hazards. CGE models have a number of limitations, such as
the assumption of functioning markets and the inability to capture non-
market losses, such as leisure. However, they are the preferred method
for estimating net losses (Rose, 2004a). CGE models capture all income
and expenditure flows in an economy within a consistent accounting
framework, and thus avoid the ‘double-counting’ that often occurs when
combining partial equilibrium approaches. Moreover, CGE models provide
an ex ante simulation laboratory for conducting counterfactual analysis.
This allows us to isolate climate effects from other influencing factors,
a common problem associated with ex post methods. Regionalized CGE
models can also capture direct and indirect losses at national and local
levels, which is an advantage over purely macroeconomic models (e.g.,
Freeman et al., 2004). Finally, CGE models can capture distributional
effects and thus identify vulnerable population groups. In this section, we
describe the workings and structure of the Malawian CGE model.

3.1. A simplified, illustrative CGE model
The model’s specification can be found in Löfgren et al. (2001). However,
before describing the structure of this full CGE model, table 1 presents
the equations of a simplified model that we use to illustrate how weather
events generate direct and indirect economic outcomes in typical CGE
analyses. Various assumptions of the illustrative model are refined in the
extended model used in this analysis, which we discuss in the next section.
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Table 1. Illustrative CGE model equations

Production function Qsr = asr · πsr · � f F δsr
f sr (1)

Factor payments Wf r · ∑
s F f sr = ∑

s δ f sr · Ps · Qsr (2)
Import supply Ps ≤ E · wm

s ⊥Ms ≥ 0 (3)
Export demand Ps ≥ E · we

s ⊥Xs ≥ 0 (4)
Household income Yhr = ∑

f s θh f · Wf r · F f sr (5)

Consumption demand Ps · Dhsr = βhsr · (1 − vhr ) · Yhr (6)

Investment demand Ps · Is = ρs · (∑
hr υhr · Yhrt + E · b

)
(7)

Current account balance pwm
s · Ms = pwe

s · Xs + b (8)
Product market equilibrium

∑
hr Dhsr + Is = ∑

r Qsr (9)
Labor market equilibrium

∑
rs F f sr = l f r f is labor (10)

Capital market equilibrium
∑

rs F f sr = k f

and Wf r = Wf r ′ f is capital (11)
Land market equilibrium F f sr = n f srt · λs f r · f is land (12)

Subscripts Exogenous variables
f Factor groups (land, E Exchange (local/foreign

labor, capital) currency units)
h Household groups K National capital supply
r Regions (agro-climatic) L Regional labor supply
s Economic sectors N Sector and region-specific

land availability
Endogenous variables W World import and export prices
B Foreign savings balance Exogenous parameters
D Household consumption A Production shift parameter

demand (factor productivity)
F Factor demand quantity B Household average budget share
I Investment demand quantity � Factor input share parameter
M Import supply quantity 
 Household share of factor income
P Commodity price P Investment commodity

expenditure share
Q Output quantity Y Household marginal propensity

to save
W Average factor return Climate shock parameter
X Export demand quantity � Land loss adjustment

factor (0 < λ ≤ 1)
Y Total household income � Productivity loss adjustment

factor (0 < π ≤ 1)

Producers in each sector s and region r produce output Q by employing
factors of production F under constant returns to scale (exogenous
productivity α) and fixed production technologies (fixed factor shares δ)
(equation (1)). Profit maximization implies factor returns W equal average
production revenues (equation (2)). Labor supply l, land supply n, and
capital supply k are fixed, implying full employment of factor resources.
Labor market equilibrium is defined at the regional level, so labor is mobile
across sectors but wages vary by region (equation (10)). Capital stock is
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mobile across both sectors and regions in the illustrative model and earns
a national rental rate (i.e., capital returns are equalized) (equation (11)).

Given the rapid onset of weather events, it is assumed that land
allocation in the model, which is based on observed agricultural data from
the base year, does not change in response to weather shocks (equation
(12)). This implies that farmers first allocate their land across crops at
the start of the season based on the expectation that ‘normal’ weather
conditions will prevail (i.e., there is no anticipation of extreme weather
events) and with the aim of maximizing profits. Once planted, farmers
are unable to reallocate land to more drought- or flood-tolerant crops if an
extreme event occurs. This is sometimes referred to as the ‘dumb farmer’
assumption, and is appropriate given the rapid onset of extreme events
and the difficulties in accurately forecasting weather and disseminating
information to smallholder farmers in countries like Malawi. In CGE
models, this assumption is equivalent to a short-run factor market closure
in which land is fixed and earns sector- and region-specific rents.

International trade in this illustrative model is simply determined by
comparing domestic prices with world prices. The latter are fixed under
a small-country assumption, while domestic and foreign commodities
are treated as perfect substitutes (in the full model described below
they are more appropriately treated as imperfect substitutes). Thus, in
the illustrative model, if domestic prices exceed world import prices wm

(adjusted by exchange rate E), such as might occur during a major drought,
then the quantity of imports M increases (equation (3)). Conversely, if
domestic prices fall below world export prices we then export demand
X increases (equation (4)). To ensure macroeconomic consistency, we
assume a flexible exchange rate and fix the current account balance b
in foreign currency (equation (8)). This implies that short-term foreign
borrowing cannot replace production losses and external price adjustments
are necessary to offset rising import demand or falling export supply.

Factor incomes are distributed to households in each region using fixed
income shares θ based on the households’ initial factor endowments
(equation (5)). Total household incomes Y are either saved (based on
marginal propensities to save υ) or spent on consumption C (according to
marginal budget shares β) (equation (6)). Household savings and foreign
capital inflows are collected in a national savings pool and used to finance
investment demand I (i.e., savings-driven investment closure) (equation
(7)). Finally, a national price P equilibrates product markets, thus avoiding
having to model interregional trade flows (equation (8)).

The impact of an external economic shock is simulated in CGE models by
adjusting certain model parameters. This causes the economy to move to
a state of disequilibrium. Through an iterative solving process, prices and
other variables are adjusted until equilibrium is once again reached. In this
study, for example, reductions in crop productivity and land availability
caused by droughts and floods are imposed on the model by adjusting the
parameters π and λ (equations (1) and (12)). The simulation shocks are set
up so that they are consistent with the production losses estimated in the
hydrometeorological crop models or LECs discussed in section 2. Lowering
the value of these parameters reduces production and affects product
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prices and factor resources. This then influences households’ real incomes
depending on their resource endowments and employment patterns.

3.2. Extensions to the full CGE model
The actual extended CGE model used in our analysis is calibrated to the
2004 social accounting matrix (SAM) constructed by Benin et al. (2008).
A SAM is a comprehensive economywide framework that serves as a
complete and consistent account of the economic and social structure of an
economy. As such, it is the database of preference for economywide CGE
models.

The extended model drops several of the assumptions in the core
model. Constant elasticity of substitution production functions allow
factor substitution (i.e., δ is no longer fixed), and intermediate demand is
captured via fixed technology coefficients. Following the SAM structure,
the model identifies 36 sectors (17 agriculture, 9 industry, and 10 services).
Agriculture is disaggregated across eight agro-ecological zones; urban
areas; and small-, medium-, and large-scale farmers. Labor markets are
segmented into three skill groups. Elementary workers include self-
employed farm laborers, while skilled workers include highly educated
nonagricultural workers. Both these skill groups are fully employed at
flexible wages. Unskilled workers are employed across both agricultural
and nonagricultural sectors. Their wages are fixed and they suffer from
involuntary unemployment when labor demand declines (e.g., due to
droughts or floods).

Farms in each region are divided into small-scale (less than 0.75
hectares), medium-scale (between 0.75 and 2 hectares), and larger-scale
(more than 2 hectares) farms. As in the case of the illustrative model,
land allocations are fixed at their base levels. A similar closure rule is
adopted for capital stock employed in the agricultural sector, which is
consistent with the assumption of a rapid onset of extreme events. Only
nonagricultural capital remains mobile across sectors.

Unlike in the illustrative model, where the international trade
specification assumed perfect substitution between domestic and foreign
goods, the full Malawi model allows production and consumption to
shift imperfectly between domestic and foreign markets, depending on
the relative prices of imports, exports, and domestic goods. This so-called
Armington specification more accurately captures differences between
domestic and foreign products while also allowing for observed two-way
trade. Production and trade elasticities are taken from Dimaranan (2006).

