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Denote by Hk(n, p) the random k-graph in which each k-subset of {1, . . . ,n} is present with
probability p, independent of other choices. More or less answering a question of Balogh, Bohman
and Mubayi, we show: there is a fixed ε > 0 such that if n = 2k+1 and p > 1−ε , then w.h.p. (that
is, with probability tending to 1 as k → ∞), Hk(n, p) has the ‘Erdős–Ko–Rado property’. We also
mention a similar random version of Sperner’s theorem.
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1. Introduction

One of the most interesting combinatorial trends of the last couple decades has been the invest-
igation of ‘sparse random’ versions of some of the classical theorems of the subject – that is, of
the extent to which such results hold in a random setting. This issue has been the subject some
spectacular successes, particularly those related to the theorems of Ramsey [23], Turán [31] and
Szemerédi [30]; see [13, 2, 24, 19] for origins and, for example, [9, 28, 10, 5, 27] (or the survey
[25]) for a few of the more recent developments.

Here we are interested in the analogous question for the Erdős–Ko–Rado theorem [11], another
cornerstone of extremal combinatorics. This natural problem has already been considered by
Balogh, Bohman and Mubayi [4], and we first quickly recall a few of the notions from that
paper.

In what follows k and n are always positive integers with n > 2k. As usual we write [n] for
{1, . . . ,n} and

(V
k

)
for the collection of k-subsets of a set V . A k-graph (or k-uniform hypergraph)

on V is a multisubset, say H, of
(V

k

)
. Members of V and H are called vertices and edges

respectively. We use Hx for the set of edges containing x (∈ V ), called the star of x in H or
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the principal subhypergraph generated by x. For the present discussion we take V = [n] and write
K for

(V
k

)
.

A collection of sets is intersecting, or a clique, if no two of its members are disjoint. The
Erdős–Ko–Rado theorem says that for any n and k as above, the maximum size of an intersecting
k-graph on V is

(n−1
k−1

)
and, moreover, this bound is achieved only by the stars.

Following [4] we say H satisfies (strong) EKR if every largest clique of H is a star; thus the
EKR Theorem says

(V
k

)
satisfies EKR. (We also say, again as in [4], that H satisfies weak EKR

if some largest clique is a star, but this slightly weaker notion will not concern us here.)
For the rest of this introduction we use H = Hk(n, p) for the random k-graph on V in which

members of
(V

k

)
are present independently, each with probability p. As suggested above, we are

interested in understanding when EKR holds for H. We now state this a little more formally.

Question 1.1. For what p0 = p0(n,k) is it true that H satisfies EKR w.h.p. provided p > p0?

(As usual ‘w.h.p.’ (with high probability) means with probability tending to one as n → ∞.)
The nature of the problem may be said to change around k =

√
n, since for k smaller than

this, two random k-sets are typically disjoint, while the opposite is true for larger k. Heuristically
we may say that the problem becomes more interesting/challenging as k grows and the potential
violations of EKR proliferate (though increasing k does narrow the range of p for which we
expect EKR to hold).

In this paper we are interested in what happens when k is as large as possible. The next
assertion is our main result.

Theorem 1.2. There is a fixed ε > 0 such that if n = 2k+1 and p > 1−ε , then H satisfies EKR
w.h.p.

This was prompted by Question 1.4 of [4], as follows.

Question 1.3. Is it true that for k ∈ (n/2−√
n,n/2) and p = 0.99, EKR (or weak EKR) holds

w.h.p. for H?

Note that for n,k as in Theorem 1.2, EKR is unlikely unless p is large (so ‘sparse random’ is
something of a misnomer), since a simple calculation shows that for p less than about 3/4 stars
are unlikely even to be maximal cliques. (This is, of course, reminiscent of the Hilton–Milner
Theorem [15], which says that (for any k and n > 2k) the largest non-trivial cliques in

([n]
k

)
are

those of the form {A}∪{B ∈
([n]

k

)
: x ∈ B,B∩A �= /0} (with A ∈

([n]
k

)
and x ∈ [n]\A)). We expect

that, for k,n as in Theorem 1.2, this is in fact the main hurdle – that is, EKR becomes likely as
soon as stars are likely to be maximal – but we are far from proving such a statement. On the
other hand, as will appear below, the main difficulties in proving the theorem involve cliques that
are far from stars.

We have not thought very hard about whether the ε in Theorem 1.2 could be pushed to .01,
since this seems somewhat beside the point (and since it does not seem wildly unethical to regard
‘0.99’ as really meaning ‘1−ε for some fixed ε > 0’). We assume our methods could be adapted
to give Theorem 1.2 for smaller k, but confine ourselves to the present statement. This is partly
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for simplicity, but also because we do not believe the theorem gives a very satisfactory answer in
other cases; for example, even for n = 2k +2 we expect EKR to hold for p down to about 1/k.

The original paper of Balogh, Bohman and Mubayi dealt mostly with k < n1/2−ε (for a fixed
ε > 0). In a companion paper [14] we precisely settle the question for k up to about

√
(1/4)n logn

and suggest a possible general answer.
The rest of this paper is organized as follows. Section 2 sets notation and fills in some mostly

standard background, and Section 3 reduces Theorem 1.2 to a related, slightly fussier statement.
The most interesting part of the argument, given in Section 4, proves the latter statement using,
in addition to standard large deviation considerations, asymptotic-enumerative ideas inspired
especially by work of A. A. Sapozhenko [26]. A final short section mentions a counterpart of
Theorem 1.2 for Sperner’s theorem that follows easily from the method developed in Section 4.

2. Preliminaries

2.1. Usage
Set M =

( 2k
k−1

)
and N =

(2k
k

)
. Unless specified otherwise, we use K for

([n]
k

)
. As usual, 2S is the

power set of S and, for a hypergraph H, dH(x) is the degree of x ∈V in H (i.e. |{A ∈H : x ∈ A}|)
and ΔH is the maximum of these degrees.

For graphs, xy is an edge joining vertices x and y; N(x) is, as usual, the neighbourhood of x
(and N(X) = ∪x∈X N(x)); ∇(X ,Y ) is the set of edges joining the disjoint vertex sets X ,Y ; and
dW (x) = |N(x)∩W | (for W ⊆V ).

We use B(m,α) for a random variable with the binomial distribution Bin(m,α) and log for ln.
We assume throughout that n = 2k +1 is large enough to support our arguments.

2.2. Large deviations
We use Chernoff’s inequality in the following form, which may be found, for example, in [16,
Theorem 2.1].

Theorem 2.1. For ξ = B(m,q), μ = mq and any λ � 0,

P(ξ > μ +λ ) < exp

[
− λ 2

2(μ +λ/3)

]
,

P(ξ < μ −λ ) < exp

[
− λ 2

2μ

]
.

