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HYPERGEOMETRIC MELLIN TRANSFORMS

B Y L. J. SLATER

Received 24 January 1955

1. Introduction. The Mellin transforms of generalized hypergeoruetric functions are
discussed in this paper, and it is shown how some of the most general integrals of the
Mellin type can be deduced from them. Four general theorems are considered and
a number of special cases are given in detail.

In the usual notation for generalized hypergeometric functions we let

F UaY (bv x\ - y m ) X n K ) K ) ( ^ ) ^
FB[(a), (b), x] - J
F

where (ajn = am(am + 1) (am + 2)... (am + n - 1), (am)0 = 1,

and (a) denotes the sequence of parameters ax, a2,..., am,..., aA. We assume that there
are always A of the a parameters, B of the b parameters, and so on.

Also, for convenience in printing, let

(1-2)
T(b1)F(b2)...T(bB)-

A dash will denote the omission of a vanishing factor in a sequence. Thus (a)' —am

denotes the sequence

al~am>a2~am> •••> am-l~am> am+X~am> am+2~am> • • • > aA " " a m -

We state the Mellin transform thus: if

1 fc+ioo

/(x) = — x-°g(s)ds, (1-3)

then g(s) = \ xs~1f{x)dx, (1-4)
Jo

provided that g(s) exists in the Lebesgue sense, over the range 0, oo. The Mellin
transform can be translated into the Laplace transform by putting exp (ljx) for x, and
into the Fourier transform by putting exp(l/ia;) for x (see (3), chap. 2, for fuller
details).

2. The first theorem. In (2) four theorems are stated on the evaluation of contour
integrals in terms of hypergeometric functions. We now apply the Mellin transform
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578 L. J. SLATEE

to these theorems and we deduce four further theorems. In the first theorem of (2) the
integrand was the product of gamma functions

and the result proved was: if %n(A + B—C — D) > \ arg x |, then

(i)/(a;) = T,A(x) ~Z^l/s) when A +D >B + C or when A +D = B + C and | x\ < 1,

(ii)f(x) = 2^(z) = Z^l/z) when A+D = B + G, x= 1 and ^L{c + d-a-b)>0,
and (iii)/(a;) = SB( 1/x) ~ T^Jx) when A + D<B + Cor when A+D = B + Ca,nd\x\ > 1,
where

xA(X)- s ^ r ^ ^ ( d ) + a J B + c F A
(2-2)

and

-S* 'r[ > * W L
(2-3)

Let us apply the Melhn transform (1*3) and (1-4) to these results. Then we find that

f{x) = I,A(x) if A+D>B + C, or .4+D = £ + C and 0 < z < l ,

and that

f{x) = SB(l/a;) if ^ + D < 5 + C, or J[ + Z) = 5 + C and l<a;<oo,

where we must have A + B ^ C + D fox fix) to exist.
Hence we have

THEOREM 1. (i) gis) = Tf-^Ax)dxif A + D>B + C,
Jo

f1 -i f°°
Jo Ji

/•OO

and (iii) <jr(s) = a^Z^l/x)dxifA+D<B + C,
Jo

provided that A+B^C + D, — 1Rav< fUs< W)v, and 8lcv, dldy± —N for N a positive
integer or zero, and for all v.

It should be noted that gi — s) -*• gis) when/(I/a;) ->-/(a;), and so, given any gis) which
falls under (iii) above, it is possible to regard it as equivalent to a function gi — s)
which can be treated under (i) by simply substituting 6's for a's, d's for c's and vice
versa. Also, when A + D = B + G, £B(l/a;) is the analytic continuation of S (̂a;) for
l<a;<oo. If B = 0 and A = C, we must also have D = 0. In this particular case, the
integral over the range 1 to oo is zero, and

(2-4)
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If we leave f(x) expressed as the contour integral —: g(s)x~sds without

giving its evaluation in terms of power series, we have the Mellin transform of Meijer's
<?-function((i), §7-3(43)).