Household consumption is based on a linear expenditure system
that permits nonunitary income elasticities, which were econometrically
estimated using the 2004/05 Malawi Household Budget Survey (NSO,
2005). Households are split into rural farm/nonfarm groups and urban
and metropolitan centers. Farm households in each region are further
divided into small-, medium-, and large-scale land groups. This implies
28 representative households in the full model. Households pay taxes at
fixed rates, while savings rates are variable under the savings–investment
closure selected (see below).
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The shares of government expenditure and investments in nominal
absorption (i.e., the sum of private consumption, investment expenditure,
and government expenditure) are fixed under a so-called ‘balanced
closure’. Under this closure, government will increase nominal expenditure
when its revenue increases, but only if absorption also rises and in such a
way that its share of nominal absorption remains constant. Beyond that
additional revenue will be used to reduce the deficit. Similarly, the level
of investment remains fixed relative to absorption, with the household
savings rate adjusting to meet the required level of investment. This closure
ensures that changes in nominal absorption are spread equally across its
three components. However, real shares may adjust depending on relative
movements in the relative price indices of government expenditure,
investment, and private consumption. A balanced closure is appropriate
in our short-run analysis where we do not believe large changes in the
structure of domestic absorption are likely to occur.

Finally, the addition of a microsimulation module improves the
measurement of poverty effects. This module links each respondent in
the 2004/05 Household Budget Survey to its corresponding household
group in the CGE model. Changes in real commodity consumption, which
are reported at the level of the household group in the CGE model, are
then ‘passed down’ to the individual households in the survey based on
the assumption that changes are shared equally among the individual
members that make up a group. Per capita expenditure levels and poverty
measures are then recalculated and compared against their initial levels.

3.3. Simulation design
The CGE simulations are based on the LECs in section 2. Intuitively
speaking, production losses associated with droughts and floods may be
a result of either crop productivity declines, land abandonment/losses
(e.g., due to flood inundation), or both. Therefore, as explained earlier,
production losses are modeled via changes in parameter π (crop
productivity) and/or parameter λ (land availability).

An attempt was made to estimate the relative contribution of these
two components to overall production losses econometrically. With respect
to droughts, the econometric model revealed no consistent statistical
relationship between land or yield losses and the severity of a drought
event. Although we account for intra-annual timing of the drought through
the use of an adjusted SPI measure, this adjustment is only effective to
account for yield loss variations due to rainfall deficits during the crucial
flowering or reproductive stages of the crop. Land losses, on the other
hand, mostly relate to farmers choosing not to plant at all due to rainfall
deficits during the planting stage. Thus, in our assessment here, we make
the simplifying assumption that production losses in the drought LECs
are solely attributable to yield losses, which is also consistent with our
assumption of fixed land allocation across crops.

For the flood analysis, both land losses and productivity declines were
found to be significantly related to flood severity; hence it was possible to
decompose the overall production loss associated with floods of different
severities into its separate yield and land use components. The parameter
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Table 2. Simulated land and yield losses for selected droughts and floods

Maize Tobacco

Land Yield Production Land Yield Production
loss (%) loss (%) loss (%) loss (%) loss (%) loss (%)

Droughts
RP5 – −2.3 −2.3 – −1.3 −1.3
RP10 – −16.6 −16.6 – −4.1 −4.1
RP20 – −44.1 −44.1 – −6.3 −6.3
AAL – −4.7 −4.7 – −1.2 −1.2

Floods
RP5 −11.0 −15.7 −25.0 −10.1 −13.8 −22.5
RP10 −18.0 −23.2 −37.0 −16.2 −15.1 −28.8
RP20 −30.0 −26.4 −48.5 −22.8 −17.6 −36.4
AAL −8.0 −4.3 −12.0 −5.6 −3.7 −9.2

Notes: The production losses are comparable to those shown in the earlier
LECs. Crop yield is defined as a crop’s output per unit of land. If L is the ratio
of or change between initial and final cultivated land area, Y the changes in
yield, and P the change in production, then the following holds: (1+L)(1+Y) =
(1+P).
Source: Results from the stochastic drought and flood models.

adjustments for maize and tobacco production are shown in table 2 for
selected weather events.

Drought LECs were estimated for different maize varieties, but only
an aggregate maize crop is modeled in each agro-ecological zone. In line
with fixed land allocations, we assume that farmers cannot switch between
maize varieties in response to a weather shock. We can therefore weight
production losses for each variety by base year variety adoption rates
(MOAFS, 2007) to derive aggregate maize LECs for each zone. Zonal
variation in drought impacts, therefore, results from different adoption
rates and cropping patterns. Tobacco losses are assumed to be uniform
across zones. Flood losses only apply to producers in the three flood-prone
southern zones (i.e., Machinga, Blantyre, and Ngabu).

Since LECs were only estimated for maize and tobacco, we impute direct
losses for other crops by analyzing the correlation between maize and
non-maize production trends during event years using national production
data from FAO (2009). The correlation coefficients used in our simulations
are shown in table 3. We assume correlation coefficients remain constant
across RP values.

We focus on agriculture when estimating direct losses. Crop agriculture
is Malawi’s most climate-sensitive sector due to inadequate irrigation
and poor water management. Moreover, agriculture and food processing
generate half of national gross domestic product (GDP) and four-fifths
of export earnings and employment. Even though our analysis covers
most expected losses during extreme events, we exclude certain impact
channels. For instance, we do not model livestock stock changes or
livestock losses seen during droughts. Most of Malawi’s livestock is
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Table 3. Crop correlation coefficients

Drought Flood

Rice 1.00 1.00
Other cereals 1.00 1.00
Root crops 0.25 1.00
Pulses 0.25 0.00
Groundnuts 0.50 1.00
Vegetables 0.05 1.00
Fruits 0.05 0.00
Cotton 1.00 1.00∗
Sugarcane 0.00 0.00
Tea 0.25 0.00

Notes: Crop production changes during
major event years relative to maize
production change (except for cotton losses
during floods (∗), where the loss factor is
expressed relative to tobacco production).
Source: Own calculation using FAO (2009).

poultry, which is less affected by droughts than cattle, goats, and sheep.
We also do not capture infrastructure damages during floods as these are
generally small relative to total economic losses given the localized nature
and frequency of flood events in Malawi. Thus, despite these omissions,
our results should provide a near approximation of the economic losses
incurred during extreme events.

4. Total economic losses during extreme events

4.1. Impacts on domestic production
Table 4 reports the impact of droughts and floods on national production
or GDP measured at factor cost, also known as ‘value added’. Results
are reported for agricultural subsectors, industry, and services, while the
first column shows initial GDP shares in the base year of the model
(i.e., 2004/05). Maize suffers the largest declines in GDP during droughts,
with an AAL of 4.34 per cent. Average tobacco production losses during
droughts are significantly smaller at 1.28 per cent. This reflects the net
value of long-term losses in the maize and tobacco sectors caused by
weather events. The production of other crops also declines, based on the
correlation coefficients from section 3. Overall, agricultural production is
significantly lower due to extreme weather events, with annual GDP losses
averaging 2.02 and 1.43 per cent for droughts and floods, respectively.

Table 4 also reports agricultural GDP losses for droughts of different
severities. Losses increase significantly during more severe droughts. For
example, agricultural GDP declines by 1.12 per cent during an RP5
drought, but by 18.75 per cent during an RP20 drought. Figure 3 shows
the decline in agricultural GDP for the full distribution of drought events.
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Table 4. Production results for selected events

Change from base value (%)

Initial Droughts Floods
share
(%) RP5 RP10 RP20 AAL RP5 RP10 RP20 AAL

Total GDP 100.00 −0.53 −3.48 −9.05 −0.97 −1.73 −2.52 −3.19 −0.70
Agriculture 40.15 −1.12 −7.27 −18.75 −2.02 −3.54 −5.13 −6.49 −1.43

Maize 10.07 −2.12 −15.88 −44.18 −4.34 −6.37 −9.51 −12.25 −2.66
Other food crops 14.18 −0.73 −5.33 −14.06 −1.49 −3.16 −4.67 −5.91 −1.29
Tobacco 5.89 −1.49 −4.25 −4.44 −1.28 −1.81 −2.20 −2.59 −0.61
Other export crops 4.28 −1.16 −4.65 −8.15 −1.37 −2.20 −2.70 −3.13 −0.75
Livestock 2.46 −0.45 −3.45 −10.37 −0.91 −1.31 −1.99 −2.63 −0.52
Forestry/fishing 3.27 0.05 0.13 −0.11 0.05 0.11 0.14 0.15 0.05

Industry 16.47 0.02 0.03 0.50 −0.01 −0.55 −0.87 −1.17 −0.23
Food processing 3.88 −0.38 −3.32 −9.96 −0.89 −1.99 −3.14 −4.20 −0.81

Services 43.38 −0.20 −1.31 −3.69 −0.35 −0.51 −0.72 −0.91 −0.20
Crop agriculture 34.41 −1.19 −7.69 −19.72 −2.15 −3.78 −5.46 −6.90 −1.52

Small-scale 6.92 −1.49 −10.62 −28.15 −2.97 −6.32 −9.39 −12.06 −2.67
Medium-scale 17.25 −1.35 −9.43 −24.93 −2.62 −5.44 −7.90 −10.01 −2.20
Large-scale 10.24 −1.00 −4.63 −9.98 −1.30 −0.17 −0.01 0.17 0.03

Notes: GDP is measured at factor cost (value added).
Source: Results from the CGE model.
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Figure 3. Distribution of economic losses during droughts
Notes: The poverty rate is based on the basic needs poverty line (US$115 per person
per year in 2004). Sector and national GDP is measured at factor cost (value added).
Source: Results from the CGE model.

Damages eventually taper off as crop production losses reach maximum
levels (compare with figure 1). However, our assumption that crop
correlation coefficients remain constant across RPs explains at least some of
the tapering effect. For example, the coefficient of 0.5 for groundnuts means
that production of this crop cannot decline by more than half, even if maize
production were to fall to zero. For this reason, we focus on economic losses
associated with those drought events that are less severe, more frequent,
and for which better historical climate data exist.5

Table 4 also demonstrates the importance of measuring indirect
economic losses during extreme events. For example, even though we
did not include direct losses for the livestock sector, the decline in maize
production and subsequent increase in maize prices causes average annual
livestock GDP to fall by 0.91 per cent because of the importance of
maize as a feedstock for poultry in particular. Similarly, falling agricultural
production has knock-on effects for the food processing sectors, which rely
on the domestic supply of raw intermediate products. Services also decline
during droughts as demand for trade and transport services falls along
with agricultural production. Overall, average annual total GDP losses
equal 0.97 and 0.70 per cent, respectively. These are the average losses
that would be incurred over long periods of time. Accordingly, we can
combine these annual damages to arrive at an expected annual loss caused
by general weather variability (i.e., floods and droughts) of 1.67 per cent of
total GDP.

Table 5 shows that agricultural GDP is negatively affected by droughts
in all regions of Malawi. However, there is significant variation in damages
across agro-ecological zones due to differences in regions’ dependencies
on drought-sensitive crops, such as local variety maize. For example,
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farmers in the central regions are less affected by droughts because it is
here that most of the country’s relatively drought-tolerant tobacco and
composite maize is grown. By contrast, farmers in the southern region
of Machinga and Ngabu experience the largest declines in crop and
livestock GDP due to their greater reliance on local maize and poultry.
The southern region is also where flood damages are likely to occur
and where declining land availability due to water inundation has pro-
foundly negative consequences for agricultural production during severe
floods.

The increase in crop and livestock GDP for the northern and central
regions during floods is driven by the assumption that national product
markets function in Malawi. When production losses only occur within
certain regions, overall supply shortages in the economy ensure that
unaffected regions experience an increase in demand for their output
at higher prices. Thus, while the overall impact on GDP is negative
during floods, the northern and central regions experience marginal gains
in production as they attract unskilled migrant workers released from
employment in the flood-affected regions.

