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Abstract

For two n-dimensional elliptical random vectors X and Y, we establish an identity for
E[f (Y)] −E[f (X)], where f : Rn →R satisfies some regularity conditions. Using this
identity we provide a unified method to derive sufficient and necessary conditions for
classifying multivariate elliptical random vectors according to several main integral
stochastic orders. As a consequence we obtain new inequalities by applying the method
to multivariate elliptical distributions. The results generalize the corresponding ones for
multivariate normal random vectors in the literature.
Keywords: Increasing convex order; multivariate elliptical distribution; multivariate
normal distribution; supermodular order; usual stochastic order
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1. Introduction

Stochastic orders provide methods of comparing random variables and vectors which are
now used in many areas such as statistics and probability [8, 21, 24, 26, 41], operations research
[18], actuarial sciences and economic theory [4, 32], and risk management and other related
fields [5]. For a comprehensive review of the properties and characterizations of stochastic
orderings, including a variety of applications, the reader is referred to the monographs of [42],
[15], and [49]. Many of these orders are characterized by the so-called integral stochastic
orders which are obtained by comparing expectations of functions in a certain class. A general
treatment for these orders has been given in [52] and [38].

Elliptical distributions are generalizations of the multivariate normal distributions and,
therefore, share many of the tractable properties. This class of distributions was introduced
by [29] and was extensively discussed by [20]. This generalization of the normal family seems
to provide an attractive tool for statistics, economics, finance, and actuarial science, which can
describe fat or light tails and tail dependence among components of a vector. Interested readers
are referred to [17, 23, 34, 46, 55]. Müller [39] studied the stochastic ordering characterizations
of multivariate normal random vectors. Arlotto and Scarsini [2] unified and generalized several
known results on comparisons of multivariate normal random vectors in the sense of different
stochastic orders by introducing the so-called Hessian order. Landsman and Tsanakas derived
necessary and sufficient conditions for classifying bivariate elliptical distributions through the
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concordance ordering. Ding and Zhang extended the results in [39] to Kotz-type distributions,
which form an important special class of elliptical symmetric distributions. Several stochastic
orderings for meta-elliptical bivariate distributions were critically reviewed by [1]. Necessary
and sufficient conditions for convex order and increasing convex order of general multivariate
elliptical random vectors had not been found until the work of [43]. However, few results can
be found in the literature that characterize the supermodular order of multivariate elliptical dis-
tributions. It is the aim of this paper to fill this gap. We will give some sufficient and necessary
conditions for supermodular order of multivariate elliptical random vectors. For the known
results, such as on the convex ordering and the increasing convex ordering of multivariate
elliptical random vectors, we provide a different simple proof.

The rest of the paper is organized as follows. Section 2 recalls some useful notions that will
be used in the what follows, such as certain properties of stochastic orders and elliptical distri-
butions. Section 3 presents necessary and sufficient conditions for several important stochastic
orders of multivariate elliptical distributions. Section 4 provides two applications of the main
results.

2. Preliminaries

Throughout this paper we use the following notations. We use bold letters to denote vec-
tors or matrices. For example, X′ = (X1, . . . , Xn) is a row vector and � = (σij)n×n is an n × n
matrix. In particular, the symbol 0n denotes the n-dimensional column vector with all entries
equal to 0, 1n denotes the n-dimensional column vector with all components equal to 1, and
1n×n denotes the n × n matrix with all entries equal to 1. Denote by On×n the n × n matrix
with all entries equal to 0, and by In the n × n identity matrix. For symmetric matrices A and
B of the same size, the notion A � B or B − A � O means that B − A is positive semi-definite.
Inequality between vectors or matrices denotes componentwise inequalities. Throughout this
paper, the terms ‘increasing’ and ‘decreasing’ are used in the weak sense. All integrals and
expectations are implicitly assumed to exist whenever they appear.

2.1. Some background on the elliptical distributions

The class of multivariate elliptical distributions is a natural extension of the class of multi-
variate normal distributions. We follow the notation of [7] and [20]. An n × 1 random vector
X = (X1, X2, . . . , Xn)′ is said to have an elliptically symmetric distribution if its characteristic

function has the form eit′μφ(t′�t) for all t ∈R
n, denoted X ∼ En(μ,�, φ), where φ ∈ �n is

called the characteristic generator satisfying φ(0) = 1, μ (n-dimensional vector) is its location
parameter, and � (an n × n matrix with � � O) is its dispersion matrix (or scale matrix). The
mean vector E(X) (if it exists) coincides with the location vector and the covariance matrix
Cov(X) (if it exists), and equals −2φ′(0)�. Note that in the one-dimensional case, the class of
elliptical distributions consists mainly of the class of symmetric distributions, which includes
well-known distributions like normal and Student t. A random vector X admits the stochastic
representation

X = μ + RA′U(n), (1)

where A is a square matrix such that A′A = �, U(n) is uniformly distributed on the unit sphere
Sn−1 = {u ∈R

n : u′u = 1}, R ≥ 0 is a random variable with R ∼ F in [0,∞) called the gener-
ating variate, and F is called the generating distribution function; R and U(n) are independent.
The mean vector E(X) exists if and only if E(R) exists; then, E(X) = μ. The covariance matrix
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Cov(X) exists if and only if E(R2) exists; then, Cov(X) = 1
nE(R2)�. In general, an elliptically

distributed random vector X ∼ En(μ,�, φ) does not necessarily possess a density. It is well
known that X has a density if and only if R has a density and � � O. The density has the form

f (x) = cn|�|− 1
2 gn((x − μ)′�−1(x − μ)), x ∈R

n,

for some nonnegative function gn called the density generator and for some constant cn

called the normalizing constant. We sometimes write X ∼ En(μ,�, gn) for the n-dimensional
elliptical distributions generated from the function gn.

The class of elliptical distributions possesses the linearity property. Consider the affine
transformations of the form Y = BX + b of a random vector X ∼ En(μ,�, φ), where
B is an m × n matrix with m< n and rank(B) = m, and b ∈R

m. Then, Y ∼ En(Bμ +
b,B�B′, φ). Taking B = (α1, . . . , αn) := α′ leads to α′X ∼ E1(α′μ, α′�α, φ). In particular,
Xk ∼ E1(μk, σ

2
k , φ), k = 1, 2, · · · , n, and

n∑
k=1

Xk ∼ E1

(
n∑

k=1

μk,

n∑
k=1

n∑
l=1

σ kl, φ

)
.

