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Abstract. For a sequence of complex parameters (cn) we consider the composition
of functions fcn(z) = z2 + cn, the non-autonomous version of the classical quadratic
dynamical system. The definitions of Julia and Fatou sets are naturally generalized to this
setting. We answer a question posed by Brück, Büger and Reitz, whether the Julia set for
such a sequence is almost always totally disconnected, if the values cn are chosen randomly
from a large disc. Our proof is easily generalized to answer a lot of other related questions
regarding typical connectivity of the random Julia set. In fact we prove the statement for
a much larger family of sets than just discs; in particular if one picks cn randomly from
the main cardioid of the Mandelbrot set, then the Julia set is still almost always totally
disconnected.
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1. Introduction
We consider non–autonomous compositions of quadratic polynomials fc = z2 + c where
at each step c is chosen randomly from some bounded Borel V ⊂ C (e.g. the disc D(0, R)).
Let us introduce the parameter space � = V N. The space � is equipped with a natural left
shift map σ . Namely, for every ω = (c0, c1, c2, . . .) ∈ �, put

σ(ω) = (c1, c2, . . .).

Next, for every ω ∈ �, ω = (c0, c1, . . .) denote by fω the map fc0 . Then the
non-autonomous composition f n

ω is given by the formula

f n
ω := fcn−1 ◦ fcn−2 ◦ · · · ◦ fc0 .
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The global dynamics can be described as a skew product F : � × C → � × C,

F(ω, z) = (σ (ω), fω(z)).

Then, for all n ∈ N, we have that

Fn(ω, z) = (σn(ω), f n
ω (z)).

So, every sequence ω ∈ � determines a sequence of non-autonomous iterates: (f n
ω )n∈N.

Let μ be a Borel probability measure on V . We denote by P the product distribution on
� generated by μ. Then (�, P) becomes a measurable space, and σ : � → � is an ergodic
measure-preserving endomorphism.

Analogously to the autonomous case, it is natural to consider the following objects:
• the escaping set, or basin of infinity,

Aω = {z ∈ C : f n
ω (z) −−−→

n→∞ ∞};
• the non-autonomous Julia set

Jω = {z ∈ C : for every open set U � z the family f n
ω |U is not normal}; (1)

• the non-autonomous filled-in Julia set

Kω = C \ Aω. (2)

The following proposition, which can be found in [4, Theorem 1] is analogous to the
autonomous case.

PROPOSITION 1. Let ω ∈ D(0, R)N. Then

Jω = ∂Aω.

Let us also note the following straightforward observations:

PROPOSITION 2. For every ω ∈ �:
• Jσω = fω(Jω);
• Aσω = fω(Aω).

The study of iterates of non-autonomous and random rational maps, and, in particular,
non-autonomous and random polynomials, originated from the seminal paper [7] by
Fornæss and Sibony. It has since been developed by many authors.

A systematic study of dynamics on non-autonomous and random dynamics of quadratic
polynomials was done by Brück, Büger and Reitz; see [2–4]. Other results related to
random polynomial dynamics in general have also been achieved by Comerford in [5, 6].
Finally, in [9], Mayer, Skorulski and Urbanski, among other results, confirm a conjecture
by Brück and Büger concerning the typical Hausdorff dimension of a certain random
quadratic Julia set.

In [3] the authors focus on the question of the connectedness of the Julia set, giving,
among other results, a transparent sufficient and necessary condition for the Julia set to be
connected.
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THEOREM 1.1. in [3] Let ω ∈ D(0, R)N, R > 0. The Julia set Jω is disconnected if and
only if there exists k ∈ N such that

f n
σkω

(0) −−−→
n→∞ ∞.

Note that the point 0 plays a special role, since it is a common critical point of all
maps fc. Recall that in the autonomous case (i.e. the iterates of a single map fc) the
Julia set is disconnected if and only if f n

c (0) −−−→
n→∞ ∞. Moreover, if the Julia set J (fc)

is disconnected, then it is totally disconnected. The last statement is no longer true in the
non-autonomous case considered here; for example, one can easily construct sequences ω

for which Jω is disconnected and has finitely many connected components.
Looking at the above characterization of connected Julia sets Jω, one may conjecture

that the condition

f n
σkω

(0) −−−→
n→∞ ∞ for every k ∈ N

is the right characterization of totally disconnected Julia sets Jω.
However, this condition is neither necessary nor sufficient. Indeed, in [3] the

authors construct an example of a sequence ω ∈ D(0, R)N such that, for every k ∈ N,
f n

σkω
(0) → ∞ as n → ∞, but the Julia set Jω is not totally disconnected (see [3, Example

4.4]). On the other hand, Example 4.5 in the same paper shows that the Julia set may be
totally disconnected even if, for infinitely many k ∈ N, f n

σkω
(0) does not tend to infinity as

n → ∞.
Clearly, the behaviour of the (typical) dynamics depends on the domain from which the

parameters cn are chosen. In particular, in case of a disc D(0, R), the dynamics depend
on R.