3. Some examples on Theorem 1. In all these examples we assume that

and that ^Rcv, 9W,,=t= —N for all v. If g(s) contains only one gamma function of s, there
are two possibilities, F(a + s) and T(b — s), which transform one into the other
under g( — s)^-g(s). Both lead to the Euler integral of the second kind,

T(a + s) = \ xt-i+te-Bdx. (3-1)
Jo

The possibilities for g(s) to contain two gamma functions of s reduce in the same
way to four distinct cases: two Eider integrals of the first kind,

((l), §7-3(15)) (3-2)

and r [ a +
c ^ C

5 ~ a ] = P a ^ + V o t l + a - e ; ; x]dx ((i), §7-3(20) and (22)), (3-3)

and two integrals of Bessel functions,

|
—s J

= p ^ - i + a ^ . a + d; -x]dx ((l), §7-3(23)) (3-4)

and F[a + s,b + s] = (^xs-1+aT[b~a]0F1[; 1 + a-b; x]dx
Jo

+ rxs-i+br[a-b]0F1[;l+b-a;x]dx ((l), §7-3(17)). (3-5)
Jo

When g(s) contains three gamma functions of s we find five distinct cases:

The special case 6 = £, d = 1 + a, leads to

=r Xs-1 er**KJ&c) dx, (3-7)
Jo

i

where | 9tv | < 9{s ((1), § 7-3 (26)), and. the corresponding case for g( - s) leads to

v-s] = 4-n rx
s-1e-ix^x)dx, (3-8)

J
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where -fftv<fRs<^((l), §7-3(25)).

r[ax + s, a2+s, b - s] = ar3-1+air[o2 - a1; ax + 6] ^ [ c ^ + 6; 1 + % - a2; a]
Jo

+ x*-1+a2r[a1-a2,a2 + 6]12?i[a2 + 6 ; l + a 2 - a i ;
Jo

The special case /i — \ = av \—/i = a2, -/c = 6, leads to

/* —#c+i , —/e —#c + i J Jo "^
where | «R/*|-£<3te< - 9k (d), §6-9(7)).

The remaining three results in this group do not seem to have been stated before.
These are:

s,6 + s;j = ^ 7*-i+aV[b_a. c - a] ^[1 + a - c; 1 + a-b; -x]dx
c+s J Jo

+ fV-1+6r[>--6; c-W&ll + b-c; 1 + b-a; -x]dx, (3-11)
Jo

; d-s] = x?-1+aT[b-a; d + a]^; l+a-b,d + a; x\dx
Jo

+ P ^ - i + ^ a - i ; d + 6 ] ^ ; l + b-a,d + b; x]dx (3-12)
Jo

v=lj

and

[ ( y J o ^ f , ( ) ]
0

(3-13)

When gr(«) contains four gamma functions in s we find ten distinct cases, each of
which can be extended immediately to the generalized hypergeometric series, thus the
generalization of (3-13) is

l - ( a ) / ; ( - l)*x\dx. (3-14)

T[(a) + s ; (c) + s ] =

(3-15)
when A > C, and

p ^ ^ (3-16)
when 4̂ = C,
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T[(a) + s; (d)-s] = 2 r[(a)'-aA; (d) + a,J

(317)

S r[(a)'-aA; (c)+ *, (d)-

r
J 0

x ] ^ (3-18)

r[(o) + a, (b) - a] = S r[(a)' - a,,, (6) + O/J
I

p , ^-Ca)'; (-l)Ax]dx (3-19)
for 4̂ > B, and

r[(o)+«,(6)-«]= s

x f1

+ n(«) + bll,{b)'-bH\^xs-^AFA_1[{a) + bl)\ 1+6,,-(6)'; ( - l ) ^ ] d x j (3-20)
for ^ = 5,

x r^-^^+c-^- i t l feJ + a^ 1 +«„-(c); 1 +aA-(a)'; (-l)*+°x\dx (3-21)

for A>B + C, and

Jo
(6)'-6,,j pa

for A = B + C, and finally

j [ ( o ) + 6 ; ( c ) + 6 i + 6 ( 6 ) ; ( _ i )

(3-22)

fa -(a)',
for B = D.

