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Abstract. We study the asymptotic dynamics of piecewise-contracting maps defined on a
compact interval. For maps that are not necessarily injective, but have a finite number of
local extrema and discontinuity points, we prove the existence of a decomposition of the
support of the asymptotic dynamics into a finite number of minimal components. Each
component is either a periodic orbit or a minimal Cantor set and such that the ω-limit set
of (almost) every point in the interval is exactly one of these components. Moreover, we
show that each component is the ω-limit set, or the closure of the orbit, of a one-sided limit
of the map at a discontinuity point or at a local extremum.

Key words: interval map, piecewise contraction, periodic attractor, minimal Cantor set
2020 Mathematics Subject Classification: 37E05, 37B20 (Primary); 37B35 (Secondary)

1. Introduction
Let X ⊂ R be a compact interval with non-empty interior. A map f : X→ X is a
piecewise-contracting interval map (PCIM) if there exist λ ∈ (0, 1) and a collection of
N > 2 non-empty disjoint open intervals X1, X2, . . . , X N such that X =

⋃N
i=1 X i and

| f (x)− f (y)|6 λ|x − y| for all x, y ∈ X i and i ∈ {1, 2, . . . , N }. (1)

We call the contracting constant (or contracting rate) of f the real number λ ∈ (0, 1), and
the contraction pieces the elements of the collection {X i }

N
i=1.

For a PCIM f : X→ X , we let c0, cN denote the extreme points of X and let
1 := {c1 < c2 < · · ·< cN−1} denote the set of the boundaries of the contraction pieces.
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That is, X1 = [c0, c1), X2 = (c1, c2), . . . , X N = (cN−1, cN ]. For notational convenience
we suppose that X1 and X N are half-closed, but we may also consider the case where one
or both pieces are open by adding c0 and/or cN to the set1. In other words,1must contain
all the discontinuity points of the map.

From the inequality (1), it follows that the points of1 are removable (maybe continuity
points) or jump discontinuities. Therefore, for any i ∈ {1, . . . , N }, the map f |X i admits a
unique continuous extension fi : X i → X , which besides satisfies (1) for any pair of points
in X i . The one-sided limits of f at the extreme points of its contraction pieces are written
as

d0 := f1(c0), dN := fN (cN ), d−i := fi (ci ) and d+i := fi+1(ci )

with i ∈ {1, . . . , N − 1}. We let D denote the set of these points, that is,

D := {d0, d−1 , . . . , d−N−1, d+1 , . . . , d+N−1, dN }.

In this paper, our purpose is to describe the topological structure and dynamical
properties of the asymptotic dynamics of PCIMs. To this aim, let f be a PCIM and consider
the asymptotic set called the attractor of f and which is defined by the following equality:

3 :=
⋂
n>1

3n, where 31 := f (X \1) and 3n+1 := f (3n \1) for all n > 1. (2)

Note that this set does not depend on the particular definition of the map at its discontinuity
points. Also, as 3n is compact, non-empty and 3n+1 ⊂3n for all n > 1, the attractor 3
is compact and non-empty. Besides, as shown in [5], the attractor contains the ω-limit set
of any point of the set

X̃ :=
⋂
n>0

f −n(X \1).

A general result, which holds in any compact metric phase space, is that the attractor of
a piecewise-contracting map consists of a finite number of periodic orbits whenever it does
not intersect the boundary of a contraction piece (see [5]). Moreover, for PCIMs defined
on a half-closed interval, Nogueira, Pires and Rosales proved that this periodic asymptotic
behavior is generic in a metric sense and with a number of periodic orbits which is bounded
above by the number of contraction pieces [10–12]. This generalizes and refines a previous
result obtained by Brémont in [1].

Periodic orbits are not the only possible asymptotic sets of PCIMs. In [7], Gambaudo
and Tresser early studied the attractors of PCIMs with N = 2 contraction pieces.
Associating a rotation number to the map, they proved that the attractor is either a periodic
orbit (rational rotation number) or a Cantor set (irrational rotation number) and that the
latter case corresponds to a quasi-periodic asymptotic dynamics with Sturmian complexity.
It is in particular the case for the half-closed unit interval map x 7→ λx + µmod 1, for
which the properties of the rotation number as a function of λ and µ ∈ [0, 1) have been
studied in detail [2, 3, 6, 8]. For injective PCIMs with N > 2 contraction pieces, it has
been proved that the complexity of the itinerary of any orbit is an eventually affine
function [4, 13]. The growth rate of the complexity is at most equal to N − 1 and there
are some examples of PCIMs with such a maximal complexity [4]. In these particular
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examples, the attractor is a minimal Cantor set containing all the boundaries of the
contraction pieces. Nevertheless, there is no general description of the topological structure
and dynamical properties of the attractor of PCIMs with arbitrary complexity and number
of contraction pieces. The aim of this paper is to give such a description.

Before stating the hypothesis and our results, we fix the notation and give some
definitions. In the following, O(x) := { f n(x)}n>0 denotes the forward orbit of a point
x ∈ X and it is said to be periodic if there exists p > 1 such that f p(x)= x . The ω-limit
set of a point x ∈ X is denoted ω(x). We recall that y ∈ ω(x) if and only if there exists a
subsequence of O(x) which converges to y. In practice, we will only study the orbits and
the ω-limit sets of the points in X̃† (nevertheless, the asymptotic sets may contain points
of 1). This allows us to disregard how the map is defined on 1, the relevant values being
actually those of the set D.