If R ≤ 1/4 then, for every ω ∈ D
N, ω = (ci)

∞
i=0, the Julia set Jω is connected (see [3,

Remark 1.2]). Note that in this case all parameters ci are chosen from the main cardioid in
the Mandelbrot set.

For R > 1/4 the situation changes drastically. Indeed, the disc D(0, R) now contains
parameters from the complement of the Mandelbrot set M. So, it is evident that putting,
for instance, ω = (c, c, c, . . .), where c ∈ D(0, R) \ M, one obtains a totally disconnected
Julia set Jω.

This motivates the following question, which was raised in [2, 3]: what is a typical
behaviour of the Julia set Jω, in terms of connectedness? More formally, in [2, 3] the
authors introduce subsets of � = D(0, R)N, denoted by D, DN , D∞, T , and described in
terms of connectedness:

D = {ω ∈ � : Jω is disconnected},
DN = {ω ∈ � : Jω has at least N connected components},
D∞ = {ω ∈ � : Jω has infinitely many connected components},
T = {ω ∈ � : Jω is totally disconnected},
F = {ω ∈ � : for all k ∈ N, f n

σkω
(0) −−−→

n→∞ ∞}.
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Clearly, for N > 1, D ⊃ DN ⊃ D∞ ⊃ T . But, as mentioned above, the set F is neither
contained in nor contains T .

Here, typicality may be understood in a topological or metric sense. The space � =
D(0, R)N carries the natural product topology induced by the standard topology on
D(0, R). Note that this topology is completely metrizable.

The space � also carries the natural product measure P := ⊗∞
n=0λR where each λR is

the normalized Lebesgue measure on D(0, R). In [3] the authors prove that P(D) = 1,
provided R > 1/4 [3, Theorem 2.3]. It can be deduced from the proof, in a rather
straightforward way, that P(F) = 1 and also (although it is not explicitly stated in the
paper) that P(D∞) = 1.

The work [2] deals with topological aspects of typicality of the above sets. In particular,
the author proves (assuming R > 1/4) that:
• the set T is dense in � (Theorem 1.1 );
• the set D∞ has empty interior in � (Theorem 1.2);
• for every N ∈ N, the set DN is an open dense subset of �; which immediately implies

that
• the set D∞ is of the second Baire category.
In [2] the author asked if the set T is also of the second Baire category. This question was
positively answered by Gong, Qiu and Li in [8].

However, the question about metric typicality of T , formulated in [3], remained open
until now.

Question. Is it true that P(T ) = 1 provided that R > 1/4 is large enough?

In this paper, we answer the above question positively, providing a number of stronger
statements. Specifically, we prove the following.

THEOREM A. Let R > 1/4. Consider � = D(0, R)N equipped with the product distribu-
tion P := ⊗∞

n=0λR . Let

T = {ω ∈ � : Jω is totally disconnected}.

Then P(T ) = 1.

In other words, a typical (metrically) Julia set Jω is totally disconnected.
One might expect that the phenomenon described in Theorem A is based on the fact

that for R > 1/4 the disc D(0, R) intersects the complement of the Mandelbrot set M.
However, the following generalization shows that the analogous statement holds true also
for domains which are completely contained in the Mandelbrot set. Namely, we have the
following generalization of Theorem A.

THEOREM B. Let V be an open and bounded set such that D(0, 1
4 ) ⊂ V and V �= D(0, 1

4 ).
Consider the space � = V N equipped with the product P of uniform distributions on V .
Then for P-almost every sequence ω ∈ � the Julia set Jω is totally disconnected.

Theorem B leads immediately to the following corollary.
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COROLLARY. (Theorem 17) Let � = BN where B is the main cardioid of the Mandelbrot
set, and let � be equipped with the product of uniform distributions on B. Then, for almost
every sequence ω ∈ �, the Julia set Jω is totally disconnected.

A number of applications of our approach, possible generalization and further results
are presented in §6.

2. Green’s function
Notation. For every r > 0, denote Dr := D(0, r) and D

∗
r := C \ Dr .

We write ω = (c0, c1 · · · ) in various contexts to denote an infinite sequence of para-
meters, even if no probability distribution is specified. For such a sequence we use both
notations:

f n
ω = f n

cn−1,cn−2,...,c1,...c0
= fcn−1 ◦ fcn−2 ◦ · · · ◦ fc1 ◦ fc0 .

2.1. Green’s function on Aω. We recall the proposition proved in [7], which we state in
a slightly different form.

PROPOSITION 3. Let V be a bounded Borel subset of C, and put � = V N. Let μ be a
Borel probability measure on V , and P be the product distribution on � generated by μ.
For every ω ∈ �, the following limit exists for gω : Aω → R:

gω(z) = lim
n→∞

1
2n

log |f n
ω (z)|. (3)

The function z 
→ gω(z) is Green’s function on Aω with pole at infinity. Putting gω ≡ 0
on the complement of A∞, gω extends continuously to the whole plane. With z fixed, the
function ω 
→ gω(z) is P– measurable.