Most of these results do not seem to have been stated explicitly before, although
many special cases of them are well known. In particular the integrals (3-16), (3-20)
and (3-22), which involve the Gauss zFx(x) series when A = 2, have often been stated
incompletely.
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4. The second theorem. Let

~" ip I vi ' °> vi "> v/> a I (A. \\

] y
(c)-a/l,(d)+a/l\mt0 ((d) + %)2m((f))mml

a-(c);(-l)*+<>x\
4 2 )J

and S MM— V -v-ft-r"!^' ' "»'*"' ""I v ^""' ' ""̂ 2m

(4-3)

Now let us apply the Mellin transform (1-3) and (1-4) to the results of Theorem 2
of (2). We find

THEOREM 2. If A + B^C + D, A+B + E^C + D + F+l, -31a,,<9fe<SR6V, and
dicv, dtdp + - JV, for all v, then

(i) g(s) = f° ^ - ^ ( x ) da;/or A + D > 5 + C,
Jo

(ti) gr(s) = f «8-1S^(x)da;+ [ "^ -^ ( l / ^ t t e / o r 4 + D = B + C
Jo Ji

(•00

and (iii) g(s) = a^-1 SB(l/a;)dxfor A + D<B + C.
Jo

Again we note that (iii) and (i) are equivalent under the transform g(s) ->g( — s), and
that in (ii) 2B(l/a;) is the analytic continuation of %A{x), for 1 <x<oo.

In particular, if B = D = 0, then A = C, the second integral in (ii) is zero and

Jo
g(s) = Ptf-iXA(x)dx: (4-4)

J
To justify the application of the Mellin transform here, we need only note that,

under the conditions of this theorem, g(s) is a function of bounded variation, on part
of the real axis ((3), Theorem 29).

5. Special cases of Theorem 2. In all these examples we assume that the parameters
satisfy the restrictions — dta^ < dis < $&„ and fltcv, 9id,,4= — N for all v. The simplest
possibility is .M

r(a + s)1F0[a + s;y]=\ x3-1^ e*»-x dx (5-1)
Jo

for | y | < 1. This is another variation of Euler's integral of the second kind ((l), § 6-3 (1)).
When an/parameter is added we find

((i), §7-5(24)), (5-2)
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and when e parameters are added also we have

T(o + s) E+1FF [a + s, (e); (/); y] = f" z°-i+« e~* EFF[(e); (/); xy] dx, (5-3)
Jo

where EKFOTE = F and | y \ < 1 ((l), §7-6 (27)).
When g(s) has two gamma functions involving s there are four possibilities. The

first case is

;f; y]

= T[b-a] P V ^ ^ t ; l+a-b; x]^^;/; xy]dx
Jo

+ T[a - b] f° ^- !+ 6 o^ [; 1 + b - a; x] ̂  [; / ; xy] dx, (5-4)
Jo

from which we can deduce various integrals of products of Bessel functions. When
e and/parameters are added, we have

T[a + s, b + s] E+2FP [a+s, b + s, (e); (/); y]

= r[b-a] P'a*-*-*&[; l + a-b; x]EFF[(e); (/); xy]dx
Jo

+ V[a-b] r V 1 + 6 o * i [ ; l+b-a; x\EFF{{e); (/); xy]dx, (5-5)
Jo

where E ̂ F. This is a general Hankel transform. The extension to a general number
of a parameters is

s,(e); (/); y]

g ^ [ ; l + O / , - ( a ) ' ; x]EFF[(e); (/); xy\dx (5-6)
/<=i Jo

for E^F.