We will also need the following improvement for larger deviations, for which see [1, The-
orem A.1.12], for example.

Theorem 2.2. For ξ = B(m,q) and any K,

P(ξ > Kmq) < exp[−Kmq log(K/e)].

(Of course this is only meaningful if K > e.)
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2.3. Isoperimetry and degree
For A ⊆

([2k]
k

)
let δ (A) = (|∂uA|− |A|)/|A|, where

∂uA =
{

y ∈
(

[2k]
k +1

)
: ∃x ∈ A,y ⊃ x

}

(the upper shadow of A). We will use the following consequence of the Kruskal–Katona theorem
([20], [17] or e.g. [7]).

Proposition 2.3. For A ⊆
([2k]

k

)
with |A| � N/2,

δ (A) � log2
k

log2

(
N

2|A|

)
. (2.1)

(Recall N =
(2k

k

)
, and notice that N/2 =

(2k−1
k

)
. The log2 in (2.1) can probably be replaced by

1, but cannot be replaced by k/(k−1).)

Proof. We use Lovász’s version [21, Problem 13.31] of Kruskal–Katona, which in the present
situation says that if |A|=

(x
k

)
(:= (x)k/k! for any x ∈R), then |∂u(A)|�

( x
k−1

)
. (This is ordinarily

stated for the lower shadow, which is equivalent here since our universe is of size 2k.)
Let |A| =

(2k−t
k

)
, noting that |A| � N/2 implies t � 1, and ψ = k−1 log2. Then

N
2|A| =

(2k)k

2(2k− t)k

and, from Kruskal–Katona (Lovász),

δ (A) �
(2k−t

k−1

)
/
(2k−t

k

)
−1 =

t −1
k− t +1

.

Thus (2.1) will follow from

f (t) :=
t −1

k− t +1
−ψ log2

[
(2k)k

2(2k− t)k

]
� 0 for t � 1,

so (since f (1) = 0) from f ′(t) � 0 . But, recalling the value of ψ , we have

f ′(t) =
k

(k− t +1)2
− 1

k

k−1

∑
i=0

1
2k− t − i

� k
(k− t +1)2

− 1
k− t +1

� 0.

The following result of P. Frankl [12] will also be helpful in getting things started. (We give
the result for general k, n and i, again writing K for

([n]
k

)
, but will only use it with n = 2k +1 and

i = 3.) Given k and n > 2k, set, for each i ∈ {3, . . . ,k +1},

Fi = {A ∈ K : 1 ∈ A,A∩{2, . . . , i} �= /0}∪{A ∈ K : A ⊇ {2, . . . , i}}.

Theorem 2.4 ([12]). For any k, n and i as above, if F ⊆ K is a clique with |F| > |Fi|, then
ΔF > ΔFi

.
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2.4. Graphs
Two special graph-theoretic notions will be relevant in what follows. First, for a bigraph Σ with
bipartition Γ1 ∪Γ2, the closure of X ⊆ Γi is {x : N(x) ⊆ N(X)} (and X is closed if it is equal to
its closure). Second, for a (general) graph Σ and positive integer j, W ⊆V (Σ) is j-linked if for all
u,v ∈W there are u = u0,u1, , . . . , ,ul = v with ui ∈W (∀i) and ρ(ui−1,ui) � j for i ∈ [l], where ρ
is graph-theoretic distance. We will eventually need the following observation from [26].

Proposition 2.5. Let Σ be a graph and suppose A and T are subsets of V (Σ) with T ⊆ N(A),
A ⊆ N(T ) and A j-linked. Then T is ( j +2)-linked.

Proof. Given u,v ∈ T , choose x,y ∈ A with x ∼ u, y ∼ v, and then x = x0, . . . ,x� = y with xi ∈ A
and ρ(xi−1,xi) � j (i ∈ [�]). If we now let u0 = u, u� = v and xi ∼ ui ∈ T for i ∈ [�− 1], then
ρ(ui−1,ui) � 1+ρ(xi−1,xi)+1 � j +2 (for i ∈ [�]). The proposition follows.

We also find some use for the following standard bound.

Proposition 2.6. In any graph with all degrees at most d, the number of trees of size u rooted
at some specified vertex is at most (ed)u−1.

Proof. This follows easily from the fact (see e.g. [18, p. 396, Ex. 11]) that the infinite d-
branching rooted tree contains precisely

1
(d −1)u+1

(
Du
u

)
� (ed)u−1

rooted subtrees of size u.

And so on. We make repeated use of the fact that for positive integers a,b with a � b/2,

∑
i�a

(b
i

)
� exp[a log(eb/a)]. (2.2)

3. Setting up

In what follows, H denotes a member of M, the collection of non-principal maximal intersecting
families in

([n]
k

)
. We now set Hk(n, p) = X, where p = 1− ε , with ε > 0 fixed but small enough

to support our arguments. (We make no attempt to optimize.)
The statement we are to prove is

w.h.p. maxH∈M |X∩H| < maxx |X∩Kx|, (3.1)

but we will find it better to work with a variant, (3.4) below. This requires a little preparation.
For x ∈ [n] and 0 � � � n−1, let Γx

� denote the collection of �-subsets of [n]\{x}. Let Σx be the
usual bigraph on Γx

k ∪Γx
k+1 (that is, with adjacency given by set containment), and write Nx for

neighbourhood in Σx. For A ⊆ Γx
k set δx(A) = (|Nx(A)|− |A|)/|A| (so Nx(A) is the upper shadow

of A in 2[n]\{x} and our usage here follows that in Proposition 2.3).
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For H∈M (and x ∈ [n]), let Ax(H) =H\Kx, Jx(H) =Kx \H and Gx(H) = Nx(Ax(H)); thus
Ax(H) and Gx(H) are subsets of Γx

k and Γx
k+1 respectively. Note that

|X∩Ax(H)|− |X∩ Jx(H)| = |X∩H|− |X∩Kx|. (3.2)

For B ⊆ 2[n] set Bc = {[n]\T : T ∈ B}. It is easy to see that maximality of H implies that (for
any x) Ax(H) is closed in Σx and Gx(H) = Jx(H)c. The converse is also true (and similarly easy):
if x ∈ [n] and A is a non-empty closed subset of Γx

k (in Σx), then (Kx \Nx(A)c)∪A ∈M. (If A = /0
then (Kx \Nx(A)c)∪A = Kx is maximal intersecting but not in M, whose members are required
to be non-principal.)