2.2. Stochastic orders

In this section we summarize some important definitions and facts about the stochas-
tic orderings of random vectors. The standard references for stochastic orderings are [15]
and [49].

For a function f : Rn →R, x ∈R
n, i ∈ {1, . . . , n}, and δ > 0, we define the difference oper-

ator �δi as �δi f (x) = f (x + δei) − f (x), where ei = (0, . . . , 0, 1, 0, . . . , 0) denotes the ith unit
vector. In the case n = 1 we simply write �δf (x) = f (x + δ) − f (x). A function f : Rn →R

is said to be increasing if �δi f (x) ≥ 0 for all x ∈R
n, δ > 0, and i = 1, . . . , n. A function

f : Rn →R is is said to be supermodular if �δi�
ε
j f (x) ≥ 0 for all x ∈R

n, δ, ε > 0, and
1 ≤ i< j ≤ n. Equivalently, a function f : Rn →R is said to be supermodular if, for any
x, y ∈R

n, f (x) + f (y) ≤ f (x ∧ y) + f (x ∨ y), where the operators ∧ and ∨ denote coordinate-
wise minimum and maximum, respectively. A function f is supermodular if and only if −f is
submodular.

A function f : Rn →R is said to be componentwise convex if f is convex in each argument
when the other arguments are held fixed. A function f : Rn →R is said to be directionally
convex if �δi�

ε
j f (x) ≥ 0 for all x ∈R

n, δ, ε > 0, and 1 ≤ i, j ≤ n. That is, f : Rn →R is direc-
tionally convex if it is supermodular and componentwise convex. Directional convexity neither
implies, nor is implied by, conventional convexity.

A function f : Rn →R is said to be a �-monotone function if, for all 1 ≤ k ≤
n, {i1, . . . , ik} ⊂ {1, . . . , n}, and every δ1, . . . , δk > 0, �δ1

i1
· · ·�δk

ik
f (x) ≥ 0 for all x ∈R

n,
δ, ε > 0.

We now recall the definitions of stochastic orders that will be used later. Let F be some
class of measurable functions f : Rn →R. For two random vectors X and Y in R

n, we say that
X ≤F Y if E[f (X)] ≤E[f (Y)] holds for all f ∈F whenever the expectations are well defined.
We list a few important examples below.

Usual stochastic order: X ≤st Y if E[f (X)] ≤E[f (Y)] for all increasing functions
f : Rn →R.

Convex order: X ≤cx Y if E[f (X)] ≤E[f (Y)] for all convex functions f : Rn →R.
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Linear convex order: X ≤lcx Y if E[f (a′X)] ≤E[f (a′Y)] for all a ∈R
n and for all convex

functions f : R→R.
Increasing convex order: X ≤icx Y if E[f (X)] ≤E[f (Y)] for all increasing convex functions

f : Rn →R.
Componentwise convex order: X ≤ccx Y if E[f (X)] ≤E[f (Y)] for all componentwise

convex functions f : Rn →R.
Increasing componentwise convex order: X ≤iccx Y if E[f (X)] ≤E[f (Y)] for all increasing

componentwise convex functions f : Rn →R.
Supermodular order: X ≤sm Y if E[f (X)] ≤E[f (Y)] for all supermodular functions

f : Rn →R.
Increasing supermodular order: X ≤ism Y if E[f (X)] ≤E[f (Y)] for all increasing supermod-

ular functions f : Rn →R.
Directionally convex order: X ≤dcx Y if E[f (X)] ≤E[f (Y)] for all directionally convex

functions f : Rn →R.
Increasing directionally convex: X ≤idcx Y if E[f (X)] ≤E[f (Y)] for all increasing direc-

tionally convex functions f : Rn →R.

The componentwise convex order was introduced by Mosler (1982), the directionally con-
vex order by [49], and the increasing directionally convex order by [42]. The supermodular
order compares only the dependence structure of vectors with fixed equal marginals, whereas
the increasing directionally convex order also compares both marginal variability and location.
However, a univariate function is directionally convex if, and only if, it is convex.

For a random vector X = (X1, . . . , Xn), we denote the multivariate distribution function by

FX(t) := P(X ≤ t) = P(X1 ≤ t1, . . . , Xn ≤ tn), t = (t1, . . . , tn) ∈R
n,

and the multivariate survival function by

FX(t) := P(X> t) = P(X1 > t1, . . . , Xn > tn), t = (t1, . . . , tn) ∈R
n.

The following definition is taking from [40].

Definition 1. Assume that X,Y ∈R
n are two random vectors.

• X is said to be smaller than Y in the upper orthant order, written X ≤uo Y, if FX(t) ≤
FY(t) for all t ∈R

n.

• X is said to be smaller than Y in the lower orthant order, written X ≤lo Y, if FX(t) ≤ FY(t)
for all t ∈R

n.

• X is said to be smaller than Y in the concordance order, written X ≤c Y, if both X ≤uo Y
and X ≤lo Y hold.

The orthant orders were treated by [49] and the concordance order was introduced by [28]. We
have the implication X ≤sm Y ⇒ X ≤uo Y and X ≤lo Y, and hence X ≤sm Y ⇒ X ≤c Y.

The upper orthant order can be defined alternatively by �-monotone functions. The
following lemma can be found in [44].

Lemma 1. X ≤uo Y if and only if E[f (X)] ≤E[f (Y)] holds for all �-monotone functions
f : Rn →R.

The following necessary and sufficient conditions for several important stochastic orders
can be found in [14] and [2].
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• X ≤sm Y if and only if E[f (X)] ≤E[f (Y)] holds for all twice differentiable functions
f : Rn →R satisfying, for all 1 ≤ i< j ≤ n,

∂2

∂xi∂xj
f (x) ≥ 0, x ∈R

n. (2)

• X ≤ism Y if and only if E[f (X)] ≤E[f (Y)] holds for all twice differentiable func-
tions f : Rn →R satisfying ∂

∂xi
f (x) ≥ 0, for x ∈R

n and all 1 ≤ i ≤ n, and (2) for all
1 ≤ i< j ≤ n.

