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Estimating forces during ploughing of a
granular bed
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We present a method for predicting forces on a plough – modelled as a flat, rigid
plate inclined in the direction of motion – as it moves through a granular bed.
Our method combines coarse, but representative, discrete element (DE) simulations
with continuum mechanics. We first homogenize the kinematic information obtained
from DE simulations to obtain a continuum strain field. The strain field is then
combined with an appropriate continuum constitutive law for the granular material
being ploughed and linear momentum balance to obtain forces acting on the plough.
Our method has the advantage that it does not require (i) detailed DE simulations
nor (ii) extensive calibration of grain parameters to match experiments which, in
turn, requires significant effort and may be system dependent. Both (i) and (ii)
are necessary if forces are to be estimated directly from simulations. We confirm
the effectiveness of our approach by comparing our predictions with results from
calibrated DE simulations and experiments.

Key words: granular media

1. Introduction
Ploughing or excavation (figure 1) is an important process that finds application

in industries like agriculture, mining, construction and earth-moving. Modelling such
processes is challenging because of the complex nonlinear behaviour of granular
material, its spatial variability and the dynamic effects that may occur during rapid
granular flow. Ploughing is a power-intensive process and the prediction of forces
on the plough is essential for better machine design. At the same time, estimating
forces on fully or partially submerged objects moving relative to a granular medium
remains a problem of fundamental importance; see, e.g. Wieghardt (1975), Bharadwaj,
Wassgren & Zenit (2006), Seguin et al. (2011) and Katsuragi & Durian (2013).

Various methods have been developed in the past to study the ploughing process.
Analytical methods are based on Terzaghi’s passive soil pressure theory (Hettiaratchi,
Witney & Reece 1966; McKyes & Ali 1977). These methods model the failure pattern
in granular media and take the process to be quasi-static. Sokolovski (1960) employed
slip-line theory, which assumes that failure inside the bulk occurs at certain planes.
In these methods complicated plough geometries and dynamic effects cannot be taken
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FIGURE 1. (Colour online) Schematic of ploughing, where a flat, rigid, inclined plough
moves through a granular bed. The coordinate system (x–y) in which we will work is
attached to the plough’s tip. The inclination angle of the plough is α, H is the depth of
the plough in the granular bed measured from the undisturbed bed’s surface, hb is the
distance of the plough’s tip from the base of the container and l is the length of the
container. The plough moves to the right at speed vc. The force acting on the plough
may be split along and normal to the plough as, respectively, FN and FT , or along the
given (x–y) coordinate system as Fx and Fy, respectively. In the main text we will typically
compute Fx and Fy.

into account. Furthermore, slip-line theory is limited to two dimensions and to rigid
perfectly plastic materials. At the same time, analytical methods developed for three
dimensions (Hettiaratchi & Reece 1967) make many simplifying assumptions and
are restricted to quasi-static processes. Recently Gravish, Umbanhowar & Goldman
(2010) fitted their experimental results about forces in ploughed grains through the
method of wedges (Nedderman 1992), which is a quasi-static technique. Finally, we
mention the work of Palmer (1999) and Sauret et al. (2014). Sauret et al. (2014)
investigated bulldozing of granular material through experiments and continuum
depth-averaging techniques, but did not compute the forces exerted by the granular
flow on the plough. Palmer (1999) explored the effect of speed during rapid cutting
of water-saturated soils. An analytical model is developed for the change in pore
pressure, and the increase in cutting effort is explained through a drop in pore
pressure which augments effective stresses. Models/techniques to predict the cutting
forces are not developed. In contrast, our work concerns dry granular materials, and
we put forward a methodology to estimate forces during cutting (ploughing).

Ploughing involves large deformations during which grains may lose or come into
contact. Because of this, it becomes difficult to model ploughing of a granular bed
through finite element methods. Most current studies employ the discrete element
(DE) method, developed by Cundall & Strack (1979), or its extensions. Examples of
application of the DE method to processes like ploughing and soil cutting include
Ono et al. (2013), who studied soil cutting resistance using three-dimensional DE
simulations, Asaf, Rubinstein & Shmulevich (2007), who analysed cutting blade
shapes using two-dimensional DE simulations, and Coetzee (2014), who compared
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the efficacy of DE and continuum (material point) methods in modelling soil cutting.
The experiments of Percier et al. (2011) and Guo et al. (2012) on forces experienced
during ploughing were also explained using two-dimensional DE simulations. Guo
et al. (2012), additionally, employed an extended Coulomb’s Earth pressure theory
(Nedderman 1992) to model their observations. This was consistent because Guo
et al. (2012) ploughed at very slow rates.

Gravish, Umbanhowar & Goldman (2014) recently utilized resistive force theory
(RFT) to estimate forces during ploughing. This technique was initially developed for
computing the drag on intruders in viscous fluids, and then later extended to intruders
in granular media (Li et al. 2009; Ding, Gravish & Goldman 2011). In RFT, the total
load on an intruder is found by dividing the intruder into smaller elements, computing
the loads on these elements separately either through experiments or simulations, and
then assuming that the total load on the intruder is the sum of the loads on all
its elements. Thus, a fundamental assumption is that the loads experienced by an
element of the intruder are unaffected by the presence of the rest of the intruder
(Aguilar et al. 2016; Askari & Kamrin 2016; Slonaker et al. 2017). Even in isolation,
the force per unit area acting on each intruder element depends upon its orientation
and velocity, and the flow velocity of the grains. At the same time, as part of the
intruder, the orientation and velocity of an element, and the flow’s local velocity will
vary, and may even change. Thus, the force on an isolated intruder element for a
range of velocities and orientations has to be found, and then superposed to find the
total load on the intruder. A complete physical and mathematical explanation of why
superposition of forces employed in RFT succeeds in nonlinear systems like granular
flows is unavailable, although Askari & Kamrin (2016) have attempted to provide
necessary conditions to predict the materials wherein RFT may work. We list the
main differences between RFT and our approach in § 2.

A central challenge in applying the DE method directly to granular flows is
the calibration of the grain micro-properties. This is necessary to ensure that
the virtual (i.e. simulated) granular material displays the macroscopic constitutive
response of the grains being investigated. Parameters entering the interaction law
governing grain-to-grain contact in the DE simulations are determined using theory,
trial-and-error or experiments. Coetzee (2017) reviews the many calibration procedures
employed by various researchers. For example, Tanaka et al. (2000) compared the
results of DE simulations with actual bar penetration tests. They varied the friction
coefficient between grains to determine the value that provided the best comparison.
Shmulevich, Asaf & Rubinstein (2007) found interaction parameters from in situ
field tests. They compared their test results and simulations and applied a nonlinear
optimization algorithm to locate optimal grain parameters for use in simulations.
Coetzee & Els (2009) employed a combination of shear tests and compressions
tests of grains simulated through the DE method, and compared these results with
experimentally measured friction angle and stiffness to determine the best set of
grain friction and grain stiffness values. Thus, calibration (i) requires significant
effort, (ii) is often application specific and (iii) is not standardized.

Even after the grain parameters have been calibrated for an application, in order to
obtain accurate and robust force data with low noise, it is found necessary to employ a
very large number of grains. For example, Tsuji et al. (2012) employed 300 000 grains
in their simulation of bulldozing. Sometimes even grain shapes have to be modelled
more exactly than as mere spheres; for example, Coetzee & Els (2009) employed
clumped spherical grains to model the shape of corn grains used in their experiments.
These aspects significantly increase the computational cost.
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Forces during ploughing 379

Here, we propose to obtain forces during ploughing by combining kinematic
data obtained from coarse, but representative, DE simulations with continuum
mechanics. This approach circumvents the necessity of extensive calibration of
DE simulations, and also does not require a very large number or complex shapes
of grains. Computational cost is, thus, significantly lowered and, at the same time,
greater insight is obtained into which kinematic aspects of the flow affect its kinetics
the most. We identify our approach as the extended strain path method (ESPM), as its
spirit is somewhat similar to the strain path method developed by Baligh (1985) for
deep, quasi-static penetration processes. The main differences (and advantages) being
that ESPM is applicable to dynamic processes, and may be applied to those granular
flows in which strain paths are not easily visualized in experiments. We develop
and demonstrate ESPM in the context of two-dimensional ploughing. Additionally,
we employ a simple rheology for the granular flow, in order to keep the number
of fitted parameters to a minimum. The method may, however, be extended to three
dimensions and more complex rheologies.

Computing the continuum velocity field of the flowing grains is a fundamental step
in ESPM. Deformation fields for applications similar to ours have been studied in
the past using various techniques, and we briefly summarize them. Wettergreen et al.
(2010) and Loret de Mola Lemus et al. (2014) investigated the motion of a rover
on sand and controlled it by actuating a plough. The force on the plough required
for braking is measured in terms of wheel slip. Moreland et al. (2012) visualized the
complex soil flow patterns under a wheel using a shear interface imaging analysis tool.
The deformation fields obtained were for soil–wheel interaction, and are not directly
relevant to our case.

Murthy, Gnanamanickam & Chandrasekar (2012) and Yadav, Saldana & Murthy
(2015) obtained deformation fields during indentation of a granular bed in a
rectangular chamber. It is important to note that, because metals can withstand
significant tensile forces while, in contrast, granular materials have almost no tensile
strength, many of the features observed in metals, especially at the surface, may not
be found in grains. Finally, Murthy et al. (2013) performed soil cutting experiments
with a vertical plough, and generated velocity contour maps using image analysis;
these, as we will see in § 4.1, resemble what we find in simulations.

In passing we mention some recent techniques that have been employed to measure
the large deformation inherent in granular materials. These include fine grid techniques
(Sevenhuijsen, Sirkis & Bremand 1993; Goldrein, Palmer & Huntley 1995), which
analyse images of distorted surface grids to produce quantitative displacement and
strain maps, and digital speckle X-ray flash photography (Goldrein et al. 2002;
Grantham et al. 2006), which combines digital speckle photography with flash X-ray
photography to measure two- and three-dimensional displacement fields within bodies
undergoing dynamical deformation.

Finally, we mention the work of Qiong, Pitt & Ruina (1986) who found forces
exerted by soil on a plough mouldboard by constructing strain paths from scratch
traces left on the mouldboard. In this, they too followed a strain path method.
However, assumptions about the flow that they made, while perfectly suitable for a
mouldboard, are not easily extended to other flows, such as the one investigated here.

The rest of the paper is organized as follows. We discuss ESPM in the next section.
Our DE simulations, from which we obtain kinematic data, are described in § 3. We
then obtain the continuum strain rate field in § 4 by homogenizing the position
data computed from DE simulations. Next, we test the extent of the applicability of
ESPM by probing the degree to which ploughing is kinematically controlled. We then
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introduce a continuum model of the granular flow in § 5 and combine it with the
strain rates obtained from DE simulations and linear momentum balance to calculate
stresses in the bulk. This, subsequently, allows us to estimate forces on the plough.
Finally, in § 6 we present our results. We observe a good match between our ESPM
predictions and calibrated DE simulations, and also with experiments conducted by
us and others.

2. Extended strain path method

The ESPM combines DE simulations and continuum analysis and has the following
main steps.

Step 1: Obtain an approximation to the strain rate field, while modelling the granular
material as a continuum. This may be done through experiments, e.g.
Baligh (1985) or Qiong et al. (1986), or simulations, as we propose. Here,
we employ representative DE simulations that are fairly coarse and do not
employ calibrated grain properties. Hence, the total computational effort is
much lower than purely computational paradigms (e.g. Coetzee 2014).

Step 2: Select an appropriate continuum constitutive description of the flowing grains.
We will model the granular material as a pressure-dependent Bingham fluid
(Sharma 2017, § 2.10.1), which is very similar to the µ(I)-rheology proposed
by Jop, Forterre & Pouliquen (2006). A Bingham fluid (Oldroyd 1947;
Prager 1961, p. 136) has the property that it remains rigid until the stresses
violate a yield criterion, after which it flows. The yield criterion may or
may not be pressure-dependent, and we employ a pressure-dependent yield
criterion to match with observed behaviour in granular materials. We employ
a simple rheology in order to minimize the number of fitted parameters.

Step 3: Combine the strain field of step 1 with the constitutive description of step
2 and linear momentum balance to obtain the stress field in the granular
material being ploughed. From this the forces acting on the plough may be
estimated.

Implicit in this approach is the assumption that deformations during ploughing are
greatly constrained by the system’s geometry, to the extent that the strain rate field
does not vary significantly for media containing grains with different properties, e.g.
size, shape, texture, density, inelasticity. Thus, the strain rate field may be estimated
fairly accurately without matching the actual properties of the grains in the material
being ploughed. We will test the validity of this assumption by performing DE
simulations with several different choices of grain parameters: friction coefficients,
grain sizes and polydispersities. At the same time, we emphasize that our ultimate
aim is to predict the forces on the plough and not the strain field. Thus, variations in
the strain rates that appear significant from a kinematic viewpoint may, in fact, not
be that consequential to the kinetics.

Our approach above is somewhat similar to the strain path method developed by
Baligh (1985) for geotechnical problems, specifically deep penetration problems.
Similar kinematic-based analyses that utilize hydrodynamic models have been
developed for modelling high-velocity impacts into metals (see, e.g. Birkhoff et al.
1948; Alekseevskii 1966; Tate 1967, 1969, 1978, 1986a,b; Yarin, Rubin & Roisman
1995; Rubin 2012; Sharma 2019). Baligh (1985) guessed or estimated the strain
field from penetration experiments in saturated clays. In contrast, the strain field
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for ploughed grains has not been reported. In our approach, we obtain kinematic
information from representative, but coarse and uncalibrated, DE simulations. We
therefore identify our approach as an ESPM. The advantage is that, with DE
simulations, we are able to visualize the kinematics of granular flows in complex
and/or three-dimensional geometries that may be inaccessible to experiments.
Furthermore, ESPM may be utilized in dynamic processes where inertia plays a
role. These features will allow application of ESPM to many more processes.

Finally, we list the main differences between RFT (Gravish et al. 2014) and ESPM:

(i) RFT estimates forces on intruders in granular flows, while ESPM may also be
employed for flows across infinite surfaces.

(ii) RFT does not describe the flow and stress fields in the granular media, while
ESPM can estimate them.

(iii) ESPM finds the flow kinematics from coarse DE simulations without a great
need for matching grain parameters in the DE simulations (cf. § 4.3). Thus,
one DE simulation provides all kinematic information necessary for flows of
different types of grains, but the same system geometry. The constitutive law
accounts for the difference in grain types. In contrast, RFT requires multiple
experiments/simulations to map out forces at all orientations and velocities of an
intruder element, which will have to be repeated when the grain type is changed.
Li, Zhang & Goldman (2013) suggest that information for different orientations
and grain types could be obtained by scaling/fitting laws for flat-faced planar
elements. However, the accuracy and efficacy of these fits have not yet been
documented comprehensively.

(iv) In ESPM, the effort required to simulate flows over complex geometries (e.g.
curved ploughs) is comparable to that of simpler shapes like flat-faced ploughs.
In contrast, RFT may entail a larger number of experiments/simulations. It is also
possible that planar elements may not work for more complicated shapes. To that
extent, ESPM may be easier to implement for complex geometries.

(v) Finally, it is unclear how RFT will work in transient problems. In contrast, ESPM
can be extended to transient problems by utilizing transient DE simulations.

We will now apply ESPM to find the forces required during ploughing of a granular
bed in two dimensions. We will begin by describing our DE simulations that are
required in step 1 above.

3. Simulation methodology
3.1. Geometry

Figure 1 shows a schematic of a typical two-dimensional ploughing operation with
a flat, rigid, inclined plough. To set up our DE simulations, first a bed of grains
is prepared by dropping grains in a rectangular container freely under gravity.
The container has a length of 200 non-dimensional units. Table 1 lists relevant
non-dimensional parameters. To prevent lattice formation, equal amounts of two
differently sized grains with diameters in the ratio of 1:0.7 were taken. This ensures
a spatially random distribution of grains. Bhateja, Sharma & Singh (2016, 2017)
provides details of our DE simulations. The plough is also made up of disc-shaped
grains with half the diameter of the larger grains; see inset in figure 3. This method
of modelling the plough allows us to readily model any shape of plough.

Once the bed is prepared, the plough moves from the left to the right at a constant
velocity. We note from figure 1 that the rectangular container has a wall at its right
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FIGURE 2. The continuum velocity field associated with the granular material, calculated
as per § 4.1, is plotted at points along the line y = 9. The velocity field was computed
at five time instants during the time in which the plough’s tip moves from x = 50 to
130, which corresponds to a distance of 150 to 70 non-dimensional units away from the
right-hand boundary. The mean of these five samples (black curve) and the spread about
the mean (grey region) are shown. (a) Velocity Vx along x. (b) Velocity Vy along y. The
plough’s non-dimensional speed vc= 10, the inter-grain friction µ= 0.3 and grain diameter
d= 0.67.

Plough

Granular bed

Plough

FIGURE 3. Snapshot from a DE simulation. The inset shows details of how the plough
is modelled. We modelled the plough by arranging plough-grains in a straight line close
to each other. The size of these grains compared to that of flowing grains defines the
smoothness of the plough’s surface. Rearranging the grains to follow a defined trajectory
would allow us to readily model any shape of plough.

end. This is required to define the computational domain. This wall does not affect
the flow until it is less than 70 non-dimensional units away from the plough’s tip. As
shown in figure 2, the flow of grains is steady when the plough travels between 50
and 130 non-dimensional units from the left-hand side wall (see caption). Figure 3
shows a snapshot from the DE simulation of the flow at steady state.

Finally, we note that in simulations it is possible to both allow or restrict rotation
of the grains. We compare outcomes from the two in § 4.3.1 and show that both
choices provide essentially the same strain rate fields. Subsequently, we only utilize
simulations wherein grain rotations are restricted.
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Dimensionless parameter Scaling factor Scaled value

Length of granular bed, l l 200
Depth of cut, H l 10
Grain diameters, d1 and d2 l 0.67 and 0.47
Grain friction coefficient, µ – 0–1
Ploughing velocity, vc

√
gl 0.1–20

Angular velocity, ωc l/
√

gl –
Inclination angle, α – 50◦

Spring constant, kn and kt mg/l 106

Mass of larger grain, m m 0.45
Restitution coefficient, en – 0.5
Time step, 1t

√
l/g 10−4

Acceleration, a g –
Force, f mg –

TABLE 1. Dimensionless parameters employed in simulations.

4. Kinematics
All computations are done in a coordinate system attached to the plough’s tip, as

shown in figure 1. Unit vectors î and ĵ point along x and y directions, respectively.

4.1. Continuum velocity field
Our ESPM requires the continuum velocity field V to obtain strain rates. From DE
simulations we obtain position data for each grain at every time step. Velocities of
grains are calculated by noting displacements at short time intervals and dividing
them by the time interval. The time interval is chosen small enough so as to restrict
displacement to less than one grain diameter. The position of a grain is taken to be
the mean of the positions at the beginning and at the end of the time interval. Thus,
if rn

p and rn+1
p are the positions of the pth grain at times tn and tn+1, respectively, then

we define the grain velocity

U(rn+1/2, tn+1/2)=
rn+1

p − rn
p

tn+1 − tn
, where {rn+1/2, tn+1/2} =

{
rn

p + rn+1
p

2
,

tn
+ tn+1

2

}
. (4.1)

Thus, the velocity of each grain is obtained as a function of position at different time
steps. The flowing grains are now thought to constitute a continuum. We next extract
a continuum velocity field from U(rn+1/2, tn+1/2).

A fixed square grid with a grid size of 0.5 non-dimensional units is constructed
covering the region of interest; see figure 4. The continuum’s velocity field V(x, y, t)
at any time t is obtained at a point (x, y) of this grid by averaging the velocities U of
the grains whose centres lie within the square grid, as demonstrated in figure 4. Once
the velocity field is known, the acceleration may be calculated through

a=
∂V
∂t
+∇V ·V. (4.2)

The continuum velocity field V thus obtained at different time instants is noisy
due to inherent fluctuations of the flowing grains. In a steady flow, we average the
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Plough
y
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x

FIGURE 4. Schematic of the square grid employed to post-process data obtained from DE
simulations. The inset shows a square (dashed lines) of size 0.5× 0.5 constructed around
the grid point (x, y). The velocities of all shaded grains, whose centres lie within the
square, are averaged, and the resultant velocity is assigned to the grid point (x, y). Grains
lying in hatched region are not relevant to our computations and are, therefore, ignored.
Figure is not to scale.
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FIGURE 5. (Colour online) Continuum velocity field associated with the granular material
for a plough moving with non-dimensional speed vc = 10. (a) Horizontal velocity
component Vx. (b) Vertical velocity component Vy. We do not report information in the
hatched area.

velocity field data over time to reduce randomness. In a developing flow, the transient
time range is divided into finite time windows, over which time averaging is then
performed. We have seen that the size of the time window should, at least, be equal
to the time it takes the plough to cover a distance of 15 grain diameters in order to
remove the randomness in the velocities. An example of a computed velocity field is
shown in figure 5. The velocity field that we compute resembles that found by Murthy
et al. (2013, figure 3) in their preliminary experiments on a vertical plough.

Henceforth, we will work with the continuum velocity field V rather than with the
velocity of individual grains.

4.2. Strains

In a continuum description, let V = Vx î+ Vy ĵ be the velocity of a material point at a
point X = x î+ y ĵ in the reference frame of the plough. The velocity gradient tensor
is given by

L=
∂V
∂X
. (4.3)
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FIGURE 6. (Colour online) Different components of the strain rate tensor D: (a) normal
strain rate Dxx; (b) normal strain rate Dyy; (c) shear strain rate Dxy. The plough’s non-
dimensional speed vc = 10. We do not report information in the hatched area.

For numerically differentiating the velocity field, as in (4.3), the velocity data are
further smoothened by using cubic smoothing splines. The smooth.spline function of
the ‘stats’ package in the software R (R Core Team 2013) is employed for this task.
The smoothening of the spline fitting is controlled by the parameter spar, with spar=0
corresponding to an interpolating spline with no smoothening, and spar= 1 implying
a linear least squares fit. After some iterations, we found that spar = 0.6 leads to a
good fit and gets rid of unwanted fluctuations in the data. Spatial derivatives are then
computed numerically. In this context, we note that we have ensured that the grid size
that we employ provides an accurate estimate of the strain rates, and this is discussed
in appendix A.

The symmetric part of the velocity gradient tensor provides the stretching rate
tensor:

D = 1
2(L+ LT). (4.4)

Plots for different components of D for one instance of ploughing are shown in
figure 6. We observe high strain rates near the tip of the plough. This is also evident
from the velocity plots in figure 5, where rapid changes in the velocity field are
found near the plough’s tip.

4.3. Variability with grain properties
The ESPM works best when the system is kinematically controlled, so that
grain/system parameters (e.g. inter-grain friction, grain size, ploughing speed) do
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not affect the flow significantly. We will gauge the extent to which these parameters
affect the strain rate tensor D by calculating the total average relative error

erel( f ; ri)=

{∫ l
x=0 ‖f (x)− f (x, ri)‖

2 dx∫ l
x=0 ‖f (x)‖

2 dx

}1/2

, (4.5)

where ri is ith value of a parameter r, with i= 1 . . . n, and f is a component of D,
and

f (x)=
∑n

i=1 f (x, ri)

n
(4.6)

is the average of f over all ri at a given location x. We now test to what extent this
assumption holds in the context of ploughing.

4.3.1. Grain shape
Grain shape is important in DE simulations because circular grains undergo

excessive rotation. Various attempts have been made to include shape effects in
DE simulations. For example, Pawar (2013) included rolling resistance between
contacting grains, Coetzee & Els (2009) utilized compound grains and Obermayr
et al. (2011) employed non-rotating grains. We performed simulations using both
rotating and non-rotating grains, and found that restricting grain rotations did not
have any significant effect on the strain rates in most of the region of interest; see
figure 7. However, as shown in figure 7(c), near the plough’s surface the relative
difference in shear strains became somewhat prominent. This is expected, because
non-rotating grains undergo significant slipping at the surface of the plough, whereas
rotating grains accommodate shear easily by rotating. However, we see from figure 8,
that grains undergo rotations only near the plough and, elsewhere, grain rotations are
negligible.

Subsequently, we will perform DE simulations employing non-rotating grains. There
are three reasons for this choice. First, we will in § 5 estimate stresses from strain
fields through a simple constitutive law which does not include the effects of grain
rotation. Thus, a consistent formulation requires that we ignore grain rotation in
our simulations. Constitutive laws for granular materials that include grain rotation
are complex and, perhaps, unwarranted at present. Second, the excess rotation at
the plough’s surface in figure 8 depends on how a flat-faced plough is modelled in
DE simulations. We approximate a flat-faced plough by an array of grains that are
bonded together and have half the diameter of the larger grains in the bulk; see inset
of figure 3. Reducing the diameter of these grains lowers the extent of grain rotation
near the plough, thereby bringing DE simulations with non-rotating grains closer
to those wherein the grains are free to rotate. Third, Obermayr et al. (2011) have
shown that realistic forces on flat-faced ploughs may be obtained from calibrated
DE simulations in which grain rotation is prevented. We too will show in § 6 that
proceeding with non-rotating grains gives us a good match with experiments.

Finally, a general remark. Figure 7 shows that small, negative shear strain rates are
seen near the plough. This runs counter to our expectations of a large, positive shear
rate when the tool angle α is not shallow. This anomaly is explained by realizing
that the x–y coordinate system, in which the components of the strain rate tensor are
evaluated and displayed in figure 7, is not aligned with the normal (n) and tangent
(t) directions of the plough. When the strain rate components are expressed in the n–t
system, we do indeed find a large and positive shear strain rate next to the plough’s
surface (see figure 9).
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FIGURE 7. Components of the strain rate tensor at points along the line y = 9 when
rotating grains (solid lines) and non-rotating grains (dashed lines) are implemented. The
plough’s tip is at x= 0. (a) Normal strain rate Dxx. (b) Normal strain rate Dyy. (c) Shear
strain rate Dxy. The plough’s non-dimensional speed vc=10, the inter-grain friction µ=0.5
and grain diameter d= 0.67.
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4.3.2. Inter-grain friction
Internal friction is the most important (bulk) constitutive property for a cohesionless

granular material. Simulations were carried out for values of inter-grain friction µ

ranging from 0.1 to 1. The bulk internal friction angle is expected to grow with
increasing µ. Figure 10 shows the components of the stretching rate tensor D along
the horizontal line y = 9 for different values of µ. The variation in normal strain
rates is observed to be within 20 % of their mean value, while shear strain rates are
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FIGURE 9. (a) Schematic of continuum elements next to the plough’s surface in x–y and
n–t coordinate systems. (b) Mohr’s circle transformation to find strain rates in the n–t
system. The angle β = 90◦ − α, where α = 50◦ is the tool angle in our simulations, and
Dn and Dt represent normal and shear strain rates, respectively. In our sign convention, a
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& Dill 1960).
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components of the strain rate tensor D at points along the line y= 9 for several values of
inter-grain friction µ between 0.1 and 1. The plough’s tip is at x= 0. (a) Normal strain
rate Dxx. (b) Normal strain rate Dyy. (c) Shear strain rate Dxy. (d) Average relative error
in components of the strain rate. The plough’s non-dimensional speed vc = 10.

within 30 %, except for when µ= 1. We proceed by assuming that strain rates may
be considered independent of inter-grain friction.
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FIGURE 11. The mean value (black line) and spread about the mean (grey region) of the
components of the strain rate tensor D at points along the line y = 9 for several grain
diameters d between 0.25 and 0.67. The strain rates for d= 1 are shown separately. The
number of grains correspondingly reduced from 64 000 to 4000. (a) Normal strain rate
Dxx. (b) Normal strain rate Dyy. (c) Shear strain rate Dxy. (d) Average relative error in
component of strain rate. The plough’s non-dimensional speed vc = 10.

4.3.3. Grain size
Simulations were performed for large grain diameters d of 1, 0.67, 0.5 and 0.25.

The ratio of large to small grain diameter was maintained at 1:0.7. As figure 11 shows,
there is a drastic change in strain rates when grain size d is decreased from 1 to 0.67.
However, further decrease in grain size d causes the strain rates to saturate. Therefore,
d is taken to be 0.67 or less in our simulations.

4.3.4. Polydispersity
Simulations were carried out for various mixing ratios of differently sized grains.

Again, different polydispersities did not have any significant effect on strain rates.
Monodisperse granular beds, however, produced different results because of regular
lattice formation. Thus, polydispersity of 10 % is maintained in our simulations, as it
was enough to avoid lattice formation.

4.3.5. Contact stiffness
Strain rates saturate for values of non-dimensional normal contact stiffness kn

greater than 106. Moreover, in the case of frictional particles, Tripathi & Khakhar
(2010) reported that the effect of contact stiffness on granular flow is small once
kn > 2× 105. Thus, kn is taken to be 106 in DE simulations. Most naturally occurring
grains have values of stiffness much greater than 106, so our approach is consistent.
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velocities vc between 0.1 and 10. (a) Normal strain rate Dxx. (b) Normal strain rate Dyy.
(c) Shear strain rate Dxy. (d) Average relative error in component of strain rate. The inter-
grain friction µ= 0.5 and grain diameter d= 0.67.

4.3.6. Ploughing speed
Strain rates do change with ploughing speed. This is also in agreement with

Percier et al. (2011). Strain rates for different ploughing speeds are plotted in
figure 12. At smaller velocities, deformations get time to propagate to larger
distances, whereas at larger velocities deformations are unable to reach that far.
The non-dimensional velocities in figure 12 vary from 0.1 to 20 which corresponds
to the range 0.8–16 m s−1 when inter-grain friction µ = 0.5 and grain diameter
d = 0.67. Therefore, incorporating the correct ploughing speed in the simulations is
necessary for accurate prediction of strain rates.

5. Continuum model
5.1. Rheology

We now develop a continuum description for the flowing granular material. This
will help find stresses in the bulk when combined with strain rates found from DE
simulations.

The transition during ploughing from initial solid-like granular bed to a flowing
material requires an appropriate constitutive model. We model the granular bed as a
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FIGURE 13. (Colour online) Time-averaged dilatation 1V . The plough’s non-dimensional
speed vc = 10. We do not report information in the hatched area.

pressure-dependent Bingham fluid in which both yield stress and friction during flow
depend on the local pressure. The Bingham fluid remains rigid until the stress state
violates a yield condition and begins to flow post-yield. We assume for simplicity that
the flow post-yield preserves volume. To verify this assumption, we find the dilatation
as the trace of the strain rate field estimated from our DE simulations. The result is
shown in figure 13 and we observe that, to a great extent, the volume in the bulk does
remain preserved. The maximum dilatation is found at the tip of the plough. However,
we do not expect accurate estimation of dilatation to have a significant bearing upon
the forces exerted on the plough, and this expectation has been endorsed by Coetzee
(2014) through detailed discrete and continuum simulations.

Sharma (2017, § 2.10.1) shows that the post-yield stress in the granular bed when
modelled as above is

σ =−p1+ kp
D

|D|
, (5.1)

where the pressure
p=− 1

3 tr σ , (5.2)

the parameter

k=
2
√

6 sin ϕ
3− sin ϕ

(5.3)

in terms of the soil’s internal friction angle ϕ and, in indical notation, |D|2 = DijDij.
Thus, knowing the strain rate D and pressure p will allow us to compute the stress σ .
We estimate the pressure p in the next section.

The constitutive law (5.1) has been employed to model flowing grains in the past
(e.g. Schaeffer 1987; Sharma 2017). The law (5.1) is very similar to the rheology
proposed by Jop et al. (2006) with the key difference being that here k replaces the
friction coefficient µ(I) of Jop et al. (2006), which is a function of the inertial number
I. The parameter k depends on the granular material only through its macroscopic
friction angle ϕ that, in turn, is related to the properties of the constituent grain, but
not on the flow rate. The friction coefficient µ, on the other hand, is also affected by
the flow rate through the inertial number.
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We make the following regarding our choice of the constitutive law. Recent research
(Barker et al. 2015) has shown that the µ(I)-rheology is well-posed for intermediate
values of I, but not for all I. The same could be true for the material model (5.1). To
this end, we note the following:

(i) Because we do not integrate in time, the ill-posedness will not affect ESPM.
Mathematically ill-posed problems suffer from unbounded growth of short-
wavelength perturbations, which necessarily leads to grid-dependent numerical
results that do not converge as the spatial resolution is enhanced. Thus, the
ill-posedness of the constitutive law becomes crucial when numerically integrating
the temporal dynamics of a system. Schaeffer and co-workers (Pitman &
Schaeffer 1987; Schaeffer 1987; Schaeffer & Pitman 1988; Thomas & Schaeffer
1988; Schaeffer 1990; Metcalfe et al. 2002) studied the time evolution of two-
and three-dimensional, incompressible granular and plastic flows. They stated the
conditions under which the governing equations become unstable and ill-posed.
They considered the Tresca and von Mises yield criterion; it is unknown whether
the Drucker–Prager yield criterion that we employ displays the same behaviour.
However, in ESPM, the dynamics of the granular material is evolved temporally
through DE simulations, not by the numerical integration of the governing
continuum equations. The DE simulations provide the velocity data of the grains
at any given instant of time. At that given, fixed instant, the velocity data are
spatially smoothened to obtain the continuum velocity and strain fields in the
granular material. From these continuum fields the stresses everywhere in the
granular material, at that given time, are found by invoking an appropriate
constitutive law. Thus, the equations governing the dynamics of the granular
material in a continuum description are never numerically integrated. As a result,
the possible ill-posedness of the constitutive law (5.1) does not, in any way,
affect the final results.

(ii) More importantly, ESPM is agnostic to the choice of the constitutive law,
and we are free to utilize more specific and/or sophisticated ones, as per our
requirements. We prefer to go with the law (5.1) because it is simple, popular,
gives reasonable results and serves the purpose of demonstrating ESPM without
getting the discussion mired in the complexity of detailed rheological modelling
of granular flows.

In closing, it is important to emphasize that the material model is not tuned to a
specific application, which would not be the case if we were to calibrate the grain
parameters in our DE simulations.

5.2. Pressure
The linear momentum balances in the x and y directions are, respectively,

∂σxx

∂x
+
∂σxy

∂y
= ρax (5.4)

and
∂σxy

∂x
+
∂σyy

∂y
= ρ(ay + g), (5.5)
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where ax and ay are the x and y components of the acceleration field a obtained from
(4.2), g is the acceleration due to gravity and ρ is the bulk density. Substituting (5.1)
into the the above and eliminating ∂p/∂y, we obtain

∂p
∂x

{(
k

Dxx

|D|
− 1
)(

1− k
Dyy

|D|

)
+ k2

(
Dxy

|D|

)2
}
+ k2p

{
∂

∂y

(
Dyy

|D|

)
+
∂

∂x

(
Dxy

|D|

)}
Dxy

|D|

+ kp
{
∂

∂x

(
Dxx

|D|

)
+
∂

∂y

(
Dxy

|D|

)}(
1− k

Dyy

|D|

)
= ρax

(
1− k

Dyy

|D|

)
+ kρ

Dxy

|D|
(ay + g). (5.6)

The strain rates, acceleration and density are known from the continuum kinematic
fields obtained from DE simulations and the rheology assumed in § 5.1. Thus, the
above equation may now be integrated to find the pressure p. This we discuss next.

5.2.1. Integration scheme
The pressure p at a fixed depth y may be found by integrating (5.6) with respect

to x over the region that has yielded and is flowing. In a Bingham fluid, we need to
distinguish between unyielded and flowing regions. The post-yield rheology (5.1) and
the differential equation (5.6) for the pressure p are applicable only in the flowing
region.

We thus need to find the extent of the flowing region. Distinction between unyielded
and flowing regions may be made on the basis of strain rates, e.g. through |D|, which
is a measure of the extent of flow. In the unyielded region |D| should, theoretically,
be zero. In figure 14(a), |D| is plotted as a function of the distance from the plough
for different depths. We see that |D| far away from the plough stays nearly zero, but
increases sharply as we move towards the plough. In granular materials forces travel
through force chains (Liu et al. 1995), so that small fluctuations are always present,
which causes small non-zero values of |D| to be found even in far away regions where
the granular material, for all practical purposes, has still not yielded. We therefore
define a critical value |D|c and material with |D|> |D|c is said to be flowing, else it
has not yielded. We set |D|c = β|D|max, where |D|max is the maximum observed value
of |D| at a given ploughing speed. A plot with β = 0.05 showing the variation of |D|
is shown in figure 14(b). The region to the left of the boundary |D| = |D|c is flowing
while the right-hand side region is, as yet, unyielded.

The effect of the choice of |D|c on horizontal force calculations (discussed below)
is shown in figure 15. We see that the horizontal force is relatively insensitive to
the choice of β between 5 % and 10 %. For β < 5 %, the unyielded region expands
and begins affecting the force calculation, as observed by the sudden increase in the
horizontal force in figure 15. With β more than 10 %, the force starts decreasing
rapidly, which indicates that we are allowing the region identified as unyielded to
encroach into a region where material is, in fact, flowing. Thus, we set β = 0.05.

To find the pressure p we integrate (5.6) numerically from the yield boundary
towards the plough along horizontal lines, e.g. the dashed line in figure 14(b),
employing the grid constructed in figure 5. Pressure at a point on this boundary
is taken to be due to the weight of the granular material above it, i.e. lithostatic.
Thus, pressure on the yield boundary is ρgh, where ρ is the bulk density of the
granular bed and h is the depth of the point from the free surface (see figure 14b).
The height h may be obtained from DE simulations (after appropriate rescaling) or

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

50
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.507


394 P. Sonar, S. Modi and I. Sharma

-10 0 10 20 30 40 50 60

0 10 20 30 40 50
Distance (x) from the plough’s tip

1.6(a)

(b)

1.2

0.8

0.4

0

|D|

y = 5
y = 7
y = 9
y = 11
y = 13

|D| = |D|c

|D| = |D|c

h

Rigid
Integration

line

Yield
material

Surcharge Initial height

|D
|/

|D
| m

ax

20

15

10

5

0

D
ep

th
 H

0.05

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

FIGURE 14. (Colour online) Distinguishing between yielded and unyielded regions.
(a) The magnitude of the strain rate tensor |D| with distance from tool tip at different
depths y. The line |D| = |D|c, with |D|c = 0.05|D|max is also shown. Here, we find
that |D|max = 1.7 at y = 4 (not shown). (b) The magnitude of strain rate |D| in the
entire material. The yielded boundary obtained by setting |D|c= 0.05|D|max is also shown.
The granular material which accumulates above the initial height of the granular bed is
defined as the surcharge. The plough’s non-dimensional speed vc = 10. We do not report
information in the hatched area.
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FIGURE 16. (Colour online) Comparison of pressure p in the bulk obtained (a) from DE
simulations with µ = 0.3 and (b) by following the procedure of § 5.2 with ϕ = 25◦. In
each case the plough’s non-dimensional speed vc = 10. We do not report information in
the hatched area.

from experiments. In (5.6), we know ax, ay and D at the grid points. The terms
involving derivatives of D in (5.6) are calculated using finite differences. Step size
for integration is therefore the same as the grid size in figure 5. Integrating (5.6)
allows us to estimate the pressure everywhere in the flowing region. We note that the
pressure in the rigid and surcharge regions is also taken to be lithostatic.

5.2.2. Comparison
Qualitative validation of the pressure field obtained in the previous section may

be obtained by comparing with pressure found directly from our uncalibrated DE
simulations. For a quantitative match, it is necessary to tune the grain properties
employed in our DE simulations to the bulk internal friction angle employed in our
continuum model, which has not been done. In the literature, available calibrated
grain data are for three-dimensional ploughing (e.g. Obermayr et al. 2011), while
ours is a two-dimensional system.

The average pressure on grain i may be found from a DE simulation by (e.g.
Bhateja et al. 2016)

pi =
1
Si

∑
j

f n
ij , (5.7)

where f n
ij is the normal force exerted upon grain i by grain j that abuts grain i and Si is

the surface area of the ith grain. This average pressure is calculated for every grain at
every time step and then averaged over space and time to, finally, provide the pressure
field. Figure 16(a) shows the pressure variation obtained directly from our uncalibrated
DE simulation. We find a good qualitative match with the continuum pressure field in
figure 16(b) that is obtained by solving (5.6). Both figures predict that a high-pressure
region develops near the tip of the plough.

In passing, we note that in figure 16(a) a high-pressure region is seen at the
bottom of the granular bed in DE simulations, but not in the continuum pressure
field estimated by ESPM. We believe that this is because the flow field is not well
resolved near the channel’s base.
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5.3. Forces
Once pressure is known everywhere, equation (5.1) allows us to find normal and shear
stress everywhere in the plastic region. The normal force FN on the tool’s surface (see
figure 1) may then be estimated by integrating the normal stress component σnn over
its surface:

FN =

∫
St

σnn dA, (5.8)

where St is the surface area of the plough in contact with the granular material. The
normal stress component is related to stress components in the x–y coordinate system
(see figure 1) by

σnn =
1
2(σxx + σyy)−

1
2(σxx − σyy) cos 2α + σxy sin 2α, (5.9)

which follows from the Mohr circle, and where α is the inclination of the plough.
Similarly, from the Mohr circle, the shear stress component

σnt =−
1
2(σxx − σyy) sin 2α + σxy cos 2α, (5.10)

which provides the total shear force on the tool as

FT =

∫
St

σntdA. (5.11)

Knowledge of FN and FT allows us to compute horizontal and vertical forces on the
plough in a straightforward manner.

6. Results and discussion
As a preliminary exercise to build confidence in ESPM in the context of a well-

studied granular system, we have utilized ESPM to investigate granular flow down
an inclined plane. We find an excellent match with theoretical predictions predicated
upon the µ(I)-rheology (Jop et al. 2006; Pouliquen & Forterre 2009), and this is
discussed in detail in appendix B. Here we proceed to compare the ploughing forces
predicted by ESPM against those measured in experiments and estimated by calibrated
DE simulations.

6.1. Calibrated DE simulations
Obermayr et al. (2011) carried out three-dimensional simulations and experiments
with steel balls and gravel, in which a vertical plate cuts through a granular bed.
The internal friction angles measured experimentally from triaxial compression tests
were ϕ = 21.3◦ for steel balls and ϕ = 30◦ for gravel. The parameters of their DE
simulations were calibrated by matching them with triaxial tests. Consequently, the
microscopic inter-grain friction to be utilized in DE simulations was determined to
be µ = 0.07 for steel balls and µ = 0.3 for gravel. Obermayr et al. restricted grain
rotations in their DE simulations.

In this section, we will compare the predictions for ploughing forces obtained from
ESPM with those of calibrated DE simulations. To this end, we take the calibrated
data from Obermayr et al. (2011) and perform two separate sets of DE simulations
of two-dimensional ploughing: one with µ= 0.07 to model steel balls and the other
with µ = 0.3 for gravel. Corresponding to these two DE simulations, we set the
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FIGURE 17. Comparison of ploughing forces computed from ESPM and DE simulations.
Here, Fx and Fy represent the horizontal and the vertical forces on the plough, respectively.
(a) Steel balls. ESPM: ϕ = 21.3◦; DE simulations: µ= 0.07. (b) Gravel. ESPM: ϕ = 30◦;
DE simulations: µ= 0.3.

bulk internal friction angles in our ESPM calculations as, respectively, ϕ = 21.3◦ and
ϕ = 30◦. Simulations are now performed for a plough with angle α = 50◦ over a
range of ploughing speeds utilizing the preceding two values of ϕ; this is supposed
to imitate ploughing of steel and gravel, respectively. Because we are employing
calibrated data, it may be expected that forces computed by our DE simulations
should match ESPM predictions. However, we note a major difference between our
DE simulations and those of Obermayr et al.: the latter were three-dimensional
simulations with spherical grains, while we restrict ourselves to two dimensions with
disc-shaped grains. Thus, the calibrated microscopic inter-grain friction obtained by
Obermayr et al. may not be applicable to our two-dimensional system.

In figure 17, horizontal and vertical forces computed directly from our DE
simulations (with calibrated data from Obermayr et al.) are compared with forces
obtained from ESPM. The ESPM curves show good qualitative match with simulations,
but some quantitative deviations are observed, e.g. gravel in figure 17(b). We
believe that the quantitative mismatch is due to our using calibrated data from
Obermayr et al. (2011), obtained originally for three-dimensional simulations, in
our two-dimensional DE simulations. Furthermore, we assumed a simple rheological
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FIGURE 18. Variation of ψ defined in (6.1) with ploughing velocity for simulations with
steel (µ= 0.07) and gravel (µ= 0.3).

model in our ESPM calculations. We expect that employing grain data correctly
calibrated for a two-dimensional system, along with a more detailed rheology will
provide a closer match.

We now report an interesting observation. Predictions from ESPM are greatly
improved if, instead of using the experimentally measured internal friction angle in
ESPM computations, we set the friction angle ϕ =ψ in (5.3), where

tanψ =
FN

FT
(6.1)

is the plough-grain friction angle found from the normal (FN) and tangential (FT)
forces computed from our two-dimensional DE simulations, which employed the
calibrated data of Obermayr et al. (2011). We first note from figure 18 that ψ varies
with ploughing speed for both steel and gravel, and we incorporate this variation
into ESPM. When this is done, the match with forces predicted from DE simulations
improves significantly in the low-velocity regime (see figure 19). However, the
disadvantage of this modification is that we need calibrated DE parameters to obtain
ψ , which undermines the fundamental advantage of ESPM in that it avoids calibration
of DE parameters.

6.1.1. Variation with ploughing speed
There are two ways in which kinetic energy input to the plough is lost: (i) frictional

dissipation in the soil and (ii) momentum transfer to soil (inertial effects). In figure 17,
a marked change in the curves may be observed around vc≈ 5; forces increase sharply
from this point onwards. This change may be explained as follows. The frictional
force is proportional to the pressure in the bulk, which may be estimated to be ρgh,
and the inertial force is proportional to ρv2

c/2. Inertial effects are negligible at low
velocities. They become relevant only when they become comparable to frictional
forces, i.e. when ρgh/0.5ρv2

c ≈ 1, which gives vc ≈
√

2gh ≈ 5.5, where h in the
DE simulations was about 15 particle diameters. Thus, the change in the curves in
figure 17 at vc ≈ 5 may be understood in terms of the increasing contribution of
inertial effects in comparison to frictional resistance. Both DE simulations and ESPM
successfully capture this feature.
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FIGURE 19. Comparison of ploughing forces computed from ESPM with ϕ =ψ in (5.3)
with ψ found from (6.1), and DE simulations. Here, Fx and Fy represent the horizontal
and the vertical forces on the plough, respectively. (a) Steel balls. DE simulations:
µ= 0.07. (b) Gravel. DE simulations: µ= 0.3.

6.2. Experiments
6.2.1. Corn grains

Coetzee & Els (2009) performed experiments and two-dimensional DE simulations
for a vertical plough cutting through a bed of corn grains. In their experiments: the
vertical plough had an initial depth of 200 mm and width of 200 mm; the measured
internal friction angle was 23◦; the calibrated microscopic grain properties yielded a
grain density of 855 kg m−3, inter-grain friction coefficient µp of 0.12 and contact
spring stiffness kn of 450 kN m−1. Coetzee & Els (2009) used calibrated data in their
DE simulations.

To apply ESPM we performed DE simulations using uncalibrated data shown in
table 1, with grain friction coefficient µ= 0.12. Another major difference between the
DE simulations of Coetzee and Els and ours is that the former used clumped grains
to imitate the shape of the corn grains, whereas we employ non-rotating, disc-shaped
grains. The differences in the two DE simulations are reflected in figure 20, where we
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FIGURE 20. Comparing estimates for forces on the plough employed in the experiments
of Coetzee & Els (2009). Also shown are results from our two-dimensional simulations
and those of Coetzee & Els (2009), as well as predictions of ESPM. (a) Horizontal force.
(b) Vertical force. Because the flow is developing, the transient time range is divided into
finite time windows over which time averaging is done.

see that the two simulations predict very different ploughing forces. We discuss this
further below.

In figure 20, we show the ploughing force measured by Coetzee & Els (2009) in
their experiments and computed by their calibrated two-dimensional DE simulations,
the predictions of our uncalibrated two-dimensional DE simulations and, finally, the
results of two-dimensional ESPM obtained after setting ϕ = 23◦ to match the bulk
internal friction angle measured by Coetzee & Els (2009). We see that ploughing
forces predicted from the calibrated two-dimensional DE simulation and our ESPM
are less than what is experimentally measured. This is because frictional forces exerted
by the side walls in the experiments are not included in both two-dimensional DE
simulations and ESPM. However, forces from the ESPM calculation come close to
those predicted by calibrated DE simulations. This match is to be expected because
the DE simulations of Coetzee & Els (2009) utilized grain data calibrated to match
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FIGURE 21. Experimental set-up to measure the ploughing force when a rigid, flat,
inclined plough moves through a bed of steel balls.

the bulk internal friction angle ϕ of corn grains, and our ESPM, which employs the
rheology of § 5.1, relies only on this choice of ϕ.

Figure 20 also plots predictions of our uncalibrated two-dimensional DE simulations
that provided the kinematic data for our ESPM calculations. Forces predicted directly
from our DE simulations, which employed disc-shaped grains, were less than those
of all other predictions shown in figure 20, including the calibrated DE simulations
of Coetzee & Els (2009). This is because our DE simulations employ circular
discs whose frictional properties were not tuned to capture the frictional interaction
between corn grains. This underlines the importance of calibrating DE simulations to
the actual macro-properties of the soil whenever force data are sought directly from
DE simulations.

We saw in § 4.3 that ploughing is strain controlled to a great extent. Strain rates
during ploughing are, therefore, largely insensitive to grain properties utilized in DE
simulations. Thus, clumped grains employed by Coetzee & Els (2009) in their DE
simulations flowed in a manner very similar to our disc-shaped grains. Indeed, the
maximum vertical displacement seen in our uncalibrated DE simulations was 142 mm,
which is very close to the 145 mm peak displacement found by Coetzee and Els in
their calibrated simulations. This explains the agreement of our ESPM calculations
with the DE simulations of Coetzee and Els, even though the ESPM calculations
utilized the strain field from our uncalibrated DE simulations. The fact that we
obtained a good prediction from ESPM (i) without the extensive effort required to
tune DE simulations and (ii) while using simple disc-shaped grains rather than the
complex clumped grains of Coetzee and Els underscores the main advantages of
ESPM.

6.2.2. Steel balls
Finally, we compare ESPM results with our experiments in which a rigid, flat,

inclined plough made of acrylic ploughs through a bed of steel balls. The system
is shown in figure 21. The length and width of the channel are 1 m and 40 mm,
respectively, and the depth of the plough’s cut is 70 mm. The bed is a mixture of
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steel balls having diameters of either 4 or 3 mm. The inclination angle of the plough
is kept at 50◦. The plough is mounted with a load cell consisting of strain gauges
that are used for measuring horizontal and vertical forces. The lead screw with pitch
length of 2 mm is driven by a stepper motor. The plough is attached to the lead
screw that travels along two guideways on either side. The plough moves at speeds
between 1 and 18 mm s−1. Due to the limitation of the pitch length of the lead screw,
we were unable to perform experiments over the entire range of speeds covered by
simulations and ESPM. Only a small amount of surcharge accumulates (lower inset
of figure 21) as the steel balls spill over the channel’s sidewalls. The channel is
made of acrylic so that the friction of the walls with the steel balls may be ignored.
Finally, we estimated the internal friction angle of an aggregate of steel balls to be
21◦ by measuring the angle of repose of a heap of steel balls.

Kinematic data were obtained from uncalibrated DE simulations that employed
parameters from table 1 and then following the process of §§ 4.1 and 4.2. In ESPM
calculations the effective bulk density is taken to be 4830 kg m−3 to match the
density of steel times the volume fraction of 0.615 observed in DE simulations.

Figure 22 shows a comparison of the experiments with uncalibrated DE simulations
and ESPM results. As expected, force predictions from DE simulations do not match
experiments well. At the same time, the horizontal force measured from experiments is
in good agreement with that predicted by ESPM. The vertical force found from ESPM,
however, is higher than that measured in experiments. The absence of surcharge (lower
inset of figure 21) and the presence of sidewall friction in our experiments are possible
sources of this difference, as we show next.

The vertical force on the plough is affected only by the surcharge. However, the
horizontal force is impacted by both the surcharge and the sidewall friction. Consider
first the effect of the surcharge. From the universal earth-moving equation (McKyes
1985), the contribution of the surcharge to force normal to the plough is estimated
using

Fn
sur = qsHNsw, (6.2)

where qs is the lithostatic surcharge pressure, H is the ploughing depth, Ns is the
surcharge factor that depends on the plough’s geometry and friction angle of granular
material and w is the plough’s width. From our DE simulations, the average height
of surcharge above the plough is approximately H/2 and, hence, surcharge pressure
qs = ρgH/2. The surcharge factor Ns for a plough with inclination angle α = 50◦
and a granular material with friction angle ϕ ≈ 21◦ is 1.61 (McKyes 1985, App. 1,
p. 167). With this, Fn

sur is found to be 7.48 N for our experiments. At the same time,
the tangential force Ft

sur on the plough’s surface due to the excess normal force Fn
sur is

Ft
sur =µasFn

sur, (6.3)

where µas = 0.15 is the coefficient of dynamic friction between acrylic and dry
steel. The corrected experimental measurements for the vertical force on the plough,
obtained by adding the vertical components of Fn

sur and Ft
sur to the experimental values,

are also shown in figure 22(a). We now find a good match between experiment and
ESPM.

Correcting the experimentally measured horizontal force is more involved. The
horizontal force should be first augmented by the horizontal components of Fn

sur and
Ft

sur. At the same time, the contribution of the sidewall friction in experiments needs
to be subtracted from the value of the horizontal force measured in experiments. We
estimate the frictional force exerted by the sidewalls in our experiments by

Ft
sw =µasPswAsw, (6.4)
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FIGURE 22. Comparison of horizontal and vertical forces on the plough for the
experiments of figure 21. (a) Vertical force (Fy). (b) Horizontal force (Fx).

where Asw= lf H is the sidewall area over which the friction force acts and Psw is the
normal traction exerted by the grains on the sidewall. The traction Psw is estimated
by

Psw =K0FH/Acs, (6.5)

where the at-rest earth pressure coefficient K0 = (1 − sin ϕ) ≈ 0.64 (McKyes 1985),
Acs=Hw is the cross-sectional area of the channel and FH is the measured horizontal
force. The length lf over which the sidewall friction is mobilized is considered to
be of the order of plough’s width w= 0.04 m. This estimate is also consistent with
the experiments of Tanaka et al. (2000) and Asaf et al. (2007) which had plough
velocities in the same range as in our experiments. The corrected horizontal force is
plotted using dashed lines in figure 22(b), and is observed to be slightly higher than
the value originally measured. The good agreement between experiments and ESPM
nevertheless persists.

Finally, we note that in our ESPM computations we have ignored the contribution
of frictional interaction between the granular flow and the aft side of the plough. This
is because (i) we expect the normal force exerted by the grains on the aft side of the
plough to be small, given that the granular flow has a free surface just beyond the
plough, i.e. for x< 0, and (ii) the plough’s thickness is small.
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7. Conclusions

The main objective of the paper was to demonstrate that we can calculate forces
during ploughing of a granular bed by combining a continuum model of the granular
flow with kinematic information obtained from uncalibrated DE simulations. Discrete
element simulations can yield reliable force data only if they are first calibrated and
if the number of grains is large enough. Calibration requires significant effort and is
often system specific. Our method, which we label as the ESPM, obviates the need
to calibrate DE simulations and also required far fewer grains.

The ESPM is useful for granular flows that are strain controlled, i.e. the strain field
in the granular medium remains largely independent of grain properties such as shape,
size and surface roughness. To this end we probed through DE simulations the extent
to which ploughing is strain controlled and concluded that, for small enough grains,
ploughing is strain controlled to a fair approximation. This allowed us to compute the
strain field from coarse, uncalibrated, but representative DE simulations. The strain
field was then combined with a rheology for flowing granular material and linear
momentum balance to yield estimates for the ploughing forces. We selected a simple
constitutive description to minimize the number of fitting parameters.

Ploughing forces were computed for a range of plough velocities. We saw that
inertial effects played a negligible role at low velocities, but dominated at high
velocities. Results from ESPM compared well with studies of Coetzee & Els (2009)
and Obermayr et al. (2011). Although our DE simulations that fed into ESPM were
uncalibrated and employed circular grains, as opposed to the complex clumped grains
utilized by Coetzee & Els (2009) in their calibrated DE simulations, forces predicted
by ESPM showed a good match. Our own experiments were also in excellent
agreement with ESPM results.

The present work may be augmented in several ways. The study was limited
to two dimensions, but can be extended to three dimensions. Here, we utilized a
simple constitutive model for the flowing grains as a first step. More comprehensive
rheological models can lead to better results. Finally, only cohesionless grains are
considered here. To address ploughing in cohesive granular media cohesion will have
to be included in DE simulations that provide kinematic data to ESPM.
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Appendix A. Effect of grid size

Figure 23 shows the variation in the components of strain rates when the size of
the grid in figure 4 is modified. We observe that the change in the strain rates is
small when the grid size is decreased from 0.5 to 0.25 non-dimensional units. Thus,
we employ a grid size of 0.5 non-dimensional units to find the continuum velocity
field V(x, y, t) associated with the ploughed granular material.
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FIGURE 23. Components of the strain rate tensor at points along the line y = 9 with
different grid sizes. The tip of the plough is at x = 0. (a) Normal strain rate Dxx.
(b) Normal strain rate Dyy. (c) Shear strain rate Dxy. The plough’s non-dimensional speed
vc = 10, the inter-grain friction µ= 0.3 and grain diameter d= 0.67.

Appendix B. Granular flow down an inclined plane

Here we investigate the flow of grains down an inclined plane and compare the
predictions of ESPM with direct DE simulations and theoretical estimates obtained
from the µ(I)-rheology (MiDi 2004). The µ(I)-rheology assumes that shear stress
depends only on the local shear rate and is expressed in terms of friction coefficient
µ and volume fraction φ depending on a single dimensionless number – the inertial
number I. Jop et al. (2006) utilized this rheology to put forward a three-dimensional,
viscoplastic description of granular flow. Employing the µ(I)-rheology in the steady
uniform regime for granular flow down an inclined plane, Pouliquen & Forterre (2009)
found the normal stress P and shear stress τ to be, respectively,

P(z)= ρpφg cos θ(h− z) and τ(z)= ρpφg sin θ(h− z), (B 1)

where θ is the inclination angle of the plane, h is thickness of the flow in the z
direction and φ is the volume fraction, which was shown to be an unknown constant
through the flow’s depth. The velocity profile u(z) was found to be the Bagnold
profile:

u(z)= I(tan θ)
2
3

√
φg cos θ

d
{h3/2
− (h− z)3/2}, (B 2)

which requires a knowledge of the inertial number I.
To apply ESPM, we perform two-dimensional DE simulations considering a system

of polydispersed, steady granular flows with 2100 grains. The length l of the base and
the thickness h of the flow are, respectively, 20d and 100d, where d is the diameter
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FIGURE 24. (Colour online) Comparison of (a) velocity and (b) volume fraction profiles
obtained from our DE simulations and those of Silbert et al. (2001).

of the larger grain. The base is inclined at an angle θ = 22◦, and this corresponds to
flows that fall within the regime in which the constitutive law of § 5.1 is applicable.
Our DE simulations will provide kinematic information to be utilized in subsequent
ESPM calculations.

Our DE simulations parallel the L2 model of Silbert et al. (2001), with the
following differences: (i) we use a smoother base, (ii) tangential springs are absent
and (iii) the coefficient of restitution is lower (0.82 instead of 0.92). Figure 24(a)
shows the velocity profiles obtained from our DE simulations and those of Silbert
et al. (2001). We find a higher velocity near the base than that of Silbert et al.
(2001) because we use a smoother base, while the greater grain inelasticity in our
simulations is probably responsible for the reduction in velocity at the top of the flow.
Nevertheless, our velocity profile agrees well with Silbert et al. (2001), and matches
the Bagnold profile. We are unable to utilize the velocity profile (B 2) for comparison,
because this requires knowledge of the inertial number for two-dimensional inclined
plane flows, which is unavailable.

The volume fraction φ found from DE simulations is shown in figure 24(b), and
again a close match is observed between our results and those of Silbert et al. (2001).
Theoretically, Pouliquen & Forterre (2009) predict that the volume fraction is constant
through the bulk, although the volume fraction itself was not predicted, and is found
from experiments or simulations. This prediction matches simulations except near the
top and bottom of the flow. The discussion so far confirms the correctness of the
kinematics predicted by our DE simulations.

Now, we utilize ESPM to find the normal and shear stress, and compare with
theoretical predictions (Pouliquen & Forterre 2009) and direct DE simulations (Silbert
et al. 2001). Both we and Silbert et al. (2001) find the bulk volume fraction φ to
be approximately equal to 0.76. This estimate of the volume fraction will be utilized
in (B 1). Figure 25 compares the stresses obtained by employing ESPM (using the
deformation field from our DE simulations) with those found from the direct DE
simulations of Silbert et al. (2001), and from the µ(I)-rheology. We find a good
quantitative agreement between the direct DE simulations of Silbert et al. (2001) and
ESPM. The manner in which the base is modelled in DE simulations is perhaps the
reason behind the observed mismatch, especially in the shear stress in figure 25(b).
The µ(I)-rheology tends to under-predict both normal and shear stresses, but the
match is still reasonable.

The above analysis demonstrates the ability of ESPM to recover theoretical and
direct computational results in the context of a well-studied granular system.
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FIGURE 25. (Colour online) Comparison of stress fields. (a) Normal stress and (b) shear
stress. For µ(I)-rheology, we used φ = 0.76, obtained from simulations.
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