Let Q be the event that there are H ∈M and x ∈ [n] for which Ax(H) is 2-linked (in Σx),

δx(Ax(H)) > 1/(3k), (3.3)

and |X∩H| � |X∩Kx|. Our main point, the aforementioned variant of (3.1), is

P(Q) = o(1). (3.4)

Before proving this (in Section 4), we show that it implies (3.1), by showing that failure of
(3.1) implies Q. Supposing (3.1) fails, choose H ∈ M with |X∩H| maximum and fix x with
dH(x) = Δ(H). Let A = Ax(H) and J = Jx(H). By (3.2) (and our assumption that |X∩H| �
|X∩Ky| ∀y) we have

|X∩A| � |X∩ J|. (3.5)

Note also that

|A| � (k +1)|H|/n < (k +1)M/n (3.6)

(recall M =
( 2k

k−1

)
), since (|H\A| =) Δ(H) � k|H|/n (as is true for any H⊆K).

Suppose first that A is 2-linked in Σx. In this case we claim that (H,x) itself satisfies Q,
that is, (3.3) holds. Let H∗ = {T ∈ K : |T ∩ [3]| � 2}. If |H| > |H∗|, then Theorem 2.4 gives
Δ(H) > Δ(H∗) ∼ 3M/4, whence |A| < (1+o(1))M/4 and (3.3) (actually a little more) is given
by (2.1). If, on the other hand, |H| � |H∗|, then, noting that M−|H∗| ∼ M/(4k), we have, using
(3.2) and (3.6),

δx(A) = (M−|H|)/|A| > (2−o(1))(M−|H∗|)/M ∼ 1/(2k).

Now suppose A is not 2-linked. Let A1, . . . ,As be the 2-linked components (defined in the
obvious way) of A, and Ji = Nx(Ai)

c. Then Ji ∪ ·· · ∪ Js is a partition of J. Moreover, each Ai is
closed, so that (see the paragraph following (3.2)) Hi := (Kx \ Ji)∪Ai ∈M for each i. Suppose
w.l.o.g. that |A1| = maxi |Ai|. Then for i � 2 we have |Ai| � |A/2| < (1/4 + o(1))M, implying
(again using (2.1)) δx(Ai) > (log2−o(1))/k. So we have Q if |X∩Ai| � |X∩Ji| for some i � 2;
but if this is not the case then (again using (3.2))

|X∩H1|− |X∩Kx| = |X∩A1|− |X∩ J1|
= |X∩A|− |X∩ J|−∑

i�2

(|X∩Ai|− |X∩ Ji|)

> |X∩A|− |X∩ J| = |X∩H|− |X∩Kx|,

contradicting the assumed maximality of |X∩H|.
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4. Main point

Here we prove (3.4). For the remainder of our discussion we work with a fixed x ∈ [n] and drop
the super- and subscripts x from our notation; so to begin, we set Σx = Σ and Γx

� = Γ�. We will
use GA for the neighbourhood of A ⊆ Γk in Σ and

δ (A) = |GA|/|A|−1 (= δx(A)).

We extend X to Γk+1 by declaring that T ∈ X if and only if [n]\T ∈ X (so here T is a (k +1)-
set off x and [n] \T is a k-set on x); we may then forget about J(H) (= Jx(H)) and regard X as
a subset of Γk ∪Γk+1. Note that (cf. (3.2)) ‘|X∩H| � |X∩Kx|’ in the definition of Q is then the
same as ‘|X∩GA| � |X∩A|’ with A = H\Kx and (thus) GA = Jx(H)c.

For the proof of (3.4) we will bound the probability that Q occurs at our given x with specified
sizes of A and GA, and then sum over possibilities for these sizes. (Of course we need a bound
o(1/n) since we must eventually sum over x.) Thus we assume throughout that we have fixed
a,g with

δ := (g−a)/a > max{1/(3k),(log2/k) log2(N/(2a))} (4.1)

(with the second term in the max again given by Proposition 2.3), and write A = A(a,g) for the
set of A’s satisfying

A is closed and 2-linked, |A| = a and |GA| = g. (4.2)

Notice that for A ∈ A we have

|∇(GA,Γk \A)| = (k +1)g− ka

= (k +1)(1+δ )a− ka = (1+(k +1)δ )a. (4.3)

Let Q(a,g) (= Qx(a,g)) be the event that there is some A ∈ A(a,g) with

|X∩GA| � |X∩A|. (4.4)

We show

∑
a,g

P(Q(a,g)) = o(1/n), (4.5)

which, since the union of the Q(a,g)’s is occurrence of Q at x, gives (3.4).
The bound (4.5) is (of course) the heart of the matter, and the rest of our discussion is devoted

to its proof. This turns out to be rather delicate, and a rough indication of where we are headed
may be helpful. (The following description refers to the main case, namely δ � 1, considered
below.)

For A ∈ A we have

E|X∩GA|−E|X∩A| = δap, (4.6)

so we can rule out (4.4) if we can say that the quantities |X∩GA| and |X∩A| are close to their
expectations, where ‘close’ means somewhat small relative to δap (≈ δa). The problem (of
course) is that though each of these individual events is unlikely, there are too many of them to
allow a simple union bound.
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Our remedy for this is to exploit similarities among the A’s (and similarly GA’s, but for this
very rough description we stick to A’s) to avoid paying repeatedly for the same unlikely events.
To do this we specify each A ∈A via several ‘approximations’, beginning with a set SA for which
AΔSA is fairly small, and then adding and subtracting lesser pieces. It will then follow that |X∩A|
is close to its expectation provided this is true of |X∩B| for each of the relevant pieces B.

Thus we will want to say that, with B ranging over some to-be-specified collection of subsets
of Γk, it is likely that all |X∩B|’s are close to their expectations. Of course the probability that
this fails for a particular B grows with |B| (since the benchmark δap does not change), so we
would like to arrange that the larger B’s are not too numerous. For example, the above SA’s will
necessarily be large (of size roughly a), but there will be relatively few of them, reflecting the
fact that a single S will typically be SA for many A’s. We may think of A as consisting of a large
number of variations on a relatively small number of themes, though, as we will see, controlling
these themes and variations turns out to be not very straightforward.

As mentioned earlier, our approach here has its roots in the beautiful ideas of A. A. Sapozhenko
[26], which were originally developed to deal with ‘Dedekind’s problem’ and related questions
in asymptotic enumeration.

Proof of (4.5). As our fixed x plays no further role in what follows, we will feel free to recycle
and use ‘x’ (along with u,v,y,z) to denote a general member of our ground set, which we may
now think of as [2k].

We divide the proof of (4.5) into two cases, large and small δ , beginning with the second,
which is by far the more interesting. (Our treatment of this case can be adapted to work in
general – actually with most of the contortions below becoming unnecessary and/or vacuous –
but this seems pointless given how much simpler the proof is for large δ . It also seems worth
stressing that, as mentioned earlier, the real challenge is in dealing with quite small δ (and thus,
according to (2.1), with quite large a).)