The second possibility is

T[a + s,b-s]2Fl[a+s,b-s;f;y]
= T[a + b] ra^- i+«(l + a;)-»-6aF1[i(o + 6 ) , l ( l + a + 6) ; / ; 4^ / (1 +a;)2]da;, (5-7)

Jo

and when the e a n d / parameters are added we find that

s,b-s]E+2FF[a + s,b-s, (e); (/); y]

= r[o + b] r a -̂1+a( 1 + x)-"-6

Jo
),(e); (/); 4xyl(l+xf]dx (5-8)

for E<F. When 4̂ > 1, or i?> 1, the double series under the integrand is neither
separable nor summable, and so in general it cannot be reduced to a single summation.
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Thirdly, we have

V[a + s,c-a; c + s]1F1[a + s; c + s;y]= f xs~1+aex»(1 -x^'"'1 dx ((l), §7-5(25)).
Jo

(5-9)
When we add an e parameter we find

F[a+s,c-a; c + s]2-?i [a + s,e; c + s; y]

= rxs-1+a(l-x)c-a-1(l-xy)-edx ((i) §7-5(16)) (5-10)
Jo

for | y | < 1, and when we add an/parameter also, we have

r1

F[a + s,c-a\ c + s]2i^2[a + s,e; c + s,f; y] = xs-x+a{\-x)c-a-1
1F1[e;f; xy]dx,

Jo
(5-11)

and, for general E and F,

F[a+s,c-a; c + s]E+1FF+1[a + s,(e); c + s,(f);y]

= P xs-1+a(l-x)e-a-1
 BFF[(e); (/); xy\dx (5-12)

Jo

{OTE<F+1,OVE = F+l and \y\<l((i), §6-9(10)).
For A = C > 1, the inner double series is separable but not summable in general, and

the result becomes

F[(a) + s; (c) + s]A+EFA+F[(a) + s,(e); (c) + s,(f); y] =

- (c); 1 + a A - (a)'; x]EFF[(e); (/); a^](fa (5-13)

for E < F or for E = F and | y | < 1. Here the most interesting particular case is A = 2,
which leads to a 2^i(a;) under the integral sign, and in particular when E = F = 0, we
have

s; c + s,d+a]2F2[a + s,b + s; c + s,d+s; y\

= T[b-a; c-a,d-a] \ xs~1+ae-xv^[1+a-c, 1+a-d; l+a-b; x]dx
Jo

+ T[a-b;c-b,d-b]\ x3'1*" e~x» ̂ [1 + b - c, 1 + b-d; 1 + b-a; x]dx. (5-14)
Jo

For A > C > 1, the corresponding general result is

F[(a) + s; (c) + s]A+EFc+F[(a) + s,(e); (c)+s,(f); y] = | T ^ a ) ' - ^ ; ( c ) - ^ ]
/»=i

, (5-15)
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and in particular for A = 2, G = 1, E = F = 0, we find that

T[a + s,b + s; c + s]2i?
1
1[a + s,6 + s; c + s; y\

fca

= T[b-a; c-a] xs-1+ae-x«1F1[l+a-c; 1+a-b; -x]dx
Jo

+ T[a-b; c-b] P°:c8-1+6e-^1J'i[l+6-c; l+b-a; -x]dx (5-16)
Jo

for | y | < 1.
The fourth case is

V[a + s, a + d; d — s]1F1[a + s; d — s; x]

= JBB"1+a S M u J •0*'1[;« + d + 2m;-g]<fe. (5-17)

Here the inner series are neither separable nor summable, and the introduction of
further parameters, a's, d's, e's o r / ' s does not alter this fact.

