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One-dimensional energy spectra in flat plate zero pressure gradient boundary
layers and pipe flows are examined over a wide range of Reynolds numbers
(2600 6 Reτ 6 72 500). The spectra show excellent collapse with Kolmogorov scaling
at high wavenumbers for both flows at all Reynolds numbers. The peaks associated
with the large-scale motions (LSMs) and superstructures (SS) in boundary layers
behave as they do in pipe flows, with some minor differences. The location of the
outer spectral peak, associated with SS or very large-scale motions (VLSMs) in the
turbulent wall region, displays only a weak dependence on Reynolds number, and it
occurs at the same wall-normal distance where the variances establish a logarithmic
behaviour and where the amplitude modulation coefficient has a zero value. The
results suggest that with increasing Reynolds number the energy is largely confined
to a thin wall layer that continues to diminish in physical extent. The outer-scaled
wavelength of the outer spectral peak appears to decrease with increasing Reynolds
number. However, there is still significant energy content in wavelengths associated
with the SS and VLSMs. The location of the outer spectral peak appears to mark
the start of a plateau that is consistent with a k−1

x slope in the spectrum and the
logarithmic variation in the variances. This k−1

x region seems to occur when there is
sufficient scale separation between the locations of the outer spectral peak and the
outer edge of the log region. It does not require full similarity between outer and
wall-normal scaling on the wavenumber. The extent of k−1

x region depends on the
wavelength of the outer spectral peak (λOSP), which appears to emerge as a new length
scale for the log region. Finally, based on the observations from the spectra together
with the statistics presented in Vallikivi et al. (J. Fluid Mech., 2015 (submitted)), five
distinct wall-normal layers are identified in turbulent wall flows.

Key words: boundary layer structure, pipe flow boundary layer, turbulent boundary layers

1. Introduction
Studies of high-Reynolds-number wall-bounded flows, such as boundary layers

and pipes, have shown that at sufficiently high Reynolds numbers these flows have
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many characteristics in common (Marusic et al. 2010; Smits, McKeon & Marusic
2011; Smits & Marusic 2013). In particular, the mean velocity, the variances
and even the higher-order moments of the streamwise velocity fluctuations all
demonstrate a logarithmic behaviour in region that, according to Hultmark et al.
(2012), Hultmark et al. (2013), Marusic et al. (2013) and Vallikivi, Hultmark &
Smits (2015), corresponds to 800 . y+ . 0.15Reτ in pipes, and 400 . y+ . 0.15Reτ
in boundary layers. Here, Reτ = δuτ/ν is the friction Reynolds number, ν is the
kinematic viscosity, uτ is the friction velocity, δ is the characteristic shear layer
thickness (δ99 for boundary layers and the radius R for pipes), y is the wall-normal
distance and y+ = yuτ/ν. The upper and lower limits that define this region are still
a matter of debate (see, for example, Vincenti et al. 2013; Marusic et al. 2013),
but in what follows we will use the term log-layer to denote the region of the flow
where the mean velocity and the variances both follow a logarithmic variation. We
also use the term turbulent wall layer to denote the region where 50 . y+ . 0.15Reτ .
The origin of the wall-normal dependence in wall-bounded turbulent flows has been
linked to the character of the mean governing equation by Fife et al. (2005), Fife,
Klewicki & Wei (2009), Klewicki, Fife & Wei (2009) and Klewicki (2013b), who
also identified the asymptotic bounds of the particular domains that exist. As we will
see, however, these analyses do not conform to the results obtained at the highest
Reynolds numbers considered here.

The distribution of energy among scales is also of great interest. However,
experimentally measuring the full three-dimensional energy spectrum is not usually
possible, and often we can only examine the power spectral density of the streamwise
velocity fluctuations Φuu, where

u2 =
∫ ∞

0
Φuu(kx)dkx =

∫ ∞
0

kxΦuu(kxy)d(kxy). (1.1)

Here, kx = 2π/λx is the streamwise wavenumber, λx is the streamwise wavelength
and u2 is the variance of the streamwise velocity fluctuations. We commonly measure
frequency spectra instead of wavenumber spectra, and rely on Taylor’s hypothesis
(Taylor 1938) to infer λx.

Nevertheless, such restricted spectral data can still give valuable insight into the
behaviour of wall-bounded turbulence. For instance, in the region where ν/uτ� y� δ
(typically associated with the log-law in the mean velocity), Perry & Abell (1977)
and Perry, Henbest & Chong (1986) suggested that the turbulence spectrum may be
divided into three regions: a low-wavenumber range that scales with the characteristic
shear layer length scale δ; an intermediate-wavenumber range that scales with the
wall-normal distance y; and a high-wavenumber range that scales with the Kolmogorov
length scale ηK . Perry & Abell (1977) then argued that at a sufficiently high Reynolds
number there may be an overlap of the low- and intermediate-wavenumber regions
such that Φuu(kx) ∝ kx

−1, often referred to as the k−1
x law. Similarly, an overlap of

the intermediate- and high-wavenumber regions would be expected to occur (for local
equilibrium flows), where Φuu(kx)∝ k−5/3

x . This is the so-called k−5/3
x law, a result first

obtained by Kolmogorov (1941) on dimensional grounds.
The k−1

x dependence is of particular interest here. By integrating over the region
where k−1

x holds, from a low-wavenumber limit given by a constant value of kxδ to a
high-wavenumber limit given by a constant value of kxy, it follows that the streamwise
turbulence intensity will obey, for y+→∞,

u2+ = B1 − A1 ln
[y
δ

]
, (1.2)
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where u2+ = u2/u2
τ , A1 is a universal constant and B1 is a large-scale constant (Perry

et al. 1986). This log-law was first suggested by Townsend (1976) on the basis of
the attached eddy hypothesis. Recent measurements by Hultmark et al. (2012) in
pipes, and Marusic et al. (2013) and Vallikivi et al. (2015) in boundary layers, have
confirmed that this expected logarithmic variation in the variance begins to emerge
at sufficiently high Reynolds numbers (Reτ & 5000).

The existence of a k−1
x law plays an important role in turbulence modelling,

especially in the framework of Townsend’s attached eddy model (Townsend 1976;
Perry & Chong 1982; Perry & Li 1990; Marusic, Uddin & Perry 1997; Marusic
& Kunkel 2003). Recently, Banerjee & Katul (2013) used a phenomenological
explanation for the origin of the log-law for the streamwise turbulent intensity in the
intermediate region and showed that this log region would exist if the very large-scale
motions (VLSMs) do not disturb the k−1

x scaling in wavenumber spectrum. However,
at this time, the k−1

x law has been seen in laboratory flows at high Reynolds number
over a very limited spatial extent by Nickels et al. (2005) or only in atmospheric
boundary layer data (see, for example, Högström, Hunt & Smedman 2002; Katul &
Chu 1998; Calaf et al. 2013). The k−1

x region is also linked to the notion of complete
similarity, in that it is implicitly a region where wall-normal scaling (y and uτ ) and
outer scaling (δ and uτ ) occur over the same wavenumber range. Morrison et al.
(2004) and Rosenberg et al. (2013) showed, however, that in pipe flow the spectrum
collapsed at low wavenumbers in outer scaling and at intermediate wavenumbers
in wall-normal scaling, but there was no overlap region where both scalings held
simultaneously (a condition they called incomplete similarity).