Assume then that δ � 1 (say), and note that in this case (2.1) gives

a > (4/e)k(4
√

k)−1 =: a0 (4.7)

(which is pretty far from the truth but we have plenty of room here).

Prospectus. Before we continue, some further pointers may be helpful.
This main part of our argument proceeds in two phases. At the end of the first phase we will

have associated with each A ∈ A several sets (drawn from Γk, Γk+1 and E(Σ) = ∇(Γk,Γk+1))
from which decent approximations of A and GA can be built up in a useable way.

The output of this phase, summarized in the paragraphs following the proof of Lemma 4.3, is
a collection, R, of triples encapsulating the relevant information; thus we produce a (typically
many-to-one) map, A �→ R(A), from A to R. We will then, for each R ∈R, fix some A∗

R that maps
to R, and take this and the associated G∗

R := GA∗
R

to be our final approximations to A and GA for
each A with R(A) = R.

The second phase of the argument then considers the intersections of X with our various pieces,
as well as with the final bits that are added and subtracted to move from the approximations to our
actual A’s and GA’s. As suggested earlier, we hope to say that (w.h.p.) all these intersections have

https://doi.org/10.1017/S0963548318000433 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000433
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sizes close to their expectations, and a central issue will be controlling the numbers of pieces of
various sizes: the larger the pieces, the fewer we can afford. This goal is achieved in Lemma 4.4,
the workhorse of the second phase, from which the desired application to (4.5) follows fairly
immediately: see Corollary 4.5 and the paragraph following its statement.

To get some feel for what’s going on (in both phases) and how the whole thing fits together,
the reader might take an early look at the discussion of the second phase through the proof of
Corollary 4.5, ignoring the particulars of Lemma 4.4 and reading the proof of the corollary more
or less at the level of Venn diagrams (without worrying about the meanings of its many presently
undefined ingredients).

First phase. For X ⊆ V := V (Σ), let Ni(X) = {u ∈ V : ρ(u,X) � i} (where, recall, ρ is graph-
theoretic distance). For A ∈ A (= A(a,g)), say a path is A-good if it is of the form vx1yx2 with
x1,x2 ∈A (so in particular has length 3), and for v∈Γk+1, let ϕ(v,A) denote the number of A-good
paths beginning with v.

Fix a small ζ > 0 (we just need ζ < 1/2), and set ϑ = ζ/2 and

G0
A = {v ∈ GA : ϕ(v,A) � (1/4)k3−ζ}.

For T ⊆ Γk set WT = N3(T )∩Γk+1 and

ST = {x : dWT
(x) � k/2} (⊆ Γk). (4.8)

For T ⊆ A ∈A, let FA,T = ∇(N(T ),Γk \A) and ZA,T = N(N2(T )∩A)⊆WT . Notice that w ∈ ZA,T

if and only if either w ∈ N(T ) or there is a path xyzw with x ∈ T and yz �∈ FA,T (equivalently an
A-good path from w to T ); in particular ZA,T is determined by T and FA,T .

Lemma 4.1. There is a fixed K such that for each A ∈ A there is a T ⊆ A satisfying

(T1) |T | � Kak−3+ζ logk,

(T2) |FA,T | � Kδak−1+ζ logk,

(T3) |G0
A \ZA,T | � Kak−2,

(T4) |WT \GA| < Kδakζ logk, and

(T5) |A\ST | < Kδak−ϑ .

(The ζ in the definition of G0
A is needed for the ϑ in (T5). For the bound in (T5) we could

actually get by with O(δa log−1 k); see the discussion following (4.28) for more on this relatively
delicate point and (4.29) for use of the bound.)

The following auxiliary definitions and lemma will be helpful in the proof of Lemma 4.1 and
again later in the proof of Lemma 4.4. Fix A ∈ A, set GA = G and G0

A = G0, and define

H = {y ∈ G : dA(y) < k1−ϑ},
B = {x ∈ A : dH(x) > k/2},
I = {y ∈ G\H : dA\B(y) < k1−ϑ /2},

C = {x ∈ A\B : dH∪I(x) > k/4}.
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Lemma 4.2. With the above definitions, |H ∪ I| < O(δa), each of |B|, |C| is O(δak−ϑ ), and
G\G0 ⊆ H ∪ I.

Proof. We have

(k +1− k1−ϑ )|H| � |∇(H,Γk \A)| � |∇(G,Γk \A)| = (1+(k +1)δ )a,

(k/2)|B| < |∇(B,H)| < k1−ϑ |H|,
(k1−ϑ /2)|I| < |∇(I,B)| < k|B|/2,

(k/4)|C| < |∇(C,H ∪ I)| < |H ∪ I|k1−ϑ ,

implying |H| < (4+o(1))δa (using (4.1)), |B| < (8+o(1))δak−ϑ , |I| < (8+o(1))δa and |C| <
(48 + o(1))δak−ϑ . This gives the first two assertions in the lemma. The third is given by the
observation that for y∈G\(H∪ I) the number of paths ywzx with (w,z,x)∈ (A\B)×(G\H)×A
is at least (k1−ϑ /2)(k/2)k1−ϑ .

Proof of Lemma 4.1. Here we will find it more convenient to use ‘big Oh’ notation; that is,
we will prove the lemma with each of the bounds K ·X appearing in (T1)–(T5) replaced by O(X).
We first show existence of T satisfying (T1)–(T3) and then observe that any such T also satisfies
(T4) and (T5).

Let q = 16k−3+ζ logk and T = Aq (the random subset of A in which elements of A appear
independently, each with probability q). To show that there is a T satisfying (T1)–(T3), it is
enough to show that the stated bounds (again, in their ‘big Oh’ forms) hold for the expectations
of the set sizes in question, since Markov’s inequality then implies existence of a T for which
each of these quantities is at most three times its expectation. This is of course true for E|T|= aq.
For (T2) we have (using (4.3) for the final inequality)

E|FA,T| = ∑
x∈G

P(x ∈ N(T))dΓk\A(x)

� q ∑
x∈G

dA(x)dΓk\A(x)

� qk|∇(G,Γk \A)| < O(δak−1+ζ logk).

To bound the expectation for (T3), notice that for v ∈ G0, there are at least (1/8)k3−ζ vertices
x ∈ A for which x ∈ T implies v ∈ ZA,T . (This is true of any x for which there is an A-good path
from v to x and, since two vertices at distance 3 are connected by exactly two paths of length 3 in
Σ, the number of such x’s is at least ϕ(v,A)/2.) The probability that such a v does not belong to
ZA,T is thus at most (1−q)(1/8)k3−ζ

< k−2, so that E|G0 \ZA,T| < gk−2 (which gives the bound in
(T3) since we assume g = O(a); of course the assumption is not really needed here, as we could
instead have arranged (for example) E|G0 \ZA,T| < gk−3).