This is a generalization of a well-known formula for the autonomous case: for the map
fc(z) := z2 + c and its basin of infinity Ac, Green’s function with a pole at infinity is given
by

gc(z) = lim
n→∞

1
2n

log |f n
c (z)|.

COROLLARY 4. We have

gσω(fω(z)) = 2gω(z). (4)

Proof. This follows directly from formula (3), defining Green’s function gω.

Observation: Critical points of gω. Writing fi for fci
, we see that gω has critical points at

each point of the following sets:

C0 = {0},
C1 = f −1

1 (0),

C2 = f −1
1 f −1

2 (0), . . . ,

Ck = f −1
1 f −1

2 f −1
3 , . . . , f −1

k (0), . . . .
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Let us note that in the autonomous case the critical points of gc form a ‘tree’ (i.e. Ck =
f −1(Ck−1)), while in a general non-autonomous case the set Ck is not a preimage of Ck−1

under any the maps fi .

2.2. Estimates for Green’s function.

PROPOSITION 5. For every ε > 0, R > 0, there exists R0 > 0 such that, for every ω ∈
D(0, R)N,

fω(D∗
R0

) ⊂ D
∗
2R0

, (5)

D
∗
R0

⊂ Aω, (6)

|gω(z) − log |z|| < ε in D
∗
R0

. (7)

Proof. First, since |cn| < R for all c, one can choose R1 > 0 to ensure

fω(D∗
R0

) ⊂ D
∗
2R0

(8)

for every R0 ≥ R1. This guarantees (5) and(6).
Let a0(z) = log |z|, an(z) = (1/2n) log |f n

ω (z)|, for n ≥ 1, and note that we have, for
all n ≥ 0,

an+1(z) = 1
2n+1 log |f n+1

ω (z)|

= 1
2

(
1
2n

log |(f n
ω (z))2 + cn|

)

= 1
2n

(
log |f n

ω (z)| + 1
2

log
∣∣∣∣1 + cn

(f n
ω (z))2

∣∣∣∣
)

= an(z) + 1
2n+1

(
log

∣∣∣∣1 + cn

(f n
ω (z))2

∣∣∣∣
)

.

In particular, this means that

gω(z) = a0 +
∞∑

n=0

(1/2n+1) log |1 + (cn/(f
n
ω (z))2)| = log |z|

+
∞∑

n=0

(1/2n+1) log |1 + (cn/(f
n
ω (z))2)|.

Choosing R0 ≥ R1 large enough, we can have
∞∑

n=0

(1/2n+1) log |1 + (cn/(f
n
ω (z))2)| < ε

on D
∗
R0

. This yields

|gω(z) − log |z|| < ε,

which concludes the proof.

The following is an immediate consequence of item (5) of Proposition 5.
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COROLLARY 6. For every ω ∈ D(0, R)N, Kω ⊂ DR0 .

Determining constants. Now, for every R, we fix some R0 > R satisfying the conditions
formulated in Proposition 5 with ε := 1, in particular,

|gω(z) − log |z|| < 1 in D
∗
R0

. (9)

Next, for every R > 0, let us fix also some R̃0 ∈ (R0, R2
0 − R), say, R̃0 = 1

2 (R0 + R2
0 − R).

Then, for every ω ∈ D(0, R)N, f −1
ω (D

R̃0
) ⊂ DR0 . By Proposition 5,

G = G(R) := sup
|R0|≤|z|≤R̃0,ω∈D(0,R)N

(gω(z)) < ∞, (10)

PROPOSITION 7. For every R > 0, for every ω ∈ D(0, R)N,

sup
z∈DR0

gω(z) ≤ log R0 + 1.

In particular, the function D(0, R)N � ω 
→ gω(0) is bounded above, and

sup
ω∈D(0,R)N

gω(0) ≤ log R0 + 1.

Proof. Since |gω(z)| ≤ log |z| + 1 in D
∗
R0

, we have, in particular, gω|∂DR0
≤ log R0 + 1.

By the maximum principle, the same estimate holds in the whole disc DR0 , in particular,
for z = 0. So, supω∈D(0,R)N gω(0) ≤ log R0 + 1.

2.3. Escape rate of the critical point. We introduce the following definition.

Definition 2.1. Let ω ∈ D(0, R)N. For every z ∈ D(0, R0), we denote by k(z, ω) the
escape time of z from DR0 :

k(z, ω) =
{

min{j : |f j
ω (z)| ≥ R0} if z ∈ Aω,

∞ if z ∈ Kω.
(11)

PROPOSITION 8. For every z ∈ Aω ∩ DR0 ,

(log R0 − 1)2−k(z,ω) ≤ gω(z) ≤ 2(log R0 + 1)2−k(z,ω). (12)

Proof. Recall that, by (4),

gω(z) = gσk(z,ω)ω(f k(z,ω)
ω (z)) · 2−k(z,ω)

and

gσk(z,ω)ω(f k(z,ω)
ω (z)) = 2gσk(z,ω)−1ω(f k(z,ω)−1

ω (z)) ≤ 2(log R0 + 1),

since f
k(z,ω)−1
ω (z)) ∈ DR0 .