• X ≤dcx Y if and only if E[f (X)] ≤E[f (Y)] holds for all twice differentiable functions
f : Rn →R satisfying (2) for all 1 ≤ i, j ≤ n.

• X ≤idcx Y if and only if E[f (X)] ≤E[f (Y)] holds for all twice differentiable func-
tions f : Rn →R satisfying ∂

∂xi
f (x) ≥ 0, for x ∈R

n and all 1 ≤ i ≤ n, and (2) for all
1 ≤ i, j ≤ n.

• X ≤uo Y if and only if E[f (X)] ≤E[f (Y)] holds for all infinitely differentiable func-

tions f : Rn →R satisfying ∂k

∂xi1 ···∂xik
f (x) ≥ 0 for x ∈R

n and all 1 ≤ i1 < · · ·< ik ≤ n,

1 ≤ k ≤ n.

• X ≤ccx Y if and only if E[f (X)] ≤E[f (Y)] holds for all twice differentiable functions

f : Rn →R satisfying ∂2

∂x2
i
f (x) ≥ 0 for x ∈R

n and all 1 ≤ i ≤ n.

• X ≤iccx Y if and only if E[f (X)] ≤E[f (Y)] holds for all twice differentiable functions

f : Rn →R satisfying ∂
∂xi

f (x) ≥ 0 and ∂2

∂x2
i
f (x) ≥ 0 for x ∈R

n and all 1 ≤ i ≤ n.

We first list the results of stochastic orderings for univariate elliptical distributions. The case
of univariate normal distributions can be found in [39].

Lemma 2. Let X ∼ E1(μx, σ
2
y , φ) and Y ∼ E1(μy, σ

2
y , φ). Then

(i) X ≤st Y if and only if μx ≤μy and σx = σy, provided that X and Y are supported on R

[13].

(ii) X ≤cx Y if and only if μx =μy and σx ≤ σy [43].

(iii) X ≤icx Y if and only if μx ≤μy and σx ≤ σy [43].

Now we list the results of stochastic orderings for multivariate elliptical distributions.

Lemma 3. ([43].) Let X ∼ En(μx,�x, φ) and Y ∼ En(μy,�y, φ). Then the following state-
ments are equivalent:

(i) μx = μy and �y − �x is positive semi-definite.

(ii) X ≤lcx Y.

(iii) X ≤cx Y.

For the case of increasing convex order, the sufficient and necessary conditions seem to be
unknown. The following sufficient condition for the increasing convex order can be found in
[43]. The results for the case of multivariate normal distributions can be found in [39].
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Lemma 4. Let X ∼ En(μx,�x, φ) and Y ∼ En(μy,�y, φ).

(i) If μx ≤ μy and �y − �x is positive semi-definite, then X ≤icx Y.

(ii) If X ≤icx Y, then μx ≤ μy and a′(�y − �x)a ≥ 0 for all a ≥ 0.

2.3. An identity for multivariate elliptical distributions

If f : Rn →R is twice continuously differentiable, we write as usual

∇f (x) =
(
∂

∂x1
f (x), . . . ,

∂

∂xn
f (x)

)
′, Hf (x) =

(
∂2

∂xi∂xi
f (x)

)
n×n

for the gradient and the Hessian matrix of f . It is well known that f is convex if and only if
Hf (x) is positive semidefinite for any x ∈R

n; f is strictly convex if and only if Hf (x) is positive
definite for any x ∈R

n. A function is supermodular if and only if its Hessian has nonnegative

off-diagonal elements, i.e. f is supermodular if and only if ∂2

∂xi∂xi
f (x) ≥ 0 for every i �= j and

x ∈R
n (cf. [9, Proposition 4.2]).

The following two results can be found in [25], [39], and [14] in the multivariate normal
case. Ding and Zhang extended the result from multivariate normal distributions to Kotz-type
distributions, which form an important class of elliptically symmetric distributions. We develop
an identity for multivariate elliptical distributions.

Lemma 5. Let X ∼ En(μx,�x, ψ) and Y ∼ En(μy,�y, ψ), with �x and �y positive definite.
Let φλ be the density function of En(λμy + (1 − λ)μx, λ�y + (1 − λ)�x, ψ), 0 ≤ λ≤ 1, and
φ1λ be the density function of En(λμy + (1 − λ)μx, λ�y + (1 − λ)�x, ψ1), 0 ≤ λ≤ 1, where

ψ1(u) = 1

E(R2)

∫ ∞

0
0F1

(
n

2
+ 1; − r2u

4

)
r2
P(R ∈ dr).

Here,

0F1(γ ;z) =
∞∑

k=0

(γ )

(γ + k)

zk

k!
is the generalized hypergeometric series of order (0, 1), and R is defined by (1) with
E(R2)<∞. Moreover, assume that f : Rn →R is twice continuously differentiable and
satisfies some polynomial growth conditions at infinity:

f (x) = O(||x||), �f (x) = O(||x||). (3)

Then

E[f (Y)] −E[f (X)] =
∫ 1

0

∫
Rn

(μy − μx)′∇f (x)φλ(x) dx dλ

+ E(R2)

2n

∫ 1

0

∫
Rn

tr{(�y − �x)Hf (x)}φ1λ(x) dx dλ,

where tr(A) denotes the trace of the matrix A.

For the proof, see the appendix.
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Using Lemma 5 and the same argument as the proof of [39, Corollary 3], we have the
following corollary.

Corollary 1. Let X ∼ En(μx,�x, ψ) and Y ∼ En(μy,�y, ψ), with �x and �y positive definite
or positive semidefinite, and assume that f : Rn →R satisfies the conditions of Lemma 5. Then
E[f (X)] ≤E[f (Y)] if the following two conditions hold for all x ∈R

n:
n∑

i=1

(μy
i −μx

i )
∂

∂xi
f (x) ≥ 0,

n∑
i=1

n∑
j=1

(σ y
ij − σ x

ij)
∂2

∂xi∂xj
f (x) ≥ 0.

3. Main results

The following results can be found in [13]. The multivariate normal case can be found in
[39]. Here we provide a different proof.

Theorem 1. Let X ∼ En(μx,�x, φ) and Y ∼ En(μy,�y, φ) be two n-dimensional elliptically
distributed random vectors supported on R

n. Then X ≤st Y if and only if μx ≤ μy and �y = �x.