When g(s) contains three different parameters involving s three further groups of
cases arise. Firstly we have

g(s) = F[a + s,b-s; d-s]2F1[a + s,b-s; d-s; y],

where | y \ < 1, and its extensions

g(s) = r[a + s,b-s; d-s]E+2FF+1[a + s,b-s,(e); d-s,(f);y], (5-18)

where E^F, and

g(s) = r[(a) + «,(6)-«; (d)-s]A+B+EFD+F[{a) + s,{b)-s,{e); (d)-s,(f); y],
(5-19)

where A+B + E^D + F+l and
Secondly, we have

g(s) = r[a + s,b-s; c + s]2F1[a + s,b-s; c + s; y], (5-20)

where | y | < 1, and its extensions,

g(s) = T[a + s,b-s; c + s]E+2FF+1[a + s,b-s,(e); c+ «,(/); y], (5-21)

where E^F, and

g(s) = T[(a) + s,(b)-s; (c) + s] A+B+EFC+P [(a) + s, (b) -s, (e); (c)+ *,(/); y], (5-22)

where
Thirdly, we have

gr(s) = r ^ + ̂ aa + ̂ ag + s; c + 5,d-s]3i^2[aj^ + Sjtta + s^a + s; c + s ,d -« ; y], (5-23)

and its extensions,

g(s) = rfa! + a, a2 + s, a3 + s; c + s, d — s]

s,d-s,(f); y], (5-24)
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where E < F+1, and

g(s) = r[(o) + «; (c) + «,(d)-a]

^ - ^ W r [(«)+*. (e); (c) + », (<*)-«, (/); 2/], (5-25)

where J. Js C + D and 4̂ + # < C + D + -P+ 1.
In these three groups, however, the inner double sum is neither separable nor

summable, owing to the presence of an a and a d parameter or a b and a c parameter
at one and the same time.

6. The third theorem. Let

) + «, (b)-s, (e); x
+l (c)+s,(d)-s,(f);\' (

(c) - «„, (d!) + ̂ , (i) - V (*) + o J *

m-0n=0 ( l+O^- («)')n (1 + ^ ~ (9))m+n((f))

+ ir[(5-^St^^-^(i)r:'ii^ s s
(6-2)

a n d 2uB(l x) = 1 1
1

((9) + K)m+n(l + bf-(d))n(l +bv- (k))
OntO (l+bv- (b)')n (1 + bv - (k))m+n ((C) + bv)im+n ((j

) ymx~m~n(—

y. pi WT'",, ̂ ; - ' v W;T/V \'c/ '"v\r-hv

• (6-3)

Again we see that g(s) is a function of bounded variation over part of the real axis,
so that we can apply the Mellin transform to Theorem 3 of (2). Then

THEOREM 3. (i) g(s) = \ xs~vLA(x)dxif A
Jo

(ii) g{a)= rx°-iXA(x)dx+ raf'^BJo Ji
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and (iii) g(s) = f
Jo

provided that

die,, dtdv, mj, and 3%,,* -N for all v,

A+B+G+H^C+D+J+K

and A + B + E<C + D + F+1, orA+B + E = O + D + F+l and\x\<l.

As before, (iii) and (i) are equivalent under the transform g{s)->g( — s), and, in
(ii) T,s(ljx) is the analytic continuation of 1iA(x), for l<x<oo . In particular, if
B = D = H = K = 0, then A + G = C + J, the second integral in (ii) is zero, and

Jo
g(s)= x*-^A{x)dx. (6-4)

J
7. Special cases of Theorem 3. There are only three cases in which the series under

the integral can be reduced to a simpler form. In these examples we assume that the
conditions of Theorem 3 are satisfied.