On the other hand,

gσk(z,ω)ω(f k(z,ω)
ω (z)) ≥ log |f k(z,ω)

ω (z)| − 1 ≥ log R0 − 1.

This implies that (12) holds.

https://doi.org/10.1017/etds.2020.148 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.148


Random quadratic polynomials 1771

Our estimates show that the distribution of the random variable log− gω(0) is roughly
the same as that of k(0, ω).

Definition 2.2. Let V be a bounded Borel subset of C, V ⊂ D(0, R). Let μ be a probability
Borel measure on V , and let P be the product distribution on V N generated by μ. Fix the
values R0 = R0(R) and G = G(R) according to (10). We say that the critical point is
typically fast escaping if there exists γ > 0 such that

P

({
ω ∈ � : gω(0) <

G

2k

})
< e−γ k . (13)

3. Sufficient condition for total disconnectedness
Recall that in §2.2 we assigned, for every R > 0, the values R0 and R̃0.

LEMMA 9. Choose an arbitrary radius ρ ∈ [R0, R̃0] and let D := Dρ . Then the filled-in
Julia set Kω (i.e. the set of points z whose trajectories f n

ω (z) do not escape to ∞) can be
written as

Kω :=
⋂
k∈N

(f k
ω)−1(D).

Proof. Since the trajectory of every point z ∈ ⋂
k∈N(f k

ω)−1(D) is bounded, it is clear that⋂
k∈N

(f k
ω)−1(D) ⊂ Kω.

On the other hand, if z /∈ ⋂
k∈N(f k

ω)−1(D) then, for some k ∈ N, |f k
ω(z)| ≥ ρ ≥ R0, and

it follows from the choice of R0 that

f n
ω (z) = f n−k

σ kω
(f k

ω(z)) −−−→
n→∞ ∞,

so z /∈ Kω.

Observe that
⋂

k∈N(f k
ω)−1(D) is an intersection of a descending sequence of sets. At

each level k the set

Dk(ω) := (f k
ω)−1(D)

is a union of pairwise disjoint topological discs Dk
j (ω), each of them being mapped by f k

ω

onto D with some degree dk
j ≤ 2k .

Now put ρ = R̃0, that is, put D := D
R̃0

. The following proposition formulates, in
terms of the degree of the maps f k

ω : Dk
j (ω) → D, a sufficient condition for total

disconnectedness of the Julia set Jω.

PROPOSITION 10. Let ω ∈ D(0, R)N. If there exists N ∈ N such that, for infinitely many
integers k ∈ N, for each component Dk

j (ω) of the set Dk(ω) = (f k
ω)−1(D) the degree of

the map

f k
ω : Dk

j (ω) → D

is at most N , then the Julia set Jω is totally disconnected.
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Proof. In what follows, to simplify the notation we write Dk
j and Dk in place of Dk

j (ω)

and Dk(ω), respectively. Recall that R0 and R̃0 were chosen in §2.2 in such a way that

for all ν ∈ D(0, R)N, D
∗
R0

⊂ Aω and f −1
ν (D

R̃0
) ⊂ DR0 . (14)

Denote by P the annulus

P = {z : R0 < |z| < R̃0}.
For every k ∈ N and for every component Dk

j of Dk , the map f k
ω : Dk

j → D is a proper
holomorphic map onto D.

By the assumption there exists an increasing sequence of positive integers {kn} such that
the maps

f kn
ω : D

kn

j → D

have degree at most N for all j .
Now, let us divide the annulus P into N nested geometric annuli with the same

modulus M . These N annuli all lie in the intersection of D and all basins of infinity Aν ,
ν ∈ D(0, R)N, by (14).

Let us pick a point z in the Julia set Jω, and let D
kn

jn
be the component of Dkn such that

z ∈ D
kn

jn
.

Since the degree of f
kn
ω on D

kn

jn
is at most N , one of the N annuli contains no critical

values of f
kn
ω ; let us choose such an annulus and denote it by Pn. Consider now the

(possibly smaller) disc D′ ⊂ D, bounded by the outer boundary circle of the annulus Pn,
and let D′kn

jn
be the connected component of (f

kn
ω )−1(D′), containing the point z. The

map f
kn
ω : D′kn

jn
→ D′ is also proper, and the preimage of the annulus Pn under this map,

denoted here by P ′
n, is again a (topological) annulus. The map f

kn
ω restricted to P ′

n is a
covering map of degree at most N , so, the modulus of P ′

n is at least M/N .
The point z lies in some connected component of (f

kn
ω )−1(DR0) contained in D

kn

jn
, so,

in particular, it lies in the bounded component of the complement of the annulus P ′
n.

Observation. Now, let us recall that, according to the choice of R0 and R̃0, for every ν ∈
D(0, R)N we have that

f −1
ν (D

R̃0
) ⊂ DR0 .