Proof. For any increasing twice differential function f : Rn →R, the ‘if’ part follows imme-
diately from Corollary 1, since μx ≤ μy, �y = �x, and ∇f (x) ≥ 0 for all x ∈R

n imply that
E[f (Y)] ≥ E[f (X)]. To prove the ‘only if’ part, we choose f to have the forms f (x) = h1(xi)
and f (x) = h2(xi + xj), where h1 and h2 are any two univariate increasing functions. It fol-
lows from X ≤st Y that Xi ≤st Yi and Xi + Xj ≤st Yi + Yj. Note that X ∼ En(μx,�x, φ) and
Y ∼ En(μy,�y, φ) lead to Xi ∼ E1(μx

i , σ
x
ii, φ) and Xi + Xj ∼ E1(μx

i +μx
j , σ

x
ii + σ x

jj + 2σ x
ij, φ).

By the symmetry of elliptical distributions, all Xi, Xj, Yi, Yj, Xi + Yi, and Xj + Yj are supported
on R. Applying Lemma 2(i), we find that μx

i ≤μy
i and σ x

ij = σ
y
ij for all 1 ≤ i, j ≤ n. Hence,

μx ≤ μy and �y = �x. �
The following result, due to [43], generalizes [45, Theorem 4] and [39, Theorem 6] for the

multivariate normal case. Here, we provide a different proof.

Theorem 2. Let X ∼ En(μx,�x, φ) and Y ∼ En(μy,�y, φ). Then the following statements are
equivalent:

(i) μy = μx and �y − �x � O.

(ii) X ≤cx Y.

(iii) X ≤lcx Y.

Proof. (i) ⇒ (ii): For any twice differential convex function f : Rn →R, using
Lemma 5 we get E[f (Y)] ≥E[f (X)] since f is convex if and only if its Hessian matrix
Hf is positive semi-definite. (ii) ⇒ (iii) is obvious. (iii) ⇒ (i) is the same as the proof of
[43, Theorem 4.1]. �

The following result, due to [43], generalizes [39, Theorem 7] for the multivariate normal
case. Here we provide a different proof.

Theorem 3. Let X ∼ En(μx,�x, φ) and Y ∼ En(μy,�y, φ). Then the following statements
hold:

(i) If μx ≤ μy and �y − �x � O, then X ≤icx Y.

(ii) If X ≤icx Y, then μy ≥ μx and �y − �x is copositive, i.e. a′(�y − �x)a ≥ 0 for all a ≥ 0.
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Proof. (i): For any twice differential increasing convex function f : Rn →R, using
Lemma 5 together with the conditions μy ≥ μx and �y − �x � O, we get E[f (Y)] ≥
E[f (X)], and thus we have X ≤icx Y. The proof of (ii) is the same as the proof of [43,
Theorem 4.6(2)]. �

Remark 1. For the case of increasing convex order, there are no sufficient and necessary con-
ditions in the literature even for normal distributions (see [39] and [43]). We remark that if
(�y − �x)z = 0 has a positive solution, then a′(�y − �x)a ≥ 0 for all a ≥ 0 if and only if
�y − �x � O (see Theorem 12). So, we get the following ‘if and only if’ characterization
of increasing convex order.

Assume that X ∼ En(μx,�x, φ), Y ∼ En(μy,�y, φ), and (�y − �x)z = 0 has a positive
solution. Then X ≤icx Y if and only if μy ≥ μx and �y − �x � O.

Remark 2. It is easy to see that �y − �x � O implies that �y − �x is copositive, but the
converse is not true. We give an example. Let

�x =
(
σ 2 ρxσ

2

ρxσ
2 σ 2

)
, �y =

(
σ 2 ρyσ

2

ρyσ
2 σ 2

)
,

where σ 2 > 0 and −1 ≤ ρx <ρy ≤ 1. Then, for all a = (a1, a2)′ ≥ 0, a′(�y − �x)a =
a1a2σ

2(ρy − ρx) ≥ 0. But for Z = (z1,−z1)′ ∈R
2, Z′(�y − �x)Z = −z2

1σ
2(ρy − ρx) ≤ 0.

The following result generalizes [39, Theorem 11], in which the multivariate normal case
was considered. Special conditions are given for multivariate normal and elliptically contoured
distributions such that X ≤sm Y in [6].

Theorem 4. Let X ∼ En(μx,�x, φ) and Y ∼ En(μy,�y, φ). Then the following statements are
equivalent:

(i) X ≤sm Y.

(ii) X and Y have the same marginal and σ x
ij ≤ σ y

ij for all 1 ≤ i< j ≤ n.

Proof. (i) ⇒ (2): If X ≤sm Y, then X and Y necessarily belong to the same Fréchet space.
In particular, X and Y have the same marginal (see, e.g., [41]). Since the function f (x) = xixj is
supermodular for all 1 ≤ i< j ≤ n, we see that X ≤sm Y implies σ x

ij ≤ σ y
ij for all 1 ≤ i< j ≤ n.

Since X ≤sm Y if and only if E[f (X)] ≤E[f (Y)] holds for all twice differentiable functions

f : Rn →R satisfying ∂2

∂xi∂xj
f (x) ≥ 0 for x ∈R

n and all 1 ≤ i< j ≤ n, the implication (ii) ⇒ (i)
follows from Corollary 1. �

Theorem 5. Let X ∼ En(μx,�x, φ) and Y ∼ En(μy,�y, φ) be two n-dimensional elliptically
distributed random vectors supported on R

n.

(i) If μx ≤ μy, σ x
ii = σ

y
ii for i = 1, 2, . . . , n, and σ x

ij ≤ σ y
ij for all 1 ≤ i< j ≤ n, then X ≤ism Y.

(ii) If X ≤ism Y, then μx ≤ μy, σ x
ii = σ

y
ii for i = 1, 2, . . . , n.

(iii) If (X − μx) ≤ism (Y − μy), then σ x
ii = σ

y
ii for i = 1, 2, . . . , n and σ x

ij ≤ σ y
ij for all 1 ≤ i<

j ≤ n.
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Proof.