First, T\a + s, h — s] XFO [a + s; y] leads to

~ r^-1+a(1+x + xy)'~h-adx (d), §6-2(19)).~]{1~y)aS ~ r^-1+a(1+x + xy)'~hadx (d), §6-2(19)).
(7-1)

This can be extended to

s,h-s]2F1[a + s,e;f; y] = T[h + a]

and F[a + s,h-s; h + a]E+1FP[a + s,(e); (/); y]

~a
E+XFF [a + h, (e); (/); ^ j dx (7-3)

A similar result from V[a + s; j + s] ^ [a + s; ; y] is

r1

r[a + 5 , j -a ; 9' + s](l—«)-°-s = a?-1+a(l—ay — a;) '-"-1^. (7-4)
Jo

This can be extended to

,j-a; j + s]2F1[a + s,e;f; y] = | a^+^l-a;) '-0-1^! l+a-j,e;f;^-^ da;

(7-5)
and

I .̂̂ ^ X-t-oV 1 . »• \i (t 1 P l l i n A ta\* ( f\' o I J/y. in fi\

for
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The third result, which involves Bessel functions, is

r[g + s,c-g; c + s]oi'i[; c + s; y]

=*Fafi-i+«(l-xY>-»-i0F1[;c-g;y(l-z)-]dx ((1), §7-4(5)), (7-7)
Jo

with the generalization

F[g + s, c - g; c + a] EFF+1 [(e); c + s, (/); y]

= r^-^(l-zf-o-\FF+1[(e);c-g,{f);y(l-x)]dx (7-8)
Jo

for
The other special cases of Theorem 3 lead to double series which are neither separable

nor summable.

8. The fourth theorem. Let

t l(c) + um + vn + s(d) + um + vns]

where each u or v is unity or zero according as each parameter a, b, c or d occurs within
the TO or n series or not. a(m, n) is a function independent of s such that the double
series in TO and n is absolutely and uniformly convergent in both y and z. Also let

2 (x)= y s S 2

and Z a ( l / * ) = S S S

(b)' + ubm + vbn-b -u,m-v,n-p
— bv — uvm

-v,n-p\ 6 ^ m _ ^ _ , _ ( 8 .3 )

-vvn-p\

Then, since g(s) is again a function of bounded variation we can apply the Mellin
transform to Theorem 4 of (2), and we find

THEOREM 4. (i) g[s) = P°af-^LJ^x)dzifA
Jo

(ii)gf(s) = [1xs~^A(x)dx+ rxs-1T,B(llx)dx
Jo Ji

d (iii)gr(s)= r xs~1IIB(llx)dx if A+D<B + C,
Jo

provided that A+B^C + D, and that g{s) is an absolutely and uniformly convergent
series in y and z.
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Again (iii) and (i) are equivalent under the transform g(s)->g( — s), and in (ii) the
sum S^l /z) is the analytic continuation of ZA(x) for l<a;<oo. In particular, if
B = D = 0, then A = C, the second integral in (ii) is zero, and

= lo (8-4)

This theorem contains as special cases Theorems 1, 2 and 3, and other transforms of
Meijer's (^-function, for example (l), §7-5 (30), (31) and (32).

9. Examples on Theorem 4. The double series in g(s) can assume many forms. For
example, it may be one of the Appell series, ((l), p. 384), though none of the integrals
which arise assumes a simple form. Alternatively, the double series in g(s) may be
separable into two simple series in m and n respectively. In a few cases the resulting
triple series under the integral is separable into double series, and occasionally this
integrand will reduce even further. Thus Y\a + s, b — s] 1-FJ) [a + s; y] ji^ [6 — s; z] leads to

= \
J

1+a(l + x - y - xz)-"-* dx (9-1)
o

and r[a + s,b-s; a + 6 ] ^ [ a + s; e; y]1F1[b-s;f; z]
> oo oo ~.m»,m7n(n A . \

{1+X) £?(l+xr^m\n\(e)(f)-dx- (9 2)
a>

This double series under the integral is one of Horn's hypergeometric series ((1),
p. 385).

Another related result is

,c-a; c + s]1F1[a + s;f; y\xFx[e; c + s; z]

m=0m=0 U )

and there are many other similar results involving Bessel functions, confluent hyper-
geometric functions and other more general hypergeometric functions.

Results similar to Theorem 4 will hold for triple and multiple series in general, in
g(s), but these results are so complicated that it is unlikely that they can have any
practical application.
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