The energy distribution in wavenumber space represented by the spectrum can
also help to understand the structure of turbulence, especially the behaviour of the
coherent motions. Large-scale coherent structures have been observed in boundary
layers (Kovasznay, Kibens & Blackwelder 1970; Balakumar & Adrian 2007) and
in pipes (Kim & Adrian 1999; Guala, Hommema & Adrian 2006) that are 2–3δ
long in the streamwise direction and 1–1.5δ wide in the spanwise direction. These
structures are usually referred to as large-scale motions (LSMs), and are associated
with the occurrence of bulges of turbulent fluid at the edge of the wall layer. They
carry a significant amount of the Reynolds shear stress and play an important role in
turbulent transport (Ganapathisubramani, Longmire & Marusic 2003).

Much longer, meandering structures have also been observed. In pipe flows these
structures are usually referred to as VLSMs (Kim & Adrian 1999; Guala et al. 2006),
and they appear to extend up to 20R in the streamwise direction (Monty et al. 2007;
Bailey & Smits 2010). Similar structures have been observed in boundary layers,
extending up to 20δ in length, where they are called superstructures (SS). It is
important to note that when inferred from single point statistics, these lengths are
usually much shorter, 6δ and 10–15R respectively, due to their meandering nature
(Hutchins & Marusic 2007). Hutchins & Marusic (2007) found that the SS scale
with the boundary layer thickness δ, and that they are present only in the turbulent
wall region, compared with VLSMs that extend throughout the outer flow of pipes
and channels. Monty et al. (2009) suggested that the differences between VLSM and
SS may simply be due to the dissimilar boundary conditions imposed by open and
confined geometry flows, and Chung et al. (2015) have now proposed a mechanism
based on the attached eddy hypothesis that links the flow geometry to the structure
of the very large scales.

In the premultiplied spectrum, kxΦuu, it is often possible to observe the signature
of the coherent motions. In the near-wall region, there is always a single prominent
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spectral peak associated with the maximum energy production located around the inner
peak in the variance at about y+ = 12–15 (we call this the inner spectral peak). In
the outer region, there are often two peaks visible in the premultiplied spectrum, one
associated with the VLSMs or SS, and another associated with the LSM (Rosenberg
et al. 2013), although in boundary layers the LSM peak is usually less distinct than in
pipe flows (Hutchins & Marusic 2007). In addition, we can identify the point where
the VLSM or SS spectral peak has its maximum magnitude; we shall call this the
outer spectral peak, and it is described by a magnitude (kxΦuu)OSP, a specific physical
location yOSP, and a specific wavenumber kOSP. The outer spectral peak corresponds
to the point where the spectrum displays the largest energy content per wavenumber
outside the viscous wall region.

The location, magnitude and wavelength of these spectral peaks is still an open
issue. Hutchins & Marusic (2007) observed the outer spectral peak associated with
SS for Reτ > 2000 in boundary layers, and found that it was located at about
y/δ ≈ 0.06 and λx/δ ≈ 6, and that its magnitude increased with Reynolds number.
These observations were made on data with Reτ 6 7300. A considerably larger range,
2800 < Reτ < 19 000, was available to Mathis, Hutchins & Marusic (2009), and at
these Reynolds numbers the footprint of the SS and the presence of the associated
outer spectral peak were clearly evident. Mathis et al. (2009) calculated Reτ using
δ= 1.13δ99, so for purposes of comparison it is probably better to state their Reynolds
number range as 2500< Reτ < 17 000, as noted by Klewicki (2013a). Here, we use
the range as given by Mathis et al. to avoid confusion. They found that the intensity
of the large scales in the log-region increased with Reynolds number, increasing the
amplitude modulation of the near-wall small-scale structures due to the large scales,
and they suggested that the increase in the magnitude of the outer spectral peak,
which was attributed to the increasing strength of the VLSMs or SS, was connected
to the increase in the near-wall peak in the variance. Mathis et al. (2009) found that
the outer spectral peak was located at about y+ ≈ 3.9Re0.5

τ (which they associated
with the middle of the log-layer with bounds 100< y+ < 0.15Reτ ) with a wavelength
of λx/δ ≈ 3–6 (based on figure 12 of their paper), close to the location where the
magnitude of the amplitude modulation correlation was zero. Revisiting these data,
however, yields a value for the coefficient of 3 instead of 3.9. This would imply
a level of connection to the later finding of Marusic et al. (2013) where this point
is identified as the beginning of the log region for both the mean flow and the
turbulence intensity (for pipes and boundary layers).

There remains the question whether the reported trends persist with increasing
Reynolds number, or if some Reynolds-number-independent, self-similar regime
might emerge once the scale separation is large enough. To help provide an answer,
we present measurements of spectra in boundary layers at Reynolds numbers up
to Reτ ≈ 70 000. At the highest Reynolds number, the mean velocity and variances
display a log-layer that extends over more than a decade in wall distance (Vallikivi
et al. 2015). We also take the opportunity to compare the results with similar
measurements in pipe flow by Hultmark et al. (2013) and Rosenberg et al. (2013) at
matching Reynolds numbers.

2. Experiments

The experiments in a zero-pressure-gradient boundary layer were conducted in the
High Reynolds number Test Facility (HRTF) for 33006Reτ 6 72 500. The facility was
described by Jiménez, Hultmark & Smits (2010). The behaviour of the mean flow,
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Case Pipe Boundary layer

Reτ ≈ Reτ R (mm) ν/uτ `+ Reτ δ99 (mm) ν/uτ `+ Symbol

3× 103 3 334 64.68 19 3.1 2 622 27.2 10 5.8 s
5× 103 5 412 64.68 12 5.0 4 635 27.3 5.9 10 p

10× 103 10 481 64.68 6.2 9.7 8 261 28.4 3.4 17 q
20× 103 20 250 64.68 3.2 18.8 25 062 25.7 1.0 29 f
40× 103 37 690 64.68 1.7 35.0 40 053 25.8 0.6 47 r
70× 103 68 371 64.68 0.95 31.7 72 526 29.1 0.4 75 u

TABLE 1. Cases chosen for comparing boundary layer and pipe flow behaviour. Pipe flow
data from Hultmark et al. (2013) and Rosenberg et al. (2013). Boundary layer data from
Vallikivi et al. (2015).

variances, and higher-order moments was reported by Vallikivi et al. (2015), where
further details of the experiment may be found (see also Vallikivi 2014). Here we
choose six Reynolds numbers for detailed comparison of the spectral behaviour with
pipe flows (see table 1). Nano-scale thermal anemometry probes (NSTAPs) were used
for all measurements (boundary layers and pipes), with a temporal resolution up to
300 kHz and a spatial resolution down to 30 µm (Bailey et al. 2010; Vallikivi et al.
2011; Vallikivi & Smits 2014).

Taylor’s hypothesis (Taylor 1938) was used to convert the frequency spectrum to
the spatial spectrum by assuming that the local turbulent field is ‘frozen’ while it
is carried past the sensor at a characteristic convection velocity. We use the local
mean velocity as the convection velocity at each wall-normal location. Rosenberg et al.
(2013) gives an extended discussion on the implications of using Taylor’s hypothesis at
these Reynolds numbers in pipe flow, and they concluded that, although very close to
the wall it can introduce significant distortions, the trends in the spectra (for example,
the presence of a k−1

x region) were not significantly affected. We expect that similar
considerations will apply to boundary layer flows.

For all cases studied, the sampling frequency fs = 300 kHz, which corresponds to
12.6< f+s < 0.80 for the pipe and 9.47< f+s < 0.45 for the boundary layer (see table 1,
where f+s = fsν/u2

τ ).
To find the Kolmogorov length scale ηK = (ν3/ε)1/4 and velocity scale uK = (νε)1/4,

the mean dissipation rate ε was found by integrating the one-dimensional dissipation
spectrum according to

ε= 15ν
∫ ∞

0
k2

xΦuudkx. (2.1)

Bailey et al. (2009) measured the local dissipation scales in the pipe facility at
lower Reynolds numbers and found the isotropic relation to be a reasonable estimate,
similar to six other methods tested. However, for the higher-Reynolds-number cases
the dissipation spectra was not fully covered by the measurements, decreasing the
accuracy of the ε estimate. This potential source of error is discussed further below.

3. Results and discussion
3.1. Kolmogorov scaling

The spectra in Kolmogorov scaling are shown in figure 1 for 0.001 6 y/δ 6 1.0 at
Reτ ≈ 20 000. The Kolmogorov scaling collapses the higher wavenumber data well for
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FIGURE 1. (Colour online) Kolmogorov spectra in wall scaling for boundary layer (a) and
pipe flow (b) at wall-normal positions y/δ ≈ 0.001, 0.005, 0.01, 0.05, 0.15, 0.3 and 0.5,
at Reτ ≈ 20 000. Solid lines indicate wall locations y/δ 6 0.15, changing to dashed lines
for y/δ > 0.15. Arrow indicates increase in y/δ until y/δ = 0.15.
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FIGURE 2. (Colour online) Kolmogorov spectra for boundary layer (a) and pipe flow (b)
with Reτ ≈ 3× 103, 5× 103, 10× 103, 20× 103, 40× 103 and 70× 103, at y/δ ≈ 0.5.

both flows at all locations, and as y/δ increases a power law range with a slope close
to −5/3 emerges, extending a maximum of two decades with an upper limit at kxηK ≈
0.1. The energy at larger length scales (smaller kx) increases with y/δ, until at y/δ >
0.15 the energy at large scales starts to decrease in the wake region. The extent of the
power law region continues to increase with increasing wall distance, but for boundary
layers at larger y/δ the spectra depart from this collapse at higher wavenumbers than
in pipe flow, which is likely due to the large-scale intermittency in the outer part of
the boundary layer.

Figure 2 shows Kolmogorov spectra for all Reynolds numbers at y/δ = 0.5. The
behaviour of boundary layer and pipe spectra at higher wavenumber is essentially
identical for Reτ > 5000, indicating that the smaller wavelengths are largely
independent of the flow geometry at these Reynolds numbers. To demonstrate this
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FIGURE 3. (Colour online) Kolmogorov spectra for at Reτ ≈ 3× 103, 5× 103, 10× 103,
20 × 103, 40 × 103, and 70 × 103, at y/δ ≈ 0.05 (a) and y/δ ≈ 0.5 (b); ——, boundary
layer; – – – –, pipe.

point further, the boundary layer and pipe spectra are plotted together for y/δ= 0.05
and y/δ = 0.5 in Figure 3. We see that the curves collapse very well for the higher
wavenumbers, but that they have an exponent that is closer to −1.5 or 1.52 than
to −5/3. This observation agrees with the work of Mydlarski & Warhaft (1996),
Gamard & George (2000), McKeon & Morrison (2007) and George & Tutkun (2009),
among others, who propose that viscous effects continue to be important in the
inertial region, and that a slope of −5/3 is only reached at infinite Reynolds number.
For example, Mydlarski & Warhaft (1996) found an empirical relation for the slope
given by (5/3) (1–3.15Re−2/3

λ ), where Reλ is the Reynolds number based on the
Taylor microscale. For the current data set, Reλ varies from about 200 to 1000, where
Mydlarski et al.’s relationship gives slopes of 1.5–1.6, which agrees well with our
observations.

By assuming Kolmogorov scaling to be valid at all Reynolds numbers, the error in
finding the mean dissipation ε can be estimated by examining the lack of collapse
of the experimental spectra at high wavenumbers. This presumed error was found
to increase with Reτ from 0.5 % to 4 % for the pipe, and from 1 % to 5 % for the
boundary layer, with the exception of the boundary layer case at Reτ ≈ 70 000 where
the error in ε was about 20 %. The corresponding maximum error in ηK was therefore
always less than 5 %.

3.2. The k−1
x dependence

To examine the k−1
x dependence, spectra in the usual log–log form are given in

figure 4 for 0.001 6 y/δ 6 0.5. The spectra are also shown in premultiplied form
in figures 5 and 6 at Reτ = 5000 and 70 000, respectively, and in this form the k−1

x
region would show up as a plateau. At both Reynolds numbers, the pipe flow spectra
show two peaks: one at lower wavenumbers associated with the VLSM, and another
at higher wavenumbers associated with the LSM (Balakumar & Adrian 2007). For
boundary layers, the lower wavenumber peak associated with the SS (Hutchins &
Marusic 2007) is present at all Reynolds numbers, while the higher-wavenumber LSM
peak only appears at some Reynolds numbers at some locations. This is illustrated
more precisely in figure 7.
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FIGURE 4. (Colour online) Spectra in wall scaling for boundary layer (a) and pipe flow
(b) at wall-normal positions y/δ ≈ 0.001, 0.005, 0.01, 0.05, 0.15, 0.3 and 0.5, for Reτ ≈
5× 103, 20× 103 and 70× 103. Arrow indicates increasing y/δ.

The two Reynolds number cases shown in figures 5 and 6 demonstrate a reasonable
collapse at lower wavenumbers in outer scaling (δ), and at higher wavenumbers in
wall-normal scaling (y), especially in the turbulent wall layer. However, no region
exists where both scalings collapse the data simultaneously, as noted previously by
Morrison et al. (2004) and Rosenberg et al. (2013) for pipe flow. Although a small
plateau region may be present around y/δ = 0.15, this behaviour disappears at points
either closer to the wall, or further away. This plateau, its extent and its variation
with Reynolds numbers is further discussed in § 5. Similar trends can be observed
in the spectra with varying Reynolds number at different wall-normal locations, as in
figure 7.

Morrison et al. (2004) suggested that the lack of overlap in the scaling of the
spectra may happen if uτ is not the appropriate velocity scale for outer scaling.
Also, del Álamo et al. (2004) suggested that the large wall-attached motions do
not scale with uτ because their contribution to the Reynolds stress is limited by
the impermeability of the wall. They proposed a logarithmic correction to the
k−1

x spectrum given by kxΦuu = βu2
τ log(2πα2/(kxy)), and with α = 2 and β = 0.2

the correction agreed well with experimental and numerical spectra in the range
y < λx < 10y (0.63 < kxy < 6.3). We see from figure 5 that for Reτ = 5000 in pipe
flow a small interval in wavenumber agrees with this relation over the suggested
bounds 0.63 < kxy < 6.3, but the boundary layer spectra seem to have a different
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FIGURE 5. (Colour online) Premultiplied spectra for boundary layer (a) and pipe flow (b)
at Reτ ≈ 5 × 103 with varying y/δ; ——, turbulent wall region (200/Reτ < y/δ < 0.15);
– · – · –, wake region (0.15< y/δ < 0.7); arrow indicates increasing y/δ; – – – – –, relation
proposed by del Álamo et al. (2004), shown as solid line for 0.63< kxy< 6.3.

slope. At Reτ = 70 000 (figure 6), this relation agrees with the data over a wider
range than that suggested by del Álamo et al. (2004), but for the boundary layer the
slope β may depend on Reynolds number (β = 0.23 and 0.19 were better fits for
Reτ = 5000 and 70 000, respectively). These observations provide some support for
the suggestion that uτ may not be the correct velocity scale for large scales, which
infers that complete similarity (and the k−1

x region) cannot be expected to occur even
at very high Reynolds numbers.

Hence, it appears that in boundary layer and pipe flows in the turbulent wall region
there is no obvious k−1

x region that persists with Reynolds number, or with a change
in wall-normal location, and the spectra do not exhibit a region that collapses both in
inner and outer scaling. This brings into question the relationship between the spectral
overlap arguments of Perry & Abell (1977) and Perry et al. (1986) and the logarithmic
variation of the variances. This point is further discussed in § 5.

3.3. Scaling of spectral peaks in wavenumber space
In pipe flow, Rosenberg et al. (2013) identified distinct Reynolds number independent
scaling for the wavenumber location of the LSM and VLSM peaks in each wall-
normal region. Near the wall at y+ < 12, a single peak was present at a wavenumber
that scaled with y, where kxy≈ 0.07. At y+= 12, the low- and high-wavenumber loci
bifurcated, where the location of the LSM peak scaled with the viscous length ν/uτ
(k+x ≈ 0.006) over the range 12 < y+ < 67, and then for y+ > 67 its location scaled
with y according to kxy≈ 0.4 up until y/δ= 0.15. Beyond y/δ= 0.15, the LSM peak
location scaled with δ according to kxδ = 2.6.
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FIGURE 6. (Colour online) Premultiplied spectra for boundary layer (a) and pipe flow
(b) at Reτ ≈ 70 000 with varying y/δ; ——, turbulent wall region (800/Reτ < y/δ < 0.15);
– · – · –, wake region (0.15< y/δ < 0.7); arrow indicates increasing y/δ; – – – – –, relation
proposed by del Álamo et al. (2004), shown as solid line for 0.63< kxy< 6.3.

As to the VLSM peak, Rosenberg et al. (2013) found that, somewhat surprisingly,
its location also scaled with wall-normal distance y in the turbulent wall region (kxy≈
0.045), and not with δ as seen for the SS peak in boundary layers by Hutchins &
Marusic (2007). Rosenberg et al.’s (2013) analysis for pipe flow was repeated here
using every wall-normal location (the original study used only about a third of the
data), and it was found that for y+> 50 the VLSM peak location was better described
by kxδ ≈ 0.17 (δ/y)0.67, that is, it is more precise to say that the VLSM peak in the
turbulent wall region in pipes follows a weak mixed scaling rather than a simple wall-
normal scaling. Finally, for y/δ > 0.15 the location of the VLSM peak scaled as kxδ≈
0.45.

Here, we apply the methodology used by Rosenberg et al. (2013) to find the
location of the spectral peaks in the boundary layer. To estimate the wavenumber
peak location, a Gaussian curve in log kx was locally fitted to the data. At locations
where the LSM peak was more difficult to identify, because it appeared more as a
narrow shoulder rather than as a distinct peak (in the region 100< y+< 0.15), a cubic
spline was used to fit the data and the point of inflection was taken as an estimate
of the peak location.

The results are shown in figures 8 and 9 in inner and outer variables, respectively.
In the near-wall region, for y+ < 10, a single peak is observed, scaling with the
wall-normal distance and located at about kxy≈ 0.05 (λx ≈ 125y). This scaling is the
result of the local mean velocity used as convection velocity when applying Taylor’s
hypothesis. If no Taylor hypothesis were applied, the inner peak scales simply with
the viscous time scale, being constant at f+ = f ν/u2

τ ≈ 0.008 or t+ = 1/f+ ≈ 125.
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FIGURE 7. (Colour online) Premultiplied spectra for boundary layer (a) and pipe flow
(b) at wall-normal locations y/δ= 0.05, 0.1, 0.15 and 0.5. Arrow indicates increasing Reτ
from 3000 to 70 000 (as line color changes from blue to red in online version).