This completes the discussion of (T1)–(T3) and we turn to the last two properties requested of
T . We first observe that (T4) follows from (T2), since in fact

|WT \G| � k|FA,T |.

To see this just notice that if w ∈WT \G, then (since w ∈WT ) there is a path xyzw with x ∈ T and
(therefore) y ∈ N(T ), but z �∈ A (since w �∈ G), so that yz ∈ FA,T (and each such yz gives rise to at
most k such w’s).
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For (T5), note that (according to the definition of ST in (4.8)) any x ∈ A \ ST has at least k/4
neighbours in one of G \G0, G0 \WT . By Lemma 4.2, x’s of the first type belong to B∪C and
number at most O(δak−ϑ ). On the other hand, by (T3) (and (4.1)), the number of the second type
is at most

(4/k)|G0 \WT |(k +1) < O(ak−2) < o(δak−ϑ ).

We think of WT in Lemma 4.1 as a first approximation to GA, and ZA,T as a second approxim-
ation satisfying

ZA,T ⊆WT ∩GA (4.9)

that discards vertices that got into WT on spurious grounds. Similarly, the next lemma prunes our
first approximation, ST , of A to get a better second approximation.

Lemma 4.3. There is a fixed K such that for any A ∈A and T ⊆ A satisfying (T4), there is some
U ⊆WT \GA with

(U1) |U | � Kδak−1+ζ log2 k and

(U2) |(ST \A)\N(U)| � Kδa.

The second approximation mentioned above is then ST \N(U), which in particular satisfies

ST ⊇ ST \N(U) ⊇ ST ∩A. (4.10)

Proof of Lemma 4.3. Here we again (as in the proof of Lemma 4.1) switch to ‘big Oh’
notation. Set G = GA, W =WT and S = ST . Let q = 4k−1 logk and U = (W \G)q. By the definition
of S = ST , each x ∈ S\A has at least k/4 neighbours in one of W \G, G. Let

L = {x ∈ S\A : dW\G(x) � k/4}.

Then |L| � (4/k)|W \G|(k +1) = O(δakζ logk) (by (T4)). On the other hand, for x ∈ L we have
P(x �∈ N(U)) � (1−q)k/4 < k−1, so there is some U with

|L\N(U)| � E|L\N(U)| < |L|/k = o(δa).

Finally, since x ∈ (S\A)\L implies dG(x) > k/4, we have

|(S\A)\L| � (4/k)|∇(G,Γk \A)| = 4(1+(k +1)δ )a/k = O(δa).

The lemma follows.

Now write K for the larger of the constants appearing in Lemmas 4.1 and 4.3. For each A ∈A
fix some T = TA ⊆ A satisfying (T1)–(T5) and then some U = UA ⊆ WT \GA satisfying (U1)–
(U2), and set

WA = WT , SA = ST , FA = FA,T , ZA = ZA,T , S′
A = ST \N(U), RA = R(A) = (TA,FA,UA).
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(We prefer RA but will sometimes use R(A) to avoid double subscripts.) We may think of TA,FA,

UA as ‘primary’ objects, which we need to specify, and WA,SA,ZA,S′
A as ‘secondary’ objects,

which are functions of the primary objects.
Let R = {RA : A ∈ A}. If R = RA then we also set WR = WA (which is the same for all A with

RA = R), and similarly for the other objects subscripted by A in the preceding paragraph. For
each R ∈R fix some A∗ = A∗

R ∈ A with RA∗ = R, and let G∗
R = GA∗ .

Now suppose A ∈ A, G = GA, R = RA, A∗ = A∗
R and G∗ = G∗

R. Notice that, given A∗ and G∗,

A is determined by A\A∗ and G∩G∗. (4.11)

(Actually A is determined by B, GB, A\B and G∩GB whenever A,B⊆Γk are closed with G = GA,
since

A∩B = {x ∈ B : N(x) ⊆ G∩GB};

namely, x ∈ A if and only if N(x) ⊆ G, which for x ∈ B is the same as N(x) ⊆ G∩GB.)

Second phase. We now turn to X. In what follows we assume the constant ε (= 1− p) is small
enough to support our argument, making no attempt to optimize.

For η > 0 and B ⊆ V (Σ) (we will always have B ⊆ Γk or B ⊆ Γk+1), we will be interested in
the event

EB,η = {||X∩B|− |B|p| > ηδap}. (4.12)

(The second p on the right-hand side is unnecessary but we keep it as a reminder of where we
are: if p were smaller, then this factor would be relevant.) Say a collection B of sets is η-nice if

P(∪B∈BEB,η) < exp[−Ω(ak−2)]. (4.13)

Fix a smallish η ; for concreteness, say η = 0.08 (we need 6η < 0.5). The next, regrettably
(but as far as we can see unavoidably) elaborate statement is most of the story.

Lemma 4.4. The following collections are η-nice:

(a) {WR : R ∈R},

(b) {SR : R ∈R},

(c) {WR \ZR : R ∈R},

(d) {SR \S′
R : R ∈R},

(e) {S′
R \A∗

R : R ∈R},

(f) {A∗
R \S′

R : R ∈R},

(g) {G∗
R \ZR : R ∈R},

(h) {A\A∗
R(A) : A ∈ A},

(i) {A∗
R(A) \A : A ∈ A},

(j) {GA \G∗
R(A) : A ∈ A},

(k) {GA ∩ (G∗
R(A) \ZR(A)) : A ∈ A}.

Before proving this, we show that it supports (4.5).
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Corollary 4.5. The collections A and {GA : A ∈ A} are (6η)-nice.

Of course this gives the relevant portion of (4.5), since Q(a,g) implies that for some A ∈ A
either |X∩A|� |A|p+δap/2 or |X∩GA|� |GA|p−δap/2 (cf. (4.6)), each of which, according
to Corollary 4.5, occurs with probability exp[−Ω(ak−2)] (and – recall (4.7) –

∑
a>a0

∑
g�2a

exp[−Ω(ak−2)] = o(1/n)).

Proof of Corollary 4.5. This is just a matter of building the relevant sets, starting from the
collections in Lemma 4.4 and applying the (trivial) observations:

• if {KB : B ∈ B} is α-nice, {LB : B ∈ B} is β -nice and KB ∩LB = /0 ∀B ∈ B, then {KB ∪LB :
B ∈ B} is (α +β )-nice;

• if {KB : B ∈B} is α-nice, {LB : B ∈B} is β -nice and KB ⊇ LB ∀B ∈B, then {KB \LB : B ∈B}
is (α +β )-nice.

Using these (in combination with Lemma 4.4), we find that

{ZR = WR \ (WR \ZR) : R ∈R} is (2η)-nice,

{S′
R = SR \ (SR \S′

R) : R ∈R} is (2η)-nice,

{A∗
R = (S′

R \ (S′
R \A∗

R))∪ (A∗
R \S′

R) : R ∈R} is (4η)-nice,

{A = (A\A∗
R(A))∪ (A∗

R(A) \ (A∗
R(A) \A)) : A ∈ A} = A is (6η)-nice,

{GA = (GA \G∗
R(A))∪ (GA ∩ (G∗

R(A) \ZR(A)))∪ZR(A)) : A ∈ A} = {GA : A ∈ A} is (4η)-nice.

(Note that ZR(A) is the same as ZA but seems slightly more natural here.)

Proof of Lemma 4.4. For the rest of this discussion we write EB for EB,η . We want to show that
(4.13) holds for each of the collections – say B – appearing in (a)–(k). This is all based on the
union bound: in each case we bound the size of the B in question and show, using what we know
about the sizes of members of B, that P(EB) is much smaller than |B|−1 for each B ∈ B.

We are interested in bounding probabilities of the type

P(||X∩B|− |B|p| > ηδap)

using Theorems 2.1 and 2.2; but, since p = 1− ε ≈ 1, we can do a little better by applying these
theorems with ξ = |B \X| (which has the distribution Bin(|B|,ε)), using the trivial observation
that, for any λ > 0 (always equal to ηδap in what follows),

P(||X∩B|− |B|p| > λ ) = P(||B\X|− |B|ε| > λ ). (4.14)

(For most of the argument this change will make little difference, but it will be crucial when we
come to items (h)–(k).)

Items (a) and (b). To make things easier to read, set b = Kak−3+ζ logk (the bound in (T1) of
Lemma 4.1). The number of possibilities for each of WR, SR is bounded by the number of possible
T R’s, which (by (2.2)) is at most

exp[b log(eN/b)] < exp[b log(Nk3/a)] (4.15)
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(recall N =
(2k

k

)
). On the other hand, (T4) and the fact that |ST | � 2(k + 1)|WT |/k (see the

definition of ST in (4.8)) imply that, for any T ,

|WT |, |ST | < O(δakζ logk +g) = O(δakζ logk +a),

so that Theorem 2.1 gives (for any T )

max{P(EWT
),P(EST

)} < exp[−Ω(δ 2a/(δkζ logk +1))]. (4.16)

(In a little more detail: we apply Theorem 2.1 (using (4.14), though, as noted above, this is not
really needed here), with m = O(δakζ logk +a), q = ε and λ = ηδap, to bound the left side of
(4.16) by exp[−Ω(λ 2/max{mε,λ})], and observe that max{mε,λ} = O(δakζ logk +a).)

That the collections in (a) and (b) are η-nice now follows upon multiplying the bounds in
(4.15) and (4.16) and checking that (4.1) implies (with room to spare)

b log(Nk3/a) = o(δ 2a/(δkζ logk +1)).

Item (c). Since each of ZR, W R is determined by T R and FR, the number of possibilities for
W R \ ZR is at most the product of the bound in (4.15) (which will be negligible here) and the
number of possibilities for FR given T := TR. The latter is at most the number of subsets of
∇(N(T ),Γk \T ) of size less than c := Kδak−1+ζ logk (the bound in (T2)), which, since

|∇(N(T ),Γk \T )| � k2|T | < Kak−1+ζ logk =: d (4.17)

(see (T1)), is less than

exp[c log(ed/c)] = exp[O(δak−1+ζ logk log(e/δ ))]

= exp[O(δak−1+ζ log2 k)]. (4.18)

(Here we again use (2.2) (for the initial bound) and (4.1) (for the second line). Strictly speaking,
the application of (2.2) is only justified when δ � 1/2; but for larger δ we can bound the number
of possibilities for FR by the trivial 2d, which (for such δ ) is smaller than the left side of (4.18).)

On the other hand, again using (T2), we have

|WR \ZR| � k|FR| = O(δakζ logk).

(For the first inequality, fix A with R(A) = R and note that for any w ∈WR \ZR (= WA \ZA) there
is a path xyzw with x ∈ T (= TA) – such a path exists since w ∈WA – and yz ∈ FA (since otherwise
y ∈ A and w ∈ ZA).)

Thus Theorem 2.1 gives (for any R)

P(EW R\ZR
) < exp[−Ω(η2δ 2a2/(δakζ logk))]

= exp[−Ω(η2δa/(kζ logk))], (4.19)

which, combined with the (here insignificant) bounds in (4.15) and (4.18), gives

∑R P(EW R\ZR
) = exp[−Ω(η2δa/(kζ logk))].

Items (d)–(g). For each of these the number of sets in question is |R|, the number of possibilities
for (T R,FR,UR). As already observed, the number of (T R,FR)’s is at most the product of the
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bounds in (4.15) and (4.18). On the other hand, with c = Kδak−1+ζ log2 k (the bound on |U | in
(U1)) and d = Kδakζ logk (the bound on |WT \GA| in (T4)) – so c and d have changed from
what they were above – the number of possibilities for UR given TR is at most

exp[c log(ed/c)] = exp[O(δak−1+ζ log3 k)] (4.20)

(which dominates the bounds from (4.15) and (4.18)).
We next need to bound the sizes of the various sets under discussion. We have

|SR \S′
R| � (k +1)c = O(δakζ log2 k) (4.21)

(again, since (U1) bounds |UR| by c (and SR \S′
R ⊆ N(UR)));

|S′
R \A∗

R| = O(δa) (4.22)

(given by (U2), once we recall that S′
R = SR \N(UR));

|A∗
R \S′

R| = O(δak−ϑ ) (4.23)

(using (T5) and the fact – see (4.10) – that A∗
R \S′

R = A∗
R \SR); and, with A∗

R = A (so G∗
R = GA),

|G∗
R \ZR| � |G0

A \ZR|+ |G∗
R \G0

A| = O(ak−2 +δa) = O(δa) (4.24)

(using (T3), Lemma 4.2 and (4.1)). Note, for use below, that for any A with R(A) = R, (4.24)
remains true if we replace G∗

R by GA. (Similarly (4.23) holds with any such A in place of A∗
R, but

we do not need this.)
The largest of the bounds in (4.21)–(4.24) is the O(δakζ log2 k) in (4.21); so for each of the

sets B appearing in (d)–(g) (i.e. B = SR \S′
R in (d) and so on), we have

P(EB) < exp[−Ω(η2δ 2a2/(δakζ log2 k)]

= exp[−Ω(η2δa/(kζ log2 k))]; (4.25)

and, since η2δa/(kζ log2 k) in (4.25) is much larger than the exponent in (4.20), it follows that
the collections in (d)–(g) are η-nice.