So, in particular, for every k ≥ 1, f −1
σk−1ω

(D
R̃0

) ⊂ DR0 . This also implies that, for any k and

any ω ∈ D(0, R)N, each component of (f
(k+1)
ω )−1(D

R̃0
) is contained in some component

of (f k
ω)−1(DR0) (since each such component is mapped by f k

ω onto some component of
f −1

σk−1ω
(D

R̃0
)). Clearly, the same is true with k + 1 being replaced by any arbitrary integer

m > k.
We shall apply this observation for k := kn and m := kn+1. As before, for kn+1 we

find a topological annulus P ′
n+1 of modulus at least M/N , in the connected component of

(f
kn+1
ω )−1(D

R̃0
) containing the point z, and such that z lies in the bounded component of

the complement of the annulus P ′
n+1.
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Using the above observation, we conclude that the annulus P ′
n+1 is contained in the

component of (f
kn
ω )−1(DR0) containing the point z; in particular, it is contained in the

bounded component of the complement of P ′
n.

In this way, we obtain a nested infinite sequence of disjoint annuli P ′
n, each of modulus

at least M/N , all contained in Aω, the point z being in the bounded component of the
complement of each of them.

Now let us fix n and consider the topological annulus Pn that is bounded by the
boundaries of D and D

kn

jn
. Since it contains the nested sequence of annuli P ′

1, P ′
2, . . . , P ′

n,
each of modulus at least M/N , then, by Grötzsch inequality, it must have modulus at least
n(M/N) (see, for example, [1, Proposition 5.4] or [10, Theorem B5, p. 192]). This in turn
means it contains an actual geometric annulus of modulus at least n(d/N) − C (where C is
some constant), which separates the components of the boundary of Pn. (see, for example,
[10, Theorem 2.1]). Since, for every n, the connected component of Kω containing the
point z is contained in the bounded component of the complement of Pn, this implies that
the component of Kω containing z must have arbitrarily small diameter, that is, it is the
single point z.

Since the choice of the point z was arbitrary, this finally means the Julia set is totally
disconnected, which concludes the proof of Proposition 10.

4. Typically fast escaping critical point and total disconnectedness
In this section we check that the condition formulated in Definition 2.2 is sufficient to prove
that the assumptions of Proposition 10 are satisfied for P-almost every ω. More precisely,
we prove the following theorem.

THEOREM 11. Let V be a bounded Borel subset of C, V ⊂ D(0, R). Let R0, G be the
values assigned to R as in §2.2. Let μ be a Borel probability measure on V and let P be
the product distribution on � = V N, generated by μ.

If the critical point 0 is typically fast escaping, that is, if (13) holds, then the assumptions
of Proposition 10 are satisfied for P-almost every ω ∈ �. Thus, for P-almost every ω ∈ �,
the Julia set Jω is totally disconnected.

Actually, the property from (13) is stronger than necessary, since to apply our proof all
that is needed is for the series of probabilities to be convergent. In all our applications the
bounds are indeed exponential, nevertheless the reader will soon see that the following
remark is also true.

Remark. The statement of Theorem 11 is still true if one replaces (13) with

∞∑
k=0

P

({
ω ∈ � : gω(0) <

G

2k

})
< ∞.

Define the sets

Ak =
{
ω ∈ � : gω(0) <

1
2k

G

}
.
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Before proving Theorem 11 we explain in the next proposition the role of the sets Ak in
possible applications of Proposition 10. We apply the setting and notation of Theorem 11.

PROPOSITION 12. (a) If

σ iω /∈ Ak−i for all i = 0, . . . , k − 1

then, for every connected component Dk
j of the preimage (f k

ω)−1(D), the degree of the
map

f k
ω : Dk

j → D

is equal to 1.
(b) If the above holds for all but l indices then, for every connected component of the

set f −k
ω (D), the degree of

f k
ω : Dk

j → D

is bounded above by N = 2l .

Proof. It follows from (10) that, for every ν ∈ � and for every z ∈ D, gν(z) < G. Let Dk∗
be some component of (f k

ω)−1(D). Consider the sequence of maps

Dk∗ −→
fω

Dk−1∗ −−→
fσω

Dk−2∗ · · · −−−−→
f

σk−2ω

D1∗ −−−−→
f

σk−1ω

D,

where we denoted by Dk−i∗ the consecutive images of Dk∗ under the maps fω, fσω, . . . ,
fσk−1ω. Note that f k

ω : Dk∗ → D is just the composition of the above sequence of maps.
If Dk−i∗ contains the critical point 0 then fσ iω : Dk−i∗ → Dk−i−1∗ is a degree-two map;
otherwise it is univalent.

Now, if

σ iω /∈ Ak−i (15)

then gσ iω(0) ≥ (1/2k−i )G, while for every z ∈ Dk−i∗ we have that

gσ iω(z) = 1
2k−i

g(f k−i

σ iω
(z)) <

1
2k−i

· G.