Near y+ ≈ 10, close to where the inner peak in the variance is located, there is
a bifurcation in the loci of the peaks, so that the peaks associated with the LSM
begin to follow k+x ≈ 0.005 (or λx ≈ 1250η). For 50 < y+ < 0.15Reτ , the location
of the LSM peak scales with y as kxy ≈ 0.4. The location of the SS peak in the
same region seems to follow kxδ≈ 0.33(δ/y)0.5, showing simultaneous dependence on
wall-normal distance and the boundary layer thickness, as it did in pipe flow. This
trend, when expressed in terms of the wavelength, gives λ+x ≈ 20 (y+Reτ )0.5, which
suggests that in the region 50. y+. 0.15Reτ the SS are associated with wavelengths
λx ∼ (yδ)0.5. At first sight, this result is consistent with the observations of Morrill-
Winter & Klewicki (2013) who found that the wall-normal intensities begin scaling
with
√

Reτ near y+≈C
√

Reτ . However, the implications and the consequences of this
consistency are unclear, as it will be shown later that the location of the peak in the
spectra in the streamwise velocity component does not appear to scale as

√
Reτ across

the range of Reynolds numbers considered here. In the outer region, for y/δ > 0.15,
the SS peak is no longer evident and only the LSM peak survives, with its location
scaling as kxδ≈ 2. This value corresponds to λx≈ 3δ, as found by Guala et al. (2006).
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FIGURE 8. (Colour online) Spectral peak locations in inner coordinates for the boundary
layer. Filled (red online) symbols: near-wall and LSM peaks. Open symbols: peak
locations for y/δ > 0.15. Filled grey symbols: SS peaks. Filled black symbols: outer
spectral peak location. Other symbols as in table 1. – – – –, y+ = 10 and y+ = 50.
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FIGURE 9. (Colour online) Spectral peak locations in outer coordinates for the boundary
layer. Filled (red online) symbols: all peaks in region 50< y+ < 0.15Reτ . Open symbols:
peaks for y+ < 50. Filled black symbols: outer spectral peak location. Other symbols as
in table 1. – – – – –, y/δ = 0.15.

Overall, it appears that the LSMs have similar characteristics in boundary layer and
pipe flows, although the SSs and VLSMs display some differences, even at very high
Reynolds numbers; in outer variables the trajectory of the peak for boundary layers
varies as (δ/y)0.5, whereas for pipes it varies as (δ/y)0.67. In addition, the outer flow in
the pipe continues to be characterized by LSMs and VLSMs, whereas in the boundary
layer only a single peak associated with the LSM is present, suggesting that the SS
organization is lost in the wake region.

3.4. Scaling of outer spectral peak
Here, we consider the scaling of the outer spectral peak in the region of turbulent
wall flow (50 . y+ . 0.15Reτ ). Recall that the outer spectral peak is the point where
the VLSM or SS spectral peak has its maximum magnitude (kxΦuu)OSP, and it is
described by a specific physical location yOSP and wavenumber kOSP. In boundary
layers, Hutchins & Marusic (2007) and Mathis et al. (2009) found that the location
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FIGURE 10. (Colour online) Wall-normal location of outer spectral peak for boundary
layer (a) and pipe flow with all data from Hultmark et al. (2012) (b).p, boundary layer
with error bounds 1y+ =±100;u, pipe with error bounds 1y+ =±60; (– – – – –), y+ =
2.68Re0.5

τ ; (– – – – –), y+ = 3.40Re0.5
τ ; @, Rm = 0 location for boundary layer; E, Rm = 0

location for pipe; q, Rm = 0 location for boundary layer from Mathis et al. (2009); p,
location of outer peak in u2+ for boundary layer; u, location of outer peak in u2+ for
pipe;f, skewness zero crossing location from Vincenti et al. (2013).

of the outer spectral peak in inner variables, as well as its magnitude, varied with
Reynolds number.

For the current boundary layer study, the locations of the outer spectral peak in
[yOSP, kOSP] coordinates are shown by the black symbols in figures 8 and 9. Each
location was found by locally fitting a Gaussian curve to the data and then nominating
the closest available data point as yOSP. The variation of y+OSP with Reynolds number
is shown in Figure 10(a). The data were acquired in 1y+ increments of about 40–
100, and the location of the peak therefore has a comparable uncertainty range (the
error bars show uncertainty limits of 1y+ ± 100). As can be seen, the locations of
the outer spectral peak in the boundary layer at lower Reynolds numbers follow Re0.5

τ

trend (dashed line shows best fit for Reτ <20 000), but at higher Reτ the trend is much
weaker. In fact, for Reτ & 20 000, its location seems to remain approximately fixed at
y+ ≈ 300.

To compare these observations to those of Mathis et al. (2009), consider now the
amplitude modulation correlation coefficient Rm, representing the degree of modulation
of the small-scale fluctuations by the large energetic scale motions. Mathis et al. found
that where Rm = 0, that is, the location of the point where LSMs and small-scale
motions are not correlated, seemed to correspond closely with the location of the outer
spectral peak. The loci of these zero crossings are shown in figure 10 together with the
Rm=0 locations found for the current data set, using a cutoff frequency f+=0.005 for
the boundary layer and 0.002 for the pipe. Also shown are the locations of the outer
peak in the variances for current data, which mark approximately the point where
the variances begin to follow a logarithmic behaviour (Vallikivi et al. 2015), and the
skewness zero crossing locations from Vincenti et al. (2013), a point that has also
been observed to behave in similar manner to the peak in the spectra and variances.
We see that all indicators follow a similar trend to the outer spectral peak location up
to Reτ ≈ 20 000, but the higher-Reynolds-number data all show a much slower rate of
increase.
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FIGURE 11. (Colour online) Magnitude of the outer spectral peak:p, boundary layer;
u, pipe; – – – – –, kxΦuu/u2

τ = 1.24.

For the pipe, the outer spectral peak behaves in a similar manner to that in the
boundary layer (see figure 10b), but its location shows less variation, probably because
the pipe data are available in smaller increments (1y+ ≈ 30–60), allowing for higher
precision. Again, the lower-Reynolds-number range seems to agree well with Re0.5

τ

trend (dashed line shows best fit for Reτ . 20 000), but at higher Reτ the data show a
slower increase in y+. Just as in boundary layers, for Reτ & 20 000 its location seems
to remain approximately fixed, this time at y+≈ 400. This behaviour is shared by the
location of the peak in u2+, but in contrast the Rm= 0 location for the pipe continues
to increase with Reynolds number, something not seen in the boundary layer data.

The magnitude of the outer spectral peak for each case is shown in figure 11. For
both flows, the amplitude appears to approach a constant value at high Reynolds
numbers where kxΦuu/u2

τ ≈ 1.24 ± 0.05, although the rate of approach is faster for
the boundary layer. These observations and the significance of the value 1.24 will
be discussed in more detail below, but we should note that there are considerable
uncertainties in finding the magnitude of the peak (principally due to calibration
issues and the difficulties in finding the friction velocity in boundary layers).

The wavenumber associated with the outer spectral peak, kOSP, is shown in figure 12.
For increasing Reynolds number, it decreases in viscous units as k+OSP≈MRe−0.5

τ , while
increasing in outer scaling as kOSPδ≈MRe0.5

τ , where M= 0.2. In terms of wavelength,
this gives λ+OSP≈ (M/2π)Re0.5

τ and λOSP/δ≈ (M/2π)Re−0.5
τ , respectively, suggesting that

the wavelength associated with the large energetic scales neither scales with the inner
length scale, nor with the outer length scale; λOSP appears to emerge as an independent
length scale. In addition, λOSP ≈ (M/2π)(δν/uτ )0.5, so that at very large Reynolds
numbers ν/uτ � λOSP� δ.

The wavenumber of the outer spectral peak appears, therefore, to be a new scale
representative of the log region. Vassilicos et al. (2014) recently suggested that for the
Townsend–Perry attached eddy model to show the correct behaviour for the integral
length scale at high Reynolds number, an additional length scale needs to appear,
one that lies between the inner and outer scales. Our current observations are closely
aligned with that proposal. In addition, the appearance of a new region described
by the length scale λOSP is consistent with the observation of Vallikivi et al. (2015)
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FIGURE 12. (Colour online) Wavenumber of the outer spectral peak in inner (a) and outer
coordinates (b):p, boundary layer (uncertainty in k+OSP is about ±50 %;@, boundary layer
data from Mathis et al. (2009); (solid line), k+x = 0.02Re−0.5

τ (a); kxδ = 0.02Re0.5
τ (b); ♦,

predicted wavenumber for Reτ = 650 000.

who find a log region (in mean and intensity) only after the outer spectral peak has
emerged.

Given the consensus in the literature that the outer spectral peak is associated with
the SS, there are two potential ways to interpret the above observations. First, we
could say that the SS are actually the manifestation of this region in the flow, rather
than the largest scales of motion. This would lead to a rather startling implication that
at lower Reynolds numbers the SS appear as very large scales (that is, λx/δ ≈ 3–6)
due to a lack of scale separation, but at higher Reynolds numbers the length scale
of the SS decreases. The length scale associated with the outer spectral peak in an
atmospheric boundary layer at Reτ ≈ 650 000 is expected to be λx/δ≈ 0.4 (as inferred
from the correlation shown in figure 12), which is much smaller than the scales of
the VLSM/SS. This suggests that this first interpretation is too stringent and may not
truly represent the data.

An alternate and perhaps more suitable interpretation is that there is a need to
decouple the scale and location of the outer spectral peak from that of the SS/VLSMs.
It can be seen from the spectra that, although the OSP appears to move towards the
wall and become smaller (in outer scaling) with increasing Reynolds number, there
is still significant energy content in larger scales. Therefore, the SS (in boundary
layers) and VLSMs (in pipes) continue to be dynamically relevant. This means that
the wavelength of the outer spectral peak is in fact a new length scale that emerges
in parallel with the VLSMs. The VLSMs start to appear at ‘lower’ Reynolds numbers
(say Reτ ≈ 2000), but this new length scale only emerges when there is sufficient scale
separation even beyond the one required for the VLSMs (Reτ > 20 000). At these
higher Reynolds numbers, the VLSMs represent the plateau region in the spectra
(instead of the peak) while the peak itself captures this new inertial length scale.

To show that there is at least some support for this notion at even higher Reynolds
numbers, figure 13 reproduces the spectrogram obtained in the neutral atmospheric
boundary layer by Mathis et al. (2009), where we see that there may indeed be an
outer spectral peak whose location is proportional to ln Reτ and whose wavelength (in
outer units) follows Re−0.5

τ . The location and the wavelength of this prediction appears
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FIGURE 13. Contour plot of the spectra in the atmospheric boundary layer at Reτ =
650 000, adapted from Mathis et al. (2009): +, location of inner spectral peak; f,
speculated location of outer spectral peak; (solid lines), trends in the loci of LSM and
SS peaks as described in § 3.3.

to be consistent with the peak found by Guala, Metzger & McKeon (2011) in the
wall-normal range y+ ≈ 1000 at a wavelength of about 0.45δ. Note that these values
have been inferred from figure 12 in Guala et al. (2011) that shows multiple peaks at
different wall-normal locations and wavenumbers and the uncertainty in identifying a
peak in the spectrogram (in wall-normal location) is stated to be about ±1000 wall-
units.

As noted earlier, pipe flows behave somewhat differently. Here, we expect that
λOSP/δ ∝ Re−0.67

τ and λ+OSP ∝ Re0.33
τ . Hence, the scale separation between inner and

inertial ranges appears slower in pipes than in boundary layers, whereas the separation
between outer and inertial scales is faster. The slower approach to the inner limit
agrees well with the observation that the appearance of a logarithmic region occurs
at a higher value of y+ in pipes than in boundary layers.

4. The mesolayer
We now draw together the observations on the spectral peaks and the behaviour of

the mean velocity and the variances. To this end, contour maps of the premultiplied
spectra in the boundary layer and pipe are shown in figures 14 and 15, together
with the corresponding mean velocity and variance profiles. We see again that the
location of the outer spectral peak given by the correlations of Hutchins & Marusic
(2007) and Mathis et al. (2009) for boundary layers overestimate its Reynolds number
dependence. In addition, the location of the outer spectral peak coincides closely with
the start of the logarithmic regions in the mean velocity and the variance. The overall
behaviour of the spectra in pipe flow is very similar to that in boundary layers, in that
the inner spectral peak stays approximately constant in viscous units and the outer
spectral peak is identified with the start of the log layer, although it is located at
slightly higher values of y+ in pipes compared with boundary layers.

Based on these observations, we first identify regions I and II in figures 14 and 15,
where the spectra and the statistics scale with inner variables (corresponding to the
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FIGURE 14. Contour plots of spectra in the boundary layer at Reτ = 5 × 103, 20 × 103

and 70× 103. Lines show trends in the loci of peaks shown in figures 8 and 9; (dashed
lines), y+= 10, 50, y+OSP, 0.15Reτ ;u, location of near-wall spectral peak. Location of outer
spectral peak:E, current data; ×, Mathis et al. (2009); +, Hutchins & Marusic (2007).
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FIGURE 15. Contour plots of spectra in the pipe at Reτ = 5× 103, 20× 103 and 70× 103.
Lines show trends in the loci of peaks shown in figures 8 and 9; (dashed lines), y+= 10,
67, y+OSP, 0.15Reτ ; u, location of near-wall spectral peak; E, location of outer spectral
peak.
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linear sublayer and the buffer layer). We also recognize a region IV where the mean
velocity and variances follow a log-law, marked approximately at its inner boundary
by the location of the outer spectral peak, and at its outer boundary by the point
where y/δ= 0.15. In between, there is region III where a Reynolds-number-dependent
behaviour can be seen in all parameters, which we identify as the mesolayer.

The term mesolayer was initially introduced by Long & Chen (1981), but found
a clearer expression in the work of Afzal (1982), Afzal (1984), Sreenivasan &
Sahay (1997), George & Castillo (1997), Wosnik, Castillo & George (2000) and Wei
et al. (2005). With the exceptions of George & Castillo (1997) and Wosnik et al.
(2000), who argued that the mesolayer is a region where energy dissipation scales
with νu2/y2 rather than u3/y so that a Reynolds number dependence is retained
in the scaled Reynolds stress and mean flow equations, all other studies rely on the
presence of an emerging intermediate wall-normal length scale that increases as

√
Reτ .

For example, Afzal (1982) used asymptotic expansions together with an integrated
momentum equation to show the emergence of a mesolayer whose location scales as√

Reτ in pipe flow. Sreenivasan & Sahay (1997) found that the location of the peak
in Reynolds shear stress (〈−uv〉+) scales as

√
Reτ , and expanded the once integrated

form of the momentum equation about this peak to determine the extent of the
mesolayer. Finally, Wei et al. (2005), by examining the mean momentum balance in
wall-bounded turbulent flows, identified the mesolayer (layer III in their nomenclature)
as a region where there is a balance between turbulent inertia (stress gradients), the
viscous force, and either the force due to the pressure gradient in pipes or the mean
advection in boundary layers. They identified the extent of the mesolayer, and using
the data available at the time verified its outer limit to be O(

√
Reτ ) in all flows. A

summary description of the different layers and their extent is given by Klewicki
(2013b).

The current data show a region akin to the above-mentioned mesolayer for the mean
flow, the variances and the spectra, but the bounds are different from those determined
in previous studies. In the premultiplied spectra, this is the region for y+ > 50 (for
the boundary layer) and y+ > 67 (for the pipe) where the LSM and VLSM/SS peaks
can be identified, with these two peaks competing until the VLSM/SS peak becomes
dominant. The energy associated with the VLSM/SS peak increases throughout this
mesolayer, and the outer spectral peak acts as the outer bound for this region. It
is seen that the location of the outer spectral peak does not appear to follow the√

Reτ scaling proposed for pipes and boundary layers in previous studies. Over the
entire range of Reynolds numbers available, y+OSP appears to follow a much weaker
scaling (perhaps as ln Reτ ) for both pipes and boundary layers. However, upon further
examination, as discussed in the previous section, there appears to be two different
trends over the range of Reynolds numbers explored here. For Reynolds numbers up
to about 20 000, y+OSP ∝

√
Reτ , whereas for higher Reynolds numbers, y+OSP appears to

be a constant (to within experimental uncertainty).
It is important to note that previous analytical studies determined the bounds of the

mesolayer based on the peak in Reynolds shear stress and not on the location of the
outer spectral peak. In fact, Chin et al. (2014) recently calculated the Reynolds shear
stress distribution using the mean profiles from Hultmark et al. (2013) and found that
the peak in Reynolds shear stress follows

√
Reτ scaling. However, this location does

not match the location of the outer spectral peak as determined here using the same
data. To the best of the authors’ knowledge, there is no particular reason for the
two locations to exhibit the same Reynolds number scaling. Up to a certain Reynolds
number (say, Reτ ≈ 20 000), these two locations appear to be close to each other, or
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at least within the error bars on our data, and the location of the outer spectral peak
can be used as a proxy for the location of the Reynolds shear stress peak. For much
higher Reynolds numbers, we need additional data to confirm that this correspondence
continues to hold true. Therefore, the mesolayer described in the current work may
not be the same as those in the other studies that rely on arguments on the Reynolds
shear stress distribution.

Finally, it is interesting to note that the streamwise length scale, inferred using
Taylor’s hypothesis, associated with the outer spectral peak appears as an intermediate
length scale that seems to scale with

√
Reτ in both pipes and boundary layers. We

therefore suggest that the mesolayer may be identified with the emergence of this new
streamwise length scale. This observation differs from previous work where the focus
was on the emergence of a new wall-normal length scale. Further work is required
to understand the emergence of this length scale and how it might be associated with
the mesolayer scaling described in other studies.

5. The log-layer
For boundary layers and pipes, we saw that at a sufficiently high Reynolds number

the location of the outer spectral peak appears to be either fixed or slowly varying in
inner scaling, and its magnitude appears to asymptote to a constant value of about
1.24 ± 0.05 (figure 11). The spectrograms shown in figures 14 and 15 demonstrate
that the location of the outer spectral peak at high Reynolds numbers marks the
start of a broad plateau where, at any given wall-normal location kxΦuu/u2

τ ≈ A′1,
that is, Φuu(kxy)/u2

τ ≈ A′1/(kxy). At any given Reynolds number, this plateau extends
approximately from a low-wavenumber limit given by a fixed value of kxδ = F to a
high-wavenumber limit given by kxy = 0.4. Hence, by integrating the spectrum over
this plateau we find a very similar result to that given by (1.2), namely,

u2+ = 1
u2
τ

∫ 0.4

Fy/δ
Φuu(kxy)d(kxy)= B′1 − A′1 ln

[y
δ

]
. (5.1)

The value of A′1≈ 1, and so it is generally smaller than A1, and it may also be a weak
function of y/δ. Nevertheless, we can derive a logarithmic region in the variances
with a slope that is close to the asymptotic value of the outer spectral peak, without
requiring an overlap region, providing the lower-wavenumber part of the spectrum
scales with δ, the higher-wavenumber part scales with y, and A′1 does not depend
strongly on y/δ. Note that the integral of the spectrum is likely to be reasonably
insensitive to the details of the spectral distribution, so that the underlying physical
arguments, especially the attached eddy hypothesis, retain an important role. In this
respect, an alternative theoretical approach was recently suggested by Hultmark (2012),
who showed a logarithmic behaviour in variances without involving spectral arguments
and therefore independent of any k−1

x region in the spectrum.
These observations suggest that the essential condition to observe a logarithmic

behaviour in the variances is a plateau region defined by a sufficient scale separation
between y+OSP and y/δ = 0.15. However, the extent of the approximate plateau in
the spectrum between kxδ = F and kxy = 0.4 depends upon the wavenumber of the
outer spectral peak. Since kOSPδ increases and k+OSP decreases with increasing Reτ , we
expect that a plateau (whose value is near 1.24) will emerge over a large range of
wavenumbers and wall-normal locations at Reynolds numbers where ν/uτ � λOSP� δ.
These conditions are consistent with those necessary to have λOSP emerge as a scale
representative of the log-layer.
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6. Conclusions
Streamwise turbulent spectra for Reynolds numbers in the range 2600 . Reτ .

72 500 were studied in boundary layer flows, and compared with data at similar
Reynolds numbers taken previously in pipe flows. In the high-wavenumber (low-
wavelength) region, all spectra in both flows showed an excellent collapse in
Kolmogorov scaling with a slope approaching (but not reaching) k−5/3

x for increasing
wall-normal distance and Reynolds number. This observation is in agreement with
the theory of Mydlarski & Warhaft (1996), Gamard & George (2000) and others, on
the slow asymptotic behaviour of the exponent toward −5/3.

At intermediate wavelengths, the spectra were found to scale well with y, and
at large wavelengths the spectra scaled with the outer length scale δ. However, in
contrast to the predictions by Perry et al. (1986), no region of overlap of these
scalings was seen, as first noted by Morrison et al. (2004).

For boundary layers, the near-wall inner spectral peak in the premultiplied spectrum
followed t+ ≈ 125 for y+ . 10. At y+ ≈ 10, the loci bifurcated so that the LSM
peak first followed k+x ≈ 0.005 and then kxy≈ 0.4, in close agreement with previous
findings in pipe flow. After bifurcation, a peak associated with SS emerged, scaling
with outer variables and following λ+x ≈ 20(y+Reτ )0.5 for 50 . y+ . 0.15Reτ . Outside
the logarithmic layer above y/δ >0.15, the peaks associated with SS and LSM merged
into one peak located at about λx ≈ 3δ. This is in contrast to pipe flows, where the
two peaks remain distinct.

The location of the outer spectral peak increased as
√

Reτ up to a Reτ ≈ 20 000
and beyond that the trend was much weaker and seemed to approach a constant value,
suggesting that the physical region containing most of the turbulent energy is getting
smaller and moving closer to the wall (in physical units).

In boundary layers and pipes, the wavelength of the outer spectral peak appeared
to increase with Reynolds number using inner scaling and decrease with Reynolds
number using outer scaling, so that the scales associated with the outer spectral peak
decrease in size relative to the large scales with increasing Reynolds number. It is
possible, therefore, that the wavelength of the outer spectral peak is a representative
scale of the inertial range where ν/uτ � λOSP � δ. At high Reynolds numbers, the
location of the outer spectral peak yOSP marks the start of a broad plateau in the
premultiplied spectrum that gives the appearance of a k−1

x region. The extent of the
plateau depends upon satisfying ν/uτ � λOSP � δ. By integrating the spectrum over
the plateau region, we derive a logarithmic region in the variances with a slope that
is close to the value of 1.24, as was found to exist in pipes and boundary layers by
Hultmark et al. (2012), Hultmark et al. (2013), Marusic et al. (2013) and Vallikivi
et al. (2015). Hence, the log-layer in wall-bounded flows seems directly associated
with the appearance of an outer spectral peak whose wall-normal location scales with
wall units. For the laboratory results presented here, an extensive k−1

x range is not
obvious due to a lack of sufficient scale separation between inner scales, outer scales
and the inertial scale λOSP. This observation, however, is consistent with the presence
of k−1

x in even higher-Reynolds-number flows where this scale separation is present,
such as in atmospheric boundary layers.

Based on the behaviour of peaks in the energy spectra, together with the results
on the turbulence statistics obtained by Vallikivi et al. (2015), we now propose five
distinct regions in wall-bounded flows:

Region I: y+. 10. Here, the near-wall structures scale as λx/y≈ const. (or t+≈ const.
without using Taylor hypothesis). The inner spectral peak location corresponds to y+≈
10 and λ+≈ 1250 (k+x = 0.005), close to the location of the inner peak in the variance.
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FIGURE 16. (Colour online) The extent of the principal scaling regions in boundary layers,
in inner (a) and outer coordinates (b).

Region II: 10 . y+ . 50 (boundary layers) and 67 (pipes). Here, the near-wall
structures scale as λ+x ≈ const. The energy in the near-wall structures decreases and
the wavelength of these structures stays about constant in viscous units at λ+x ≈ 1250.
The decrease in the variance with increasing wall distance is matched to the decrease
of the near-wall peak in the energy spectra. This region is associated with the buffer
layer in the mean velocity.

Region III: 50 (boundary layers) and 67 (pipes) . y+ . y+OSP. Here, λ+x ∼ y+0.5Re0.5
τ

in boundary layers and λ+x ∼ y+2/3Re1/3
τ in pipes. Two energetic peaks in the spectra

are present, with most of the energy associated with the SS located at λx ∼ (yδ)0.5,
and a weaker peak associated with LSMs located at about λx ≈ 20y. The SS/VLSM
peak continues to increase until y+OSP (whose limits are discussed in region IV). The
variance is almost constant at lower Reynolds numbers while slightly rising at higher
Reynolds numbers. In the mean velocity, the profile seems to behave as a power law
in y+. This region is associated with the mesolayer, where the mean flow is almost
free of viscous effects but turbulent quantities are still affected by viscosity.

Region IV: y+OSP . y+ . 0.15Reτ . Here, λ+x ∼ y+0.5Re0.5
τ in boundary layers and λ+x ∼

y+2/3Re1/3
τ in pipes. The energy associated with the SS/VLSMs is decreasing and there

is a logarithmic behaviour in variances. The outer spectral peak associated with SS
is located where there is an outer peak in the variance. Also, y+OSP varies weakly
with increasing Reynolds number (possibly following a ln Reτ trend over the entire
range of Reτ ), contrary to previous work that indicated a stronger Reynolds number
dependence (over a smaller range of Reynolds numbers). In fact, as discussed in the
paper, y+OSP appears to vary as

√
Reτ up to Reτ ≈ 20 000 and then is nearly a constant

for higher Reynolds numbers. Its location coincides with the outer peak or the end
of plateau seen in the variances, and therefore marks approximately the beginning of
the logarithmic behaviour in the variances. The wavelength of the outer spectral peak
emerges as a possible length scale for this region. The magnitude of OSP reaches a
constant value, and so marks the start of a k−1

x plateau that translates to a logarithmic
region in the variances.

Region V: y/δ & 0.15. Here, the LSMs (and VLSMs in pipe) scale with the outer
length scale. In boundary layers, the SS peak disappears, and only the LSM peak
remains, showing up as a single peak associated with large-scale structures with λx≈
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3δ. In pipe flows, both the LSM and VLSM peaks continue to be present, scaling
on δ and differing only in length. The turbulent fluctuations diminish and the mean
velocity follows a Reynolds-number_independent wake function.

The extent of these regions with varying Reynolds number is illustrated in figure 16.
It is clear that regions IV and V will constitute almost the full physical extent of
wall-bounded flows at very high Reynolds number.
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