Items (h)–(k). Here we first dispose of the sizes of the individual sets, before turning to the more
interesting problem of bounding the sizes of the collections in question.

For (h) and (i), notice that for any A,A′ ∈ A with R(A) = R(A′) we have

|A\A′| � |A∩ (S′
R \A′)|+ |A\S′

R| = O(δa+δak−ϑ ) = O(δa)

(using (U2) and (T5), as earlier in (4.22) and (4.23)); in particular this bounds the sizes of the
sets in (h), (i) (namely |A\A∗

R| and |A∗
R \A|, where R = R(A)) by O(δa). For (j) and (k), a similar

bound – that is,

max{|GA \G∗
R|, |GA ∩ (G∗

R \ZR)|} = O(δa)

for A with R(A) = R – follows from G∗
R ⊇ ZR (see (4.9)), |GA \ZR| < O(δa) (noted following

(4.24)) and (4.24) itself.
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We now turn to the sizes of the collections in (h)–(k), each of which is at most |A|. We will
show

|A| < exp[O(δa)]. (4.26)

Before doing so we observe that this is enough to show that the collections in (h)–(k) are η-
nice; namely, for B belonging to any of these collections (so |B| = O(δa)) and small enough ε ,
Theorem 2.2 (applied with m = O(δa) and q = ε – and now really using (4.14) – gives

P(EB) < exp[−ηδa(log(1/ε)−O(1))]. (4.27)

Here |B\X| < |B|ε −ηδap is impossible, so we are just using

P(|B\X| > |B|ε +ηδap) < P(|B\X| > ηδap) < exp

[
−ηδap log

(
ηδap
emε

)]
.

Assertions (h)–(k) then follow on multiplying the bounds in (4.26) and (4.27).

Proof of (4.26). According to (4.11), we may bound |A| by the number of possibilities for the
pair (A\A∗

R,GA ∩G∗
R) (with RA = R), so by our earlier bound on |R| – essentially that in (4.20);

see the discussion of items (d)–(g) – multiplied by the number of possibilities for (A \A∗
R,GA ∩

G∗
R) given R. So it is enough to show that, once we know R – and therefore A∗

R and G∗
R – the

number of choices for each of A\A∗
R, GA ∩G∗

R is less than exp[O(δa)].
The second of these is easy: since (by (4.9)) each of GA,G∗

R contains ZR (which is determined
by R), the number of possibilities for G∩G∗

R given R (and therefore G∗
R) is at most exp2[|G∗

R\ZR|],
and we have already seen in (4.24) that |G∗

R \ZR| = O(δa).
The case of A\A∗

R is more interesting. Here we decompose

A\A∗
R = (A∩ (S′

R \A∗
R))∪ (A\ (S′

R ∪A∗
R))

and consider the two terms on the right-hand side separately. The number of possibilities for the
first term is at most exp2[|S′

R \A∗
R|] (again, given R, which determines S′

R and A∗
R), while (U2) (or

(4.22)) gives |S′
R \A∗

R| = O(δa).
So it is enough to show that the number of possibilities for A \ (S′

R ∪A∗
R) is exp[O(δa)] (it

will actually be much smaller). In fact, it is enough to prove such a bound on the number of
possibilities for A \ S′

R, which determines A \ (S′
R ∪A∗

R) since we know A∗
R. Here we recall that

(4.10) gives A \ S′
R = A \ SR (so we may use these interchangeably, and similarly for A∩ S′

R =
A∩SR), and that – crucially – (T5) gives

|A\SR| = O(δak−ϑ ). (4.28)

Note that this final point differs from its earlier counterparts in that we now have less control
over the size of the universe from which the set in question (i.e. A\SR) is being drawn (in contrast
to, for example, FR in (c), which was drawn from ∇(N(T ),Γk \T ), whose size was bounded in
(4.17), or, in the present case, A∩ (S′

R \A∗
R), which is drawn from the quite small S′

R \A∗
R). Thus,

for example, if we try to apply (2.2) with a the bound in (4.28) and b = N (=
(2k

k

)
), then we can

only say that the number of possibilities for A \ SR is less than exp[O(δak−ϑ ) log(eN/δak−ϑ )],
which for somewhat small a may be far larger than the desired exp[O(δa)]. This little difficulty
will be handled by Proposition 2.6.
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Write t (= O(δak−ϑ )) for the bound on |A\SR| given in (4.28). Denote by Λ the (‘Johnson’)
graph on Γk in which two vertices (a.k.a. k-sets) are adjacent if they are at distance 2 in Σ, and
set d = k2 (so Λ is d-regular). Since our A’s induce connected subgraphs of Λ (another way of
saying they are 2-linked), there is, for each A under discussion, a rooted forest with roots in
SR ∩A = S′

R ∩A, set of (at most t) non-roots equal to A \ SR, and at least one non-root in each
component; thus we just need to bound the number of such forests.

(Note that existence of said forest requires SR ∩A �= /0, which, since we assume δ is not too
large, holds because the bound in (T5) is less than a. If SR ∩A = /0, as is possible for large δ , we
may bound the number of choices for A\SR = A by the number of trees of size up to t, but this
count should include a factor N (in place of the bound for (ii) below) for the choice of a root –
a change that can cause trouble in the present regime, but not for large δ , where, as will appear
below, our probability bounds improve.)

For the desired bound we may think of specifying a forest as above by specifying:

(i) the number, say q � t, of roots;

(ii) the set of roots, {x1, . . . ,xq} ⊆ S′
R ∩A;

(iii) for each i ∈ [q], the size, say αi, of the component (tree) rooted at xi; and

(iv) the components themselves.

We may bound the numbers of possibilities in (ii), (iii) and (iv) by
(a+O(δa)

q

)
,
(t

q

)
and (ed)t

respectively. The first of these derives from (U2), according to which we have |S′
R| < a+O(δa);

the second is the number of sequences (α1, . . . ,αq) of positive integers summing to at most t;
and the third is given by Proposition 2.6. Thus (recalling from (4.7) that a is not very small), we
find that the number of forests as above is at most

∑q�t

(a+O(δa)
q

)(t
q

)
(ed)t = exp[Θ(t logk)] (= exp[O(δa)]). (4.29)

Finally we turn to the case of large δ (δ > 1), showing (for any a,g, with δ = (g−a)/a > 1)

P(Q(a,g)) < εg/3, (4.30)

which, with the trivial g � k, bounds the contribution to (4.5) of the terms under discussion by

∑
g�k

∑
a<g

εg/3 = o(1/n).