This implies that 0 /∈ Dk−i∗ and, consequently, the map fσ iω : Dk−i∗ → Dk−i−1∗ is unival-
ent. So, if (15) happens for all i = 0, . . . k − 1, then the map

f k
ω : Dk∗ → D

is univalent, so of degree one.
If (15) fails to hold for l indices i, then for these indices the degree of the map fσ iω :

Dk−i∗ → Dk−i−1∗ is equal to one or two, while for all other indices it is equal to one, so
that the degree of the composition f k

ω : Dk∗ → D is at most N = 2l . Proposition 12 is
proved.

Proof of Theorem 11. We now consider the extended probability space

�̃ := V Z,
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with product probability, which we denote by P̃. The left shift σ , considered in �̃, is now
a measurable automorphism of the space �̃. There is a natural measurable projection

π : (�̃, P̃) → (�, P)

�̃ � (. . . c−2, c−1, c0, c1, c2, . . .)
π−→ (c0, c1, c2 . . .) ∈ �.

This projection transforms the measure P̃ onto the measure P, that is, P̃ ◦ π−1 = P.
For each ω̃ ∈ �̃ the iterates f n

ω are defined as previously, that is, for ω̃ =
(. . . , c−2, c−1, c0, c1, c2, . . .),

f n
ω̃ (z) = fcn−1 ◦ · · · ◦ fc1 ◦ fc0(z).

The Julia set is defined analogously to (1) and denoted by Jω̃. Similarly, the Green function
gω̃ is defined as in (3).

Considering the extended space �̃ in this context may seem artificial, since the iterates
f n

ω̃
depend only on the ‘future’, that is, only non-negative items (cj )j≥0 are used to define

f n
ω̃

or its Julia set. Nevertheless, the proof is based on the construction of appropriate
backward trajectories, which we shall describe below.

Let

Ek =
{
ω̃ ∈ �̃ : gσ−kω̃(0) <

1
2k

G

}
, k = 0, 1, 2, . . .

Let us note that the following estimate holds.

PROPOSITION 13. If the critical point is typically fast escaping, that is, if (13) holds, then

P̃(Ek) < e−γ k ,

where γ comes from the estimate formulated in (13).

Proof. We have the estimates for the measure P of the set Ak ⊂ �, given by (13). Now, let

Ãk := π−1(Ak) = V N × Ak .

Then

P̃(Ãk) = P(Ak).

Now note that Ek = σk(Ãk), which implies that

P̃(Ek) = P̃(Ãk) = P(Ak) < e−γ k .

It follows from Proposition 13 and the Borel–Cantelli lemma that almost every ω̃ ∈ �̃

belongs to at most finitely many sets Ek . This implies that there exist K ∈ N and a set
E ⊂ �̃ such that

P̃(E) > 0

and

E ∩
( ∞⋃

k=K

Ek

)
= ∅.
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Thus, for every ω̃ ∈ E and every k ≥ K , we have that

gσ−kω̃(0) ≥ 1
2k

G.

Now, using ergodicity of the left shift σ on �̃, we conclude that P̃-almost surely a sequence
ν̃ ∈ �̃ visits E infinitely many times under the iterates of σ .

Let k ∈ N. For ν ∈ � we introduce the following property.

Property (K , k). σ iν ∈ Ak−i for more than K indices i ∈ {0, . . . k − 1}.
LEMMA 14. If Property (K , k) holds for ν ∈ � and if ν̃ ∈ π−1(ν), then σkν̃ /∈ E

Proof. Indeed, let ν̃ ∈ π−1(ν). Now, σ iν ∈ Ak−i means that

gσ i ν̃ (0) = gσ iν(0) <
1

2k−i
G.

Putting m := k − i, this can be rewritten as

gσ−m(σkν̃)(0) <
1

2m
G,

that is,

σkν̃ ∈ Em. (16)

Since (16) happens for more than K indices m, the definition of the set E implies that
σkν̃ /∈ E.

Let B be the set of elements ν ∈ �, for which Property (K , k) happens for all but
finitely many integers k. Put B̃ := π−1(B). It follows from Lemma 14 that every point
ν̃ ∈ π−1(B) visits E at most finitely many times under the iterates of σ . It thus follows
that P̃(B̃) = 0 and, consequently, P(B) = 0.

Now let ν /∈ B. Then. for infinitely many positive integers k. Property (K , k) does not
hold. Pick such k. Then σ iν /∈ Ak−i for all but at most K indices i ∈ {0, . . . , k − 1}.
Thus, the assumption of Proposition 12(b) is satisfied for all such integers k. Applying this
proposition, we see that the assumption of Proposition 10 is satisfied for ν. This allows us
to conclude that the Julia set Jν is totally disconnected for all ν /∈ B. This concludes the
proof of Theorem 11.

5. Conclusion. Proof of Theorem A and Theorem B
In this section we complete the proofs of Theorem A and Theorem B. As shown in
Theorem 11, it is enough to check that the estimate (13) holds, that is, the critical point
is typically fast escaping under the assumptions of both theorems.