Finally, table 4 reports agricultural impacts for different farm types.
Small- and medium-scale farmers are worst affected by droughts and
floods. Small-scale farmers lose almost 2.97 per cent of annual production
due to droughts and 2.67 per cent due to floods. By contrast, large-
scale farmers experience production losses of only 1.30 per cent during
droughts, and actually benefit slightly (0.03 per cent) from floods in the
southern region. Larger impacts for small- and medium-scale farmers
are due to their greater reliance on maize production, especially local
varieties, which heightens their vulnerability to droughts and floods.
Large-scale farmers, on the other hand, grow more drought-tolerant
crops, such as modern maize varieties, tobacco, and sugarcane, and are
more heavily concentrated in the less flood-prone northern and central
regions.

4.2. Macroeconomic effects
One of the strengths of CGE models is that their consistent accounting
framework ensures that macroeconomic constraints are respected. For
example, table 6, which reports on changes in the components of GDP
(measured here at market prices), shows how falling domestic production
during drought years increases demand for imported food products, with
maize imports more than doubling in an RP20 drought year. However, at
the same time, there is a drop in tobacco exports, which generated a third
of total export earnings in 2005. This results in a declining capacity to pay
for imports – a situation that places considerable pressure on Malawi’s
current account balance. We assume that the country cannot increase its
external deficit via increased public sector borrowing or additional foreign
aid receipts. Accordingly, the real exchange rate must depreciate in order
to encourage exports from those sectors less affected by droughts. This
benefits larger-scale farmers, who account for most of Malawi’s export
agriculture, as well as industrial producers, who do not experience direct
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Table 5. Regional production results for selected events

Change from base value (%)

Initial Droughts Floods
share
(%) RP5 RP10 RP20 AAL RP5 RP10 RP20 AAL

Crops and livestock 36.87 −1.22 −7.92 −20.41 −2.21 −3.87 −5.60 −7.08 −1.56
North

Karonga 1.15 −1.22 −8.98 −24.83 −2.53 0.38 0.57 0.73 0.16
Mzuzu 4.45 −1.25 −7.05 −16.87 −1.96 0.50 0.74 0.95 0.21

Center
Kasunga 6.89 −1.11 −6.11 −14.95 −1.71 0.69 1.03 1.32 0.29
Salima 2.37 −0.39 −2.97 −7.90 −0.84 0.37 0.54 0.69 0.15
Lilongwe 7.47 −1.24 −8.01 −20.40 −2.20 0.57 0.85 1.08 0.24

South
Machinga 4.20 −1.66 −11.48 −30.06 −3.20 −16.86 −24.40 −30.93 −6.79
Blantyre 6.28 −1.08 −7.69 −20.38 −2.15 −9.68 −14.20 −17.99 −3.96
Ngabu 1.42 −1.97 −14.35 −38.55 −4.04 −15.03 −21.09 −26.39 −5.91

Urban 2.63 −1.34 −9.32 −24.89 −2.58 −0.82 −1.24 −1.62 −0.32

Notes: GDP is measured at factor cost (value added).
Source: Results from the CGE model.
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losses from the drought. This explains the small increase in industrial GDP
during some of the simulated drought events (see table 4).

Taking macroeconomic balances into account is crucial for measuring
the overall impacts of extreme weather events. The decline in GDP and
national income reduces the level of savings during a drought or flood year,
and in turn lowers investment demand. However, it is private consumption
spending that declines the most during extreme events, as households’
real disposable income levels fall with declining production and the rise
in consumer prices. Such adverse price and income changes may cause
households at the lower end of the income distribution to drop below
the poverty line (see further analysis below). The depreciating exchange
rate raises the locally-denominated value of foreign grants, which allows
real government expenditure to expand slightly, even though under the
balanced closure nominal shares of private consumption, investment and
government expenditure remain fixed.

4.3. Poverty outcomes
Table 7 reports the impact of droughts and floods on household poverty,
as estimated by the microsimulation poverty module. The results show
how national poverty worsens under all drought and flood scenarios. On
average, the national poverty headcount rate increases by 1.26 and 0.91
percentage points as a result of droughts and floods, respectively. This is
equivalent to an additional 265,000 people dropping below the poverty line
every year due to the combined effect of droughts and floods (out of a total
population of 12.2 million in 2004/05). During particularly severe events,
such as an RP20 drought, the poverty rate is expected to increase by 14.35
percentage points, pulling an additional 1.75 million people into poverty.