(i): For any twice differentiable functions f : Rn →R satisfying ∂
∂xi

f (x) ≥ 0 for x ∈R
n

and all 1 ≤ i ≤ n and ∂2

∂xi∂xj
f (x) ≥ 0 for x ∈R

n and all 1 ≤ i< j ≤ n, using Corollary 1

together with the conditions μy ≥ μx, σ x
ii = σ

y
ii for i = 1, 2, . . . , n and σ x

ij ≤ σ y
ij for all

1 ≤ i< j ≤ n, we get E[f (Y)] ≥E[f (X)]. Thus, we have X ≤ism Y.

(ii): X ≤ism Y implies that Xi ≤st Yi [42, p. 114]. Applying Lemma 2(i) we find that μx
i ≤μy

i
and σ x

ii = σ
y
ii for all 1 ≤ i ≤ n.

(iii): (X − μx) ≤ism (Y − μy) implies that (Xi −μx
i ) ≤st (Yi −μ

y
i ), and hence (Xi −μx

i )
d=

(Yi −μ
y
i ). Thus, σ x

ii = σ
y
ii for i = 1, 2, . . . , n. Consequently, (X − μx) ≤sm (Y − μy),

which implies that σ x
ij ≤ σ y

ij for all 1 ≤ i< j ≤ n. �

Corollary 2. Let X ∼ En(μx,�x, φ) and Y ∼ En(μy,�y, φ) be two n-dimensional elliptically
distributed random vectors supported on R

n. Then the following statements are equivalent:

(i) (X − μx) ≤ism (Y − μy).

(ii) σ x
ii = σ

y
ii for i = 1, 2, . . . , n, and σ x

ij ≤ σ y
ij for all 1 ≤ i< j ≤ n.

The following result generalizes [39, Theorem 12] in which the multivariate normal case
was considered.

Theorem 6. Let X ∼ En(μx,�x, φ) and Y ∼ En(μy,�y, φ). Then the following statements are
equivalent:

(i) X ≤dcx Y.

(ii) μx = μy and σ x
ij ≤ σ y

ij for all 1 ≤ i, j ≤ n.

Proof.

(i) ⇒ Note that the functions f (x) = xi,−xi, xixj are directionally convex for all 1 ≤ i, j ≤ n,
and thus μx = μy and σ x

ij ≤ σ y
ij for all 1 ≤ i, j ≤ n.

(ii) ⇒ (i): Since X ≤dcx Y if and only if E[f (X)] ≤E[f (Y)] holds for all twice differentiable

functions f : Rn →R satisfying ∂2

∂xi∂xj
f (x) ≥ 0 for x ∈R

n and all 1 ≤ i, j ≤ n, the implication
follows from Lemma 5.

For increasing directionally convex orders we have the following theorem.

Theorem 7. Let X ∼ En(μx,�x, φ) and Y ∼ En(μy,�y, φ).

(i) If X ≤idcx Y, then μx ≤ μy and σ x
ii ≤ σ y

ii for all 1 ≤ i ≤ n.

(ii) If (X − μx) ≤idcx (Y − μy), then σ x
ij ≤ σ y

ij for all 1 ≤ i, j ≤ n.

(iii) If μx ≤ μy and σ x
ij ≤ σ y

ij for all 1 ≤ i, j ≤ n, then X ≤idcx Y.

Proof.

(i): Choosing f (x) = g(xi) with g : R→R is increasing and convex. Thus, by Lemma 2(iii),
μx ≤ μy and σ x

ii ≤ σ y
ii for all 1 ≤ i ≤ n.
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(ii): (X − μx) ≤idcx (Y − μy) implies that (X − μx) ≤dcx (Y − μy) since they have the same
mean. The result follows from Theorem 6.

(iii): For all twice differentiable increasing functions f : Rn →R satisfying ∂2

∂xi∂xj
f (x) ≥ 0 for

x ∈R
n and all 1 ≤ i, j ≤ n, using Corollary 1 together with the conditions μx ≤ μy and

σ x
ij ≤ σ y

ij for all 1 ≤ i, j ≤ n, we get E[f (Y)] ≥E[f (X)]. Thus, we have X ≤idcx Y. �

Corollary 3. Let X ∼ En(μx,�x, φ) and Y ∼ En(μy,�y, φ). Then the following statements
are equivalent:

(i) (X − μx) ≤idcx (Y − μy).

(ii) σ x
ij ≤ σ y

ij for all 1 ≤ i, j ≤ n.

As pointed out by [39], the ‘if and only if’ characterization of the upper orthant order for
multinormal distributions has not been found. The following result generalizes and strengthens
[39, Theorem 10], in which the multivariate normal case was considered, and [30, Theorem 2],
in which bivariate elliptical distributions were considered.

Theorem 8. Let X ∼ En(μx,�x, φ) and Y ∼ En(μy,�y, φ) be two n-dimensional elliptically
distributed random vectors supported on R

n.

(i) If μx ≤ μy, σ x
ii = σ

y
ii for i = 1, 2, . . . , n and σ x

ij ≤ σ y
ij for all 1 ≤ i< j ≤ n, then X ≤uo Y.

(ii) If X ≤uo Y, then μx ≤ μy, σ x
ii = σ

y
ii for i = 1, 2, . . . , n.

(iii) If X and Y have the same marginal and X ≤uo Y, then σ x
ij ≤ σ y

ij for all 1 ≤ i< j ≤ n.

Proof.

(i): For any �-monotone function f : Rn →R, using Lemma 5 together with the conditions
μy ≥ μx, σ x

ii = σ
y
ii for i = 1, 2, . . . , n and σ x

ij ≤ σ y
ij for all 1 ≤ i< j ≤ n, we get E[f (Y)] ≥

E[f (X)], and thus we have X ≤uo Y.

(ii): Using the fact that X ≤uo Y implies that Xi ≤st Yi for all 1 ≤ i ≤ n and Lemma 2(i), we
get μx ≤ μy and σ x

ii = σ
y
ii for i = 1, 2, . . . , n.

(iii): Using the fact that X ≤uo Y implies that (Xi, Xj)′ ≤uo (Yi, Yj)′ for any 1 ≤ i< j ≤ n
together with X and Y having the same marginal leads to (Xi, Xj)′ ≤sm (Yi, Yj)′ (see
[40, Theorem 2.5]). But this implies that σ x

ij ≤ σ y
ij for all 1 ≤ i< j ≤ n. �

Corollary 4. Let X ∼ En(μx,�x, φ) and Y ∼ En(μy,�y, φ) be two n-dimensional ellipti-
cally distributed random vectors with the same marginal. Then the following statements are
equivalent:

(i) X ≤uo Y.

(ii) σ x
ij ≤ σ y

ij for all 1 ≤ i< j ≤ n.

The following theorem considers the componentwise convex order. The multivariate normal
case can be found in [42]; see also [2].

Theorem 9. Let X ∼ En(μx,�x, φ) and Y ∼ En(μy,�y, φ). Then the following statements are
equivalent:
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(i) X ≤ccx Y.

(ii) μx = μy and σ x
ii ≤ σ y

ii for all 1 ≤ i ≤ n, and σ x
ij = σ

y
ij for all 1 ≤ i< j ≤ n.

Proof.

(i) ⇒ (ii): Note that the functions f (x) = xi,−xi, x2
i , xixj,−xixj are componentwise convex

for all 1 ≤ i, j ≤ n. Thus, we get μx = μy, σ x
ii ≤ σ y

ii for all 1 ≤ i ≤ n and σ x
ij = σ

y
ij for all

1 ≤ i< j ≤ n.

(ii) ⇒ (i): For any twice differentiable functions f : Rn →R satisfying ∂2

∂x2
i
f (x) ≥ 0 for x ∈

R
n and all 1 ≤ i ≤ n, using Lemma 5 together with the conditions μx = μy, σ x

ii ≤ σ y
ii for

all 1 ≤ i ≤ n, and σ x
ij = σ

y
ij for all 1 ≤ i< j ≤ n, we get E[f (X)] ≤E[f (Y)]. Thus, X ≤ccx

Y. �

Similarly, we establish the result for increasing componentwise convex order as follows.

Theorem 10. Let X ∼ En(μx,�x, φ) and Y ∼ En(μy,�y, φ).

(i) If X ≤iccx Y, then μx
i ≤μy

i and σ x
ij ≤ σ y

ij for all 1 ≤ i, j ≤ n.

(ii) If μx
i ≤μy

i and σ x
ii ≤ σ y

ii for all 1 ≤ i ≤ n, and σ x
ij = σ

y
ij for all 1 ≤ i< j ≤ n, then

X ≤iccx Y.

Proof.

(i): Obviously, X ≤iccx Y implies that X ≤icx Y. Hence, by Lemma 4, μx ≤ μy and a′(�y −
�x)a ≥ 0 for all a ≥ 0. The latter inequality implies that σ x

ij ≤ σ y
ij for all 1 ≤ i, j ≤ n.

(ii): The proof is routine and is omitted. �

At the end of this section we will consider the copositive and completely positive orders
for multivariate elliptical random variables. The multivariate normal case can be found in [2].
Before we state Theorem 11, we first give the following definitions.

Definition 2. [2]. An n × n matrix A is called copositive if the quadratic form x′Ax ≥ 0 for all
x ≥ 0, and A is called completely positive if there exists a nonnegative m × n matrix B such
that A = B′B.

Denote by Ccop the cone of copositive matrices, and by Ccp the cone of completely positive
matrices. Let C∗

cop and C∗
cp be the duals of Ccop and Ccp, respectively. It is well known (see [2])

that C∗
cop = Ccp and C∗

cp = Ccop.
The following Hessian orders can be defined (see [2]).

• X ≤cp Y if E[f (X)] ≤E[f (Y)] holds for all functions f such that Hf (x) ∈ Ccp.

• X ≤cop Y if E[f (X)] ≤E[f (Y)] holds for all functions f such that Hf (x) ∈ Ccop.

Theorem 11. Let X ∼ En(μx,�x, φ) and Y ∼ En(μy,�y, φ). Then

(i) X ≤cp Y if and only if μx = μy and �y − �x is copositive.

(ii) X ≤cop Y if and only if μx = μy and �y − �x is completely copositive.

Proof. We prove (i) here; the proof of (ii) is similar.
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TABLE 1: Comparison criteria for X ∼ En(μx,�x, φ) and Y ∼ En(μy,�y, φ).

Constraints on parameters Relationship Order

μx ≤ μy, �y = �x ⇔ X ≤st Y
μx = μy, �y − �x � O ⇔ X ≤cx Y
μx = μy, �y − �x � O ⇔ X ≤lcx Y
μx ≤ μy, �y − �x � O ⇒ X ≤icx Y
μx ≤ μy, �y − �x � O, det(�y − �x) = 0 ⇔ X ≤icx Y
μx = μy, σ x

ii = σ
y
ii , σ

x
ij ≤ σ y

ij ⇔ X ≤sm Y
μx ≤ μy, σ x

ii = σ
y
ii , σ

x
ij ≤ σ y

ij ⇒ X ≤ism Y
σ x

ii = σ
y
ii , σ

x
ij ≤ σ y

ij ⇔ X − μx ≤ism Y − μy

μx = μy, σ x
ij ≤ σ y

ij ⇔ X ≤dcx Y
σ x

ij ≤ σ y
ij ⇔ X − μx ≤idcx Y − μy

μx ≤ μy, σ x
ii = σ

y
ii , σ

x
ij ≤ σ y

ij ⇒ X ≤uo Y
μx = μy, σ x

ii ≤ σ y
ii , σ

x
ij = σ

y
ij ⇔ X ≤ccx Y

μx ≤ μy, σ x
ii ≤ σ y

ii , σ
x
ij = σ

y
ij ⇒ X ≤iccx Y

μx = μy, �y − �x copositive ⇔ X ≤cp Y
μx = μy, �y − �x completely copositive ⇔ X ≤cop Y

‘if’: Consider the functions fi(x) = xi,−xi (1 ≤ i ≤ n). Observe that Hfi(x) = O ∈ Ccp. Thus,
X ≤cp Y implies μx = μy. Let E(X) =E(Y) = μ. For any symmetric n × n matrix A ∈ Ccp,
define a function f as f (x) = 1

2 (x − μ)′A(x − μ). Observe that Hf (x) = A for all x, and
thus X ≤cp Y implies E[f (X)] ≤E[f (Y)], which is equivalent to E(X − μ)′A(X − μ) ≤E(Y −
μ)′A(Y − μ). It follows from the above that −2φ′(0)tr(�xA) ≤ −2φ′(0)tr(�yA). Therefore,
tr((�y − �x)A) ≥ 0. Since A ∈ Ccp is arbitrary, we conclude that �y − �x ∈ C∗

cp. Hence,
�y − �x is copositive, since C∗

cp = Ccop.
‘only if’: For any f such that Hf (x) ∈ Ccp, using Lemma 5 together with the condition

μx = μy and the fact that �y − �x is copositive yields E[f (X)] ≤E[f (Y)], as desired. �
The main results in this section are summarized in Table 1.