For (4.30), first notice that in the present situation Theorem 2.2 bounds the probability of (4.4)
(for a given A ∈ A(a,g)) by

P(|GA \X| > g/2) < (2eε)g/2. (4.31)

On the other hand, to bound the number of possibilities for A (i.e. the size of A(a,g)), we may
think of specifying A via the following steps.

(i) Choose T ⊆ G := GA of size C(g/k) logk such that, with

S = ST = {x ∈ Γk : dT (x) > (C/2) logk},

we have

|A\S| < k−2a (4.32)
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and, with Z = Z(G) = {x ∈ Γk : dG(x) � k/4},

|S\Z| < k−1g. (4.33)

(The proof of the existence of such a T is similar to – but easier than – the proof of
Lemma 4.1, and we omit the details, just noting that, since S ⊆ N(G), fewer than gk vertices
are candidates for S\Z.)
Notice that by (4.33) (and the definition of Z), we have

|S| � (4/k)g(k +1)+g/k = O(g). (4.34)

(ii) For each x ∈ A \N(T ) (⊆ A \ S), choose some neighbour of x (necessarily in G) and let T ′

be the collection of these neighbours; thus T ′ ∩T = /0 and |T ′| � |A\S| < k−2a (by (4.32)).
Notice also that T ∪T ′ is 4-linked (by Proposition 2.5 and the fact that A is 2-linked).

(iii) Finally, choose A from S∪N(T ′).

We should then bound the number of ways in which these steps can be carried out:

(i) Since T ∪T ′ is 4-linked, Proposition 2.6 (applied to the graph on Γk in which adjacency is
Σ-distance at most 4, so a d-regular graph for some d < k4) bounds the number of choices
for T ∪T ′ by

N exp[O((g/k) logk) logd] < N exp[O(g/k) log2 k]

(where the N (= |Γk|) corresponds to choosing a root in T ∪T ′).

(ii) The number of choices for T ′ given T ∪ T ′ is exp[O(k−2a log(gk/a)]. Note that once we
know T ∪T ′ and T ′, we also know T and thus S.

(iii) Given T ′ and S, there are at most exp[a(log(g/a)+O(1))] choices for A ⊆ S∪N(T ′) (since
|S∪N(T ′)| < O(g); see (4.34) and the specification of |T | in (i)).

Of course for sufficiently (not very) small ε , all of these bounds are dominated by the one in
(4.31), so we have (4.30).

5. Sperner

As one might expect, there has also been some consideration of Sperner’s theorem [29] – usually
considered the first result in extremal set theory – from the sparse random viewpoint. Here X
is the random subset of 2[n] in which each A ⊆ [n] is present with probability p (independent
of other choices), and one is interested in the size of a largest antichain (collection of pairwise
incomparable sets) in X (called the width of X and denoted w(X); see [7] for general background
and [6] for a review of work related to the present question). In particular, proving a conjecture
of Osthus [22], it is shown in [6] and [8] (both using the ‘container’ technology of [5, 27]) that
w(X) ∼

( n
�n/2�

)
p w.h.p. provided p > C/n for a suitable fixed C.

Here again it is natural to ask for a more literal counterpart of Sperner’s theorem, namely, for
the property

w(X) = max{|X∩Γ�n/2�|, |X∩Γ�n/2�|} (5.1)
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(where we again take Γ� =
([n]

�

)
). As for the Erdős–Ko–Rado question considered above (and for

similar reasons), it is easy to see that (5.1) is unlikely for p less than about 3/4 (and easy to guess
that it is likely above this). Here we just observe that the method of Section 4 at least gives the
weaker statement analogous to our Theorem 1.2.

Theorem 5.1. There is a fixed ε > 0 such that (5.1) holds w.h.p. provided p > 1− ε .

(Though not in print as far as we know, this seems to have been of some interest; the present
authors first heard the question in a lecture of J. Balogh [3].)

We just indicate how this goes. The main point is that the argument of Section 4 is easily
adapted to show that (for ε, p as in Theorem 5.1) w.h.p.

|X∩∂u(A)| > |X∩A| (5.2)

whenever A⊆Γi is closed and non-empty and either i < �n/2� or n = 2k+1, i = k and |A|� 1
2

(n
k

)
,

and (with ∂l denoting lower shadow)

|X∩∂l(B)| > |X∩B| (5.3)

whenever B ⊆ Γi is closed and non-empty and either i > �n/2� or n = 2k + 1, i = k + 1 and
|B| � 1

2

(n
k

)
. (Note (5.2) and (5.3) hold in the specified regimes provided they do so when A and

B are 2-linked.)
(We have preferred not to extend the material of Section 4 to cover the present situation,

feeling that the extra generality would make the argument even harder to follow than it already
is. It should at least be intuitively clear that (5.2) and (5.3) are in fact less delicate than what’s
gone before; for example, (5.2) gets easier as i shrinks (with n fixed, so the hardest case would
be i = n/2, which corresponds to what we did earlier and does not even appear here).

For the warier reader we may also argue as follows (for (5.2) say). Given i < n/2, identify
2[n] in the natural way with {B ⊆ [n]∪ J : B ⊇ J}, where J is some (n− 2i)-set disjoint from
[n]. Our Γi then becomes a subset of

([n]∪J
k

)
, where k = n − i = |[n] ∪ J|/2, and the results

of Section 4 apply directly. We will not elaborate, apart from noting that (i) in this case the
lower bound on δ in (4.1) is automatic, and (ii) the need to sum failure probabilities over
possible values of i causes no trouble since the bounds on these probabilities (essentially those
in (4.16),(4.19),(4.25),(4.27),(4.31)) are so small.)

It remains to observe that (5.2) and (5.3) (for the stated ranges) imply (5.1). (They actually
imply that X∩Γ�n/2� and X∩Γ�n/2� are the only possible antichains of size w(X); so if n is odd,
then w.h.p. one of these is the unique largest antichain, since their sizes differ w.h.p.)

For n even the implication is immediate: if ∪Ai is an antichain of X with Ai ⊆ Γi and i =
min{ j : Aj �= /0} < n/2, then replacing Ai by X∩∂u(Ai) gives a larger antichain, and similarly if
Ai �= /0 for some i > n/2.

When n = 2k+1 the same argument shows that any largest antichain of X is C∪D with C ⊆ Γk

and D ⊆ Γk+1. But then the union of the closures, say A and B, of C and D is an antichain of 2[n],
so min{|A|, |B|} � 1

2

(n
k

)
; and if (for example) this minimum is |A| > 0, then, according to (5.2),

replacing C by X∩∂u(A) (= X∩∂u(C)) increases the size of our antichain, a contradiction.
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