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Rotating Rayleigh–Bénard convection provides a simplified dynamical analogue for
many planetary and stellar fluid systems. Here, we use numerical simulations of
rotating Rayleigh–Bénard convection to investigate the scaling behaviour of five
quantities over a range of Rayleigh (103 . Ra . 109), Prandtl (1 6 Pr 6 100) and
Ekman (10−6 6 E 6 ∞) numbers. The five quantities of interest are the viscous
and thermal boundary layer thicknesses, δv and δT , mean temperature gradients, β,
characteristic horizontal length scales, `, and flow speeds, Pe. Three parameter regimes
in which different scalings apply are quantified: non-rotating, weakly rotating and
rotationally constrained. In the rotationally constrained regime, all five quantities are
affected by rotation. In the weakly rotating regime, δT , β and Pe, roughly conform
to their non-rotating behaviour, but δv and ` are still strongly affected by the Coriolis
force. A summary of scaling results is given in table 2.

Key words: Bénard convection, convection, geophysical and geological flows

1. Introduction
Convection is ubiquitous in nature, as fluids in many astro- and geophysical bodies

flow to redistribute destabilizing thermal and gravitational energy stores. Rotation is
also a common feature of these systems, which can strongly influence the nature of
convection through the Coriolis acceleration.

We examine a simplified analogue of these systems by way of Rayleigh–Bénard
convection (RBC) with and without rotation. RBC consists of a fluid layer sandwiched
between two rigid, horizontal boundaries (Bénard 1900; Rayleigh 1916). The bottom
boundary is warmer than the top, and the gravity vector points downwards. This
temperature drop, 1T , destabilizes the fluid layer, as cool, heavier fluid lies atop
warmer, more buoyant fluid. The convection is Boussinesq; fluid properties are
isotropic and fixed in time and space, except in the buoyancy force, which is driven
by thermal expansion. For rotating RBC, the fluid layer is rotated about a vertical axis
with constant angular frequency Ω .

† Email address for correspondence: ericmking@gmail.com
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Parameter Definition Simulations

Input
Rayleigh number Ra≡ αg1TL3/(νκ) 103 . Ra . 109

Ekman number E ≡ ν/(2ΩL2) 10−6 6 E 6∞
Prandtl number Pr ≡ ν/κ 1 6 Pr 6 100

Output Nusselt number Nu≡ qL/(k1T) 1 . Nu . 50
Péclet number Pe≡ UL/κ 3< Pe< 3000

TABLE 1. Dimensionless parameters used in the development of scaling laws. Dimensional
quantities are as follows: α is the fluid’s coefficient of thermal expansivity; g is
gravitational acceleration; 1T is the temperature drop across the fluid layer; L is the
depth of the fluid layer; ν is the fluid’s viscous diffusivity; κ is the thermal diffusivity
of the fluid; Ω is the angular rotation rate; q is mean heat flux; k is the fluid’s thermal
conductivity; and U is a mean flow speed.

Rotating RBC is governed by the Boussinesq Navier–Stokes equations and the heat
equation (e.g. Chandrasekhar 1953):

∂u
∂t
+ u ·∇u+ 2Ω × u=− 1

ρ0
∇p+ αgT + ν∇2u, (1.1)

∇ ·u= 0, (1.2)
∂T

∂t
+ u ·∇T = κ∇2T, (1.3)

respectively, where u, p and T are velocity, modified pressure and temperature fields,
respectively, α and ρ0 are the fluid’s thermal expansivity and mean density such that
∂ρ/∂T =−αρ0, and ν and κ are the viscous and thermal diffusivity of the fluid.

There are five global input parameters in the governing equations: Ω, ν, κ, g′ =
αg1T and L, the depth of the fluid layer, which contain two fundamental dimensions,
time and length. By Buckingham’s Π theorem, the system is therefore defined by
three independent prognostic parameters (Barenblatt 2003), which are usually taken to
be Ra, E and Pr (see table 1). The buoyancy forcing is characterized by the Rayleigh
number, Ra. The period of rotation is characterized by the Ekman number, E. The
Prandtl number, Pr , characterizes the fluid itself as a ratio of viscous to thermal
diffusivities.

Rotating convection can be considered to occur in one of two basic regimes,
rotationally constrained and weakly rotating, as evinced by global heat transfer
behaviour, Nu (see table 1) (e.g. King et al. 2009; Schmitz & Tilgner 2010).
Heat transfer by rotationally constrained convection is suppressed relative to that
by convection without rotation (e.g. Rossby 1969; Liu & Ecke 2009). Heat transfer
by convection in the weakly rotating regime is observed to scale similarly to
that by convection without rotation (e.g. Liu & Ecke 1997; Niemela, Babuin &
Sreenivasan 2010). King, Stellmach & Aurnou (2012) investigate the scaling behaviour
of Nu, using measurements from laboratory experiments and numerical simulations
of: (i) non-rotating convection; (ii) weakly rotating convection; and (iii) rotationally
constrained convection. Transitions between the latter two regimes are observed to
occur when RaE3/2 ≈ 10.

Here, we extend this framework to investigate the scaling behaviour of five separate
quantities calculated from numerical RBC simulations with and without rotation. The
five quantities of interest are: viscous boundary layer thickness, δv (§ 3); thermal
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Rotating convection scalings 451

boundary layer thickness, δT (§ 4); bulk thermal gradients, β (§ 5); typical horizontal
length scale of flow, ` (§ 6); and typical flow speed, Pe (§ 7). The present simulations
are identical to those of King et al. (2012), so we adopt the same distinction
between dynamical regimes. Non-rotating convection is strictly defined by E−1 = 0,
whereas rotating convection occurs with E−1 > 0. The rotating system is said to be
weakly rotating when RaE3/2 > 10 and rotationally constrained when RaE3/2 < 10.
The rationale behind this regime transition parametrization, as well as its alternatives,
are discussed in § 8. A brief summary is given in § 9.

2. Methods
2.1. Numerical model

The time evolution of the velocity, pressure and temperature fields are calculated as
numerical solutions of the governing equations (1.1)–(1.3) in dimensionless form:

E

Pr
(∂̃tũ+ ũ · ∇̃ũ)+ ẑ× ũ=−∇̃p̃+ RaET̃ ẑ+ E∇̃2ũ, (2.1)

∇̃ · ũ= 0, (2.2)
∂̃tT̃ + ũ · ∇̃T̃ = ∇̃2T̃, (2.3)

where dimensionless variables and operators are designated by tildes, and ẑ is the
vertical unit vector. The fundamental time scale is taken to be a thermal diffusion
time scale, L2/κ . The temperature field is normalized by the temperature drop imposed
across the layer, 1T .

The computational domain is a Cartesian box with periodic sidewalls (in order to
approximate an infinite plane layer); rigid, no-slip top and bottom boundaries; and
diameter-to-height aspect ratio, 1 6 Γ 6 4. Temporal discretization is accomplished
through a second-order, semi-implicit Adams–Bashforth backward differentiation time
stepping. Fourier series are used for spatial discretization in the horizontal direction,
while Chebyshev polynomials are used in the vertical direction. The ranges of input
parameters accessed are given in table 1. For further details on the numerical method
and validation, see Stellmach & Hansen (2008) and King et al. (2012).

2.2. Measurement technique
We define the following nomenclature for averaging: an overbar, · · ·, represents time
averaging; angle brackets represent spatial averaging over the entire computational
domain, 〈· · ·〉, over horizontal planes, 〈· · ·〉H , and across the vertical extent, 〈· · ·〉z.
Time averages are usually taken over hundreds of overturn times, and never less than
ten; see King et al. (2012).

Viscous boundary layer thicknesses δv are calculated as the vertical distance of the
first local maximum of the mean horizontal velocity profile above (below) the bottom
(top) domain boundary. That is, a vertical profile for the mean magnitude of the
horizontal velocity is acquired,

UH(z)=
〈√

ũ2
H

〉
H

, (2.4)

where ũH is the dimensionless horizontal velocity, and the local peaks of this profile
nearest each of the top and bottom boundaries represent the edge of the top and
bottom viscous boundary layers (Belmonte, Tilgner & Libchaber 1994). An example
profile is shown in figure 1. The top and bottom layer thicknesses are averaged, giving
the mean viscous boundary layer thickness, δv.
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FIGURE 1. An example of profiles of mean temperature (〈T̃〉H , solid line), temperature
variance (Trms, solid-filled curve) and mean horizontal flow speed (UH , stripe-filled curve),
from a non-rotating convection simulation with Pr = 1 and Ra = 7 × 105. The horizontal
dotted and dashed lines depict the calculated thickness of the thermal and viscous boundary
layers, respectively.

Thermal boundary layer thicknesses δT are similarly calculated, using vertical
profiles for mean temperature fluctuations,

Trms(z)≡
〈√(

T̃ − 〈T̃〉H
)2
〉

H

. (2.5)

Again, local peaks in this temperature fluctuation profile give estimates for the
locations of the edges of the top and bottom thermal boundary layers, whose
thicknesses are averaged to calculate δT . An example of these profiles from a
representative numerical simulation is shown in figure 1.

The typical horizontal length scale of the flow, `, is defined in the following way.
Let E (k,m)= [ũ(k,m)ũ∗(k,m)] be the dimensionless kinetic energy contained in horizontal
modes k and m. The characteristic flow scales are determined by calculating the
dominant horizontal wavelength of flow, `, as

`−1 ≡


∑
k,m

E (k,m)
√

k2 + m2

2π
∑
k,m

E (k,m)

. (2.6)

Mean vertical temperature gradients at mid-depth are calculated as

β = d
dz
〈T̃〉H

∣∣∣∣
z=L/2

. (2.7)
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FIGURE 2. (Colour online) Péclet number versus Rayleigh number, with Ekman numbers
denoted by symbol shape (and colour online), and Prandtl numbers indicated by symbol size.
This figure illustrates the parameter range accessed by numerical simulations.

The Nusselt number characterizes the heat transport as

Nu≡ 〈ũzT̃ − ∂T̃/∂ z̃
〉
, (2.8)

and the Péclet number is defined as the typical amplitude of flow speed,

Pe≡ 〈ũ · ũ〉1/2. (2.9)

Péclet number calculations are shown in figure 2 plotted versus Ra to illustrate the
parameter range accessed in this study. Ekman numbers are denoted by symbol shape
(and colour online), and Prandtl numbers are denoted by symbol size.

Statistical f -tests are used to distinguish quality of fit between two different scalings
for identical data. An f -test assesses whether these scalings are significantly different
by testing their misfits against the null hypothesis that they have equal variance to
within 5 % significance. That is, the ratio of the residual variances from the two
scalings is compared with 95 % confidence bounds from an f -distribution with the
same degrees of freedom as these residual populations (Snedecor & Cochran 1980).

3. Viscous boundary layers, δv
3.1. Non-rotating

Viscous boundary layers in turbulent flows are commonly assumed to be of the
Blasius type, derived by balancing the viscous term, which becomes important near
the boundary, with the inertial term, which is thought to dominate in the bulk (e.g.
Kundu 1990). Matching these terms at the edge of the boundary layer, and assuming
the length scale of flow is L, gives

u ·∇u∼ ν∇2u→ U2/L∼ νU/δ2
v . (3.1)
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FIGURE 3. (Colour online) (a) Viscous boundary layer thickness versus Reynolds number,
Re = Pe/Pr , for simulations without rotation (E = ∞). The solid line illustrates the slope
of the predicted scaling δv ∼ Re−1/2L. The dashed line shows δv = 0.34Re−1/4L. (b) Viscous
boundary layer thickness versus the Ekman number, for rotating convection simulations. The
solid black line shows δv = 3E1/2L. Symbols have the same meaning as in figure 2.

The viscous boundary layer thickness, δv, should then scale as

δv ∼
√
νL/U = Re−1/2L, (3.2)

where Re= Pe/Pr is the Reynolds number. This boundary layer scaling represents the
distance over which viscosity and acceleration by Reynolds stresses act on similar time
scales. A Blasius boundary layer thickness is often assumed for the development of
scaling laws in non-rotating convection (e.g. Grossmann & Lohse 2000).

Figure 3(a) shows the thicknesses of the viscous boundary layer versus the Reynolds
number from non-rotating convection simulations. The solid line shows the slope of
the predicted scaling (3.2). The boundary layers within the simulations, however, are
less strongly dependent on Re. A best-fit power-law regression to these data with
Re> 10 gives

δv = 0.34(±0.05)Re−0.25(±0.03)L. (3.3)

This empirical scaling law is shown as the dashed line in figure 3(a), and agrees with
the data to within 5 % for Re > 10. It is not currently clear why the non-rotating
viscous boundary layer scales weakly with Re, but this result is consistent with the
extensive experimental study of Lam et al. (2002), and the numerical simulations of
Breuer et al. (2004). We revisit this issue in the discussion section.

3.2. Rotating
The viscous boundary layer in rotating flows is known as an Ekman boundary layer,
named after its discoverer, Ekman (1905). The scaling behaviour for the thickness of
the Ekman layer comes from a balance between the Coriolis and viscous terms near
the top and bottom domain boundaries:

2Ω × u∼ ν∇2u→ 2UΩ ∼ νU/δ2
v . (3.4)

The viscous boundary layer thickness, δv, should then scale as

δv ∼ δE =
√
ν/2Ω = E1/2L (3.5)

in rotating convection. This boundary layer scaling represents the distance over which
viscosity acts during a rotational time scale.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

58
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.586


Rotating convection scalings 455
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FIGURE 4. (Colour online) Thermal boundary layer thickness versus Nusselt number for
convection with and without rotation. The solid line shows the slope of the predicted scaling
(4.1), δT = L/(2Nu). Symbols have the same meaning as in figure 2.

Figure 3(b) shows calculations of the thickness of the viscous boundary layer plotted
versus E for rotating convection. Our most rapidly rotating data appear to conform
to (3.5). The solid line shows δv/L = 3E1/2, which fits the data to within 25 % on
average for all rotating cases (E 6 10−3), and to within 8 % on average for E 6 10−4.
Interestingly, the scaling (3.5) holds for all rotating convection simulations, even those
with RaE3/2 > 10, whose global statistics such as mean heat transport and flow speeds
are no longer rotationally constrained (King et al. (2012), figure 6; and present work,
figure 11b, respectively).

4. Thermal boundary layers, δT

4.1. Non-rotating

Turbulent convection, in the absence of constraining influences such as rotation,
tends to mix the bulk fluid. Temperature within the interior becomes uniform as
Ra is increased. The imposed temperature drop across the fluid layer is therefore
accomplished almost entirely within the thermal boundary layers. The Nusselt number,
Nu, is defined as the ratio of total heat transport to that by conduction alone.
Conductive heat transport across the layer is given by qcond = k1T/L. The total
amount of heat transported by the fluid can, in this idealized case, be related to
the thickness of the boundary layer. Within the thermal boundary layer, heat transport
is nearly entirely conductive, and so qtotal ≈ k1T/2δT . Thus, for turbulent, non-rotating
convection, we expect (e.g. Spiegel 1971)

δT ≈ 1
2Nu

−1L. (4.1)

Figure 4 shows the thermal boundary layer thicknesses plotted versus Nu (non-rotating
convection data are shown as circles). The solid line shows the predicted scaling (4.1),
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FIGURE 5. (Colour online) (a) Thermal boundary layer thickness normalized by the
predicted scaling Nu−1 plotted versus the transition parameter, RaE3/2. The solid horizontal
line indicates the predicted scaling (4.1), and the dotted horizontal lines indicate the standard
deviation of non-rotating convection data about (4.1) (b) The ratio of thermal boundary layer
thickness to viscous boundary layer thickness plotted versus RaE3/2 for rotating convection.
The dashed vertical lines in both panels indicate the approximate location of the boundary
layer crossing. Symbols have the same meaning as in figure 2.

which fits the non-rotating data to within 15 % for all cases, and to within 6 %
for Nu> 4.

4.2. Rotating
In figure 4, we observe that the thermal boundary layer thickness in rotating
convection is less well described by (4.1) than for convection without rotation. The
quality of fit of the thermal boundary layer thickness calculations to the Nu−1 scaling
is especially poor within the rotationally constrained regime. To see this, in figure 5(a)
we plot (δT/L)Nu versus the parameter RaE3/2, which was previously defined to
identify the transition between rotationally constrained and weakly rotating regimes.
The solid horizontal line shows the predicted scaling for a well-mixed convective
interior (4.1), and the dotted horizontal lines indicate the standard deviation of non-
rotating convection data about this prediction. In the rotationally constrained regime
(RaE3/2 < 10), the misfit between thermal boundary layer thickness data and the
classical prediction (4.1) (solid horizontal line) is 52 % on average, and can be as
high as 170 %. For weakly rotating convection (RaE3/2 > 10), however, the thermal
boundary layer thickness data are better fitted by (4.1) with an average error of 13 %
and a peak misfit of 31 %.

The poor agreement between (4.1) and rotationally constrained convection data is
probably due to the breakdown of the assumption that the interior fluid is well mixed
when a strong rotational influence is present. This effect of the Coriolis force has
been previously observed in both experiments (e.g. Boubnov & Golitsyn 1990) and
simulations (e.g. Julien et al. 1996, 2012). King et al. (2010) show that thermal
mixing in geodynamo simulations can be subdued by rotation for increasingly higher
Nu as E is decreased. They argue that, as the Ekman layer becomes thinner than
the thermal boundary layer, the interior fluid maintains significant thermal gradients,
invalidating the classical thermal boundary layer thickness scaling (4.1).

In figure 5(b), we plot the relative thicknesses of the thermal and Ekman boundary
layers, δT/δv, calculated for all rotating convection simulations versus our predicted
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FIGURE 6. (Colour online) Mean temperature profiles for (a) non-rotating and (b) rotating
convection. (a) Temperature profiles for non-rotating convection with Ra = 7 × 105 and
Pr = 1, 7 and 100. Thermal overshoot is observed as the Prandtl number is increased.
(b) Temperature profiles for Pr = 1 and: E =∞ (non-rotating) and Ra= 7× 105, solid curve,
as in (a); E = 10−3 and Ra= 7× 105, dashed curve; E = 10−4 and Ra= 4× 106, dash-dotted
curve; and E = 10−5 and Ra= 7× 107, dotted curve. All four cases have 7.5< Nu< 8.

transition RaE3/2. The boundary layers swap relative positions where δT/δv crosses
unity, which occurs somewhere in the range 7 < RaE3/2 < 21 for all Ekman and
Prandtl numbers considered. We approximate this transition as RaE3/2 ≈ 10, shown
as the dashed vertical line in figure 5. The relationship between the boundary layer
thicknesses and our assumed transition parameter RaE3/2 is discussed further in § 8.2.

5. Interior temperature gradients, β
The scaling relationship between heat flux and the thermal boundary layer thickness

(4.1) hinges upon the assumption that the interior fluid is well mixed. Figure 6 shows
mean temperature profiles for convection simulations with and without rotation. We
observe that prevailing temperature gradients vary with Pr for a given Ra in non-
rotating convection (figure 6a), and with E for a given Pr and Nu (figure 6b). In order
to analyse these profiles more systematically, we look at the scaling behaviour of the
mean, mid-level temperature gradients, β (see (2.7)).

5.1. Non-rotating
Figure 7(a) shows β plotted versus Ra for the non-rotating simulations. Two notable
observations arise. First, convection with high Rayleigh numbers (Ra > 106) and/or
low Prandtl numbers (Pr = 1) are generally well mixed thermally (β is small). Second,
the prevailing temperature gradients are positive, whereas the imposed global gradient
is negative. This overshoot of the background gradient can be seen explicitly in the
thermal profiles plotted in figure 6(a). Thermal overshoot has been observed previously
for convection with low Re, and is attributed to convective flows dominated by long-
lived thermal plumes (e.g. Olson & Corcos 1980). These plumes traverse the layer as
a quasi-Stokes flow, and collect along the opposite boundary, where their temperature
anomalies produce local peaks in the mean temperature profile.

5.2. Rotating
We observed in § 4.2 that rotation upsets the assumptions necessary to reach (4.1) (see
figure 5). Previous studies have shown that the Coriolis force is capable of inhibiting

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

58
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.586


458 E. M. King, S. Stellmach and B. Buffett

0

–0.2

–0.4

–0.6

–0.8

–1.0

–0.2

0

–0.4

–0.6

–0.8

–1.0

–0.2

–0.5

–1.0

0.2

103 100 101 102 103

101 102 103

104 105 106 107 108
0

0.05

0.10

0.15

0.20

0.25

0.30(a) (b)

(c) (d )

Rayleigh number

7 10 15 25

FIGURE 7. (Colour online) Interior temperature gradients (2.7) for (a) non-rotating and
(b–d) rotating convection. (a) Temperature gradients β plotted against Ra for non-rotating
convection. (b) Temperature gradients calculated from rotating convection simulations plotted
versus the transition parameter RaE3/2. The dotted horizontal line show the mean magnitude
from the non-rotating simulations in panel (a), |β| = 0.13. (c) Interior temperature gradients
calculated from rotating convection simulations plotted versus RaE4/3. The solid line shows
β = −6.6 (RaE4/3)

−1. (d) An expanded view of the same data as in panel (c). Symbols have
the same meaning as in figure 2.

turbulent mixing in general (Taylor 1921), in convection experiments (Boubnov &
Golitsyn 1990; Fernando, Chen & Boyer 1991) and simulations (Julien et al. 1996;
Sprague et al. 2006; Julien et al. 2012), and in convective dynamo simulations (King
et al. 2010). Understanding the interplay between rotation and thermal mixing is
essential for adequate parametrization of small-scale convection in the oceans and core
of the Earth and other planets.

Figure 7(b) shows β plotted versus RaE3/2. The dashed vertical line indicates
the regime transition at RaE3/2 ≈ 10. The dotted horizontal line shows the mean
magnitude of the mid-plane gradient for the non-rotating simulations for comparison.
We observe that, in the rotationally constrained regime (RaE3/2 . 10), thermal mixing
is suppressed.

Figure 7(c,d) show the interior temperature gradient calculations plotted versus
a measure of convective supercriticality, RaE4/3 (the onset of convection for the
present range of E and Pr should occur near RaE4/3 = 7 (Chandrasekhar 1953)).
Sprague et al. (2006) observe that, near onset for an asymptotically reduced
system, temperature gradients scale with the inverse of supercriticality. Our results
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T

(a)

(b)

FIGURE 8. A schematic of the plume separation length scale. The typical separation between
plumes is denoted by `, the thermal boundary layer thickness by δT , typical plume speed by
up, the typical plume width by rp, and the flow along the boundary by ub.

are consistent with this observation. A best-fit power-law scaling for the rotating
convection simulations that have δE < 0.5δT yields β = −6.2(±2.3) (RaE4/3)

−0.98(±0.14).
On average for these rapidly rotating simulations, β/(RaE4/3)=−6.6(±1.2), which is
shown as the solid line in figure 7(c,d), and fits these data to within 6 % on average.

6. Bulk length scales, `
6.1. Non-rotating

It is often observed in experimental studies of Rayleigh–Bénard convection that
thermal turbulence organizes into large–scale circulation patterns (also known as
mean thermal winds or flywheel convection patterns) (Ahlers, Grossmann & Lohse
2009). Such aggregate patterns of thermal turbulence result from the presence of
rigid sidewalls, which help to organize smaller-scale turbulence into a sweeping
cell that follows the edges of the container (Xi, Lam & Xia 2004). In the present
simulations, however, the absence of rigid sidewalls eliminates this selection process,
and large–scale circulation patterns of this type are not observed. The length scales
for flow in our simulations are instead naturally selected, and should be the typical
separation of thermal plumes.

Figure 8 illustrates a simple picture of such plume separation, `. We develop a
scaling for ` by considering the distance travelled by flow along the boundary during
the typical time scale for convective instability. After a cold plume impinges on the
warm bottom boundary, diffusion begins to warm the fluid as it migrates across the
boundary. Figure 8(b) schematically illustrates a series of thermal profiles within the
boundary layer. The boundary flow should become unstable when the thermal anomaly
grows roughly as thick as the mean thermal boundary layer, which occurs in time
τ ∼ δ2

T/κ . In this time, the fluid travelling along the boundary at speed ub has travelled
a distance `, such that

`∼ ubδ
2
T/κ. (6.1)
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FIGURE 9. (Colour online) Characteristic length scale for (a) non-rotating and (b) rotating
convection. (a) Plot of `/L versus Pe1/2 (δT/L)

3/2 (from (6.3)), from non-rotating convection
simulations. The solid line shows `/L= 0.8Pe1/2 (δT/L)

3/2. (b) Typical horizontal length scale
versus E for rotating convection. The solid line shows ` = E1/3L. The horizontal dotted line
shows the minimum value from the non-rotating cases, `/L = 0.13. Symbols have the same
meaning as in figure 2.

Finally, we can determine how the boundary layer flow speed ub should scale with
Pe in order to estimate the characteristic length scale `. Figure 8(a) illustrates the
three-dimensional geometry of plumes and boundary layer. The plumes have radius
rp and travel vertically with speed up. Boundary layer flow spreads (converges)
horizontally along the boundary away from impinging plumes (towards departing
plumes) with speed ub. Conservation of mass flux dictates that

upπr2
p = ubπ`δT . (6.2)

Assuming that up ∼ U, and that the plume width scales with the thermal boundary
layer thickness, rp ∼ δT , we can combine (6.1) and (6.2) to estimate the natural plume
spacing in non-rotating convection:

`∼
(
δT

L

)3/2

Pe1/2L. (6.3)

A scaling law for plume spacing in high-Pr convection was developed by Parmentier
& Sotin (2000) following similar reasoning. Of course, the picture presented here is
simpler than expected of turbulent convection. For example, thermal plumes in RBC
can be connected by thin sheets along the edge of the thermal boundary layer, which
provide preferred paths for the boundary layer flow ub, and may complicate the simple
treatment presented here (e.g. Breuer et al. 2004; Funfschilling & Ahlers 2004).

Figure 9(a) shows calculations of the characteristic horizontal length scale `

versus this scaling (6.3) from non-rotating convection simulations. The scaling
`/L = 0.8Pe1/2 (δT/L)

3/2 is shown as a solid line, and describes the data to within
25 % on average.

An alternative, but complementary, estimate of interior length scales in non-rotating
convection can be determined by heat flux considerations in the bulk. If plumes
typically have radius rp and average spacing ` (see figure 8), then the fraction of a
horizontal cross-section through the bulk fluid occupied by plumes is π (rp/`)

2. Mean
convective heat flux, Nu − 1 = 〈ũ′T̃ ′〉, may scale with the typical plume speed up ∼ U,
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multiplied by this plume density fraction. If we again assume that the typical width of
the plumes scales with the thermal boundary layer thickness, rp ∼ δT , then

`∼ δT

(
Pe

Nu− 1

)1/2

. (6.4)

If we further assume that the convective flow is sufficiently turbulent that δT ∼ L/Nu
and Nu − 1 ≈ Nu, then we recover the scaling derived by considering boundary layer
flow (6.3).

6.2. Rotating
Rotating RBC cannot be purely geostrophic, since mean convective heat transport
requires vertical flow, which cannot be z-invariant in a layer of finite thickness.
Convection in the presence of strong Coriolis forces must break the Taylor–Proudman
(TP) theorem (Proudman 1916). For fluids with Pr & 1, it is usually assumed that the
TP theorem is broken by viscous forces acting on small horizontal length scales. The
characteristic length scale for kinetic energy should then occur at the scale on which
viscosity can balance the Coriolis term in the horizontal direction. Taking the curl of
the momentum equation and retaining only these two terms, we have

2Ω
∂u
∂z
∼ ν∇2ω, (6.5)

where ω = ∇ × u is the fluid vorticity. The next-order terms in the TP theorem tell
us that ∂/∂z∼ 1/L (e.g. Greenspan 1968; King & Aurnou 2012), so the left-hand side
of (6.5) scales as ΩU/L. The right-hand side of (6.5), in contrast, is dominated by
horizontal gradients, ∇2ω ∼ U/`3. This interior balance therefore predicts vortical flow
with characteristic horizontal length scale

`/L∼ E1/3. (6.6)

This E1/3 scale also corresponds to the critical length scale for the onset of convection
in linear analysis of rapidly rotating convection (Chandrasekhar 1953), as well as
the characteristic scale of convection columns in the asymptotically reduced nonlinear
system of Sprague et al. (2006).

Figure 9(b) shows calculations of typical horizontal length scale `/L for rotating
convection plotted versus the Ekman number. A best-fit power-law scaling yields

`/L= 0.9(±0.1)E0.33(±0.02), (6.7)

in agreement with the scaling prediction. The solid line in figure 9(b) shows
`/L = E1/3, which fits the rotating convection data to within an average of 2 %.
Interestingly, all rotating cases have characteristic scales smaller than even the smallest
` for non-rotating convection, which is indicated by the horizontal dotted line in
figure 9(b). This observation implies that, even in the weakly rotating regime, the
scales of convective flow are dictated by the Coriolis force.

7. Flow speeds, Pe
7.1. Non-rotating

Much work has been done to relate the typical speed of convective motions (Pe) with
the strength of driving (Ra) in both laboratory experiments and numerical simulations
(e.g. Ahlers et al. 2009). A useful tool for such scaling is the exact balance between
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mean global production and dissipation of kinetic energy:

κ2

L4
(Nu− 1)Ra= 〈(∇u)2〉, (7.1)

which follows from taking the global average of u· (1.1) (e.g. Shraiman & Siggia
1990). The dissipation term can be approximated as either U2/`2 or U2/δ2

v(2δv/L),
by assuming that the relevant length scale for dissipation is either the characteristic
interior length scale, `, or the boundary layer thickness, δv, respectively (Grossmann
& Lohse 2000). The factor of 2δv/L in the latter accounts for the volume fraction of
the viscous boundary layers. Unfortunately, direct calculations of dissipation within the
non-rotating simulations reveal no regimes in which dissipation is clearly dominated
by either the bulk or the boundary layers, in agreement with Calzavarini et al. (2005).
So we consider contributions from both bulk and boundary layers, and substitution of
each of the above approximations into (7.1) produces scalings for convective speed
based on dissipation in the bulk,

Pe∗int ≡ (Nu− 1)1/2 Ra1/2(`/L), (7.2)

and dissipation in the boundary layers,

Pe∗bl ≡ (Nu− 1)1/2 Ra1/2 (δv/2L)1/2 . (7.3)

Figure 10(a,b) show Péclet number calculations plotted versus these dissipation
integral scalings. A best-fit power-law regression to each gives the expression
Pe = 0.28(±0.06) (Pe∗int)

1.04(±0.04) for the bulk dissipation estimate, and Pe =
0.31(±0.05) (Pe∗bl)

0.92(±0.02) for the boundary layer dissipation estimate. Imposing linear
fits, we get Pe/Pe∗int = 0.36(±0.05) and Pe/Pe∗bl = 0.31(±0.05), which are shown
in figure 10(a,b), respectively. An f -test reveals that these fits have statistically
indistinguishable differences. In other words, both scalings yield equivalent estimates
for flow speeds.

These scalings suggest that convective flow may strike a balance between dissipation
in the bulk and boundary layers. Such a balance can also be seen in the mean heat
equation,

∂

∂z
〈uzT ′〉H = κ

∂2

∂z2
〈T〉H, (7.4)

where T ′ is a typical temperature fluctuation. Assuming an isothermal interior and
well-defined thermal boundary layers, the advection and diffusion terms will each
dominate within the bulk and boundary layers, respectively. Equipartition between the
two is reached near the edge of the thermal boundary layer (Julien et al. 2012), such
that we might scale (7.4) as U1T/L ≈ κ1T/δ2

T . Using (4.1), this balance gives a
Péclet number scaling in terms of the Nusselt number alone,

Pe≈ 4Nu2. (7.5)

Figure 10(c) shows Pe plotted versus Nu. A best-fit power-law regression yields
Pe = 2.0(±0.3)Nu2.11(±0.07). When Nu > 4, for which (4.1) was shown to hold, our
data agree better with (7.5), as Pe = 3.1(±0.8)Nu1.93(±0.11). Imposing a scaling of the
form (7.5) gives Pe/Nu2 = 2.5(±0.4), which gives an average misfit of 21 % for all
non-rotating data and 11 % for Nu > 4, and is shown as the solid line in figure 10(c).
We caution, though, that, since this scaling is derived solely from the heat equation, it
is unlikely to hold for very large Reynolds numbers, when inertia is expected to play a
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FIGURE 10. (Colour online) Péclet number scalings for (a–c) non-rotating and
(d) rotating convection. (a) Péclet number versus the interior dissipation scaling, Pe∗int =√
Ra(Nu− 1)(`/L), for non-rotating convection. The solid line shows the scaling Pe =

0.36Pe∗int . (b) Péclet number versus the boundary layer dissipation scaling, Pe∗bl =√
Ra(Nu− 1)δv/2L, for non-rotating convection. The solid line shows Pe = 0.21Pe∗bl.

(c) Péclet number versus the Nusselt number for non-rotating convection. The solid line
shows Pe = 2.5Nu2. (d) Péclet number versus the interior dissipation scaling, Pe∗int =√
Ra(Nu− 1)(`/L), for rotating convection. The solid line shows Pe = 0.65Pe∗int . Symbols

have the same meaning as in figure 2.

dominant role. And we do observe that the quality of the fit declines for decreasing Pr
and increasing Ra.

7.2. Rotating
As the rate of rotation increases (decreasing E), we find that viscous dissipation
is increasingly dominated by its interior (bulk) contribution, owing to the reduced
characteristic length scales of bulk convection (figure 9b), and the ever smaller volume
fraction occupied by the Ekman boundary layers (figure 3b). We therefore expect
that flow speeds will follow the interior dissipation scaling (7.2). Figure 10(d) shows
calculations of convective flow speed Pe plotted versus the interior dissipation scaling
(7.2). A best-fit power-law regression yields Pe = 0.62(±0.14) (Pe∗int)

0.99(±0.04) for all
rotating convection simulations, in agreement with the prediction (7.2). The average
value of Pe/Pe∗int is 0.65, which is shown as the solid line in figure 10(d), and fits all
of the rotating convection data with an average error of 36 %.
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The Coriolis force can do no work, and so only enters the energetic flow speed
scaling (7.2) through its influence on length scales. Fortunately, the characteristic
length scales of rapidly rotating convection follow well-known scaling relationships in
terms of E alone (6.6). Substituting (6.6) into (7.2) produces (e.g. Aubert et al. 2001;
Gillet & Jones 2006) a prediction for flow speed based on the input parameter E rather
than calculations of length scales:

Pe∼ Pe∗VAC ≡ (Nu− 1)1/2 Ra1/2E1/3. (7.6)

Here, the subscript ‘VAC’ stands for visco-Archimedean–Coriolis, for the triple
force balance on which it is based. This scaling provides a similar quality of
fit to the scaling using actual, calculated length scales, and so is not plotted
here. Best-fit power-law regressions yield Pe = 0.9(±0.2) (Pe∗VAC)

0.94(±0.03) for all
rotating convection simulations, and Pe = 0.66(±0.04) (Pe∗VAC)

1.01(±0.01) for rotationally
constrained simulations (RaE3/2 < 10), in agreement with the prediction (7.6). The
average value of Pe/Pe∗VAC for RaE3/2 < 10 is 0.75, and Pe = 0.75Pe∗VAC fits all of
the rotating convection data with an average error of 43 %, and fits the rotationally
constrained cases (RaE3/2 < 10) to within 8 % on average.

8. Discussion
8.1. Composite scaling laws

Many of the scaling laws presented here can be combined to produce new scalings
without reducing agreement with data. For example, combining (7.5) with (6.3) and
(4.1) generates a scaling for the characteristic length scale in non-rotating convection
as a function of the thermal boundary layer thickness alone,

`/L∼ (δT/L)
1/2 . (8.1)

This scaling describes the data as well as (6.3): with a prefactor of 0.73, it fits
the non-rotating data to within 16 % on average (and quality of fit improves with
increasing Ra). Furthermore, this scaling is identical to that observed by Parmentier &
Sotin (2000) and Zhong (2005).

Similarly, for the non-rotating viscous boundary layer thickness, we can combine
(3.3), (7.5) and the classical heat transfer scaling, Nu∼ Ra1/3, to produce

δv/L∼ Ra−1/6Pr1/4. (8.2)

We emphasize that this scaling is empirically based, since we offer no theoretical
explanation for (3.3). This relationship is, however, in close agreement with the
empirical scaling observed in Lam et al. (2002), whose non-rotating experiments
span the ranges 106 . Ra . 1011 and 10−2 . Pr . 103, as well as the numerical work
of Breuer et al. (2004), who utilize a similar geometry to ours, but reach Re≈ 2× 104.
We feel that this agreement substantiates our finding that δv/L∼ Re−1/4 rather than the
typical Blasius scaling, δv/L∼ Re−1/2. This difference is important, as many theoretical
treatments of the turbulent convection problem assume the latter (e.g. Grossmann &
Lohse 2000). We suggest that the Blasius scaling is not observed in these simulations
and experiments because the boundary layer is active, rather than a passive response
to bulk turbulence assumed in (3.1) and (3.2). Qiu & Xia measure viscous boundary
layer thicknesses along both the sidewall (Qiu & Xia 1998a) and bottom (Qiu &
Xia 1998b) boundaries. They find that the sidewall boundary layer has Blasius-type
Re dependence, while the bottom boundary layer thickness has a weaker dependence,
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scaling closer to (8.2). (For Boussinesq convection, we expect the same to hold for the
top boundary.) This supports the argument that the top and bottom boundary layers,
through which heat is fluxed, are dynamically active and so have thicknesses that scale
differently from the Blasius type. At the sidewall, however, which is insulating, one
might expect that the boundary layer is a passive response to bulk turbulence. The
Blasius boundary layer scaling is also recovered in experiments where a strong mean
wind is imposed by the tank geometry (Sun, Cheung & Xia 2008).

Our simulations use periodic sidewall boundary conditions in order to eliminate
the effects of sidewalls, which are absent in the original formulation of the Bénard
problem. The results of the non-rotating convection simulations shown here suggest
that the important length scales in RBC, δT , δv and `, are dynamically interdependent.
Combining (3.3), (7.5) and (4.1), we get another scaling relationship for the viscous
boundary layer thickness in non-rotating convection,

δv/L∼ (δT/L)
1/2 Pr1/4. (8.3)

Scaling relationships (8.1) and (8.3) describe the connections between these length
scales.

Rotating convection is somewhat simpler in this regard, as the scaling behaviour of
δv and ` are well-behaved responses to particular balances between the Coriolis force
and viscosity. The opposite is true for δT . In non-rotating convection the interior is
effectively mixed such that (4.1) roughly holds. In rotating convection, the Coriolis
force inhibits this mixing, permitting finite interior temperature gradients (figure 7),
and complicating the usual depiction of heat transfer as being throttled by δT alone.

Of course, care must be taken when amalgamating or extrapolating the scalings
presented here. For example, for non-rotating flow speeds, we can combine (7.5) and
(4.1) with Nu∼ Ra1/3 to get

Pe∼ Ra2/3. (8.4)

If, however, we instead use (4.1), (7.2) and (8.1), we get, in the limit of high Nu,

Pe∼ Ra1/2. (8.5)

We emphasize in § 7.1 that (7.5), and therefore (8.4), is likely to hold only for low
Re (high Pr and/or low Ra). We expect that (8.5) should, in contrast, hold for high
Re. Experiments (Lam et al. 2002) and simulations (Silano, Sreenivasan & Verzicco
2010) exploring broad ranges of Pr observe a transition from (8.4) to (8.5) as Pr is
decreased, in support of this expectation.

In developing the simple Pe–Ra scalings (8.4) and (8.5), Nu–Ra scaling laws are
used to eliminate the Nu dependence in (7.2) and (7.3). If, instead, we maintain the Nu
dependence in the Pe scaling for non-rotating convection, we find better convergence.
Using (4.1) with (7.2) and (8.1) (or, equivalently, with (7.3) and (8.3) and neglecting
the weak Pr dependence in the latter), we arrive at

Pe∼ (Ra− Ra/Nu)1/2 . (8.6)

This scaling law is shown in figure 11(a) with a prefactor of 0.18, which fits the
non-rotating convection data to within 14 % on average.

8.2. Regime transitions
Previous work has investigated transitions in heat transfer behaviour for rotating
convection by comparing Nu from rotating and non-rotating experiments and
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FIGURE 11. (Colour online) (a) Péclet number plotted versus Ra − Ra/Nu from (8.6) for
non-rotating convection. The solid line depicts Pe = 0.2 (Ra− Ra/Nu)1/2. (b) Transition
between rotating and non-rotating flow speed behaviours. Péclet numbers from rotating
convection simulations are normalized by the non-rotating fit Ra0.52 and plotted against
the boundary layer transition parameter. The solid horizontal line shows the non-rotating
fit, Pe = 0.14Ra0.52. The dotted vertical line indicates the boundary layer transition from
figure 5(b). Symbols have the same meaning as in figure 2.

simulations (e.g. King et al. 2009; Liu & Ecke 2009; Zhong, Stevens & Clercx 2009).
We can do the same for flow speeds, Pe. First, we must characterize the non-rotating
Pe behaviour in a simple way. For this, we take a best-fit power-law regression
of Pe with Ra for E = ∞ and Ra > 105, which yields Pe = 0.14(±0.1)Ra0.52(±0.04).
Figure 11(b) shows flow speeds from rotating convection simulations normalized by
this scaling, PeRa−0.52, plotted versus the transition parameter, RaE3/2. We observe a
change in behaviour between suppressed flow speeds and flow speeds that conform
to the non-rotating behaviour (indicated by the horizontal line) near RaE3/2 ≈ 10,
similar to the heat transfer and thermal mixing transitions observed in King et al.
(2012) and figure 7(b), respectively. In contrast with the transition parameter RaE3/2,
these transitions are not well described by the oft-used convective Rossby number,
Roc =

√
RaE2/Pr .

Regarding heat transfer behaviour, recent work has argued that the transition
between the rotationally constrained and weakly rotating regimes is related to
the relative thicknesses of the thermal and Ekman boundary layers (King et al.
2009, 2010). Rotationally constrained convection, they argue, should occur when the
Ekman boundary layer is thinner than the thermal boundary layer. When, instead, the
thermal boundary layer is thinner, the influence of rotation should be weak. The two
boundary layers are observed to cross when RaE3/2 ≈ 10; see figure 5(b).

Simulations of rotating convection with free-slip boundary conditions, however,
produce regime transitions similar to those with no-slip boundaries (King et al. 2009;
Schmitz & Tilgner 2010). Schmitz & Tilgner (2009) and Julien et al. (2012) argue
that the Ekman layer cannot be responsible for these transitions, since no Ekman
layer exists along free-slip boundaries. Despite this claim, Schmitz & Tilgner (2009)
observe transitions that depend on a factor E1/2, indicating a critical balance between
viscous and rotational time scales similar to that of the Ekman layer. King et al.
(2012) develop heat transfer scaling laws by assuming that the thermal boundary layer
is marginally stable, i.e. assuming that a Rayleigh number defined using length scale
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δT is equal to a similarly defined critical Rayleigh number. The convective regime,
they argue, is then determined by whether buoyancy must overcome the stabilizing
influence of either the Coriolis or viscous force, the former leading to rotationally
constrained convection, and the latter producing a Nu scaling independent of E.
Because the viscous force is scale-dependent, the relative strengths of these forces
is a function of the distance from the boundary layer, and should be roughly equal at
a distance

√
ν/Ω . The marginal stability of δT , therefore, suggests that the transition

between rotationally constrained and weakly rotating convection regimes should occur
when δT/δE crosses unity (δE is the Ekman layer thickness; see (3.5)), regardless of the
mechanical boundary conditions.