Definition 1.1. (Pseudo-invariant set) We say that A ⊂ X is pseudo-invariant if for any
x ∈ A we have limy→x− f (y) ∈ A or limy→x+ f (y) ∈ A.

For a PCIM the ω-limit set of any point is non-empty and compact, but it is not
necessarily invariant if it contains a discontinuity point. However, we will see later that
the attractor of a PCIM as well as the ω-limit set of any point of X̃ are pseudo-invariant
sets. Note that if A ⊂ X is pseudo-invariant, then f (x) ∈ A for any x ∈ A \1 and A ∩ X̃
is invariant.

Definition 1.2. We say that A ⊂ X is X̃ -minimal if O(x)= A for any x ∈ A ∩ X̃ .

On some occasions, when a ‘property’ holds for the intersection of a set A ⊂ X with
X̃ , we will say that the set A is X̃ -‘property’. For instance, a set A ⊂ X is X̃ -invariant if
f (A ∩ X̃)⊂ A ∩ X̃ . Also, if A and B ⊂ X satisfy A ∩ B ∩ X̃ = ∅, we say that A and B
are X̃ -disjoint.

Now we state Theorem 1.1, which is the main result of this paper.

THEOREM 1.1. Let f : X→ X be a PCIM which is injective on each of its contraction
pieces and such that D ⊂ X̃ . Then there exist two natural numbers N1 and N2 such that:
(1) the attractor 3 of f can be decomposed as follows:

3=

( N1⋃
i=1

Oi

)
∪

( N2⋃
j=1

Kj

)
, (3)

where O1,O2, . . . ,ON1 ⊂ X̃ are periodic orbits and K1, K2, . . . , KN2 are X̃-
minimal pseudo-invariant Cantor sets of X;

(2) for any x ∈ X̃ , either there exists i ∈ {1, . . . , N1} such that ω(x)=Oi or there exists
j ∈ {1, . . . , N2} such that ω(x)= Kj ;

(3) if N2 > 1, then for any j ∈ {1, . . . , N2} there exists k ∈ {1, . . . , N − 1} such that

ck ∈ Kj and Kj =O(d+k )=O(d−k ); (4)

† It is easy to see that the orbit of a point in X \ X̃ eventually falls either in X̃ or at a point of1 which is periodic.
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(4) if N2 > 1, then for any j ∈ {1, . . . , N2} and k ∈ {1, . . . , N − 1} such that ck ∈ Kj ,
we have

Kj =O(d+k ) or Kj =O(d−k ). (5)

Moreover, if ck ∈ Kj does not belong to the boundary of a gap of Kj , then O(d+k )=
O(d−k );

(5) finally, we have 16 N1 + N2 6 #D and N1 + 2N2 6 2(N − 1). Moreover, if f
is increasing on each of its contraction pieces, then N1 and N2 also satisfy
N1 + N2 6 N.

Note that two different Cantor sets Ki and Kj of the decomposition (3) are necessarily
X̃ -disjoint. Indeed, if there exits y ∈ Ki ∩ Kj ∩ X̃ , then Ki =O(y)= Kj , since Ki and Kj

are X̃ -minimal. Therefore, Theorem 1.1 ensures a decomposition of the attractor 3 into
a finite number of topologically transitive, pseudo-invariant and X̃ -disjoint components.
So, we may call (3) the ‘spectral decomposition’ of 3 and each of its components a
‘basic piece’. Theorem 1.1 also states a dichotomy: a basic piece is either a periodic orbit
in X̃ or a X̃ -minimal Cantor set. This dichotomy does not hold when the phase space
is not a subset of R. Indeed, there are examples of PCIMs defined on compact subsets
of Rn (n > 2) for which the attractor is a transitive countable infinite set or an interval;
see [5].

Part (3) states that each Cantor piece must contain a border of a contraction piece. Part
(4) states that a Cantor piece is given by the closure of the orbit of a (or both) one-sided
limit(s) of the map at any point of 1 contained in the Cantor piece. An estimation of the
number of basic pieces is given by part (5). In particular, we deduce that N2 6 N − 1 and if
N2 = N − 1 then N1 = 0. If N = 2, then 16 N1 + 2N2 6 2, that is, the attractor consists
either of a single X̃ -minimal Cantor set or of one or two periodic orbits. For any of these
cases there exist examples of PCIMs with such an attractor [2, 3, 6–8]. So, the inequality
is optimal at least for PCIMs with two contraction pieces. If the map is increasing in each
contraction piece, then the number of basic pieces must satisfy the additional inequality
16 N1 + N2 6 N . In particular, it complements [12, Theorem 1.1] for λ-piecewise-affine
contractions which verify λ ∈ (0, 1) and D ⊂ X̃ . Finally, it is worth mentioning that for
globally injective maps we always have N1 6 N ; see [10].

In [4], it is shown that for injective PCIMs the complexity of the itinerary of any point
in X̃ is an eventually constant or affine function. As a consequence of Theorem 1.1, we
obtain that if D ⊂ X̃ then the ω-limit sets of the points with affine complexity are X̃ -
minimal Cantor sets.

Remark 1.1. Note that the hypotheses of Theorem 1.1 require the PCIM being injective
only in each contraction piece. Therefore, the theorem can be applied to non-injective
PCIMs such as those of Figure 1(a). On the other hand, the collection of the contraction
pieces of a PCIM is not unique. The most natural and smallest one is the collection of the
continuity pieces (for which 1 is the set of the discontinuity points of the map). However,
Theorem 1.1 applies with any collection of contraction pieces, provided the pieces are
chosen in such a way that the map is injective in each of them. For instance, if a PCIM has
a finite number of local extrema, the hypotheses of the theorem are satisfied if we choose
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FIGURE 1. Two examples of PCIMs.

the contraction pieces of the map such that the set1 contains all the points where the map
has a local extremum (in addition to the discontinuity points), as in Figure 1(b).

The paper is organized as follows. In §2, we give the route of the proof of Theorem 1.1.
That is, we prove Theorem 1.1, but assuming Theorem 2.3, which is stated without proof.
Then, to complete the proof of Theorem 1.1, we give the proof of Theorem 2.3 in §3.

2. Route of the proof of Theorem 1.1
This section contains three theorems (Theorems 2.1, 2.2 and 2.3), which allow us to prove
Theorem 1.1. We will not always assume the hypothesis of Theorem 1.1, which states that
f is injective on each of its contraction pieces. We will explicitly mention this hypothesis
in the statement of the results whose proof uses it. To prove Theorems 2.1 and 2.2, we
will write the attractor3 as the intersection of collections of ‘atoms’, which are defined as
follows.

Definition 2.1. (Atoms) Let P(X) be the power set of X and, for every i ∈ {1, . . . , N },
consider the map Fi : P(X)→ P(X) defined by

Fi (A)= f (A ∩ X i ) for all A ∈ P(X).

Let n > 1 and (i1, i2, . . . , in) ∈ {1, . . . , N }n . We call the set

Ai1,...,in−1,in := Fin ◦ Fin−1 ◦ · · · ◦ Fi1(X)

an atom of generation n if it is non-empty. We denote by An the family of all the atoms of
generation n.

The atoms allow us to study the attractor because the sets 3n that define 3 through (2)
can also be written as

3n =
⋃

A∈An

A for all n > 1.
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Also, if x ∈ X̃ and θ ∈ {1, . . . , N }N is the itinerary of x , i.e. it is the sequence such
that f n(x) ∈ Xθn for all n ∈ N, then f t+n(x) ∈ Aθt ,θt+1,...,θt+n−1 for every t > 0 and n > 1
(see [4]).

The basic properties of the atoms are the following ones: any atom of generation n is
contained in an atom of generation n − 1, precisely Ai1,i2,...,in ⊂ Ai2,i3,...,in ⊂ · · · ⊂ Ain .
Moreover, if f is piecewise contracting with contracting constant λ, then

max
A∈An+1

diam(A)6 λ max
A∈An

diam(A) for all n > 1,

where diam(A) denotes the diameter of A. It implies that the diameter of any atom of
generation n is smaller than λn diam(X). Finally, in the case of a PCIM, any atom is a
compact interval.

2.1. Decomposition and pseudo-invariance of the attractor.

LEMMA 2.1. If x ∈ X̃ , then ω(x) is non-empty, compact and pseudo-invariant.

Proof. By compactness of the space X , and by definition of ω-limit set, ω(x) is non-empty
and closed and hence compact. To prove that ω(x) is pseudo-invariant, we show that for
any point x0 ∈ ω(x) there exists i ∈ {1, . . . , N } such that fi (x0) ∈ ω(x). Let x0 ∈ ω(x)
and {t j } j∈N be a strictly increasing sequence such that lim j→∞ f t j (x)= x0. Then there
exist i ∈ {1, . . . , N } such that x0 ∈ X i and a subsequence {t jk }k∈N of {t j } j∈N such that
f t jk (x) ∈ X i for all k ∈ N. It follows that f t jk+1(x)= fi ( f t jk (x)) for any k ∈ N and, by
continuity of fi on X i , we have limk→∞ f t jk+1(x)= fi (x0) ∈ ω(x). �

LEMMA 2.2. If f has a periodic point x0 ∈ X̃ , then there exists ρ > 0 such that for any x
in the ball B(x0, ρ) of center x0 and radius ρ we have ω(x)=O(x0).

Proof. Let ν denote the distance between two subsets of X and let ρ := ν(O(x0), 1). As
the periodic point x0 belongs to X̃ , we have ρ > 0. Therefore, for every n ∈ N the ball
B( f n(x0), ρ) does not contain any point of 1 and, for each n ∈ N, it intersects only one
of the contraction pieces. It follows that for any point x ∈ B(x0, ρ), we have

| f n(x0)− f n(x)|< λnρ for all n ∈ N,

where λ ∈ (0, 1) is the contracting rate of f . This implies that

ν(O(x0), f n(x)) < λnρ for all n ∈ N.

Therefore, if for some increasing sequence {sn}n∈N of natural numbers { f sn (x)}n∈N
converges, then its limit is in O(x0). In other words, ω(x)⊂O(x0). On the other hand,
by invariance of ω(x) ∩ X̃ , we obtain that O(x0)⊂ ω(x). �

The following theorem (Theorem 2.1) is the first key point in the proof of Theorem 1.1.
It states that the attractor of a PCIM is completely determined by the ω-limit sets of its
one-sided limits at the points of 1.
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THEOREM 2.1. Suppose that f is injective on each of its contraction pieces and that
D ⊂ X̃ . Then:
(1) the attractor of f can be written as

3=
⋃
d∈D

ω(d); (6)

(2) for any periodic point x0 ∈ X̃ , there exists d ∈ D− ∪ D+ such that O(x0)=

ω(d) with D− := {d−1 , . . . , d−N−1} and D+ := {d+1 , . . . , d+N−1}. Moreover, if f is
increasing on each of its contraction pieces, then there exist d− ∈ D− ∪ {dN } and
d+ ∈ D+ ∪ {d0} such that O(x0)= ω(d−)= ω(d+).

Proof. Since the ω-limit set of any point of X̃ is contained in 3, we have that ω(d)⊂3
for all d ∈ D. So, we have to prove that for any point x0 ∈3 there exists d ∈ D such that
x0 ∈ ω(d) and that, besides, d can be chosen in D− ∪ D+ if x0 is periodic.

Define
U :=

⋃
d∈D

O(d) and U∗ :=
⋃

d∈D−∪D+
O(d).

Since f is injective and continuous on each of its contraction pieces, for each i ∈
{1, . . . , N } the continuous extension fi is either strictly increasing or strictly decreasing.
This implies that each atom of the first generation is a compact interval the end points
of which are different and belong to the set D. Moreover, at least one end point of each
atom of the first generation belongs to D− ∪ D+. Now, by induction on n, we prove that
for every n > 2 and every A ∈An there exist a, b ∈ U such that A = [a, b] with a 6= b
and a or b in U∗. Assume that it is true for some n > 1 and let A := [a, b] ∈An+1.
Then, by definition of the atoms, there exist A′ := [a′, b′] ∈An and i ∈ {1, . . . , N } such
that A = f (A′ ∩ X i )= fi (A′ ∩ X i ). If A′ ⊂ X i , then {a, b} = { f (a′), f (b′)}. If not, then
A′ ∩ X i is [ci−1, b′] or [a′, ci ] or [ci−1, ci ] and {a, b} is {d+i−1, f (b′)} or { f (a′), d−i } or
{d+i−1, d−i }. In any case, a 6= b belong to U and a or b ∈ U∗, because fi is injective and by
the induction hypothesis.

Note that if f is increasing on each of its contraction pieces, then we obtain with a
similar induction that for every n > 1 and every A ∈An there exist

a ∈ U+ :=
⋃

d∈D+∪{d0}

O(d) and b ∈ U− :=
⋃

d∈D−∪{dN }

O(d)

such that A = [a, b] with a 6= b and a or b in U∗.
Now let x0 ∈3 and {An}n>1 be a decreasing sequence of atoms such that An ∈An for

all n > 1 and
{x0} =

⋂
n>1

An .

The existence of {An}n>1 is an immediate consequence of the properties of the atoms.
Let {an}n>1 and {bn}n>1 be two sequences of U such that An = [an, bn] for all

n > 1. Since the diameter of An tends to zero as n goes to infinity, we deduce that
limn→∞ an = limn→∞ bn = x0. Besides, as an 6= bn for all n > 1, one of the sequences
{an}n>1 or {bn}n>1, let us say {an}n>1, is not eventually equal to x0.
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(1) As {an}n>1 converges to x0 and is not eventually equal to x0, it contains a
subsequence {ank }k>1 whose terms are all pairwise different. Since {an}n>1 ⊂ U and U
is a finite union of orbits, we can choose {nk}k>1 in such a way that for some d ∈ D the
subsequence {ank }k>1 satisfies ank ∈O(d) for all k > 1. Therefore, there exists a sequence
{tk}k>1 such that

ank = f tk (d) for all k > 1.

Since ani 6= an j if i 6= j , there exists an increasing subsequence {tk j } j>1 of {tk}k>1 such
that

lim
j→∞

f tk j (d)= lim
k→∞

ank = x0

and we obtain that x0 ∈ ω(d). This proves that 3=
⋃

d∈D ω(d).
(2) Now suppose that x0 ∈ X̃ is periodic and let ρ := ν(O(x0), 1), as in Lemma 2.2.

Let n0 > 1 be such that the diameter of An0 = [an0 , bn0 ] is smaller than ρ. Then, applying
Lemma 2.2, we obtain that O(x0)= ω(an0)= ω(bn0). Since an0 or bn0 belongs to U∗, we
deduce that there exists d ∈ D− ∪ D+ such that ω(d)=O(x0). Now, if f is increasing on
each of its contraction pieces, then an0 ∈ U+ and bn0 ∈ U− and we can conclude that there
exist d− ∈ D− ∪ {dN } and d+ ∈ D+ ∪ {d0} such that O(x0)= ω(d−)= ω(d+). �

Note that Lemma 2.1 and Theorem 2.1 immediately imply that 3 is a pseudo-invariant
set. Later, we will use the following lemma (Lemma 2.3), which ensures that, besides, the
ω-limit set of any point of X̃ and the attractor contain points of X̃ .

LEMMA 2.3. If D ⊂ X̃ and ∅ 6= G ⊂ X is pseudo-invariant, then G ∩ X̃ 6= ∅.

Proof. Let y ∈ G \ X̃ . Let t > 0 be the smallest integer such that c j := f t (y) ∈ G ∩1
for some j ∈ {1, . . . , N − 1}. Since G is a pseudo-invariant set, we have that d+j ∈ G or
d−j ∈ G. Therefore, G ∩ X̃ 6= ∅, because by hypothesis d−j and d+j belong to X̃ . �

2.2. Periodic and Cantor limit sets. Here, we relate the asymptotic properties of any
orbit in X̃ to its recurrence properties in a neighborhood of 1. Precisely, for each point
x ∈ X̃ we define the (maybe empty) set 1lr (x)⊂1 consisting of the points in 1 on
which the orbit of x accumulates from both sides (see Definition 2.2). Then we obtain
the following dichotomic result: if 1lr (x)= ∅, then the ω-limit set of x is a periodic orbit
in X̃ (Theorem 2.2) and, if1lr (x) 6= ∅, then the ω-limit set of x is a X̃ -minimal Cantor set
(Theorem 2.3).

Definition 2.2. (Left–right recurrently visited point) Let i ∈ {1, . . . , N − 1} and x ∈ X̃ .
We say that ci ∈1 is left–right recurrently visited (in short lr -recurrently visited) by the
orbit of x if there exist two strictly increasing sequences {l j } j∈N and {r j } j∈N of natural
numbers such that

f l j (x) ∈ X i and f r j (x) ∈ X i+1 for all j ∈ N and

ci = lim
j→∞

f l j (x)= lim
j→∞

f r j (x).

We denote by 1lr (x)⊂1 the set of points in 1 that are lr -recurrently visited by the orbit
of x , and we denote by 1lr the set of points in 1 which are lr -recurrently visited by the
orbit of some point in X̃ .
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Remark 2.1. Even if not immediate, it is not difficult to check that Definition 2.2 of the
set 1lr (x) is equivalent to the combinatorial definition of the set of lr -recurrently visited
discontinuities in [4, Definition 2.8].

The basic properties of the lr -recurrently visited points are given in the following
lemma.

LEMMA 2.4. Let i ∈ {1, . . . , N − 1}, x ∈ X̃ and suppose that ci ∈1lr(x). Then ci , d+i
and d−i belong to ω(x). If moreover D ⊂ X̃ , then O(d−i ) ∪O(d

+

i )⊂ ω(x).

Proof. By definition of ω-limit set and of lr -recurrently visited point, if ci ∈1lr (x),
then ci ∈ ω(x). We can show that this implies that d+i and d−i belong to ω(x) with a
similar proof as that of Lemma 2.1. If we suppose moreover that D ⊂ X̃ , then O(d−i ) and
O(d+i )⊂ ω(x), since ω(x) ∩ X̃ is invariant by pseudo-invariance of ω(x). The desired
inclusion follows from the compactness of ω(x). �

THEOREM 2.2. (Periodic ω-limit sets) Suppose that f is such that D ⊂ X̃ . Let x ∈ X̃ ;
then ω(x) is a periodic orbit contained in X̃ if and only if 1lr (x)= ∅.

Proof. Let x ∈ X̃ . Suppose that ω(x) is contained in X̃ . Then it follows from Lemma 2.4
that1lr (x)= ∅. Indeed, if1lr (x) 6= ∅, then there is some point of1 in ω(x) and therefore
ω(x) is not contained in X̃ . Now we suppose that 1lr (x)= ∅ and we prove that ω(x) is a
periodic orbit contained in X̃ .

We first show that, under the hypothesis 1lr (x)= ∅, the itinerary of x is eventually
periodic. Let η ∈ {1, . . . , N }N be the itinerary of x and, for any n > 1, define the set

Ln(η) := {(ηt , ηt+1, . . . , ηt+n−1) ∈ {1, . . . , N }n : t > 0}

of the words of size n contained in η. The function pη defined for any n > 1 by pη(n) :=
#Ln(η) is the complexity function of η. By the Morse–Hedlund theorem [9], if pη is
eventually constant, then η is eventually periodic. Obviously #Ln(η)6 #Ln+1(η). So, we
have to show that if 1lr (x)= ∅, then there exists n0 > 1 such that the converse inequality
also holds and therefore

#Ln(η)= #Ln+1(η) for all n > n0. (7)

To that aim, recall that f t+n(x) ∈ Aηt ,ηt+1,...,ηt+n−1 for every t > 0 and n > 1.
First, let us prove that for any n > 1, we have

Ln+1(η)⊂
⋃

(i1,...,in)∈Ln(η)

{(i1, . . . , in, in+1) : ∃ t > 0 : f t+n(x) ∈ Ai1,...,in ∩ X in+1}. (8)

Indeed, if (i1, . . . , in+1) ∈ Ln+1(η), then there exists t > 0 such that

(ηt , . . . , ηt+n)= (i1, . . . , in+1)

and, by definition of Ln(η) and of the itinerary η, we have that (i1, . . . , in) ∈ Ln(η) and
f t+n(x) ∈ X in+1 . As f t+n(x) ∈ Ai1,...,in , we conclude that there exists t > 0 such that

(i1, . . . , in) ∈ Ln(η) and f t+n(x) ∈ Ai1,...,in ∩ X in+1 ,

that is, (i1, . . . , in+1) belongs to the set of the right-hand side of the inclusion (8).
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Now, if 1lr (x)= ∅, then there exists ε > 0 such that

O(x) ∩ (ci − ε, ci )= ∅ or O(x) ∩ (ci , ci + ε)= ∅ for all i ∈ {1, . . . , N − 1}.

Also, we know that there exists n0 > 1 such that diam A < ε for all A ∈An and n > n0.
Therefore, if n > n0, then for any (i1, . . . , in) ∈ Ln(η) fixed, we have that

#{(i1, . . . , in, in+1) : ∃ t > 0 : f t+n(x) ∈ Ai1,...,in ∩ X in+1} = 1.

Thus, from (8), we conclude that #Ln+1(η)6 #Ln(η) for all n > n0, which ends the proof
of (7).

Since we have proved that the itinerary η of x is eventually periodic, we know that there
exist t > 0 and p > 1 such that θ := {ηt+n}n∈N is a periodic sequence with period p. Let
y := f t (x). As ω(x)= ω(y), to finish the proof, we show that ω(y) is a periodic orbit
contained in X̃ .

Since θ is the itinerary of y, we deduce that

f k+p(y) ∈ Aθk ,...,θk+p−1 for all k ∈ {0, 1, . . . , p − 1}.

More generally,

f k+ j p(y) ∈ Aθk ,...,θk+ j p−1 for all j > 1 for all k ∈ {0, 1, . . . , p − 1}. (9)

Besides,
Aθk ,...,θk+p−1 ⊃ Aθk ,...,θk+2p−1 ⊃ · · · ⊃ Aθk ,...,θk+ j p−1 ⊃ · · ·

is a decreasing sequence of (non-empty compact) atoms whose diameters converge to zero.
Then there exists x∗k ∈ X such that⋂

j>1

Aθk ,...,θk+ j p−1 = {x
∗

k }. (10)

Considering all the values of k ∈ {0, 1, . . . , p − 1}, we conclude that

{x∗0 , x∗1 , . . . , x∗p−1} ⊂ ω(y). (11)

Now let us prove the converse inclusion. If z ∈ ω(y), then there exists a strictly
increasing sequence {mn}n∈N such that f mn (y) converges to z when n goes to infinity.
Let {qn}n∈N ∈ NN and {rn}n∈N ∈ {0, 1, . . . , p − 1}N be such that

mn = qn p + rn for all n ∈ N.

Since {mn}n∈N is strictly increasing and {rn}n∈N takes only a finite number of values,
the sequence of integer quotients {qn}n∈N is also strictly increasing. Besides, there exist
{n j } j∈N and k ∈ {0, 1, . . . , p − 1} such that rn j = k for all j ∈ N. We deduce that

z = lim
n→∞

f mn (y)= lim
j→∞

f qnj p+k
(y) ∈

⋂
j>1

Aθk ,...,θk+qnj p−1 = {x
∗

k }.

Therefore, we have proved that z ∈ {x∗0 , x∗1 , . . . , x∗p−1} for any z ∈ ω(y). Together with
(11), this implies that

ω(y)= {x∗0 , x∗1 , . . . , x∗p−1}. (12)
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Finally, let us prove that ω(y) is a periodic orbit contained in X̃ . By Lemma 2.3, we
know that ω(y) ∩ X̃ 6= ∅. Thus, there exists k ∈ {0, 1, . . . , p − 1} such that x∗k ∈ X̃ . This
implies that the distance ρ between x∗k and any element of1 is positive. Since the diameter
of the atoms decreases with their generation, there exists j0 such that

diam(Aθk ,...,θk+ j p−1) < ρ for all j > j0.

From the equality (10), we deduce that for any j > j0 the atom Aθk ,...,θk+ j p−1 is contained
in the same contraction piece as x∗k . On the other hand, by (9) and the definition of itinerary,

f k+ j p(y) ∈ Aθk ,...,θk+ j p−1 ∩ Xθk+ j p for all j > 1.

This implies that for any j > j0 the atom Aθk ,...,θk+ j p−1 is contained in Xθk+ j p . Therefore,
for every j > j0, we have

f (Aθk ,...,θk+ j p−1)= f (Aθk ,...,θk+ j p−1 ∩ Xθk+ j p )= Aθk ,...,θk+ j p ⊂ Aθk+1,...,θk+ j p .

Now we can conclude from the equality (10) that

{ f (x∗k )} ⊂
⋂
j> j0

f (Aθk ,...,θk+ j p−1)⊂
⋂
j> j0

Aθk+1,...,θk+ j p = {x
∗

k+1 (mod p)}.

Then f (x∗k )= x∗k+1 (mod p) ∈ X̃ , since x∗k ∈ X̃ . So, we can repeat the same argument for
all the iterates of x∗k to obtain f l(x∗k )= x∗k+l (mod p) ∈ X̃ for all l > 1. We conclude that
ω(y)= {x∗0 , x∗1 , . . . , x∗p−1} = ω(x) is a periodic orbit contained in X̃ , as wanted. �

Now we state the complementary results of Theorem 2.2. Its proof needs a larger
development, which is done in §3.

THEOREM 2.3. (Cantor ω-limit sets) Suppose that f is injective on each of its contraction
pieces and that D ⊂ X̃ . Then, for any x ∈ X̃ ,1lr (x) 6= ∅ if and only if ω(x) is a X̃-minimal
Cantor set.

Proof. See §3. �

2.3. Proof of Theorem 1.1. Now we prove Theorem 1.1 assuming Theorem 2.3.
(1) For any d ∈ D, either 1lr (d)= ∅ and applying Theorem 2.2 it follows that ω(d) is

a periodic orbit contained in X̃ , or 1lr (d) 6= ∅ and applying Theorem 2.3 we deduce that
ω(d) is a X̃ -minimal Cantor set. So, we can rewrite (6) as follows:

3=
⋃
d∈D

ω(d)=
( N1⋃

i=1

Oi

)
∪

( N2⋃
j=1

Kj

)
, (13)

where O1,O2, . . . ,ON1 ⊂ X̃ are periodic orbits and K1, K2, . . . , KN2 are X̃ -minimal
Cantor sets. As D ⊂ X̃ , Lemma 2.1 ensures that the Cantor sets are pseudo-invariant.

(2) Now let us prove that the ω-limit set of any point x ∈ X̃ coincides either with one
periodic orbit Oi or with one Cantor set Kj . First, recall that the ω-limit set ω(x) of any
point x ∈ X̃ satisfies ω(x) ∩ X̃ 6= ∅ (see Lemma 2.3). Then there exists y ∈ ω(x) ∩ X̃ .
Since ω(x)⊂3, from Theorem 2.1 we deduce that there exists d ∈ D such that y ∈ ω(d),
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so y ∈ ω(x) ∩ ω(d) ∩ X̃ . Besides, x, d ∈ X̃ , so we can apply Theorems 2.2 and 2.3 to
deduce that both ω(x) and ω(d) are X̃ -minimal sets. Therefore,

ω(x)=O(y)= ω(d).

This proves that ω(x) coincides with some set of the decomposition (13) and it also
proves that the sets of the decomposition (13) are all pairwise X̃ -disjoint. We conclude
that, for any x ∈ X̃ , either there exists i ∈ {1, . . . , N1} such that ω(x)=Oi or there exists
j ∈ {1, . . . , N2} such that ω(x)= Kj .

(3) Suppose that N2 > 1. Let j ∈ {1, . . . , N2} and let d ∈ D be such that ω(d)= Kj .
Since ω(d)= Kj , according to Theorem 2.3 there exists k ∈ {1, . . . , N − 1} such that
ck ∈1lr (d). From Lemma 2.4, it follows that ck , d−k and d+k ∈ ω(d)= Kj . As D ⊂ X̃ and

Kj is X̃ -minimal, we have that O(d−k )= Kj =O(d+k ).
(4) Let j ∈ {1, . . . , N2} and k ∈ {1, . . . , N − 1} be such that ck ∈ Kj . Since Kj is

pseudo-invariant, we deduce that d−k or d+k ∈ Kj . As D ⊂ X̃ and Kj is X̃ -minimal, we

have that Kj =O(d+k ) or Kj =O(d−k ). Suppose moreover that ck ∈ Kj does not belong to

the boundary of a gap of Kj . If Kj =O(d+k ), then ck ∈1lr (d+k ) and from Lemma 2.4 it

follows that d−k ∈ Kj . Since Kj is X̃ -minimal, we obtain that O(d−k )= Kj . An analogous

proof allows us to show that Kj =O(d+k ) in the case where Kj =O(d−k ).
(5) From (13), it follows immediately that 16 N1 + N2 6 #D. Now we show that

N1 + 2N2 6 2(N − 1).

Let d ′1, d ′2, . . . , d ′2(N−1) be such that

d ′2k−1 := d−k and d ′2k := d+k for all k ∈ {1, . . . , N − 1}.

Consider the sets C1 := {l ∈ {1, . . . , 2(N − 1)} :1lr (d ′l )= ∅} and C2 := {l ∈
{1, . . . , 2(N − 1)} :1lr (d ′l ) 6= ∅}. Let O1,O2, . . . ,ON1 ⊂ X̃ and K1, K2, . . . , KN2 be
the periodic orbits and the X̃ -minimal Cantor sets of the decomposition (13), respectively.

From part (2) of Theorem 2.1, we know that for every i ∈ {1, . . . , N1} there exists
l(i) ∈ C1 such that

Oi = ω(d ′l(i)).

The function l : {1, . . . , N1} → C1 defined by i 7→ l(i) being injective, we have that
N1 6 #C1.

From part (3), we know that for every j ∈ {1, . . . , N2} there exists an odd number
`( j) ∈ C2 such that

Kj =O(d ′`( j))=O(d ′`( j)+1).

The function ( j, s) 7→ `( j)+ s from the set {1, . . . , N2} × {0, 1} to the set C2 being
injective, we obtain that 2N2 6 #C2, which together with N1 6 #C1 gives

N1 + 2N2 6 #C1 + #C2 = #(C1 ∪ C2)= 2(N − 1).

Finally, suppose that f is increasing on each of its contraction pieces. Let d ′0 := d0,
d ′2N−1 := dN and

C := {l ∈ {0, 1, . . . , 2N − 1} : 1lr (d ′l )= ∅}.
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Then, from part (2) of Theorem 2.1, we know that for every i ∈ {1, . . . , N1} there exist an
odd number l1(i) ∈ C and an even number l2(i) ∈ C such that

Oi = ω(d ′l1(i))= ω(d
′

l2(i)).

The function (i, s) 7→ ls(i) from the set {1, . . . , N1} × {1, 2} to the set C being injective,
we obtain that 2N1 6 #C , which together with 2N2 6 #C2 gives

2N1 + 2N2 6 #C + #C2 = #(C ∪ C2)= 2N .

This ends the proof of Theorem 1.1 assuming Theorem 2.3.

3. Proof of Theorem 2.3
All through this section we assume that f is such that D ⊂ X̃ and1lr 6= ∅. In other words,
we suppose that f has at least one point c ∈1 which is lr -recurrently visited by the orbit
of some point x ∈ X̃ . We already know by Theorem 2.2 that this implies that ω(x) is not a
periodic orbit in X̃ . In §3.1, we will first show a stronger preliminary result: ω(x) cannot
contain a periodic point belonging to X̃ . It will imply that the orbits of the one-sided limits
of f at the points of 1lr (x) do not accumulate at periodic points contained in X̃ . These
preliminary results will be used in §3.4 to prove that the ω-limit set of some particular
points of D is X̃ -minimal.

In §3.2, we construct a partial order in a quotient set of 1lr . This allows us to define
minimal classes of points of 1, which are the minimal nodes in the Hasse graph of such a
partial order (Definition 3.3). The study of the asymptotic dynamics of a point x satisfying
1lr (x) 6= ∅ can be done by analyzing the minimal classes. Indeed, in §3.3, we show that if
1lr (x) 6= ∅, then ω(x) is equal to ω(d), where d ∈ D is a one-sided limit of f at a point of
1lr (x) belonging to a minimal class (Theorem 3.1). In §3.4, we study the ω-limit sets of
the elements of D associated to a minimal class and show that they are X̃ -minimal Cantor
sets (Theorem 3.2). These two results allow us to complete the proof of Theorem 2.3.

3.1. Preliminary results.

LEMMA 3.1. Let x ∈ X̃ and suppose that f has a periodic point p ∈ X̃ . If p ∈ ω(x), then
ω(x)=O(p).

Proof. It is a direct consequence of Lemma 2.2. �

COROLLARY 3.1. Let x ∈ X̃ and i ∈ {1, . . . , N − 1}. If ci ∈1lr (x), then ω(x) ∩ X̃ ,
ω(d+i ) ∩ X̃ and ω(d−i ) ∩ X̃ do not contain any periodic point.

Proof. Suppose that ci ∈1lr (x); then from Theorem 2.2 we deduce that ω(x) is not
a periodic orbit of X̃ . Therefore, by Lemma 3.1, it does not contain any periodic
point belonging to X̃ . On the other hand, since D ⊂ X̃ , by Lemma 2.4, we have that
ω(d+i ) ∪ ω(d

−

i )⊂ ω(x). It follows that neither ω(d+i ) nor ω(d−i ) contains a periodic point
in X̃ . �

COROLLARY 3.2. Let i ∈ {1, . . . , N − 1} and ci ∈1lr . Then 1lr (d−i ) 6= ∅ and
1lr (d+i ) 6= ∅.
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Proof. Suppose that ci ∈1lr ; then, by Definition 2.2, there exists x ∈ X̃ such that ci ∈

1lr (x). From Corollary 3.1, we deduce that neither ω(d+i ) nor ω(d−i ) is a periodic orbit
contained in X̃ . Applying Theorem 2.2, we deduce that 1lr (d−i ) 6= ∅ and 1lr (d+i ) 6= ∅. �

3.2. Equivalence classes in 1lr and their partial order. Here, we introduce an
equivalence relation in 1lr and a partial order in the resulting quotient space. This allows
us to identify some classes of points of1lr which are minimal elements with respect to the
partial order. These minimal classes will be of special importance to study the non-periodic
asymptotic dynamics.

Before defining our equivalence relation, let us prove the following lemma.

LEMMA 3.2. Let x ∈ X̃ . If there exist i and k ∈ {1, . . . , N − 1} such that ci ∈1lr (d+k )
and ck ∈1lr (x), then ci ∈1lr (x).

Proof. If ck ∈1lr (x), then O(d+k )⊂ ω(x); see Lemma 2.4. This implies that the orbit of
x accumulates at any point of the orbit of d+k . On the other hand, we have ci ∈1lr (d+k ).
This means that the orbit of d+k accumulates at ci from the left and from the right. Joining
the two latter assertions, we conclude that the orbit of x also accumulates at ci from the
left and from the right. In other words, ci ∈1lr (x). �

Definition 3.1. Let i and j ∈ {1, . . . , N − 1} be such that ci and c j ∈1lr . We write ci ∼
+

c j and we say that ci and c j are related if and only if

ci = c j or ci ∈1lr (d+j ) and c j ∈1lr (d+i ).

LEMMA 3.3. The relation ∼+ is an equivalence relation on 1lr .

Proof. The reflexive and the symmetric properties follow immediately from the definition
of the relation ∼+. So, it remains to prove the transitive property. Let i, j and k ∈
{1, . . . , N − 1} be such that ci , c j and ck ∈1lr . Let us suppose that ci ∼

+ c j and c j ∼
+ ck

and let us show that ci ∼
+ ck . This assertion holds trivially if ci = c j or c j = ck . If ci 6= c j

and c j 6= ck , by definition of the relation ∼+, we have

ci ