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Abstract

Given an infinite, compact, monothetic group G we study decompositions and structure of unbounded
derivations in a crossed product C∗-algebra C(G) o Z obtained from a translation on G by a generator of
a dense cyclic subgroup. We also study derivations in a Toeplitz extension of the crossed product and the
question whether unbounded derivations can be lifted from one algebra to the other.
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1. Introduction
Derivations naturally arise in studying differentiable manifolds, in representation
theory of Lie groups and in their noncommutative analogs. They also appear in
mathematical aspects of quantum mechanics, in particular in quantum statistical
physics. Additionally, derivations are important in analyzing amenability and other
structures of operator algebras. Good overviews are in [1] and also in [15].

In this paper we study classification and decompositions of unbounded derivations
in C∗-algebras associated to an infinite, compact, monothetic group G, which, by
definition, is a Hausdorff topological group with a dense cyclic subgroup. A group
translation on G by a generator of a cyclic subgroup is a minimal homeomorphism
and one algebra associated with G is the crossed product C∗-algebra B := C(G) o Z
determined by the translation. This algebra can be naturally represented in the `2-
Hilbert space of the full orbit. If we consider the analogous algebra on the forward
orbit only, we obtain a Toeplitz extension A of the algebra B. When the group
is totally disconnected those algebras are precisely Bunce–Deddens and Bunce–
Deddens–Toeplitz algebras, which were considered in [10].

The main objects studied in this paper are unbounded derivations d :A→ A, which
are defined on a subalgebra A of polynomials of the generators of A. Similarly,
we study derivations δ : B → B, where B is the image of A under the quotient map
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A→ A/K = B. The first of the main results of this paper is that any derivation in those
algebras can be uniquely decomposed into a sum of a certain special derivation and an
approximately inner derivation. The special derivations are not approximately inner,
and can be explicitly described. Analogous classification results were described in
[7, 9, 10]. While these papers share similar ideas and contain similar classification
results for derivations, the current paper’s different settings required numerous
modifications. Notable differences include new types of invariant derivations in
Lemma 3.9 that were not present in previous papers, and Section 4 on lifting of
derivations is substantially more complicated and is using new, different techniques
than before.

It turns out that any derivation d :A→ A preserves the ideal of compact operators
K and consequently defines a factor derivation [d] : B → B in B. It is an interesting
and nontrivial problem to describe properties of the map d 7→ [d]. For any C∗-algebra
it is easy to see that bounded derivations preserve closed ideals and so they define
derivations on quotients. It was proved in [13] that for bounded derivations and
separable C∗-algebras the above map is onto, that is derivations can be lifted from
quotients. In nonseparable cases this is not true in general. We prove here that lifting
unbounded derivations from B to A is always possible when G is totally disconnected,
answering positively a conjecture in [10]. However, we give a simple counterexample
of a special derivation in the algebra B for G = T1 that cannot be lifted to a derivation
in the algebra A. Instead, we conjecture that for any compact, infinite, monothetic
group approximately inner derivations in B can be lifted to approximately the inner
derivation in A.

The paper is organized as follows. In Section 2 we review monothetic groups
and discuss their properties. We also describe a crossed product C∗-algebra that is
associated to a monothetic group and that algebra Toeplitz extension, as well as discuss
a Toeplitz map from one algebra to another. In Section 3 we classify all unbounded
derivations on polynomial domains in the C∗-algebras from Section 2. Finally, in
Section 4 we consider lifting derivations from a crossed product C∗-algebra to its
Toeplitz extension. We prove that all derivations can be lifted for totally disconnected,
compact, infinite, monothetic groups and provide an example that shows that not all
derivations can be lifted in general.

2. Monothetic groups and associated C∗-algebras
2.1. Monothetic groups. A topological (Hausdorff) group is called monothetic if it
has a dense cyclic subgroup. Weil observed, Theorem 19 of [12], that if G is a locally
compact monothetic group, then G � Z or G is compact. In this paper we only consider
the case of compact G. It follows immediately that G is Abelian and separable. We first
describe the structure of such groups following [5]. The key tool is the character (dual)
group and Pontryagin duality, which translates properties of groups into properties of
their duals.

Let S 1 be the unit circle:

S 1 = {z ∈ C : |z| = 1},
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and let Ĝ denote the dual group G, the group of continuous homomorphisms from G to
S 1 equipped with compact-open topology. It is well known that if G is compact then
Ĝ is discrete.

We typically use additive notation for an abelian group, however, we use
multiplicative notation for the dual group. Given a monothetic group G, let x1 be a
generator of a dense cyclic subgroup, and we set xn = nx1 for n ∈ Z, so that x0 := 0 is
the neutral element of G. Then we can identify the dual group Ĝ of G with a discrete
subgroup of S 1 via the map given by

Ĝ 3 χ 7→ χ(x1) ∈ S 1.

Conversely, using Pontryagin duality, if H is a discrete subgroup of S 1, then H is the
dual group of a compact monothetic group, namely Ĥ, see [5].

To better understand the structure of monothetic groups we look at the torsion
subgroup of its dual group. Given a monothetic G, the torsion subgroup of Ĝtor of
Ĝ is given by

Ĝtor = {χ ∈ Ĝ : χn = 1 for some n ∈ N}.

There are two extreme cases: we say Ĝ is of pure torsion if Ĝ = Ĝtor. We also say
Ĝ is torsion free if Ĝtor = {0}. The following statements describe the basic properties
of monothetic groups. We provide short or outlined proofs with references. A good,
concise book on Pontryagin duality is [12].

First we look at the case of torsion free Ĝ.

Proposition 2.1. Let G be a compact monothetic group. G is connected if and only if
Ĝ is torsion free.

Proof. This is [12, Corollary 4 of Theorem 30], which only requires G to be compact
and Abelian. �

We have the following remarkable result proved in [5].

Theorem 2.2. Every connected compact separable Abelian topological group is
monothetic.

The n-dimensional torus, Tn = Rn/Zn is an example of a compact, connected,
separable, Abelian group and thus by Theorem 2.2 is monothetic. Consider an element

x1 = (θ1, . . . , θn)

of Tn. Then the cyclic subgroup generated by x1 is dense in Tn if and only if
{1, θ1, . . . , θn} are linearly independent over Z, see for example [6].

Next we consider the case when Ĝ is of pure torsion.

Proposition 2.3. Let G be a compact monothetic group. G is totally disconnected if
and only if Ĝ is of pure torsion.

Proof. This result follows from [12, Corollary 1 of Theorem 30], since an element of
the discrete group Ĝ is compact (that is the smallest closed subgroup containing it is
compact) if and only if it has finite order. �
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Before we state the next structural result we need to introduce odometers. Further
details on odometers can be found in [3]. The standard definition of an odometer (that
inspired the name) uses a sequence of positive integers b := (bm)m∈N such that bm ≥ 2
for all m, called a multibase. The odometer is then identified (as a set) with the direct
product:

G(b) :=
∏

m

Z/bmZ,

but addition is defined with the carry over rule. Equipped with the product topology
G(b) becomes a compact totally disconnected topological group. It is easy to see
that the cyclic subgroup generated by x1 = (1, 0, 0, 0, . . .) is dense and so G(b) is a
monothetic group.

An alternative representation of the odometer G(b) uses scales, and this is the
description that is used in the proof of Theorem 4.3. Let s = (sm)m∈N be a sequence
of positive integers such that sm divides sm+1 and sm < sm+1. There are natural
homomorphisms between the consecutive finite cyclic groups Z/sm+1Z → Z/smZ,
namely congruence modulo sm. Thus the inverse limit:

Gs = lim
←−
m∈N

Z/smZ

is well defined as the subset of the countable product
∏

m Z/smZ consisting of
sequences (y1, y2, y3, . . .) such that ym+1 ≡ ym mod sm. Addition in this representation
is coordinate-wise, modulo sm in each coordinate m. Gs becomes a topological group
when endowed with the product topology over the discrete topologies in Z/smZ.
Obviously, with our assumptions, this group is infinite because s is unbounded.

The relation between the two definitions of an odometer is as follows. Given a
multibase b = (bm)m∈N define a scale s = (sm)m∈N by s1 = b1, s2 = b1g2, s3 = b1b2b3
and so on. Equivalently,

s1 = b1, bn =
sn

sn−1
for n > 1.

Then the map

G(b) 3 (k1, k2, k3, . . .) 7→ (k1, k1 + k2b1, k1 + k2b1 + k3b1b2, . . . ) ∈ Gs

gives an isomorphism of the groups. In the scales’ representation of odometers, the
generator x1 of a cyclic subgroup is given by x1 = (1, 1, 1, 1, . . .).

With the above definitions it is not transparent when two odometers are isomorphic,
so we describe yet another way to define odometers that we used in [10]. A
supernatural number N is defined as the formal product:

N =
∏

p prime

pεp , εp ∈ {0, 1, . . . ,∞}.

If
∑
εp <∞ then N is said to be a finite supernatural number (a regular natural number),

otherwise it is said to be infinite. If

N′ =
∏

p prime

pε
′
p
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is another supernatural number, then their product is given by

NN′ =
∏

p prime

pεp+ε′p .

A supernatural number N is said to divide M if M = NN′ for some supernatural number
N′, or equivalently, if εp(N) ≤ εp(M) for every prime p.

Given a supernatural number N let JN be the set of finite divisors of N:

JN = { j : j|N, j <∞}.

Then (JN , ≤) is a directed set where j1 ≤ j2 if and only if j1| j2|N. Consider the
collection of cyclic groups {Z/ jZ} j∈JN and the family of group homomorphisms

πi j : Z/ jZ→ Z/iZ, j ≥ i
πi j(z) = z mod i

satisfying
πik = πi j ◦ π jk for all i ≤ j ≤ k.

Then the inverse limit of this system can be denoted as

Z/NZ := lim
←−
j∈JN

Z/ jZ =

{
(z j) ∈

∏
j∈JN

Z/ jZ : πi j(z j) = zi

}
.

In particular, if N is finite the above definition coincides with the usual meaning of the
symbol Z/NZ, while if N = p∞ for a prime p, then the above limit is equal to Zp, the
ring of p-adic integers, see for example [14].

Given a scale s = (sm)m∈N we define the corresponding supernatural number N to
be the ‘limit’ of sm:

N = lim
m→∞

sm, (2-1)

in the sense that each prime exponent εp(N) of N is defined to be the supremum of
the prime exponents εp(sm), m ∈ N. It follows that sm are divisors of N and for every
j ∈ JN there is a natural number m( j) such that j|sm( j). Consequently, a sequence
(z j) ∈ lim←−

j∈JN

Z/ jZ is completely determined by the subsequence (zsm ) ∈ lim←−
m∈N
Z/smZ,

which gives an isomorphism Z/NZ � Gs. It turns out that odometers are classified by
the supernatural number N, see [3]. As before,

x1 = (1, 1, 1, 1, . . .) ∈ Z/NZ

generates a dense cyclic subgroup.
In general, we have the following simple consequence of the Chinese reminder

theorem: if N =
∏

p prime
εp,0

pεp , then

Z/NZ �
∏

p prime
εp,0

Z/pεpZ.
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Since the space Z/NZ is a compact Abelian topological group, it has a unique
normalized Haar measure µ. Also, if N is an infinite supernatural number then Z/NZ
is a Cantor set [16].

We are now ready to state the next structural result about compact monothetic
groups.

Proposition 2.4. G is a compact, totally disconnected, monothetic group if and only if
it is an odometer. In particular, there exists an infinite supernatural number N such
that

G � Z/NZ �
∏

i

Z/pεi
i Z,

where N =
∏∞

i=1 pεi
i .

Proof. Let G be a compact totally disconnected monothetic group. In [5], between
Theorems II′ and III on pages 256–257, the authors show that G is isomorphic to a
direct product of groups Gpi where pi runs over all primes and where Gpi isomorphic to
the zero group, the cyclic group of order pεi

i for some εi or the group of p-adic integers,
the last case corresponds to εi =∞. �

In general, for arbitrary Ĝ we have the following structure for compact monothetic
groups.

Proposition 2.5. Let G be a compact monothetic group. If G0 ≤ G is the connected
component of the neutral element 0, then G0 is a connected separable compact Abelian
group and G/G0 is a totally disconnected monothetic group. Moreover, there are
natural isomorphisms:

̂(G/G0) � Ĝtor and Ĝ0 � Ĝ/Ĝtor.

Proof. This proposition is not formally stated but appears as a note in [5], see also
[12, Corollary 3 of Theorem 30]. The first part follows from the previous propositions.
Recall that the annihilator A(G0) of G0 is given by

A(G0) = {χ ∈ Ĝ : χ(g) = 1, for all g ∈ G0}.

By Pontryagin duality, Theorem 27 of [12],

A(G0) � ̂(G/G0).

Notice the right-hand side of the equation is Abelian, discrete and of pure torsion.
Thus given χ ∈ A(G0), it defines a character class

[χ] : G/G0 → S 1.

Therefore,
[χ] ∈ ̂(G/G0) = ̂(G/G0)tor,

and hence χ has finite order and thus A(G0) ≤ Ĝtor. Let χ ∈ Ĝtor, then

χ|G0 ∈ (Ĝ0)tor = {1}
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since G0 is connected and thus χ ∈ A(G0). Therefore, we have A(G0) = Ĝtor and hence

̂(G/G0) � Ĝtor.

The second isomorphism relation follows from Pontryagin duality:

Ĝ0 � Ĝ/A(G0)

and the proof is complete. �

2.2. Minimal systems. By a topological dynamical system (X, ϕ), we mean a
topological space X and a continuous map ϕ : X→ X, see [6]. A topological dynamical
system (X, ϕ) is called topologically transitive if there exists a point x ∈ X such that its
orbit {ϕn(x)}n∈Z is dense in X. (X, ϕ) is called minimal if every orbit is dense in X. We
say and write ϕ is minimal for brevity.

Other equivalent characterizations of minimal maps is as follows. A set A ⊆ X is
called ϕ-invariant if ϕ(A) ⊆ A. Then, ϕ is minimal if X does not contain any nonempty,
proper, closed ϕ-invariant subset. If in addition X is assumed to be Hausdorff and
compact, then a minimal map ϕ must be surjective. Moreover, if (X, ϕ) is topologically
transitive then there is no ϕ-invariant nonconstant continuous function on X.

Suppose that G is a compact monothetic group with x1 the generator of a dense
cyclic subgroup. Then we define the map ϕ : G→ G by the formula:

ϕ(x) = x + x1.

It follows that (G, ϕ) is a minimal system. Let us remark that for metrizable spaces
minimal, equicontinuous, dynamical systems coincide with translations by a generator
of a dense cyclic subgroup of a compact monothetic group, see [11, Theorem 2.4.2].

We now turn our attention to the algebras that are present in this paper. Let G be a
compact infinite monothetic group, C(G) the complex-valued continuous functions on
G and µ a normalized Haar measure on G. Recall the notation for the elements of the
cyclic subgroup generated by x1:

xn = ϕn(0) = nx1,

for n ∈ Z. The set {xn}n∈Z is the full orbit of 0 under ϕ and {xn}n≥0 is the forward orbit.
As mentioned above, since ϕ is a minimal homeomorphism, the forward orbit {xn}n≥0
is dense in G.

Consider the algebra of trigonometric polynomials on G:

F =

{∑
n

cnχn : χn ∈ Ĝ, finite sums
}
.

We state below two simple but useful properties of F that we will need later in the
paper. First we have the following observation.

Proposition 2.6. Let f ∈ F . Then
∫

G f dµ = 0 if and only if there is a trigonometric
polynomial g ∈ F such that

f = g ◦ ϕ − g.
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Proof. If f ∈ F then f has the following decomposition:

f =
∑

j

c jχ j,

where χ j are characters on G. Notice that∫
G
χ j dµ =

{
1 if χ j = 1,
0 else,

which means that
∫

G f dµ = 0 if and only if χ j , 1 for all j. Let χ be a nontrivial
character, then the goal is to find a g ∈ F such that

χ(x) = g(x + x1) − g(x). (2-2)

Notice that for a nontrivial character we must have χ(x1) , 1. Otherwise, if χ(x1) = 1,
then χ(xn) = χ(nx1) = 1, which in turn implies that χ = 1 on a dense set, and thus χ ≡ 1,
which is a contradiction. Therefore, we can choose

g(x) =
χ(x)

χ(x1) − 1
,

which clearly satisfies equation (2-2). Now that we can find a function g(x) that solves
equation (2-2) for a nontrivial character, we just take finite linear combinations of such
functions for the general case of a trigonometric polynomial, and thus completing the
proof. �

Next we describe another useful property of the space F .

Proposition 2.7. For any nonzero n ∈ Z, there exists a trigonometric polynomial f ∈ F
such that

f − f ◦ ϕn , 0.

Proof. The key property of the characters is that they separate points of G, see [12,
Theorem 14]. Therefore, if n , 0, we can pick χ such that

χ(x1) , χ(xn+1) = χ(ϕn(x1)).

As in the previous proposition, the general case is handled by linearity and the proof
is complete. �

2.3. C∗-algebras. Let G be an infinite, compact, monothetic group. We will now
describe two types of C∗-algebras that can be naturally associated with such groups.
They are defined as concrete C∗-algebras of operators in the following Hilbert spaces.
The first Hilbert space is the `2 space of the full orbit:

H = `2({xl}l∈Z),

which is naturally isomorphic with `2(Z). Let {El}l∈Z be the canonical basis in H. The
second Hilbert space is the `2 space of the forward orbit:

H+ = `2({xk}k∈Z≥0 ),
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which is naturally isomorphic with the Hilbert space `2(Z≥0). We also let {E+
k }k∈Z≥0 be

the canonical basis on H+.
The C∗-algebras associated to G are defined using the following operators. Let

V : H → H be the shift operator on H:

VEl = El+1.

We also need the unilateral shift operator on H+:

UE+
k = E+

k+1.

Notice that V is a unitary while U is an isometry. Then

[U∗,U] = P0,

where P0 is the orthogonal projection onto the one-dimensional subspace spanned by
E+

0 .
For a continuous function f ∈ C(G) we define two operators M f : H → H and

M+
f : H+ → H+ via formulas:

M f El = f (xl)El and M+
f E+

k = f (xk)E+
k .

They are diagonal multiplication operators on H and H+ respectively. Due to the
density of the orbit {xk}k∈Z≥0 , immediately

‖M f ‖ = ‖M+
f ‖ = sup

l∈Z
| f (xl)| = sup

k∈Z≥0

| f (xk)| = sup
x∈G
| f (x)| = ‖ f ‖∞.

The algebras of operators generated by the M f or by the M+
f are thus isomorphic to

C(G) so they carry all the information about the space G, while operators U and V
reflect the dynamics ϕ on G. The relation between those operators is

V M f V−1 = M f◦ϕ.

Similarly,
UM+

f = M+
f◦ϕU.

There is also another, less obvious relation between U and the M+
f , namely,

M+
f P0 = P0M+

f = f (x0)P0. (2-3)

We define the algebra B to be the C∗-algebra generated by operators V and M f :

B = C∗{V,M f : f ∈ C(G)}.

We claim that B is isomorphic with the crossed product algebra:

B � C(G) oϕ Z.

Indeed, observe that Z is amenable, the action of Z on G given by ϕ is a free action,
and ϕ is a minimal homeomorphism, and thus the crossed product is simple and equal
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to the reduced crossed product, see [4]. Clearly, the operators V and M f define a
representation of C(G) oϕ Z, which must be isomorphic to it, by simplicity of the
crossed product.

The algebra B has a natural dense ∗-subalgebra B of polynomials in V , V−1, and the
Mχ, where χ is a character of G. Equivalently,

B =

{∑
n

VnM fn : fn ∈ F , finite sums
}
.

Next we define the other algebra that is of the main interest in this paper, a Toeplitz
extension of B. We define the algebra A to be the C∗-algebra generated by operators U
and M+

f :
A = C∗{U,M+

f : f ∈ C(G)}.

To proceed further we need the following diagonal label operators on H and H+,
respectively,

LEl = lEl and KE+
k = kE+

k .

If {a(k)}∞k=0 is a bounded sequence, then by the functional calculus a(K) is a bounded
diagonal operator given by

a(K)Ek = a(k)Ek,

and all bounded diagonal operators can be expressed this way. There is a similar
representation for a(L). Moreover, we have the following commutation relation:

a(K)U = Ua(K + I),

and there is also similar relation for V and a(L). Typically, the diagonal operators arise
through the following, useful relation:

Un(U∗)n = P≥n,

where P≥n is the orthogonal projection onto the span of E+
k with k ≥ n.

The algebra A has a natural dense ∗-subalgebraA of polynomials in U, U∗, and the
M+
χ , where χ is a character of G, which can be equivalently described as follows, using

[9, Proposition 3.1] and also Proposition 2.11 below:

A =

{∑
n≥0

Un(a+
n (K) + M+

f +
n

) +
∑
n≥1

(a−n (K) + M+
f −n

)(U∗)n : f ±n ∈ F , a
±
n (k) ∈ c00(Z≥0)

}
,

where the sums above are finite sums and c00(Z≥0) is the space of sequences that are
eventually zero. Notice that if a ∈ A and x ∈ c00(Z≥0) ⊆ H+, then ax ∈ c00(Z≥0), an
observation that is often used below.

Next we establish the key relation between the two algebras A and B. Let P+ :H →
H+ be the following map fromH ontoH+ given by

P+Ek =

{
E+

k if k ≥ 0,
0 if k < 0.
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We also need another map s :H+ →H given by

sE+
k = Ek.

Define the map T : B(H)→ B(H+), between the spaces of bounded operators on H
andH+, in the following way: given b ∈ B(H)

T (b) = P+bs.

T is known as a Toeplitz map. It has the following properties.

Proposition 2.8. Let T be the Toeplitz map defined above. Then:

(1) T (IH ) = IH+
;

(2) T (bVn) = T (b)Un and T (V−nb) = (U∗)nT (b) for n ≥ 0 and all b ∈ B(H);
(3) T (bM f ) = T (b)M+

f and T (M f b) = M+
f T (b) for all f ∈ C(X) and all b ∈ B(H).

Consequently, it follows that T maps B to A and B toA.

Proof. For the first statement, if h ∈ H+ then we have the following calculation:

T (IH )h = (P+sIH )h = P+h = h = IH+
h.

For the second statement we apply T (bVn) to the basis elements E+
k ofH+. Then

T (bVn)E+
k = (P+bVn)s(E+

k ) = (P+b)Ek+n = (P+bs)UnE+
k = T (b)UnE+

k .

A similar calculation shows the other equality T (V−nb) = (U∗)nT (b). Finally, for the
last statement, we apply T (bM f ) and T (M f b) to the basis elements to obtain

T (bM f )E+
k = (P+bM f )s(E+

k ) = (P+b)M f Ek = (P+b) f (xk)Ek = (P+bs)M+
f E+

k

= T (b)M+
f E+

k .

This completes the proof. �

The next result describes the main relation between the two algebras A and B.

Proposition 2.9. The ideal of compact operators K in B(H+) is an ideal in A.
Moreover, B is the factor algebra:

B � A/K

and
B 3 b 7→ T (b) +K ∈ A/K (2-4)

is an isomorphism.

Proof. Notice first that
P0 = I − UU∗ ∈ A.

It follows that the operators Pk,l := UkP0(U∗)l are also in A. Thus, all finite
rank operators with respect to the basis {E+

k } belong to A as they are finite linear
combinations of Pk,l. Moreover, since all compact operators in B(H+) are norm limits
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of these finite rank operators and A is a C∗-algebra, it follows thatK ⊆ A. It is clear that
K is an ideal in A. Verifying that the map given by equation (2-4) is an isomorphism,
is analogous to the proof of Theorem 2.3 in [8]. We give a short outline. It is clear that
T is linear. Checking that the map preserves products requires one to verify that

T (b1)T (b2) − T (b1b2) ∈ K

for all b1, b2 ∈ B. First, by a straightforward calculation, we check this relation on the
polynomials in B. Then, using the fact that B is dense in B and the continuity of the
norm, we conclude the above inclusion is true for all b1, b2 ∈ B, making T (b) +K a
homomorphism. By definition of the Toeplitz map T , we have T (b) +K = 0 if and
only if b = 0, thus the map is injective. Proposition 2.8 gives

T (V) = U, T (V−1) = U∗, and T (M f ) = M+
f ,

and hence U, U∗, and M+
f are in the range of T . Therefore, by the usual C∗-algebra

argument, the map is surjective, completing the proof. �

It follows from the two previous propositions that we have the following
identification.

Corollary 2.10. Under the isomorphism given by equation (2-4), B is the factor
algebra:

B � [A].

For future reference we notice the following formulas:

[U] = V, [M+
f ] = M f , [K] = L,

and also, for every b ∈ B:
[T (b)] = b.

Useful tools in classifying derivations on A and B are one-parameter groups of
automorphisms of A and B, respectively, that are given by the following equations:

ρKθ (a) = eiθKae−iθK for a ∈ A,
ρLθ (b) = eiθLbe−iθL for b ∈ B,

where θ ∈ R/2πZ. We have the following formulas:

ρKθ (U) = eiθU, ρKθ (a(K)) = a(K),

and similarly for ρLθ . It immediately follows that ρKθ :A→A and that ρLθ : B→ B.
The automorphisms define natural Z-gradings on A and B given by the spectral

subspaces:

An = {a ∈ A : ρKθ (a) = einθa},
Bn = {b ∈ B : ρLθ (a) = einθb}.

We call the elements of these sets the n-covariant elements of A and B, respectively.
When n = 0 we call those elements invariant.

Let c0(Z≥0) be the space of sequences that converge to zero. The n-covariant
elements of A and B can described in detail.
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Proposition 2.11. We have the following set equalities:

An = {a ∈ A : a = Un(an(K) + M+
f ), a(k) ∈ c0(Z≥0), f ∈ C(G)}

for n ≥ 0 and

An = {a ∈ A : a = (a(K) + M+
f )(U∗)−n, a(k) ∈ c0(Z≥0), f ∈ C(G)}

when n < 0. Similarly,

Bn = {b ∈ B : b = VnM f , f ∈ C(G)},

if n ≥ 0, and
Bn = {b ∈ B : b = M f Vn, f ∈ C(G)}

for n < 0.

Proof. Consider the invariant elements in A, that is ρKθ (a) = a. It follows from
the definition of ρKθ that these elements are precisely the diagonal operators in A.
Moreover, we have the following unique decomposition, which is analogous to
[10, Proposition 2.4]:

a = a(K) + M+
f ,

where a(k) ∈ c0(Z≥0) and f ∈ C(G). Next we consider the n-covariant elements for
n , 0. Without loss of generality we only consider n > 0. Since,

ρKθ (Un) = einθUn

ρKθ (a(K) + M+
f ) = a(K) + M+

f

for a(k) ∈ c0(Z≥0) and f ∈ C(G), one containment follows immediately. On the other
hand, if a ∈ An then a(U∗)n is an invariant element and thus by the above has the form

a(U∗)n = a(K) + M+
f

for some a(k) ∈ c0(Z≥0) and f ∈ C(G). The other direction now follows. The same
argument also works for Bn, completing the proof. �

Similarly, we consider n-covariant elements fromA and B:

An = {a ∈ A : ρKθ (a) = einθa} and Bn = {b ∈ B : ρLθ (b) = einθb}.

As in Proposition 2.11, a ∈ An if and only if a has the same element decomposition
but with a(k) ∈ c00(Z≥0) and f ∈ F . Again, there is an analogous result for b ∈ Bn.

3. Classification of derivations

As in [10], one of the main goals in this paper is to classify unbounded derivations
in A and B. We begin with recalling the basic concepts.

Let M be a Banach algebra and letM be a dense subalgebra of M. A linear map
d :M→ M is called a derivation if the Leibniz rule holds:

d(ab) = ad(b) + d(a)b
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for all a, b ∈ M. We say a derivation d :M→ M is inner if there is an element x ∈ M
such that

d(a) = [x, a]

for a ∈ M. We say a derivation d :M→ M is approximately inner if there are xn ∈ M
such that

d(a) = lim
n→∞

[xn, a]

for a ∈ M.
Given n ∈ Z, a derivation d : A→ A is said to be a n-covariant derivation if the

relation
(ρKθ )−1d(ρKθ (a)) = e−inθd(a)

holds. We have a similar definition for a derivation δ : B→ B. Like above, when n = 0
we say the derivation is invariant.

3.1. Derivations in A. We first classify all invariant derivations d : A → A. An
example of an invariant derivation is given by

dK(a) = [K, a],

where a ∈ A. This derivation is well defined becauseA is the space of polynomials in
U, U∗, and M+

f and we have [K,U] = U, [K,U∗] = −U∗ and [K,M+
f ] = 0.

Lemma 3.1. For any {α(k)} ∈ c0(Z≥0) there exists a unique derivation dα :A→ A such
that

dα(U) = Uα(K), dα(U∗) = −α(K)U∗, dα(a(K)) = 0

for every a(K) ∈ A0. Moreover, this derivation is an approximately inner invariant
derivation.

Proof. Define a sequence {αN(k)} as follows:

αN
0 (k) =

{
α0(k) for k < N,
0 for k ≥ N.

Then αN(k) ∈ c00(Z≥0) and αN(K) converges to α(K) as N → ∞. Next, define a
sequence {βN(k)} by

βN(k) =

k−1∑
j=0

αN( j),

so that βN(k) is eventually constant. Thus, dαN :A→ A defined by

dαN (a) = [βN(K), a]

is an invariant inner derivation. Then

lim
N→∞

dαN (U) = Uα(K) , lim
N→∞

dαN (U∗) = −α(K)U∗, and dαN (a(K)) = 0
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for all a(K) ∈ A0. Thus, by the Leibniz rule, the limit

lim
N→∞

dαN (a) = dα(a)

exists for all a ∈ A. Thus, this limit is a derivation from A to A. It follows that dα is
approximately inner and invariant. �

Lemma 3.2. For any f ∈ C(G) such that∫
G

f dµ = 0,

there exists a unique derivation d f :A→ A such that

d f (U) = UM+
f , d f (U∗) = −M+

f U∗, d f (a(K)) = 0,

where a(K) ∈ A0. Moreover, d f is an approximately inner invariant derivation.

Proof. By the density of F we can pick a sequence { f N} ⊆ F such that f N converges
to f and ∫

G
f N dµ = 0.

By Proposition 2.6, there exists a sequence {gN} ⊆ F such that

f N(x) = gN(ϕ(x)) − gN(x).

We define
d f N (a) = [M+

gN , a],

and notice that d f N :A→ A is an inner invariant derivation. By direct calculation,

lim
N→∞

d f N (U) = UM+
f , lim

N→∞
d f N (U∗) = −M+

f U∗, and d f N (a(K)) = 0,

for every a(K) ∈ A0. Thus, by the Leibniz rule, the limit

lim
N→∞

d f N (a) = d f (a)

exists for all a ∈ A and is a derivation fromA to A. It follows that d f is approximately
inner and invariant. �

Proposition 3.3. Given any invariant derivation d : A → A there exists a number
c0 ∈ C such that d is of the unique form

d(a) = c0dK(a) + d̃(a),

where d̃ :A→ A is approximately inner.
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Proof. Let a(K) ∈ A0 be a diagonal operator such that a(k) ∈ c00(Z≥0). Then, by
invariance of d, we have d(a(K)) ∈ A0. Notice that since A0 is precisely the algebra
of diagonal operators in A it is therefore a commutative algebra. Let P2 = P be a
projection inA0. Applying d to both sides of the equation and using Leibniz’s rule

2Pd(P) = d(P2) = d(P),

which implies that (1 − 2P)d(P) = 0 and hence d(P) = 0. Since a(K) is a finite linear
combination of projections inA0, it follows that d(a(K)) = 0.

Let Pk be the one-dimensional orthogonal projection onto the span of Ek. Then
Pk ∈ A0 and thus d(Pk) = 0. We have the following formula:

M+
f Pk = f (xk)Pk.

Therefore, applying d to both sides,

d(M+
f )Pk + M+

f d(Pk) = f (xk)d(Pk).

It follows that d(M+
f )Pk = 0 for all k ∈ Z≥0 and so, d(M+

f ) = 0. It follows from
Proposition 2.11 that d(a) = 0 for all a ∈ A0.

Notice that, by the invariance property of d,

d(U) = U(α0(K) + M+
f0

)
d(U∗) = −(α0(K) + M+

f0
)U∗ (3-1)

for some α0(k) ∈ c0(Z≥0) and f0 ∈ C(G).
Let c0 be the following integral

c0 =

∫
G

f0 dµ,

and set f̃ = f0 − c0 so that
∫

G f̃ dµ = 0. By Lemmas 3.1 and 3.2 and equation (3-1), we
have the decomposition

d = c0dK + dα0 + d f̃ .

Picking d̃ = dα0 + d f̃ completes the proof of existence of the decomposition.
Finally, to verify uniqueness of the decomposition, we only need to check that dK

is not approximately inner. If dK is approximately inner then we can arrange that
it can be approximated by inner invariant derivations of the form d j(a) = [β j(K), a]
with β j(k) ∈ c(Z≥0). Since {β j(k + 1) − β j(k)} ∈ c0(Z≥0) we would also get {(k + 1) −
k} ∈ c0(Z), which is a contradiction. Full details of an analogous result are given in
[10, Theorem 3.10]. �

Next we classify n-covariant derivations in A.

Remark 3.4. Let n , 0 and by Proposition 2.7 choose f ∈ F such that f − f ◦ ϕn , 0.
Since f − f ◦ ϕn is continuous on a compact set, the minimum is achieved and is not
equal to zero. Therefore,

inf
x∈G
| f (x) − f (ϕn(x))| , 0

and hence M+
f − M+

f◦ϕn is an invertible operator.
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This remark is crucial for the proof of the next proposition.

Proposition 3.5. Let d :A→ A be an n-covariant derivation where n , 0. There exists
an element β(K) ∈ A0 such that

d(a) = [Unβ(K), a] for n > 0,
d(a) = [β(K)(U∗)−n, a] for n < 0,

and hence d is an inner derivation.

Proof. We only discuss the case of n > 0 as the case of n < 0 is completely analogous.
By definition of n-covariance there exists an α(K) ∈ A0 such that

d(U) = Un+1α(K + I) and d(U∗) = −Un−1α(K).

We define a ‘twisted’ derivation d̃ :A0 → A0 by d(a(K)) = Und̃(a(K)) for a(K) ∈ A0.
A direct computation yields

d̃(a(K)b(K)) = d̃(a(K))b(K) + a(K + nI)d̃(b(K))
d̃(b(K)a(K)) = d̃(b(K))a(K) + b(K + nI)d̃(a(K))

for a(K), b(K) ∈ A0. SinceA0 and A0 are commutative algebras,

d̃(a(K))(b(K) − b(K + nI)) = d̃(b(K))(a(K) − a(K + nI)).

Similarly to the proof in [10, Theorem 3.4], there must exist a β(K) such that

d̃(a(K)) = β(K)(a(K) − a(K + nI)).

Consequently, we have the following formula:

d(a(K)) = Unβ(K)(a(K) − a(K + nI)).

Next we apply d to the commutation relation U∗a(K) = a(K + I)U∗ for a diagonal
operator a(K) ∈ A0, and obtain

Un−1(−α(K)a(K) + β(K)a(K) − β(K)a(K + nI)) =

= Un−1(β(K − I)a(K) − a(K + nI)β(K − I) − a(K + nI)α(K)),

where we define β(−1) := 0. Rearranging these terms gives

α(K)(a(K + nI) − a(K)) = (β(K) − β(K − I))(a(K + nI) − a(K))

for all a(K) ∈ A0. It therefore follows that β(K) − β(K − I) = α(K). Thus β(k) is
uniquely determined by

β(k) =

k∑
j=0

α( j),

and it follows that
d(a) = [Unβ(K), a]
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for any a ∈ A, since both sides of the above equation are derivations, and they agree
on the generators of the polynomial algebraA. By the remark preceding the statement
of the proposition, if f ∈ F is such that M+

f − M+
f◦ϕn is invertible, we can apply d to

M+
f to get

A0 3 d(M+
f ) = Unβ(K)(M+

f − M+
f◦ϕn ).

Therefore, it follows that we must have β(K) ∈ A0, and the proof is complete. �

To classify all derivations d :A→ A we need to define the Fourier coefficients of d
following the ideas of [2].

Definition 3.6. If d is a derivation in A, the nth Fourier component of d is defined as

dn(a) =
1

2π

∫ 2π

0
einθ(ρKθ )−1dρKθ (a) dθ.

A direct calculation shows that if d :A→ A is a derivation then dn :A→ A is an
n-covariant derivation.

We have the following key Cesàro mean convergence result for Fourier components
of d, which is more generally valid for unbounded derivations in any Banach algebra
with the continuous circle action preserving the domain of the derivation: if d is a
derivation in A then

d(a) = lim
M→∞

1
M + 1

M∑
j=0

( j∑
n=− j

dn(a)
)
, (3-2)

for every a ∈ A, see [10, Lemma 4.2] for more details.
The following theorem classifies all derivations d :A→ A.

Theorem 3.7. Let d :A→ A be any derivation. Then there exists c0 ∈ C such that d
has the following decomposition:

d(a) = c0dK(a) + d̃(a),

where d̃ is an approximately inner derivation.

Proof. Let d0 be the 0th Fourier component of d. It is an invariant derivation, so by
Proposition 3.3 we have the unique decomposition:

d0(a) = c0dK(a) + d̃0(a) = c0[K, a] + d̃0(a),

for every a ∈ A, where d̃0 is an approximately inner derivation. From Proposition 3.5
we have that the Fourier components dn, n , 0 are inner derivations. It follows from
equation (3-2), by extracting d0, that

d(a) = d0(a) + lim
M→∞

1
M + 1

M∑
j=1

( ∑
|n|≤ j, n,0

dn(a)
)
.

The terms under the limit sign are all finite linear combinations of n-covariant
derivations and so they are inner derivations themselves, meaning that the limit is
approximately inner, which ends the proof. �
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We also have the following useful but weaker convergence result for the Fourier
components of derivations.

Proposition 3.8. Let d : A → A be any derivation. Then for every x ∈ c00(Z≥0) ⊆
`2(Z≥0) and a ∈ A, ∑

n∈Z

dn(a)x = d(a)x.

We say that
∑

n∈Z dn(a) converges densely pointwise on the set c00(Z≥0).

Proof. By Leibniz rule we only need to verify the above formula on generators of A.
Moreover, it is enough to consider only x = E+

k , since c00(Z≥0) consists of finite linear
combinations of such x. Below we show the details for a = M+

f , as the calculations for
a = U and a = U∗ are very similar. We have the following basis decomposition:

d(a)E+
k =

∞∑
j=0

〈E+
j , dn(a)E+

k 〉E
+
j .

Using the definition of the nth Fourier components dn of d and the fact that dn are
n-covariant, a direct calculation gives

〈E+
j , dn(a)E+

k 〉 =

{
〈E+

j , d(a)E+
k 〉 if n + k = j,

0 otherwise.

It follows that 〈
E+

j ,

∞∑
n∈Z

dn(a)E+
k

〉
= 〈E+

j , d(a)E+
k 〉,

completing the proof. �

3.2. Derivations in B. Next we classify derivations in B starting with the invariant
derivations. It turns out that there are new types of invariant derivations in B that were
not present in A. We describe these in the following lemma.

Lemma 3.9. Let ∂ : F → C(G) be any derivation such that

∂ f ◦ ϕ = ∂( f ◦ ϕ)

for all f ∈ F , which we call a ϕ invariant derivation in C(G). Then there exists a
unique invariant derivation δ∂ : B→ B such that

δ∂(V) = 0 and δ∂(M f ) = M∂ f .

Proof. Since (V, M f ) is a defining representation for C(G) oϕ Z, the only relation in
the polynomial algebra B is

V M f V−1 = M f◦ϕ.

Define the δ∂ on the generators as above by δ∂(V) = 0 and δ∂(M f ) = M∂ f . Using the
Leibniz rule we try to extend this definition to all B. To verify that δ∂ is a well-defined
derivation from B→ B, we thus need to check that it preserves the relation. Applying
δ∂ to both sides of the relation yields M∂ f◦ϕ = M∂( f◦ϕ), completing the proof. �
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As with algebra A there is a simple example of an invariant derivation, which is
given by

δL(b) = [L, a],

where b ∈ B. This derivation is well defined because B is the space of polynomials in
V , V−1, and M f , and we have [L,V] = V , [L,V−1] = −V−1 and [L,M f ] = 0.

Lemma 3.10. For any f ∈ C(G) such that∫
G

f dµ = 0,

there exists a unique derivation δ f : B→ B such that

δ f (V) = V M f , δ f (V−1) = −M f V−1, δ f (Mg) = 0,

where Mg ∈ B0. Moreover, d f is an approximately inner invariant derivation.

The proof is identical to that of Lemma 3.2.

Proposition 3.11. Let δ : B → B be any invariant derivation, then there exist c0 ∈ C
and a ϕ invariant derivation in C(G), ∂ : F → C(G), such that δ is of the unique form

δ(b) = c0δL(b) + δ∂(b) + δ̃(b),

where δ∂ : B→ B is the derivation defined in Lemma 3.9 and δ̃ is approximately inner.

Proof. Since δ is invariant and V ∈ B1, we must have δ(V) ∈ B1. Hence, there exists
f0 ∈ C(G) such that

δ(V) = V M f0 .

Similarly, since M f ∈ B0, we have δ(M f ) ∈ B0 and thus there exists a linear map
∂ : F → C(G) such that

δ(M f ) = M∂ f .

Applying δ to the relation M f g = M f Mg gives

M∂( f g) = M∂ f Mg + M f M∂g.

Hence ∂ satisfies the Leibniz rule and thus is a derivation. Applying δ to both sides of
the relation V M f V−1 = M f◦ϕ yields

∂ f ◦ ϕ = ∂( f ◦ ϕ),

that is, ∂ is ϕ invariant.
Now write f0 = c0 + f̃ with c0 ∈ C and∫

G
f̃ dµ = 0.

It follows that
δ(b) = c0δL(b) + δ∂(b) + δ f̃ (b),
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where δ∂ : B → B is the derivation defined in Lemma 3.9 and δ f̃ is defined in
Lemma 3.10. Arguing as in the proof of Proposition 3.3 we obtain that δL is not
approximately inner. To complete the proof we notice that a nonzero derivation δ∂
cannot be approximately inner since F is commutative and hence has no nonzero inner
and approximately inner derivations. This proves the uniqueness of the decomposition
and finishes the proof of the proposition. �

Because the proof of classifying all n-covariant derivations in B is essentially the
same as in the case of A, we only state the result.

Proposition 3.12. Let δ : B → B be an n-covariant derivation where n , 0. There
exists an η(L) ∈ B0 such that

δ(b) = [Unη(L), b] for n , 0.

Moreover, δ is an inner derivation.

Finally, putting Propositions 3.11 and 3.12 together along with the Cesàro mean
convergence result for Fourier components of d we have the following result.

Theorem 3.13. Let δ : B → B be any derivation. Then there exists c0 ∈ C and
a ϕ invariant derivation ∂ : F → C(G) such that δ has the following unique
decomposition:

δ(b) = c0δL(b) + δ∂(b) + δ̃(b),

where δ∂ is the derivation defined in Lemma 3.9 and δ̃ is an approximately inner
derivation.

We also state here a dense pointwise convergence result for Fourier components
δn of a derivation δ : B → B, which is similar to Proposition 3.8 and has completely
analogous proof.

Proposition 3.14. Let δ : B → B be any derivation. Then for every x ∈ c00(Z) ⊆ `2(Z)
and b ∈ B, ∑

n∈Z

δn(b)x = δ(b)x,

and we say that
∑

n∈Z δn(b) converges densely pointwise on the set c00(Z).

4. Lifting derivations

The first important observation is that any derivation in algebra A preserves compact
operators.

Proposition 4.1. If d :A→ A is a derivation, then d :A∩K →K .

Proof. It is enough to prove that d(P0) is compact, where P0 is the orthogonal
projection onto the one-dimensional subspace spanned by E+

0 , because A ∩ K
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is comprised of linear combinations of expressions of the form U lP0(U∗) j and
compactness would follow immediately from the Leibniz property. To see that d(P0)
is compact, apply d to both sides of the relation P0 = P2

0 to obtain

d(P0) = d(P0)P0 + P0d(P0) ∈ K ,

which completes the proof. �

As a consequence of Proposition 4.1, if d : A → A is a derivation in A, then
[d] : B→ B defined by

[d](a +K) := [d(a)]

gives a derivation in B, which, by Corollary 2.10, is defined on B � [A].
As a consequence to Proposition 4.1,

[dK] = δL.

Clearly, if d is an approximately inner derivation, then so is [d]. In general, given a
derivation δ : B → B, if there exists a derivation d :A→ A such that [d] = δ we call
such a d a lift of δ.

A natural question is as follows: which derivations δ : B → B can be lifted to
a derivation d : A → A? It follows from Theorems 3.7 and 3.13 that if there is a
nonzero ϕ invariant derivation in C(G), ∂ : F → C(G), then there is no d : A→ A
such that [d] = δ∂, because δ∂ is not approximately inner. A natural example of this is
G = T1 = R/Z with xk = θk mod Z, k ∈ Z and θ irrational, giving a dense subgroup of
T1. In this case, F is the actual space of trigonometric polynomials. Any derivation
∂ : F → C(T1) invariant with respect to ϕ(x) = x + θ mod Z is of the form:

∂( f ) = const
d
dx

f (x).

In this case, the algebra B is generated by V and W = Me2πix satisfying the relation

VW = e2πiθWV.

Consequently, B is isomorphic with the irrational rotation algebra. B is the algebra of
polynomials in V and W and the derivation δd/dx : B→ B is given on generators by

δd/dx(V) = 0 and δd/dx(W) = 2πiW

and it cannot be lifted to a derivation in A. The key reason is that there is an additional
relation on A given by equation (2-3), which prevents existence of such a lift. We
conjecture however, that for any compact infinite monothetic group, any approximately
inner derivation δ : B→ B can be lifted to a derivation d :A→ A.

For the remainder of the section we let G be totally disconnected, in other words G is
an odometer, and thus by Proposition 2.4, there exists an infinite supernatural number
N such that G � Z/NZ. It was proved in [10] that for such G, the algebras A and B are
precisely the Bunce–Deddens–Toeplitz, A(N), and Bunce–Deddens algebras, B(N),
respectively. It follows from [10, Theorem 4.4] that there are no nontrivial ϕ invariant
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derivations ∂ : F →C(G). Below we prove one of the main results of this paper that for
odometers, any unbounded derivation in B(N) can be lifted to an unbounded derivation
in A(N).

We will need the following useful result for computing Hilbert–Schmidt norms of
operators in `2(Z) and `2(Z≥0). Since below we work mostly with algebra A, we only
state the corresponding version for brevity.

Proposition 4.2. Let a : `2(Z≥0)→ `2(Z≥0) be defined by

a =

∞∑
n=0

Unan(K) +

−1∑
n=−∞

an(K)(U∗)−n,

where {an(k)}n∈Z,k∈Z≥0 ∈ `
2(Z × Z≥0). Then a is an integral operator with the Hilbert–

Schmidt norm given by

‖a‖2HS =
∑
n∈Z

∞∑
k=0

|an(k)|2.

Proof. Write f ∈ `2(Z≥0) in the canonical basis:

f =

∞∑
k=0

f (k)E+
k .

Applying the formula for a to f yields

a f =
∑
n≥0

∑
k≥0

an(k) f (k)E+
k+n +

∑
0≤k+n

∑
n<0

an(k + n) f (k)E+
k+n.

Resumming both terms gives

a f =
∑
n≥0

∑
n≥k

an−k(k) f (k)E+
n +

∑
n≥0

∑
n<k

an−k(n) f (k)E+
n

=
∑
n≥0

( ∞∑
k=0

an−k(min{n, k}) f (k)
)
E+

n .

This shows that a is an integral operator with integral kernel

κ(k, n) = an−k(min{n, k}) ∈ `2(Z × Z≥0).

Therefore, by writing a in the following way

(a f )(n) =

∞∑
k=0

κ(k, n) f (k) =

n∑
k=0

an−k(k) f (k) +
∑
k>n

an−k(n) f (k),

the Hilbert–Schmidt norm formula now follows, completing the proof. �

The following is the main result of this section.

Theorem 4.3. Let δ : B(N)→ B(N) be any derivation. There exists a derivation
d :A(N)→ A(N) such that [d] = δ.

https://doi.org/10.1017/S144678871900051X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871900051X


368 S. Klimek and M. McBride [24]

Proof. Let δ : B(N)→ B(N) be an approximately inner derivation in B(N), then by
Theorem 3.13 and by Propositions 3.11 and 3.12,

δ(b) =

[∑
n≥0

VnM fn +
∑
n<0

M fn Vn, b
]

for b ∈ B(N), where the convergence of infinite sums is understood as being densely
pointwise on c00(Z). In order to construct a lift of δ we need to consider derivations
d :A(N)→ A(N) given by the following expression, densely pointwise convergent on
c00(Z≥0):

d(a) =

[∑
n≥0

Unβn(K) +
∑
n<0

βn(K)(U∗)−n, a
]

for a ∈ A(N), where βn(k) has the following decomposition:

βn(K) = βn,0(K) + M+
fn ,

where βn,0(k) ∈ c0(Z≥0). We need to find conditions on βn,0(k) so that d is a well-defined
derivation in A(N) such that

[d](a) = δ([a])

for all a ∈ A(N). But, by the properties of the Toeplitz map, this is equivalent to
checking that the difference

d(a) − T (δ([a]))

is compact for all a ∈ A(N). By the Leibniz rule we only need to check this property
on the generators U, U∗, and M+

χ , where χ is a character on Z/NZ.
Using the above formula for δ,

δ(V) =
∑
n≥0

Vn+1(M fn◦ϕ − M fn ) +
∑
n<0

(M fn − M fn◦ϕ−1 )Vn−1.

Then, from the properties of T we have the following:

T (δ(V)) =
∑
n≥0

Un+1(M+
f ◦n ϕ − M+

fn ) +
∑
n<0

(M+
fn − M+

fn◦ϕ−1 )(U∗)−n−1.

Finally, a direct computation yields the following formula:

d(U) − T (δ(V))

=
∑
n≥0

Un+1(βn,0(K + I) − βn,0(K))

+
∑
n<0

(βn,0(K) − βn,0(K − I))(U∗)−n−1 + P0

(∑
n<0

M+
fn◦ϕ−1 (U∗)−n−1

)
.

Similarly, on U∗,

d(U∗) − T (δ(V−1))

=
∑
n>0

Un−1(βn,0(K − I) − βn,0(K))

+
∑
n≤0

(βn,0(K) − βn,0(K + 1))(U∗)−n+1 +

(∑
n>0

Un−1M+
fn◦ϕ−1

)
P0.
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Finally, we get the following expression for diagonal operators M+
χ :

d(M+
χ ) − T (δ(Mχ))

=
∑
n≥0

Unβn,0(K)(M+
χ − M+

χ◦ϕn )

+
∑
n<0

βn,0(K)(M+
χ◦ϕn − M+

χ )(U∗)−n.

The result follows provided we can choose βn,0(k) so that the right-hand sides of the
above equations are compact operators. We compute the Hilbert–Schmidt norm of the
above operators to show the compactness. A direct calculation using Proposition 4.2
yields the following formulas:

I := ‖d(M+
χ ) − T (δ(Mχ))‖2HS =

∑
n∈Z

∑
k≥0

|βn,0(k)|2|χ(xk) − χ(xk+n)|2

II := ‖d(U) − T (δ(V))‖2HS =
∑
n∈Z

∑
k≥1

|βn,0(k) − βn,0(k − 1)|2 +
∑
n∈Z

|βn,0(0) − fn(x−1)|2

= ‖d(U∗) − T (δ(V−1))‖2HS.

We define βn,0(k) to have the following form:

βn,0(k) =

− fn(x−1)
(Nn − k

Nn

)
0 ≤ k < Nn,

0 k ≥ Nn,

where the numbers Nn will be chosen later.
Notice that any character on Z/NZ is of the form:

χ(xk) = exp
(2πi jk

M

)
,

where M | N and j ∈ Z. Therefore, I and II become

I =
∑
n∈Z

Nn∑
k=0

| fn(x−1)|2
(Nn − k

Nn

)2
|1 − e2πi jn/M |2

II =
∑
n∈Z

Nn−1∑
k=0

| fn(x−1)|2

N2
n

=
∑
n∈Z

| fn(x−1)|2

Nn
.

To estimate I we need the following key bound on the Fourier coefficients fn of δ.

Lemma 4.4. The coefficients fn of the Fourier decomposition of the derivation δ : B→
B satisfy the following condition: for all M | N:∑

M-n

| fn(x−1)|2 <∞. (4-1)

Proof. To obtain the estimate we compute norms of the following two Hilbert–
Schmidt operators:

P≥0δ(exp(2πi jL/M))P−1 and P−1δ(exp(2πi jL/M))P≥0.
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Here P−1 is the orthogonal projection in `2(Z) onto the one-dimensional subspace
spanned by E−1, while P≥0 is the orthogonal projection onto the subspace spanned
by {El}l≥0. A direct calculation of the Hilbert–Schmidt norms yields∑

n≥0

| fn(x−1)|2|1 − e2πi jn/M |2 = ‖P≥0δ(exp(2πi jL/M))P−1‖
2
HS <∞,

and a similar formula for n < 0:∑
n<0

| fn(x−1)|2|1 − e2πi jn/M |2 = ‖P−1δ(exp(2πi jL/M))P≥0‖
2
HS <∞.

The above equation imply that

∞ >
∑
n∈Z

| fn(x−1)|2|1 − e2πi jn/M |2 =
∑
M-n

| fn(x−1)|2|1 − e2πi jn/M |2

> const
∑
M-n

| fn(x−1)|2,

since, for fixed M, the factor 1 − e2πi jn/M has only finitely many values. This concludes
the proof. �

The above lemma implies the following estimate on I:

I =
∑
n∈Z

Nn∑
k=0

| fn(x−1)|2
(Nn − k

Nn

)2
|1 − e2πi jn/M |2

≤ 4
∑
M-n

Nn∑
k=0

| fn(x−1)|2
(Nn − k

Nn

)2
∼ const

∑
M-n

Nn| fn(x−1)|2.

To proceed further we choose a scale s = (sm)m∈N for the supernatural number N,
which is a sequence of positive integers such that sm divides sm+1, sm < sm+1, and such
that N = limm sm, see equation (2-1). For every n ∈ Z there is an index m such that
sm | n but sm+1 - n. We then write

n = smn′,

where n′ is such that sm+1/sm - n′. Using this decomposition we choose Nn = Cm
to be a constant depending on m only, to be determined later. Also, without loss of
generality, we can choose M, in the formula for the character χ, to be equal to one of
the elements of the scale: M = sq. It is then important to notice that sq - n = smn′ if
and only if m < q. Consequently, we have the following expressions:

I ≤ const
q−1∑
m=1

Cm

∑
sm+1/sm-n′

| fsmn′(x−1)|2 = const
q−1∑
m=1

Cm

∑
sm |n, sm+1-n

| fn(x−1)|2

≤ const
q−1∑
m=1

Cm

∑
sm+1-n

| fn(x−1)|2 <∞

for any choice of Cm because the sum over sm+1 - n is finite by equation (4-1).
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Next, for II we have an estimate:

II =

∞∑
m=1

1
Cm

∑
sm |n, sm+1-n

| fn(x−1)|2 ≤
∞∑

m=1

1
Cm

∑
sm+1-n

| fn(x−1)|2.

By equation (4-1) the interior sum is finite. Finally, we can always choose Cm large
enough so that II <∞. This completes the proof. �
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