Computable general equilibrium models can also distinguish impacts
between household groups. While all household groups reported in table 7
experience increasing poverty, it is nonfarm households that are worst
affected. As net consumers of agricultural products, these households are
especially vulnerable to rising food prices (i.e., unlike farm households
who produce their own foods, nonfarm households cannot offset the
negative welfare effects associated with rising prices). Moreover, declining
nonfarm wages and rising unemployment caused by migration of farm
workers to the nonfarm economy due to falling farm revenues further
contributes to income losses for existing nonfarm workers.

Nonfarm households, however, account for only 15 per cent of the total
population and an even smaller share of the poor population. In fact, over
90 per cent of the poor live in rural farm households. As such, changes in
poverty for these households largely dictate what happens at the national
level. In this regard, results show relatively large increases in poverty
among small- and medium-scale farm households compared with large-
scale farm households. In absolute terms, 90 per cent of people who become
poor as a result of either droughts or floods reside in small- or medium-
scale farm households.
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Table 6. Macroeconomic results for selected events

Change from base value (%)

Initial Droughts Floods
value
(US$ mil.) RP5 RP10 RP20 AAL RP5 RP10 RP20 AAL

Total GDP 1,474 −0.53 −3.54 −10.05 −0.96 −1.77 −2.63 −3.40 −0.70
Consumption 1,372 −0.56 −3.82 −10.60 −1.04 −1.96 −2.91 −3.77 −0.78
Government 249 0.16 1.12 2.60 0.32 0.70 1.04 1.34 0.29
Investment 211 −0.20 −1.20 −4.25 −0.29 −0.44 −0.63 −0.82 −0.15
Exports 346 −0.63 −2.31 −2.32 −0.74 −1.49 −1.89 −2.21 −0.53

Tobacco 102 −1.78 −5.48 −7.83 −1.60 −1.71 −1.96 −2.20 −0.52
Imports −704 −0.31 −1.13 −1.14 −0.36 −0.73 −0.93 −1.09 −0.26

Maize −30 6.30 57.22 208.55 13.77 20.18 31.92 43.14 8.14
Real exchange rate 100 0.47 2.96 8.79 0.77 1.49 2.18 2.81 0.57
Consumer price index 100 0.21 1.36 3.99 0.36 0.71 1.05 1.36 0.28

Notes: GDP is measured at market prices.
Source: Results from the CGE model.
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Table 7. Poverty results for selected events

Point change from base rate (%-point)

Initial Number Droughts Floods
poverty of poor
rate (%) (1000) RP5 RP10 RP20 AAL RP5 RP10 RP20 AAL

National 52.41 6,380 0.67 4.87 14.35 1.26 2.67 4.10 5.09 0.91
Urban 25.40 351 0.49 4.60 11.43 0.96 1.90 3.62 4.50 0.78

Farm 30.03 196 0.24 3.83 9.46 0.55 1.38 2.85 3.62 0.55
Nonfarm 21.23 154 0.72 5.30 13.21 1.33 2.38 4.31 5.30 0.99

Rural 55.86 6,029 0.69 4.90 14.72 1.30 2.76 4.16 5.16 0.93
Farm 56.68 5,858 0.70 4.87 14.72 1.27 2.71 4.11 5.13 0.91

Small 61.03 2,277 0.62 4.72 14.89 1.26 3.18 5.05 6.44 1.25
Medium 55.60 3,470 0.74 5.15 15.24 1.30 2.56 3.75 4.61 0.75
Large 30.60 111 0.66 1.64 3.98 0.66 0.51 0.55 0.55 0.04

Nonfarm 37.50 172 0.56 5.53 14.78 2.10 3.91 5.24 5.93 1.31

Source: Results from the CGE model.
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Table 8. Comparing model results and observed outcomes

Share of total
GDP (%) 1994/95 drought 2002/03 flood

2005
1993 2001 (model base) Modeled Observed Modeled Observed

Total GDP 100.00 100.00 100.00 −9.05 −11.59 −2.52 −3.76
Agriculture 31.36 38.78 40.15 −18.75 −28.92 −5.13 −6.32
Industry 18.73 16.69 16.47 0.50 2.41 −0.87 −10.27
Services 49.91 44.53 43.38 −3.69 −5.95 −0.72 0.91

Source: Historical GDP data from World Bank (2008) and results from the CGE
model.

