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In this work, we consider oriented compact manifolds which possess convex mean
curvature boundary, positive scalar curvature and admit a map to D2 × T n with
non-zero degree, where D2 is a disc and T n is an n-dimensional torus. We prove the
validity of an inequality involving a mean of the area and the length of the boundary
of immersed discs whose boundaries are homotopically non-trivial curves. We also
prove a rigidity result for the equality case when the boundary is strongly totally
geodesic. This can be viewed as a partial generalization of a result due to Lucas
Ambrózio in (2015, J. Geom. Anal., 25, 1001–1017) to higher dimensions.
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1. Introduction

An important question in modern differential geometry is about the connection
between the curvatures and topology of a manifold. A very significant and historic
result on this is the famous Gauss–Bonnet theorem. As a consequence of that
theorem, we note that the topological invariant, named Euler characteristic, gives
a topological obstruction to the existence of a certain type of Riemannian metrics
on surfaces. In higher dimensions, the relationship between curvatures and the
topology of a manifold is much more complicated. However, Schoen and Yau, in their
celebrated joint work, discovered interesting relations between the scalar curvature
of a three-dimensional manifold and the topology of stable minimal surfaces inside
it, which emerge when one uses the second variation formula for the area, the Gauss
equation and the Gauss–Bonnet theorem.

In a very recent paper Bray, Brendle and Neves [3] proved an elegant rigidity
result concerning to an area-minimizing two-sphere embedded in a closed three-
dimensional manifold (M3, g) with positive scalar curvature and π2(M) �= 0. In that
work, they showed the following result. Denote by F the set of all smooth maps
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f : S
2 → M which represent a non-trivial element in π2(M). Define

A(M, g) = inf{Area(S2, f∗g) : f ∈ F}.
If Rg � 2, the following inequality holds:

A(M, g) � 4π,

where Rg denote the scalar curvature of (M, g). Moreover, if the equality holds
then the universal cover of (M, g) is isometric to the standard cylinder S

2 × R

up to scaling. For more results concerning to rigidity of three-dimensional closed
manifolds coming from area-minimizing surfaces, see [2, 4, 16, 18, 19]. In [21], Zhou
showed a version of Bray, Brendle and Neves [3] result for high co-dimension: for n +
2 � 7, let (Mn+2, g) be an oriented closed Riemannian manifold with Rg � 2, which
admits a non-zero degree map F : M → S

2 × Tn. Then A(M, g) � 4π. Furthermore,
the equality implies that the universal covering of (Mn+2, g) is S

2 × R
n.

In the same direction as the results mentioned above for the closed manifolds,
let M be a Riemannian manifold with non-empty boundary ∂M . A free boundary
minimal surface in M is a minimal surface in M with boundary contained in the
boundary ∂M and meeting it orthogonally. Such surfaces arise variationally as crit-
ical points of the area among surfaces in M whose boundaries lie on ∂M but are
free to vary on ∂M . The simplest examples, considering M as the unit ball with
centre at the origin in the Euclidean space, are an equatorial plane disc and the
critical catenoid, the unique piece of a suitably scaled catenoid in the unit ball.
Fraser and Schoen [12] established a connection between free-boundary minimal
surfaces and the Steklov eigenvalue problem, and proved existence of an embed-
ded free-boundary minimal surface of genus zero with any number of boundary
components. Since then, many works was developed to study free-boundary mini-
mal surfaces. For more results concerning free-boundary minimal surfaces, see the
following references and the references therein: [1, 5–14].

Consider now a Riemannian n-manifold with non-empty boundary (M,∂M, g).
Let FM be the set of all immersed discs in M whose boundaries are curves in ∂M
that are homotopically non-trivial in ∂M . If FM �= ∅, we define

A(M, g) = inf
Σ∈FM

|Σ|g and L(M, g) = inf
Σ∈FM

|∂Σ|g

In [1], Ambrózio proved the following result.

Theorem 1.1. Let (M, g) be a compact Riemannian three-manifold with mean
convex boundary. Assume that FM �= ∅. Then

1
2

inf RM
g A(M, g) + inf H∂M

g L(M, g) � 2π. (1.1)

Moreover, if equality holds, then the universal covering of (M, g) is isometric
to (R × Σ0, dt2 + g0), where (Σ0, g0) is a disc with constant Gaussian curvature
1
2 inf Rg and ∂Σ0 has constant geodesic curvature inf H∂M

g in (Σ0, g0).

A question that arises here is the following: Is it possible to obtain similar
result for high co-dimension? Unfortunately, a general result cannot be true as we
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can see with the following example. Consider (M, g) = (S2
+(r) × S

m(R), h0 + g0),
where (S2

+(r), h0) is the half two-sphere of radius r with the standard metric, and
(Sm(R), g0) is the m-sphere of radius R with the standard metric, m � 2. This case,
we have that

1
2

inf RM
g A(M, g) + inf H∂M

g L(M, g) > 2π.

On the other hand, consider (M, g) = (S2
+(r) × Tm, g0 + δ), where (Tm, δ) is the flat

m-torus, m � 2. Note that the equality holds in (1.1). However, we can see that
in this case the universal covering of (M, g) is isometric to (S2

+(r) × R
m, g0 + δ0),

where δ0 is a standard metric in R
m.

In the first example above, note that there is no map F : (M,∂M) → (D2 ×
Tn, ∂D

2 × Tn) with non-zero degree. However, this is a condition that we need
in order to obtain a similar result as in [1]. However, for the rigidity part, we
will assume that the manifold has strongly totally geodesic boundary. We say that
(M, g) has strongly totally geodesic boundary if the following two conditions hold
simultaneously:

(a) ∂M is a totally geodesic hypersurface of (M, g), i.e. ∇∂n
∂i = 0 on ∂M for

i = 1, . . . , n − 1;

(b) ∇2k+1
∂n

∂i = 0 for all positive integers k and i = 1, . . . , n − 1 on ∂M .

Our main result of this work is the following.