4. Applications and examples

This section deals with some applications of the previous results. One can obtain a series
of probability and expectation inequalities for multivariate elliptical random variables. We will
restrict ourselves to applications concerning the supermodular ordering.

4.1. Application 1

Slepian’s theorem for multivariate normal distributions with nonsingular covariance matrix
can be found in [51]. Reference [12] generalized Slepian’s theorem to elliptical distribu-
tions with nonsingular covariance matrix, which was later proved in a different way by [27].
Reference [28] provided a shorter elementary proof. For its extension to the case of singular
covariance matrix the reader is referred to [19]. Here, we give a simple proof. Further results
on the normal comparison inequalities of Slepian type can be found in [31], [54], and [10]. The
following result can be found in [19]. It is an immediate consequence of Theorem 4.

Example 1. Let X ∼ En(μx,�x, φ) and Y ∼ En(μy,�y, φ). If X and Y have the same
marginals and σ x

ij ≤ σ y
ij for all 1 ≤ i< j ≤ n, then, for every a ∈R

n, P(X1 ≤ a1, . . . , Xn ≤
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an) ≤ P(Y1 ≤ a1, . . . , Yn ≤ an) and P(X1 > a1, . . . , Xn > an) ≤ P(Y1 > a1, . . . , Yn > an).
Furthermore, the inequality is strict if σ x

ij <σ
y
ij for some i, j and if the supports of X,Y are

unbounded.

4.2. Application 2

In this section we list various simple but useful inequalities for certain functions of multi-
variate elliptical random variables. The proofs are based on the results in Section 3; the most
important result is the one on supermodular orders. We remark that supermodular functions
play a significant role in applied fields, such as risk management, insurance, queueing, macroe-
conomic dynamics, optimization, and game theory. The following are some useful results and
properties of supermodular functions. The proofs can be found in [3], [11], [51], and [33,
p. 219].

Lemma 6.

• If f is increasing and supermodular, then max {f , c} is supermodular for all c ∈R.

• If f : Rn →R is supermodular then the function ψ defined by ψ(x1, x2, . . . , xn) =
f (g1(x1), . . . , gn(xn)), is also supermodular whenever gi:R→R, i = 1, 2, . . . , n, are
either all increasing or all decreasing.

• If fi is increasing (decreasing) on R
1 for i = 1, 2, . . . , n, then

f (x) = min{f1(x1), . . . , fn(xn)} = − max{f1(x1), . . . , fn(xn)}

is supermodular on R
n.

• H(x) = (∑n
k=1 gi(xi) − t

)+
,
(∏n

k=1 gi(xi) − t
)+

are supermodular for any t ≥ 0.

• If f is monotonic supermodular and g is increasing and convex, then g ◦ f is monotonic
and supermodular.

• H(x) =∏n
k=1 φi(xi) is supermodular, where φi:R→R

+, i = 1, 2, . . . , n, are either all
increasing or all decreasing.

• The function f (x) = ν(x1 + · · · + xn) is supermodular, where ν is increasing convex.

• H(x) = − 1
n−1

∑n
i=1 (Xi − X)2 is supermodular.

• The function H(x) = max1≤k≤n
∑k

i=1 Xk is supermodular and increasing.

The following result is an immediate consequence of Theorem 4 and Lemma 6, and is now
used in many areas such as actuarial sciences, economic theory, and statistics and probability
(see, e.g., [10, 11, 22, 37]).

Example 2. Assume that X ∼ En(μx,�x, φ), Y ∼ En(μy,�y, φ), that X and Y have the same
marginal, and σ x

ij ≤ σ y
ij for all 1 ≤ i< j ≤ n.

• Let f be an increasing convex function on ( − ∞,∞). Then

Ef (g1(X1) + · · · + gn(Xn)) ≤Ef (g1(Y1) + · · · + gn(Yn)),

where g1, . . . , gn are monotonic in the same direction.
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• Assume that f : Rn →R is supermodular, and gi:R→R, i = 1, 2, . . . , n, are either all
increasing or all decreasing. Then

Ef (g1(X1), . . . , gn(Xn)) ≤Ef (g1(Y1), . . . , gn(Yn)).

• If f is increasing and supermodular, then E max{f (X), 0} ≤E max{f (Y), 0}.
• E

∏n
k=1 φi(Xi) ≤E

∏n
k=1 φi(Yi), where φk:R→R

+ are monotonic in the same direction.

• If fi:R→R, i = 1, 2, . . . , n, are either all increasing or all decreasing, then

E min{f1(X1), . . . , fn(Xn)} ≤E min{f1(Y1), . . . , fn(Yn)},
E max{f1(X1), . . . , fn(Xn)} ≥E max{f1(Y1), . . . , fn(Yn)}.

• ES2
x ≥ES2

y , where

S2
x = 1

n − 1

n∑
i=1

(Xi − X)2, S2
y = 1

n − 1

n∑
i=1

(Yi − Y)2.

• If f is a nondecreasing convex function, then

Ef

(
max

1≤k≤n

k∑
i=1

Xk

)
≤Ef

(
max

1≤k≤n

k∑
i=1

Yk

)
.

We illustrate special applications of the above result in the following examples.

Example 3. (Equicorrelated elliptical variables.) Let X ∼ En(μ,�x, φ) with �x = (σ x
ij) such

that σ x
ii = σ 2, σ x

ij = ρxσ
2 for 1< i< j ≤ n, σ 2 > 0, ρx ∈ [ − 1, 1], and let Y ∼ En(μ,�y, φ)

with �y = (σ y
ij) such that σ y

ii = σ 2, σ y
ij = ρyσ

2 for 1< i< j ≤ n, ρy ∈ [ − 1, 1]. Then X ≤sm Y
if and only if ρx ≤ ρy.

Bäuerle [3] obtained the similar result for normal variables and ρx, ρy ∈ [0, 1]. For any
supermodular function f : Rn →R, we deduce that the expectation Ef (X) is increasing in ρx.
We remark that for this special correlated elliptical variable, the supermodularity of f is not

necessary. For example, if f : Rn →R is twice differentiable and satisfies ∂2

∂xi∂xj
f (x) ≥ 0 for

x ∈R
n and for some 1 ≤ i< j ≤ n, then [27, Proposition 1] and their remarks on p. 454 imply

that Ef (X) is increasing in ρx. For example, if ρx ≤ ρy, then E(X1X2X2
3) ≤E(Y1Y2Y2

3 ) and
E(X3

1X3
2X4

3) ≤E(Y3
1 Y3

2 Y4
3 ).

Example 4. (Serial correlated elliptical variables.) Let X ∼ En(μ,�x, φ) and Y ∼
En(μ,�y, φ), with

�x =

⎛
⎜⎜⎜⎜⎜⎜⎝

σ 2 ρxσ
2 · · · ρn−1

x σ 2

ρxσ
2 σ 2 · · · ρn−2

x σ 2

...
...

. . .
...

ρn−1
x σ 2 ρn−2

x σ 2 · · · σ 2

⎞
⎟⎟⎟⎟⎟⎟⎠
,

https://doi.org/10.1017/jpr.2020.104 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.104


Stochastic orderings of multivariate elliptical distributions 565

�y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ 2 ρyσ
2 · · · ρn−1

y σ 2

ρyσ
2 σ 2 · · · ρn−2

y σ 2

...
...

. . .
...

ρn−1
y σ 2 ρn−2

y σ 2 · · · σ 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where σ 2 > 0 and ρx, ρy ∈ [ − 1, 1]. Then X ≤sm Y if and only if ρx ≤ ρy.

Appendix A

Theorem 12. Let f (y) = y′Ay, y ∈R
n, where A is an n × n symmetric matrix. If Az = 0 has a

positive solution, then y′Ay ≥ 0 for all y ≥ 0 if and only if y′Ay ≥ 0 for all y ∈R
n.

Proof. We just prove the ‘only if ’ part. Since f is quadratic, using Taylor’s expansion we get
f (x + ty) = f (x) + ty′∇f (x) + t2f (y), x, y ∈R

n, t ∈R, where ∇f (x) = 2Ax is the gradient of f .
We choose an x0 > 0 such that Ax0 = 0 and f (x0) = 0. Then f (x0 + ty) = t2f (y). Since, for any
y ∈R

n and t> 0 small enough, we have x0 + ty ≥ 0, we thus get f (y) ≥ 0. �
Proof of Lemma 5. For 0 ≤ λ≤ 1, define

�λ(t) = exp
(
it′
(
λμy + (1 − λ)μx))ψ(t′(λ�y + (1 − λ)�x)t), t ∈R

n.

By using the Fourier inversion theorem,

φλ(x) =
(

1

2π

)n ∫
e−it′x�λ(t) dt.

The derivative of �λ with respect to λ is

∂�λ(t)
∂λ

= it′(μy − μx) exp
(
it′
(
λμy + (1 − λ)μx))ψ(t′(λ�y + (1 − λ)�x)t)

+ t′(�y − �x)t exp
(
it′
(
λμy + (1 − λ)μx))ψ ′(t′(λ�y + (1 − λ)�x)t),

and hence

∂φλ(x)

∂λ
=
(

1

2π

)n ∫
e−it′x ∂�λ(t)

∂λ
dt

=
(

1

2π

)n ∫
e−it′x�λ(t)it′(μy − μx) dt

+
(

1

2π

)n ∫
e−it′xt′(�y − �x)t exp

(
it′
(
λμy + (1 − λ)μx))ψ ′

× (t′(λ�y + (1 − λ)�x)t) dt

= −
n∑

i=1

(μy
i −μx

i )
∂φλ(x)

∂xi
+�,

where

�=
(

1

2π

)n ∫
e−it′xt′(�y − �x)t exp

(
it′
(
λμy + (1 − λ)μx))ψ ′(t′(λ�y + (1 − λ)�x)t) dt.
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Note that, by (1), there exists a random variable R ≥ 0 such that

ψ(t′t) =E

(
E
(
eiRt′U(n) | R

))=
∫ ∞

0
0F1

(
n

2
; − r2||t||2

4

)
P(R ∈ dr),

where in the second equality we have applied [20, Theorem 3.1] [note that there is a printing
error in [20, (3.3)]] and

0F1(γ ; z) =
∞∑

k=0

(γ )

(γ + k)

zk

k! .

Thus, for u> 0,

ψ ′(u) = ∂

∂u

∫ ∞

0
0F1

(
n

2
; − r2u

4

)
P(R ∈ dr)

=
∫ ∞

0

∂

∂u
0F1

(
n

2
; − r2u

4

)
P(R ∈ dr)

= − 1

2n

∫ ∞

0
0F1

(
n

2
+ 1; − r2u

4

)
r2
P(R ∈ dr)

≡ −E
(
R2
)

2n
ψ1(u),

where

ψ1(u) = 1

E
(
R2
) ∫ ∞

0
0F1

(
n

2
+ 1; − r2u

4

)
r2
P(R ∈ dr)

is a characteristic generator. Here,

c
(||t||2) := 0F1

(
n

2
+ 1; − ||t||2

4

)

is the characteristic function of a uniform distribution in the unit sphere in R
n (see, e.g., [54]).

Thus, � can be rewritten as

�= E
(
R2
)

2n

n∑
i=1

n∑
j=1

(σ y
ij − σ x

ij)
∂2φ1λ(x)

∂xi∂xj
.

Define g(λ) = ∫
Rn f (x)φλ(x) dx; then, E[f (Y)] −E[f (X)] = g(1) − g(0) = ∫ 1

0 g′(λ) dλ. The
result follows since

g′(λ) =
∫
Rn

f (x)
∂φλ(x)

∂λ
dx

=
∫
Rn

(μy − μx)′∇f (x)φλ(x) dx

+ E
(
R2
)

2n

∫
Rn

tr{(�y − �x)Hf (x)}φ1λ(x) dx.

Here, in the last equality we have used the integration by parts formula and the conditions
in (3). �
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