Let us note that under the assumptions of Theorem A the estimate (13) was actually
proved in [3] (see Theorem 2.2 in that paper).

Obviously Theorem B implies Theorem A, thus let us focus on the more general setting
presented in Theorem B. We shall conclude the proof of Theorem B with the following
proposition.
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PROPOSITION 15. Let V be a bounded open set such that D(0, 1
4 ) ⊂ V and V �= D(0, 1

4 ).
Take � = V N to be the product space equipped with the product of uniform distributions
on V , denoted by P. There exists a constant γ > 0 such that

P

({
ω ∈ � : gω(0) <

G

2k

})
< e−γ k ,

where G is set as in (10).

Proof. To prove Proposition 15 we shall use the estimates (12). We also need a lemma,
which follows the general scheme of the proof of [3, Theorem 2.2].

LEMMA 16. Let V be an open and bounded set, such that D(0, 1
4 ) ⊂ V ⊂ D(0, R) and

V �= D(0, 1
4 ). Consider the space � = V N with the product of uniform distributions on V .

Then there exists γ > 0 such that for every z ∈ C,

P(k(z, ω) > k) � e−γ k ,

where k(z, ω) is the escape time of z from the disc DR0 , defined in Definition 2.1.

Proof. Let c ∈ V be a point such that |c| > 1
4 , say |c| > 1

4 + ε for some small ε > 0.
Let us pick a point c′ ∈ D(0, 1

2 ) (not necessarily in V ), such that |c′| = 1
2 − ε/2 and

arg(c′) = arg(c)/2. In particular, pick ε small enough so that 1
2 − ε/2 > 0. Observe that

for the parabolic map f (w) = w2 + 1
4 we have

f n(w) −−−→
n→∞

1
2 (17)

for every real w satisfying |w| < 1
2 .

Consider z such that |z| < 1
2 . We claim that one can choose N ∈ N and the parameters

c1, c2, . . . , cN ∈ D(0, 1
4 ) in a way that f N

ω (z) = c′. Indeed, note that since |z| < 1
2 the set{

z2 + c : c ∈ D
(
0, 1

4

)}
contains the disc {w : |w| < ρ}, where ρ = 1

4 − |z|2 > 0. So, we can choose c0 such that,
putting w = z2 + c0, we have |w| < ρ, and, adjusting c0, we can additionally achieve that
the argument of w is as we wish.

Using (17), we find N > 0 and real parameters c̃1, . . . , c̃N−1 ∈ (0, 1
4 ) such that

f N−1
c̃N−1,...,c̃1

(|w|) = |c′|.
Now, choosing appropriate c0, we adjust the argument of w in such a way that

[2N−1 arg(w) = 2N−1 arg(fc0(z)]mod 2π = arg(c′). (18)

Next, for n = 1, . . . , N − 1, we choose cn in such a way that |cn| = c̃n and

arg(cn) = arg((f n
cn−1,...c1,c0

(z))2),

so that

|f n+1
cn,cn−1,...,c1,c0

(z)| = |(f n
cn−1,...c1,c0

(z))2 + cn| = |f n
cn−1,...c1,c0

(z))|2 + |cn|
= |f n

cn−1,...c1,c0
(z))|2 + c̃n,
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and, in consequence, |f N
cN−1,...c0

(z)| = |c′| and arg(f N
cN−1,...c0

(z)) = arg(c′), thus
f N

cN−1,...c0
(z) = c′. Now since f N

cN−1,...c0
(z) = c′ and arg[(c′)2] = arg(c), putting cN := c,

we obtain

|f N+1
cN+1,...c0

(z)| = |c′|2 + c >

(
1
2

− ε

2

)2

+ 1
4

+ ε >
1
2

.

Recall that for v real, v > 1
2 , we have f n(v) −−−→

n→∞ ∞. This means we can pick para-

meters cN+2, cN+3, . . . , cN+N1−1 ∈ D(0, 1
4 ) for some N1 (again, adjusting the argument

appropriately) in such a way that |f N+N1
cN+N1−1,...,c0(z)| > R0 + 1. For |z| > 1

2 we obtain the
same statement even in a easier way; one only has to repeat the second part of the reasoning
above. The case of z with |z| = 1

2 needs a small modification: choosing an appropriate c0

in D(0, 1
4 ), we obtain |z2 + c0| < 1

2 and the previously described procedure applies.
So, finally, this means we have the following. For every z ∈ C, there exist M = Mz and

a sequence c0, c1, . . . , cM , ci ∈ V , such that

|f M
cM−1,...,c0

(z)| > R0 + 1.

Clearly, the same is true with ci slightly perturbed, so, if we take δ > 0 sufficiently
small and put

Az = D(c0, δ) × · · · × D(cM−1, δ) × D(0, R)N,

then P(Az) > 0 and, for all ω ∈ Az,

|f M
ω (z)| > R0 + 1

2 .