Another way to formulate this regime transition is by considering the time scale for
plume development. If plumes depart from the thermal boundary layer at a rate faster
than the global rotation rate, one might expect that the rotational influence on that
plume and, by extension, the interior convection dynamics, is secondary. In contrast,
plumes taking many rotation periods to develop may be effectively ‘spun-up’, resulting
in rotationally constrained convection. Assuming that the plume departure time scale
is set by viscous flow through the thermal boundary layer, τp = δ2

T/ν (King 2009), the
transition between these two regimes occurs when τpΩ ∼ (δT/δE)

2. This competition
between plume and rotational time scales, however, makes no assumption about the
nature of the mechanical boundary conditions. It may be, then, that the measured
ratio between thermal and viscous boundary layer thicknesses in the present work is
a manifestation of the important time scales for instability, rather than the control
mechanism portrayed by King et al. (2009). We save a detailed analysis of plume
behaviour for future work.

One perhaps surprising result of note is that our quantification of the influence of
rotation does not agree with that by the oft-used Rossby number. Not to be confused
with the convective Rossby number, the Rossby number, Ro = (PeE/Pr)(L/`),
(sometimes called the local Rossby number on account of the ‘locally’ defined length
scale `) uses observed flow speeds and scales to characterize the relative importance
of inertial and Coriolis forces. It is often assumed that fluid systems with low Rossby
number (Ro < 1) are rotationally constrained. We find instead that the influence of
rotation on the quantities of interest here is better described by the transition parameter
RaE3/2. In our simulations, for example, we observe weakly rotating convection
cases (RaE3/2 > 10) that have Rossby numbers as small as Ro ≈ 10−3. We find
that this difference is largely due to Prandtl number effects. Combining (7.6) with
the rotationally constrained heat transfer law Nu ∼ Ra3E4 of King et al. (2012), and
assuming that Nu− 1≈ Nu, gives

Ro∼ Ro∗ = (RaE3/2)
2
Pr−1 (8.7)

for the rotationally constrained regime. Calculations of Ro from rotationally
constrained simulations (RaE3/2 < 10) are well fitted by (8.7) as follows: Ro =
0.0028(±0.0004) (Ro∗)0.96(±0.07). Our results therefore indicate that, for Pr & 1, low-
Rossby-number convection is not necessarily rotationally constrained.

Much of the limitation in achieving numerical solutions of the governing equations
of convection for very small E arises from the small length scales (Ekman boundary
layers) and fast time scales (inertial waves) that must be resolved. Such computational
difficulties have been partially overcome by the development (Julien, Knobloch &
Werne 1998) and simulation (Sprague et al. 2006; Julien et al. 2012) of a reduced set
of equations that implicitly incorporate the anisotropic nature of rotating convection,
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permitting Ekman boundary layers and inertial waves to be ‘filtered out’. As such, the
reduced equations are thought to hold in the limit E→ 0, where Ekman boundary
layers are assumed passive and inertial waves cross the container instantaneously.
Solving these reduced equations numerically, Julien et al. (2012) find four different
rotationally constrained regimes, whose boundaries depend on Ra and Pr . They predict
that the rotational constraint on convection is lost when RaE8/5 is roughly unity. This
transition parameter is similar to the RaE3/2 used here and in King et al. (2012).

Perhaps the most straightforward direct comparison between the present work and
simulations of this reduced system is through scaling laws for Nu. Julien et al.
(2012) find Nu ∼ (RaE4/3)

γ , with γ . 2.2, in simulations of the reduced equations,
whereas King et al. (2012) reach a steeper, γ = 3, scaling in simulations of the
full equations. On the one hand, this discrepancy could arise from the fact that the
latter (present) simulations do not operate at asymptotically low E. On the other hand,
some assumptions made in reducing the full equations may not be valid. For example,
experiments and simulations of convection at low, but non-zero, E have consistently
reported the important role of the Ekman layer in actively enhancing the transport
of heat through a mechanism known as Ekman pumping (e.g. Rossby 1969; Kunnen,
Clercx & Geurts 2006; Niemela et al. 2010). This effect could, in principle, explain
the decreased slope of the Nu scaling law found in Julien et al. (2012) relative to
King et al. (2012). Future work on lower-E experiments and simulations, as well as
simulations of similarly reduced equations that incorporate Ekman pumping, may help
to settle this question.

As a final note of interest, the scaling behaviour of rotating viscous boundary layer
thicknesses, δv (figure 3b), and characteristic length scales, ` (figure 9b), are not
strongly affected by the transition observed in heat transfer (King et al. 2012, figure 6),
thermal mixing (figure 7b) and flow speeds (figure 11b). We have that Nu, β and Pe
are nearly independent of rotation when RaE3/2 & 10, whereas δv and ` are each well
described by a single scaling, (3.5) and (6.6), respectively, across all of the rotating
convection simulations in this study. Of course, as RaE→∞, all rotational influence
must be lost, but no such transition from weakly rotating to non-rotating behaviour is
observed in these simulations. We speculate that such a transition should occur near
Ro= 1.

9. Summary

We investigate the scaling behaviour of five quantities produced in rotating and non-
rotating convection simulations in a Cartesian box with periodic sidewalls, operating
within the parameter ranges 10−6 6 E 6∞, 1 6 Pr 6 100 and 103 . Ra . 109. The
quantities of interest are the viscous boundary layer thickness, δv, thermal boundary
layer thickness, δT , mid-layer mean temperature gradient, β, characteristic bulk length
scale, `, and mean flow speeds, Pe. Our results are summarized in Table 2.

We find three important convection regimes: rotationally constrained convection,
RaE3/2 . 10, where heat transfer, thermal mixing and flow speeds are suppressed by
the Coriolis force; weakly rotating convection, 10 . RaE3/2 <∞, where heat transfer,
thermal mixing and flow speeds are not strongly affected by rotation, but δv and `

are still dictated by the Coriolis force; and non-rotating convection, E−1 = 0. The
transition from rotationally constrained to weakly rotating convection occurs when the
thermal boundary layer becomes thinner than about E1/2L.
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