4.4. Comparison with observed events
To partially validate the model’s results, table 8 compares the economic
impact of the modeled RP20 drought year with the observed outcome
in 1993/94, which was also classified as an RP20 drought. Similarly, we
compare the RP10 flood scenario with the observed outcome during the
2002/03 flood.

The modeled and observed results are broadly consistent, at least as
far as the direction of change is concerned. It appears, however, that the
CGE model may underestimate the impact of weather events. However, it
is difficult to directly compare modeled and observed impacts for three
reasons. First, structural changes over time influence the way in which
weather shocks filter through the economy. For example, the share of
agriculture in GDP changed between 1993 and 2005, and this will affect
how changes in the agricultural sector contribute to changes in total GDP.
Moreover, there are structural shifts within agriculture, such as toward
using more drought-tolerant seed varieties, which would diminish the
effects of weather events on agricultural GDP.

Second, the CGE model isolates the impact of drought and flood events,
while observed data include other changes taking place at the same time.
For example, the 1994 drought was preceded by an even more severe
drought in 1992 (RP40), while the 2002 flood was preceded by an RP5 flood
in the previous year. During this time, there were also changes in public
policies and shifts in world commodity prices. The aftershocks of earlier
weather events, as well as other possible external factors not modeled here,
are likely to have affected observed changes.

Finally, it should be noted that the base year of the model (i.e., 2004)
was not a ‘normal’ year, but rather a year in which Malawi experienced
an approximate RP7 drought. The data on which the model is based
therefore includes the effects of an extreme weather event. However, for
modeling convenience, we assume that the base year was a ‘normal’ year.
This is not a major concern for our comparative static analysis, since we
focus on relative changes from the base. However, selecting another base
year would have been an ideal solution, although given the frequency of
weather events in Malawi, it is difficult to identify a year when ‘normal’
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conditions prevailed throughout the country (and also one in which there
were no other policy changes or external shocks).

5. Conclusion
We developed an integrated analytical framework that imposed the direct
production losses estimated by stochastic flood and drought models
on a regionalized CGE model. We used this framework to estimate
economywide damages for the full distribution of possible weather events
in Malawi. This is an advance over existing studies, which have evaluated
either hypothetical or single historical events, and have therefore limited
their ability to inform future mitigation strategies. Moreover, we examined
the impact of extreme weather events on the distribution of incomes
and poverty across different regions and population groups. This enabled
us to identify vulnerable sections of the population. Our methodology
could therefore be usefully applied to a wide range of contexts to inform
both development policy and disaster management programs.

Results for Malawi indicate that, on average, droughts and floods
together reduce total GDP by about 1.7 per cent per year. However,
damages vary considerably across weather events, with total GDP
declining by at least 9 per cent during a severe 1-in-20-year drought. Such
severe outcomes place a significant constraint on Malawi’s development
prospects. Smaller-scale farmers in the southern regions of the country
are especially vulnerable to declining agricultural revenues and rising
poverty during drought and flood years. However, urban households also
experience increased poverty due to higher food prices and declining
nonfarm wages. Indeed, the disruption of supply chains during extreme
events causes indirect losses in downstream food processing and upstream
services. This result underlines the potential economywide impacts of
extreme weather events and the advantages of using a CGE model to
measure indirect losses.

Our analysis is by no means exhaustive. First, our objective was to
measure the immediate impact of extreme weather events via market
channels, which justifies the use of a comparative static CGE model.
However, the longer-term, dynamic implications of climate shocks, such
as soil erosion, infrastructure losses, or investment behavior, should also
be considered. Second, we focused on direct losses within agriculture.
While agricultural losses dominate in Malawi, other impact channels such
as hydropower and road infrastructure may need to be considered for
countries with relatively smaller agricultural sectors or more extensive
and/or vulnerable infrastructure networks. Finally, while our findings
highlight the need to account for weather risk when designing policies,
we did not evaluate any specific mitigation measures (see Devereux, 2007).
However, our integrated framework would be a suitable tool for assessing
the climate resilience of alternative policies or investments, such as crop
insurance, improved seed varieties, and enhanced flood management
practices.
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