Since the family

{f M
ω |DR0

, ω ∈ �},
with fixed M , is equicontinuous, we conclude that there exists Uz � z, an open neighbour-
hood of z such that, for all v ∈ Uz, ω ∈ Az, we have |f M

ω (v)| > R0. Actually because of
(5), for all N ≥ M , we have

|f N
ω (v)| > R0.

By compactness of DR0 , there exists a finite cover of DR0 by a finite collection of the
sets Uzi

. Taking α := minzi
P(Azi

) and M = maxzi
Mzi

, we can write:

there exists M ∈ N, there exists α > 0, for all z ∈ C P({|f M
ω (z)| > R0}) > α.

Consequently, putting Sk(z) = {ω ∈ � : |f k
ω(z)| < R0}, we know that for any z we have

P(SM(z)) < 1 − α.
We proceed to estimate P(Sk(z)) exactly as in [3], using the fact that P is the product

measure:

P(Sk+M(z)) =
∫

Sk(z)

P(SM(f k
ω(z))) dP(ω) � (1 − α)P(Sk(z)),

which, applied repeatedly, yields the existence of a constant γ > 0 such that

P(k(z, ω) > k) = P(Sk(z)) � e−kγ .
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Applying the above result for z = 0, together with the previously established (12), yields
the claim, with possibly modified constant γ . This ends the proof of Proposition 15.

It is important to point out that Lemma 16 is the only part of the proof of the main
result that uses the assumption on the parameter space, that is, that it contains points from
outside of the disc D(0, 1

4 ). As mentioned before, if R � 1
4 then the resulting Julia set is

always connected, thus the proof above illustrates exactly the role this assumption fulfils.
Taking V to be the main cardioid yields the following interesting corollary of

Theorem B.

THEOREM 17. Let � = BN, where B is the main cardioid of the Mandelbrot set, and let
� be equipped with the product of uniform distributions on V . Then, for almost every
sequence ω ∈ �, the Julia set Jω is totally disconnected.

6. Further generalizations
A number of other generalizations can be made by simple adaptations of the proof. For
instance, it can be seen by inspecting the proof of Lemma 16 that the uniform distribution
does not play any important role.

THEOREM 18. Let R > 1
4 , and let μ be a Borel probability distribution on D(0, R)

such that supp(μ) ⊃ D(0, 1
4 ) and μ(D(0, R) \ (D(0, 1

4 ))) > 0. Now consider the product
measure of μ on D(0, R)N. The Julia set for a sequence {cn} ⊂ D(0, R)N is almost always
totally disconnected, with respect to this product measure.

The following result comes from [8, Theorem 2.2], but can also be inferred easily from
our proof.

Remark. For every c /∈ M, there exists a neighbourhood U(c) such that J (cn) is totally
disconnected if all cn ∈ U(c).

Indeed, in this case it is easy to see that

inf
ω=(cn),cn∈U

gω(0) > a > 0

for some constant a, depending on U . So, with K sufficiently large, the set E defined in
§4 is just the whole space �̃. By Lemma 14 we conclude that, for every ν ∈ � = U(c)N

and for all k,

σ iν /∈ Ak−i

happens for all but at most K indices i ∈ {0, . . . , k − 1}, which, by Proposition 12 and
Proposition 10, immediately implies that every Julia set Jω is totally disconnected.

Another easy adaptation of the proof yields an answer to a question from [3] (see [3,
Remark 2.5]), whether we can choose the parameters randomly, according to the uniform
distribution, from a circle of radius δ > 1/4.

Actually, the authors ask in [3, Remark 2.5] whether the set Julia set is almost surely
disconnected. Our approach gives much more.
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PROPOSITION 19. Let � = ∂D(0, R)N, where R > 1
4 , be equipped with the product of

uniform distributions on the circle ∂D(0, R). Then, for almost every ω ∈ �, the Julia set
Jω is totally disconnected.

To repeat our proof in the above case, we need the following version of Lemma 16.

LEMMA 20. Let K = ∂D(0, R) where R > 1
4 . Consider the space � = KN with the

product of uniform distributions on K . Then there exists γ > 0 such that, for all z ∈ C,

P(k(z, ω) > k) � e−γ k ,

where k(z, ω) is the value defined in (11).

Proof. Take an arbitrary point z ∈ C, and let c1, c2, c3, . . . , cN ∈ K be a sequence of N

parameters such that, for all n ≤ N ,

|f n
ω (z)| = |f n−1

ω (z)2 + cn| = |f n−1
ω (z)|2 + |cn|.

Recall that, for iterations on the real line, with f (x) = x2 + R and R > 1
4 , we have, for

all x,

lim
n→∞ f n(x) = ∞.

Since |cn| = R > 1
4 by our choice of the numbers c1, . . . , cN , for a large enough N , we

will have |f N
ω (z)| > R0. By continuity and compactness arguments, used exactly as in the

proof of Lemma 16, we see that one can show something more, that is,

there exists N ∈ N, there exists δ > 0, for all z ∈ C P({ω ∈ � : |f N
ω (z)| > R0}) > δ.

We finish the proof in exactly the same way as the proof of Lemma 16.
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