Theorem 1.2. Let (M,∂M, g) be a Riemannian (n + 2)-manifold, 3 � n + 2 � 7,
with positive scalar curvature and mean convex boundary. Assume that there is a
map F : (M,∂M) → (D2 × Tn, ∂D

2 × Tn) with non-zero degree. Then,

1
2

inf RM
g A(M, g) + inf H∂M

g L(M, g) � 2π. (1.2)

Moreover, if the boundary ∂M is strongly totally geodesic and the equality holds
in (1.2), then the universal covering of (M, g) is isometric to (Rn × Σ0, δ + g0),
where δ is the standard metric in R

n and (Σ0, g0) is a disc with constant Gaussian
curvature 1

2 inf RM
g and ∂Σ0 has null geodesic curvature in (Σ0, g0).

Remark 1.3. In order to prove the rigidity part of the above result, we consider the
double manifold (DM). However, such a double manifold does not inherit a smooth
Riemannian metric in general. If the manifold has strongly totally geodesic bound-
ary, we obtain that the double metric is smooth. Hence we apply the theorem 1.1
in [21] and obtain the rigidity. If we consider only the totally geodesic condition
on the boundary, we think it is also enough to obtain the rigidity. Actually, if the
boundary is totally geodesic, the double metric is smooth and it fails to be smooth
only across a hypersurface given by the double of the boundary. As in the work of
Miao [17], related to non-smooth versions of the positive mass theorem, we think
is it possible to obtain theorem 1.1 in [21] for this type of metrics: smooth metrics
which fails to be smooth only across a hypersurface. Hence, applying the conclusion
of theorem 1.1 in [21], we obtain the rigidity part.
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This work is organized as follows. In § 2, we present some auxiliaries results to be
used in the proof of the main results. In § 3, we present the proof of the inequality
in our main theorem 1.2. Finally, in § 4, we present the proof of the rigidity part
for the case where the equality is achieved and the manifold has strongly totally
geodesic boundary.

2. Free-boundary minimal k-slicings

All the manifolds considered here are compact and orientable.

2.1. Definition and examples

Let (M,∂M, g) be a Riemannian n-manifold and η the outward unit vector field
on the boundary ∂M in (M, g). Assume there is a properly embedded free-boundary
smooth hypersurface Σn−1 ⊂ M which minimizes volume in (M, g). Choose un−1 >
0 a first eigenfunction for the second variation Sn−1 of the volume of Σn−1 in (M, g)
satisfying

∂un−1

∂ηn−1
= un−1B

∂M (νn−1, νn−1) on ∂Σn−1

where νn−1 is the unit normal vector field of Σn−1 on (M, g), ηn−1 is the outward
unit normal vector field on the boundary ∂Σn−1 in (Σn−1, g) and B∂M is the second
fundamental form of ∂M in (M, g) with respect to η. Define ρn−1 = un−1 and the
weighted volume functional Vρn−1 for hypersurfaces of Σn−1,

Vρn−1(Σ) =
∫

Σ

ρn−1 dvΣ,

where dvΣ is the volume form on (Σ, g). Assume that there is a properly embedded
free-boundary smooth hypersurface Σn−2 ⊂ Σn−1 which minimizes the weighted
volume functional Vρn−1 . Choose a first eigenfunction un−2 > 0 for the second
variation Sn−2 of the weighted volume functional Vρn−1 in Σn−2 satisfying

∂un−2

∂ηn−2
= un−2B

∂Σn−1(νn−2, νn−2) on ∂Σn−2,

where νn−2 is the unit normal vector field of Σn−2 on (Σn−1, g), ηn−2 is the outward
unit normal vector field on the boundary ∂Σn−2 in (Σn−2, g) and B∂Σn−1 is the
second fundamental form of ∂Σn−1 in (Σn−1, g) with respect to ηn−1. Define ρn−2 =
ρn−1un−2. Assume that we can keep doing this, inductively. Hence, we obtain a
family of smooth free-boundary minimal submanifolds

Σk ⊂ Σk+1 ⊂ · · · ⊂ Σn−1 ⊂ (Σn, g) := (M, g),

which was constructed by choosing, for each j ∈ {k, . . . , n − 1}, a smooth properly
embedded free-boundary hypersurface Σj ⊂ Σj+1 which minimizes the weighted
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volume functional Vρj+1 , where ρj+1 := uj+1uj+2 · · ·un−1 and

∂uj

∂ηj
= ujB

∂Σj+1(νj , νj) on ∂Σj .

We call such family of free-boundary minimal hypersurfaces a free-boundary
minimal k-slicing in (M, g).

Example 2.1. Let (N, ∂N, g) be a Riemannian k-manifold. Consider the following
Riemannian n-manifold (N × Tn−k, g + δ), where δ is the flat metric on the torus
Tn−k. The family of smooth hypersurfaces

N ⊂ N × S1 ⊂ N × T 2 ⊂ · · · ⊂ N × Tn−k−1 ⊂ (N × Tn−k, g + δ),

where ρj ≡ uj ≡ 1, for every j = k, . . . , n − 1, is a free-boundary minimal k-slicing
in (N × Tn−k, g + δ).

2.2. Geometric formulas for free-boundary minimal k-slicing

Let (M,∂M, g) be a Riemannian n-manifold. Consider a free-boundary k-slicing
in M :

Σk ⊂ · · · ⊂ Σn−1 ⊂ (Σn, g) := (M, g).

Notation

• Ricj := Ricci curvature of (Σj , g)

• Rj := Scalar curvature of (Σj , g)

• νj := Unit normal vector field of Σj in (Σj+1, g)

• Bj := Second fundamental form of Σj in (Σj+1, g)

• Hj := Mean curvature of Σj in (Σj+1, g)

• ηj := Outward unit normal vector field on the boundary ∂Σj in (Σj , g)

• B∂Σj := Second fundamental form of ∂Σj in (Σj , g) with respect to ηj

• H∂Σj := Mean curvature of ∂Σj in (Σj , g) with respect to ηj

Remark 2.2. Since Σj is a free-boundary hypersurface in (Σj+1, g), for every
j = k, . . . , n − 1, we have that

(1) ηj = ηp in ∂Σj , for every p � j.

(2) H∂Σj = H∂Σj+1 − B∂Σj+1(νj , νj) = H∂M −∑n−1
p=j B∂Σp+1(νp, νp).
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For each j ∈ {k, . . . , n − 1}, define on Σj × Tn−j the Riemannian metric

ĝj = g +
n−1∑
p=j

u2
p dt2p.

We define

Σ̂j = Σj × Tn−j and Σ̃j = Σj × Tn−j−1.

Note that, since Σj is free-boundary hypersurface in (Σj+1, g), we have that
Σ̃j is a free-boundary hypersurface in (Σ̂j+1, ĝj+1). With the next lemmas and
propositions, we will prove that Σj × Tn−j−1 is a stable free boundary minimal
hypersurface in (Σ̂j+1, ĝj+1).

Proposition 2.3. Let (M, g) be a n-dimensional Riemannian manifold, Σ ⊂ M be
a hypersurface and 0 < u ∈ C∞(M). Then, the second fundamental form of Σ × S

1

in (M × S
1, g̃ = g + u2 dt2) is given by

B̃ = B − uν(u) dt2,

where ν is a globally defined unit normal vector field on Σ and B is the second
fundamental form of Σ in (M, g).

Proof. Consider (x1, . . . , xn−1, t = xn) a local chart in Σ × S
1 such that

(x1, . . . , xn−1) is a local chart in Σ. Denote by ∇̃ and ∇ the Riemannian
connections of (M × S

1, g̃) and (M, g), respectively. For i, j = 1, . . . , n − 1, we have
that

∇̃∂i
∂j = ∇∂i

∂j , ∇̃∂i
∂t =

∂i(u)
u

∂t and ∇̃∂t
∂t = −u∇gu.

It follows that

B̃ij = g̃(∇̃∂i
∂j , ν) = g(∇∂i

∂j , ν) = Bij ,

B̃in = g̃(∇̃∂i
∂t, ν) =

∂i(u)
u

g̃(∂t, ν) = 0

and

B̃nn = g̃(∇̃∂t
∂t, ν) = −ug(∇gu, ν) = −uν(u).

�

Lemma 2.4. For every j = k, . . . , n − 1, the second fundamental form B̃j of Σ̃j in
(Σ̂j+1, ĝj+1) is given by

B̃j = Bj −
n−1∑

p=j+1

upνj(up) dt2p. (2.1)

In particular,

|B̃j |2 = |Bj |2 +
n−1∑

p=j+1

(νj(log up))2.
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Proof. To prove (2.1), for m ∈ {j + 1, . . . , n − 1}, define on Σj+1 × Tn−m the
following Riemannian metric

gm = g +
n−1∑
p=m

u2
p dt2p.

We will prove that the second fundamental form of Σj × Tn−m in (Σj+1 ×
Tn−m, gm) is

Bm = Bj −
n−1∑
p=m

upνj(up) dt2p (2.2)

by a finite reverse induction on m. When m = n − 1 equality (2.2) follows directly
from proposition 2.3. Now suppose that (2.2) is valid for m + 1. Note that gm =
gm+1 + u2

m dt2m. It follows from proposition 2.3 that Bm = Bm+1 − umνj(um) dt2m.
Equality (2.2) now follows from the inductive assumption. Since gj+1 = ĝj+1, we
have showed equality (2.1). �

Lemma 2.5. For every j = k, . . . , n − 1, the second fundamental form B̂j+1 of
∂Σ̂j+1 in (Σ̂j+1, ĝj+1) with respect to ηj satisfies

B̂j+1(νj , νj) = B∂Σj+1(νj , νj).

Proof. Using a similar argument used to prove (2.1), we can prove that

B̂j+1 = B∂Σj+1 −
n−1∑

p=j+1

upηj+1(up) dt2p.

In particular,

B̂j+1(νj , νj) = B∂Σj+1(νj , νj). �

Proposition 2.6. Let (M, g) be a n-dimensional Riemannian manifold and 0 <
u ∈ C∞(M). Then the Ricci curvature of (M × S

1, g̃ = g + u2 dt2) is given by

Ricg̃ = Ricg − u−1
(∇2

gu
)− uΔgu dt2,

where Ricg is the Ricci curvature of (M, g).

Proof. Consider (x1, . . . , xn, t = xn+1) a local chart in M × S
1 such that

(x1, . . . , xn) is a local chart in M . Denote by ∇ the Riemannian connection of
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(M, g) and R̃, R the curvature tensors of (M × S
1, g̃) and (M, g), respectively.

Note that

(Ricg̃)ij =
n+1∑
k,l=1

g̃klR̃kijl =
n∑

k,l=1

gklR̃kijl + u−2R̃tijt.

Since, for i, j, k, l = 1, . . . , n, we have that

R̃kijl = Rkijl, R̃tijt = −u
(∇2

gu
)
ij

and R̃kitl = 0

then

(Ricg̃)ij =
n∑

k,l=1

gklRkijl − u−1
(∇2

gu
)
ij

= (Ricg)ij − u−1
(∇2

gu
)
ij

,

(Ricg̃)tt = −u

n∑
k,l=1

gkl
(∇2

gu
)
kl

= −uΔgu

and

(Ricg̃)it = 0

for every i, j = 1, . . . , n. �

Lemma 2.7. For every j = k, . . . , n − 2, the Ricci curvature Ricĝj+1 of (Σ̂j+1, ĝj+1)
satisfies

Ricĝj+1(νj , νj) = Ricj+1(νj , νj) −
n−1∑

p=j+1

u−1
p

(∇2
j+1up

)
(νj , νj)

where ∇2
j+1 is the Hessian in (Σj+1, g).

Proof. For m ∈ {j + 1, . . . , n − 1}, define in Σj+1 × Tn−m the Riemannian metric

gm = g +
n−1∑
p=m

u2
p dt2p.

We will prove that the Ricci curvature Ricm of (Σj+1 × Tn−m, gm) satisfies

Ricm(νj , νj) = Ricj+1(νj , νj) −
n−1∑
p=m

u−1
p

(∇2
j+1up

)
(νj , νj) (2.3)

by a finite reverse induction on m. When m = n − 1 equality (2.3) follows directly
from proposition 2.6. Now suppose (2.3) is valid for m + 1. Since gm = gm+1 +
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u2
mdt2m, it follows from proposition 2.6 that

Ricm(νj , νj) = Ricm+1(νj , νj) − u−1
m

(
∇2

m+1um

)
(νj , νj).

where ∇2

m+1 denote the Hessian in (Σj+1 × Tn−m−1, gm+1). Note that

(
∇2

m+1um

)
(νj , νj) =

(∇2
j+1um

)
(νj , νj).

Equality (2.3) now follows from the inductive assumption and the last two equalities.
Since gj+1 = ĝj+1, we have proven the lemma. �

Proposition 2.8. For every j = k, . . . , n − 1, Σ̃j is a free-boundary minimal
hypersurfaces in (Σ̂j+1, ĝj+1).

Proof. Consider (x1, . . . , xj , tj+1, . . . , tn−1) a local chart in Σ̃j such that (x1, . . . , xj)
is a local chart in Σj . Denote by H̃j the mean curvature of Σ̃j in (Σ̂j+1, ĝj+1).
It follows from lemma 2.4 that

H̃j =
n−1∑
i,k=1

ĝik
j+1(B̃j)ik

=
j∑

i,k=1

gik(Bj)ik −
n−1∑

p=j+1

νj(up)
up

= Hj −
n−1∑

p=j+1

νj(ln up)

= Hj − νj(ln ρj+1)

= Hj − 〈∇j+1 ln ρj+1, νj〉

where ∇j+1 is the gradient in (Σj+1, g). We have that Σj minimizes the weight vol-
ume functional Vρj+1 , in particular, the (ln ρj+1)-mean curvature of Σj in (Σj+1, g)
vanishes everywhere, this is, Hj = 〈∇j+1 ln ρj+1, νj〉. (See [15].) This implies that
H̃j = 0. Therefore, Σ̃j is a free-boundary minimal hypersurfaces in (Σ̂j+1, ĝj+1). �

Denote by Sj the second variation for weight volume functional Vρj+1 in Σj , S̃j

the second variation for volume functional of Σ̃j in (Σ̂j+1, ĝj+1) and g̃j = ĝj+1|Σ̃j
.

Proposition 2.9. For every j = k, . . . , n − 1, Σ̃j is a free-boundary stable minimal
hypersurfaces in (Σ̂j+1, ĝj+1).
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Proof. Let ϕ ∈ C∞(Σj). We have that

Sj(ϕ) =
∫

Σj

[|∇jϕ|2 − (|Bj |2 + Ricfj+1(νj , νj))ϕ2
]
ρj+1 dvj

−
∫

∂Σj

ϕ2B∂Σj+1(νj , νj)ρj+1 dσj

where Ricfj+1(νj , νj) = Ricj+1(νj , νj) − (∇2
j+1fj+1)(νj , νj), fj+1 = ln ρj+1 (see

[15]). Here, dvj and dσj are the volume forms of (Σj , g) and (∂Σj , g), respectively.
Note that

∇j+1fj+1 = ∇j+1 ln ρj+1

= ∇j+1

⎛
⎝ n−1∑

p=j+1

ln up

⎞
⎠

=
n−1∑

p=j+1

∇j+1 ln up

=
n−1∑

p=j+1

1
up

∇j+1up.

It follows that

(∇2
j+1fj+1)(νj , νj) =

〈∇νj
(∇j+1fj+1) , νj

〉

=

〈
∇νj

⎛
⎝ n−1∑

p=j+1

1
up

∇j+1up

⎞
⎠ , νj

〉

=
n−1∑

p=j+1

〈
1
up

∇νj
(∇j+1up) − νj(up)

u2
p

∇j+1up, νj

〉

=
n−1∑

p=j+1

1
up

〈∇νj
(∇j+1up) , νj

〉− n−1∑
p=j+1

1
u2

p

[νj(up)]2

=
n−1∑

p=j+1

1
up

(∇2
j+1up

)
(νj , νj) −

n−1∑
p=j+1

[νj(ln up)]2

From lemmas 2.4 and 2.7 we obtain

Ricfj+1(νj , νj) + |Bj |2 = Ricĝj+1(νj , νj) + |B̃j |2.

This implies that

Sj(ϕ) =
∫

Σj

(|∇jϕ|2 − Qjϕ
2
)
ρj+1 dvj −

∫
∂Σj

ϕ2B∂Σj+1(νj , νj)ρj+1 dσj .
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where

Qj = Ricĝj+1(νj , νj) + |B̃j |2.
Consider now Ψ ∈ C∞(Σ̃j). We have that

S̃j(Ψ) =
∫

Σ̃j

[|∇g̃j
Ψ|2 − QjΨ2

]
dvg̃j

−
∫

∂Σ̃j

Ψ2B̂j+1(νj , νj) dσg̃j

where dvg̃j
and dσg̃j

are the volume forms of (Σ̃j , g̃j) and (∂Σ̃j , g̃j), respectively.
From lemma 2.5 we have that

S̃j(Ψ) =
∫

Σ̃j

(|∇g̃j
Ψ|2 − QjΨ2

)
dvg̃j

−
∫

∂Σ̃j

Ψ2B∂Σj+1(νj , νj) dσg̃j

Furthermore, since dvg̃j
= ρj+1 dvj dt and dσg̃j

= ρj+1 dσj dt, where dt =
dtj+2 · · · dtn−1, we have that

S̃j(Ψ) =
∫

T n−j−1

(∫
Σj

(|∇g̃j
Ψ|2 − QjΨ2

)
ρj+1 dvj

)
dt

−
∫

T n−j−1

(∫
∂Σj

Ψ2B∂Σj+1(νj , νj)ρj+1 dσj

)
dt

For each Ψ ∈ C∞(Σ̃j) define FΨ : Tn−j−1 → R by FΨ(t) = Sj(Ψt), where for each
t ∈ Tn−j−1 the function Ψt ∈ C∞(Σj) is defined by Ψt(x) = Ψ(x, t), x ∈ Σj . Note
that

S̃j(Ψ) �
∫

T n−j−1
FΨ dt. (2.4)

Since Σj minimizes the weight volume functional Vρj+1 we have that FΨ > 0 for
every Ψ ∈ C∞(Σ̃j). It follows that S̃j(Ψ) > 0 for every Ψ ∈ C∞(Σ̃j). Hence, Σ̃j is
a free-boundary stable minimal hypersurface in (Σ̂j+1, ĝj+1). �

Note that the equality holds in (2.4) if and only if Ψ ∈ C∞(Σj). So Sj(ϕ) = S̃j(ϕ),
for every ϕ ∈ C∞(Σj). It follows that

Sj(ϕ) =
∫

Σj

(|∇jϕ|2 − Qjϕ
2)ρj+1 dvj −

∫
∂Σj

ϕ2B∂Σj+1(νj , νj)ρj+1 dσj

= −
∫

Σj

ϕL̃j(ϕ)ρj+1 dvj +
∫

∂Σj

ϕ

(
∂ϕ

∂ηj
− ϕB∂Σj+1(νj , νj)

)
ρj+1 dσj

for every ϕ ∈ C∞(Σj), where L̃j : C∞(Σj) → C∞(Σj) is a differential operator
given by L̃(ϕ) = Δ̃jϕ + Qjϕ, where Δ̃j denote the Laplacian operator of (Σ̃j , ĝj+1).

Consider λj the first eigenvalue of Sj associated with the first eigenfunction uj .
We have that, ⎧⎪⎨

⎪⎩
L̃j(uj) = −λjuj on Σj

∂uj

∂ηj
= ujB

∂Σj+1(νj , νj) on ∂Σj

(2.5)
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Lemma 2.10. For every j � p � n − 1, we have that, in ∂Σj,

B∂Σp+1(νp, νp) = 〈∇j log up, ηj〉.
Proof. It follows from (2.5) that, in ∂Σp,

B∂Σp+1(νp, νp) =
1
up

∂up

∂ηp
= 〈∇p log up, ηp〉,

for every p = k, . . . , n − 1. Consider j � p � n − 1. Note that, in ∂Σj ,

B∂Σp+1(νp, νp) = 〈∇p log up, ηj〉,
because we have ηp = ηj in ∂Σj (see remark 2.2). In Σj , we can write

∇p log up = ∇j log up +
p−1∑
l=j

〈∇p log up, νl〉νl.

Hence, in ∂Σj , we have that

B∂Σp+1(νp, νp) = 〈∇j log up, ηj〉 +
p−1∑
l=j

〈∇p log up, νl〉〈νl, ηj〉.

However, we have ηj ⊥ νl in ∂Σj , for every j � l � n − 1. Therefore,

B∂Σp+1(νp, νp) = 〈∇j log up, ηj〉
�

Proposition 2.11. Let (M, g) be a n-dimensional Riemannian manifold and 0 <
u ∈ C∞(M). Then the scalar curvature of (M × S

1, g̃ = g + u2 dt2) is

Rg̃ = Rg − 2
u

Δgu,

where Rg is the scalar curvature of (M, g).

Proof. Consider (x1, . . . , xn, t = xn+1) a local chart in M × S
1 such that

(x1, . . . , xn) is a local chart in M . From proposition 2.6, we have that

Rg̃ =
n+1∑
i,j=1

g̃ij(Ricg̃)ij

=
n∑

i,j=1

g̃ij(Ricg̃)ij +
1
u2

(Ricg̃)tt

=
n∑

i,j=1

gij(Ricg)ij − 1
u

n∑
i,j=1

gij
(∇2

gu
)
ij
− 1

u
Δgu

= Rg − 2
u

Δgu.

�
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Lemma 2.12. For k � j � n − 1, the scalar curvature R̃j of (Σ̃j , g̃j) is given by

R̃j = Rj − 2
n−1∑

p=j+1

u−1
p Δjup − 2

∑
j+1�p<q�n−1

〈∇j log up,∇j log uq〉. (2.6)

Equivalently,

R̃j = Rj − 4ρ
−(1/2)
j+1 Δj(ρ

1/2
j+1) −

n−1∑
p=j+1

|∇j log up|2. (2.7)

Proof. To prove (2.6), for m ∈ {j + 1, . . . , n − 1}, define in Σj × Tn−m the Rieman-
nian metric

gm = g +
n−1∑
p=m

u2
p dt2p.

We will prove that the scalar curvature of (Σj × Tn−m, gm) is

Rm = Rj − 2
n−1∑
p=m

u−1
p Δjup − 2

∑
m�p<q�n−1

〈∇j log up,∇j log uq〉 (2.8)

by a finite reverse induction on m. When m = n − 1 formula (2.8) follows directly
from proposition 2.11. Now suppose formula (2.8) is valid for m + 1. Note that
gm = gm+1 + u2

m dt2m. It follows from proposition 2.11 that

Rm = Rm+1 − 2u−1
m Δm+1um

where Δm+1 denote the Laplacian operator of (Σj × Tn−m−1, gm+1). Note that

Δm+1um = Δjum +
n−1∑

p=m+1

g(∇j log up,∇jum).

Equality (2.8) now follows from the inductive assumption and the last two equalities.
Since gj+1 = g̃j , we have proven equality (2.6).

To prove (2.7), note that

∣∣∣∣∣∣
n−1∑

p=j+1

∇j log up

∣∣∣∣∣∣
2

=
n−1∑

p=j+1

|∇j log up|2 + 2
∑

j+1�p<q�n−1

〈∇j log up,∇j log uq〉

It follows from (2.6) that

R̃j = Rj − 2
n−1∑

p=j+1

u−1
p Δjup −

∣∣∣∣∣∣
n−1∑

p=j+1

∇j log up

∣∣∣∣∣∣
2

+
n−1∑

p=j+1

|∇j log up|2.
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Since

2Δj log up = 2u−1
p Δjup − 2|∇j log up|2 and

n−1∑
p=j+1

log up = log ρj+1

we have that

R̃j = Rj −
n−1∑

p=j+1

|∇j log up|2 − 2Δj

⎛
⎝ n−1∑

p=j+1

log up

⎞
⎠−

∣∣∣∣∣∣∇j

⎛
⎝ n−1∑

p=j+1

log up

⎞
⎠
∣∣∣∣∣∣
2

= Rj −
n−1∑

p=j+1

|∇j log up|2 − 2Δj log ρj+1 − |∇j log ρj+1|2

= Rj − 4ρ
−(1/2)
j+1 Δj(ρ

1/2
j+1) −

n−1∑
p=j+1

|∇j log up|2.

�

Lemma 2.13. For k � j � n − 1, the scalar curvature R̂j of (Σ̂j , ĝj) is given by

R̂j = Rj − 2
n−1∑
p=j

u−1
p Δjup − 2

∑
j�p<q�n−1

〈∇j log up,∇j log uq〉 (2.9)

= R̂j+1 + |B̃j |2 + 2λj (2.10)

= RM +
n−1∑
p=j

|B̃p|2 + 2
n−1∑
p=j

λp. (2.11)

Proof. We can prove (2.9) using a similar argument used to prove (2.6). To prove
(2.10), note that (Σ̂j , ĝj) = (Σ̃j × S

1, g̃j + u2
j dt2j ). It follows from proposition 2.11

that

R̂j = R̃j − 2u−1
j Δ̃juj

where Δ̃j denote the Laplacian operator of (Σ̃j , g̃j). So, from (2.5) we have that

2λj = −2u−1
j Δ̃juj − R̂j+1 + R̃j − |B̃j |2 = R̂j − R̂j+1 − |B̃j |2

Hence, it follows equality (2.10). To get (2.11) we iterate (2.10) n − j times. �

Proposition 2.14. If RM > 0 and H∂M � 0 then

4
∫

Σj

|∇jϕ|2 dvj > −2
∫

∂Σj

ϕ2H∂Σj dσj −
∫

Σj

ϕ2Rj dvj ,

for every ϕ ∈ C∞(Σj) and j = k, . . . , n − 1.
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Proof. Since Σj minimizes the weighted volume functional Vρj+1 , we have that
Sj(ϕ) � 0, for every ϕ ∈ C∞(Σj). It follows that,

4
∫

Σj

|∇jϕ|2ρj+1 dvj � 2
∫

Σj

cjϕ
2ρj+1 dvj + 2

∫
∂Σj

ϕ2B∂Σj+1(νj , νj)ρj+1 dσj ,

for every ϕ ∈ C∞(Σj). From Gauss equation we have that

Qj =
1
2
(R̂j+1 − R̃j + |B̃j |2).

Since RM > 0, from lemma 2.13, we have that R̂i > 0, for every k � i � n − 1.
It follows from lemma 2.12 that

2Qj > −Rj + 4ρ
−(1/2)
j+1 Δj(ρ

1/2
j+1)

Thus,

4
∫

Σj

|∇jϕ|2ρj+1 dvj > −
∫

Σj

Rjϕ
2ρj+1 dvj + 4

∫
Σj

ρ
1/2
j+1Δj(ρ

1/2
j+1)ϕ

2 dvj

+ 2
∫

∂Σj

ϕ2B∂Σj+1(νj , νj)ρj+1 dσj ,

for every ϕ ∈ C∞(Σj). Replacing ϕ by ϕρ
−(1/2)
j+1 at the last inequality, we obtain

that

4
∫

Σj

|∇j(ϕρ
−(1/2)
j+1 )|2ρj+1 dvj > −

∫
Σj

Rjϕ
2 dvj + 4

∫
Σj

ρ
−(1/2)
j+1 Δj(ρ

1/2
j+1)ϕ

2 dvj

+ 2
∫

∂Σj

ϕ2B∂Σj+1(νj , νj) dσj .

Observe that

∇j(ϕρ
−(1/2)
j+1 ) = ϕ∇jρ

−(1/2)
j+1 + ρ

−(1/2)
j+1 ∇jϕ

This implies that

|∇j(ϕρ
−(1/2)
j+1 )|2 = ρ−1

j+1|∇jϕ|2 + ϕ2|∇jρ
−(1/2)
j+1 |2 + 2ϕρ

−(1/2)
j+1 〈∇jρ

−(1/2)
j+1 ,∇jϕ〉

Thus,

ρj+1|∇j(ϕρ
−(1/2)
j+1 )|2 = |∇jϕ|2 + ϕ2ρj+1|∇jρ

−(1/2)
j+1 |2 + 〈∇j log ρ

−(1/2)
j+1 ,∇j(ϕ2)〉
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Using integration by parts, we have that

∫
Σj

〈∇j log ρ
−(1/2)
j+1 ,∇j(ϕ2)〉dvj

= −
∫

Σj

ϕ2Δj log ρ
−(1/2)
j+1 dvj +

∫
∂Σj

ϕ2
∂(log ρ

−(1/2)
j+1 )

∂ηj
dσj

= +
∫

Σj

ϕ2ρ
−(1/2)
j+1 Δjρ

1/2
j+1 dvj −

∫
Σj

ϕ2|∇j log ρ
1/2
j+1|2) dvj

− 1
2

∫
∂Σj

ϕ2〈∇j log ρj+1, ηj〉dσj

= −
∫

Σj

ϕ2|∇j log ρ
1/2
j+1|2 dvj +

∫
Σj

ϕ2ρ
−(1/2)
j+1 Δjρ

1/2
j+1 dvj

− 1
2

∫
∂Σj

ϕ2〈∇j log ρj+1, ηj〉dσj

Then,

4
∫

Σj

ρj+1|∇j(ϕρ
−(1/2)
j+1 )|2 dvj

= 4
∫

Σj

|∇jϕ|2 dvj + 4
∫

Σj

ϕ2ρj+1|∇jρ
−(1/2)
j+1 |2 dvj

− 4
∫

Σj

ϕ2|∇j log ρ
1/2
j+1|2 dvj + 4

∫
Σj

ϕ2ρ
−(1/2)
j+1 Δjρ

1/2
j+1 dvj

− 2
∫

∂Σj

ϕ2〈∇j log ρj+1, ηj〉dσj

Since,

∇jρ
−(1/2)
j+1 = −ρ−1

j+1∇jρ
1/2
j+1,

we obtain that

ρj+1|∇jρ
−(1/2)
j+1 |2 = |∇j log ρ

1/2
j+1|2.

This implies that

4
∫

Σj

ρj+1|∇j(ϕρ
−(1/2)
j+1 )|2 dvj = 4

∫
Σj

|∇jϕ|2 dvj + 4
∫

Σj

ϕ2ρ
−(1/2)
j+1 Δjρ

1/2
j+1 dvj

− 2
∫

∂Σj

ϕ2〈∇j log ρj+1, ηj〉dσj
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Consequently,

4
∫

Σj

|∇jϕ|2 dvj > 2
∫

∂Σj

ϕ2
(
B∂Σj+1(νj , νj) + 〈∇j log ρj+1, ηj〉

)
dσj

−
∫

Σj

Rjϕ
2 dvj

Since H∂M
g � 0, from remark 2.2 and lemma 2.10 that

4
∫

Σj

|∇jϕ|2 dvj > 2
∫

∂Σj

ϕ2

⎛
⎝n−1∑

p=j

B∂Σp+1(νp, νp)

⎞
⎠dσj −

∫
Σj

Rjϕ
2 dvj

= 2
∫

∂Σj

ϕ2
(
H∂M

g − H∂Σj
)
dσj −

∫
Σj

Rjϕ
2 dvj

� −2
∫

∂Σj

ϕ2H∂Σj dσj −
∫

Σj

Rjϕ
2 dvj

Therefore,

4
∫

Σj

|∇jϕ|2 dvj > −2
∫

∂Σj

ϕ2H∂Σj dσj −
∫

Σj

ϕ2Rj dvj ,

for every ϕ ∈ C∞(Σj). �

Theorem 2.15. Let (M,∂M, g) be a Riemannian n-manifold such that RM > 0
and H∂M � 0. Consider the free-boundary minimal k-slicing in (M, g)

Σk ⊂ · · · ⊂ Σn−1 ⊂ Σn = M.

Then:

(1) The manifold Σj has a metric with positive scalar curvature and minimal
boundary, for every 3 � k � j � n − 1.

(2) If k = 2, then the connected components of Σ2 are discs.

Proof. (1) Consider j ∈ {k, . . . , n − 1}, here k � 3. It follows from proposi-
tion 2.14 that

−4kj

∫
Σj

|∇jϕ|2 dvj < 2kj

∫
∂Σj

ϕ2H∂Σj dσj + kj

∫
Σj

ϕ2Rj dvj ,

for every ϕ ∈ C∞(Σj) such that ϕ �≡ 0 and kj = (j − 2)/(4(j − 1)) > 0. This implies
that ∫

Σj

|∇jϕ|2 dvj + 2kj

∫
∂Σj

ϕ2H∂Σj dσj + kj

∫
Σj

ϕ2Rj dvj

> (1 − 4kj)
∫

Σj

|∇jϕ|2 dvj ,

https://doi.org/10.1017/prm.2021.51 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.51


1378 E. Barbosa and F. Conrado

for every ϕ ∈ H1(Σj) such that ϕ �≡ 0. It follows that

λj = inf
0 �≡ϕ∈H1(Σj)

∫
Σj

|∇jϕ|2 dvj + 2kj

∫
∂Σj

ϕ2H∂Σj dσj + kj

∫
Σj

ϕ2Rj dvj∫
Σj

ϕ2 dvj

> 0.

Therefore, there exists a metric in Σj with positive scalar curvature and minimal
boundary.

(2) From proposition 2.14 we have that

4
∫

Σ2

|∇2ϕ|2 dv2 > −2
∫

∂Σ2

ϕ2H∂Σ2 dσ2 − 2
∫

Σ2

ϕ2K dv2,

for every ϕ ∈ C∞(Σ2) such that ϕ �≡ 0, because R2 = 2K2, where K2 is the
Gaussian curvature of (Σ2, g). In particular, for ϕ ≡ 1 we have that∫

∂Σ2

H∂Σ2 dσ2 +
∫

Σ2

K dv2 > 0. (2.12)

Let S be a connected component of Σ2. From inequality (2.12) and from
Gauss–Bonnet theorem, we have that χ(S) > 0. Therefore S is a disc. �

3. Proof of inequality

Proposition 3.1. There is a free-boundary minimal two-slicing

Σ2 ⊂ Σ3 ⊂ · · · ⊂ Σn+1 ⊂ (M, g),

such that Σk is connected and the map Fk := F |Σk
: (Σk, ∂Σk) → (D2 ×

T k−2, ∂D
2 × T k−2) has non-zero degree, for every k = 2, . . . , n + 1.

Proof. Without loss of generality, we assume that F is a smooth function. Consider
the projection pj : D

2 × T j → S1 given by

pj(x, (t1, . . . , tj)) = tj ,

for every x ∈ Σ and (t1, . . . , tj) ∈ T j = S
1 × · · · × S

1.
We will start constructing the manifold Σn+1. For this, define fn = pn ◦ F.

It follows from the Sard’s theorem that there is θn ∈ S1 which is a regular value of
fn and ∂fn. Define

Sn+1 := f−1
n (θn) = F−1(D2 × Tn−1 × {θn}).

Note that Sn+1 ⊂ M is a properly embedded hypersurface which represents a non-
trivial class in Hn+1(M,∂M) and

F |Sn+1
: (Sn+1, ∂Sn+1) → (D2 × Tn−1, ∂D

2 × Tn−1)

is a non-zero degree map. It follows from geometric measure theory that there is a
properly embedded free-boundary smooth hypersufrace Σ′

n+1 ⊂ M which minimizes
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volume in (M, g) and represents the class [Sn+1] ∈ Hn+1(M,∂M). Since Σ′
n+1 and

Sn+1 represent the same homology class in Hn+1(M,∂M), we have that

F |Σ′
n+1

: (Σ′
n+1, ∂Σ′

n+1) → (D2 × Tn−1, ∂D
2 × Tn−1)

has non-zero degree. Consider Σn+1 a connected component of Σ′
n+1 such that

Fn+1 := F |Σn+1
: (Σn+1, ∂Σn+1) → (D2 × Tn−1, ∂D

2 × Tn−1) has non-zero degree.
It follows from lemma 33.4 in [20] that Σn+1 is still a properly embedded
free-boundary hypersurface which minimizes volume in (M, g). Consider un+1 ∈
C∞(Σn+1) a positive first eigenfunction for the second variation Sn+1 of the volume
of Σn+1 in (M, g). Define ρn+1 = un+1.

By a similar reasoning used to construct Σn+1, we obtain a properly embed-
ded free-boundary connected smooth hypersurface Σn ⊂ Σn+1 which minimizes the
weighted volume functional Vρn+1 and

Fn := F |Σn
: (Σn, ∂Σn) → (D2 × Tn−2, ∂D

2 × Tn−2)

has non-zero degree. Consider un ∈ C∞(Σn+1) a positive first eigenfunction for the
second variation Sn of Vρn+1 on Σn. We then define ρn = unρn+1 and we continue
this process. �

Lemma 3.2. We have that Σ2 ∈ FM .

Proof. From theorem 2.15 that Σ2 is a disc. Since there is a non-zero degree map
F2 : (Σ2, ∂Σ2) → (D2, ∂D

2), we have that ∂Σ2 is a curve homotopically non-trivial
in ∂M . Therefore, Σ2 ∈ FM . �

Lemma 3.3. We have that,

1
2

inf RM |Σ2|g + inf H∂M |Σ2|g � 2π.

Moreover, if equality holds then R2 = inf RM , H∂Σ2 = inf H∂M and uk|Σ2
are

positive constants for every k = 2, . . . , n + 1.

Proof. From remark 2.2 and lemma 2.10

inf H∂M �
n+1∑
p=2

〈∇2 log up, η2〉 + H∂Σ2 .

This implies that

inf H∂M |∂Σ2|g �
n+1∑
p=2

∫
∂Σ2

〈∇2 log up dσ2, η2〉 +
∫

∂Σ2

H∂Σ2 dσ2. (3.1)
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From lemma 2.13, we have that

R̂2 = R2 − 2
n+1∑
p=2

u−1
p Δ2up − 2

∑
2�p<q�n+1

〈∇2 log up,∇2 log uq〉

= R2 − 2
n+1∑
p=2

u−1
p Δ2up −

∣∣∣∣∣
n+1∑
p=2

Xp

∣∣∣∣∣
2

+
n+1∑
p=2

|Xp|2,

where Xp := ∇2 log up. Since

u−1
p Δ2up = Δ2 log up + |Xp|2,

we have that

R̂2 = R2 − 2
n+1∑
p=2

Δ2 log up −
∣∣∣∣∣
n+1∑
p=2

Xp

∣∣∣∣∣
2

−
n+1∑
p=2

|Xp|2.

Since R̂2 � inf RM , we obtain

1
2

inf RM |Σ2|g � 1
2

∫
Σ2

R̂2 dv2

=
1
2

∫
Σ2

R2 dv2 −
n+1∑
p=2

∫
Σ2

Δ2 log up dv2

− 1
2

∫
Σ2

∣∣∣∣∣
n+1∑
p=2

Xp

∣∣∣∣∣
2

dv2 − 1
2

n+1∑
p=2

∫
Σ2

|Xp|2 dv2

� 1
2

∫
Σ2

R2 dv2 −
n+1∑
p=2

∫
Σ2

Δ2 log up dv2.

It follows from divergence theorem that

1
2

inf RM |Σ2|g � 1
2

∫
Σ2

R2 dv2 −
n+1∑
p=2

∫
∂Σ2

〈∇2 log up, η2〉dσ2. (3.2)

By inequalities (3.1) and (3.2), we have that

1
2

inf RM |Σ2|g + inf H∂M |∂Σ2|g � 1
2

∫
Σ2

R2 dv2 +
∫

∂Σ2

H∂Σ2 dσ2.

Therefore, from Gauss–Bonnet theorem, we obtain

1
2

inf RM |Σ2|g + inf H∂M |∂Σ2|g � 2πX (Σ2) = 2π.

However, note that if holds equality then the field Xp = 0 for every p = 2, . . . , n + 1.
It follows that up|Σ2

are positive constants for every p = 2, . . . , n + 1. Consequently,
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R2 = R̂2 � inf RM and H∂Σ2 � inf H∂M . Therefore, from Gauss–Bonnet theorem,
we have that R2 = inf RM and H∂Σ2 = inf H∂M . �

Corollary 3.4. We have that,

1
2

inf RMA(M, g) + inf H∂ML(M, g) � 2π.

Moreover, if equality holds then R2 = inf RM , H∂Σ2 = inf H∂M and uk|Σ2
are

positive constants for every k = 2, . . . , n + 1.

Proof. We have that

1
2

inf RMA(M, g) + inf H∂ML(M, g) � 1
2

inf RM |Σ|g + inf H∂M |∂Σ|g

for every Σ ∈ FM . From proposition 3.1 and lemmas 3.2 and 3.3 we have that there
is Σ2 ∈ FM such that

1
2

inf RM |Σ2|g + inf H∂M |Σ2|g � 2π. (3.3)

It follows that
1
2

inf RMA(M, g) + inf H∂ML(M, g) � 2π. (3.4)

If the equality holds in (3.4) then the equality holds in (3.3). Therefore, from lemma
3.3 we have that R2 = inf RM , H∂Σ2 = inf H∂M and uk|Σ2

are positive constants
for every k = 2, . . . , n + 1. �

4. Proof of the rigidity

Proof. Without loss of generality, we can assume that Rg � 2. Using an idea in the
Gromov–Lawsons paper on positive scalar curvature and mean-convex manifolds,
we obtain that the doubling DM of M has a metric g with Rg � 2. Moreover, if
F : (M,∂M) → (D2 × Tn, ∂D

2 × Tn) is a non-zero degree map, then the induced
map DF : DM → DD

2 × Tn has the same non-zero degree, simply by looking at
the preimage of a non-singular point. Hence, DM admits a map to S

2 × Tn with
non-zero degree, since DD

2 = S
2. Note that such a double manifold does not inherit

a smooth Riemannian metric in general. However, since the boundary ∂M is
strongly totally geodesic, we obtain that the double metric is a smooth metric.
Now, we obtain that equality in (1.2) implies that the equality is achieved in the
main inequality of theorem 1.1 in [21] for our doubling manifold DM . Therefore,
the rigidity part can be obtained from theorem 1.1 in [21]. �
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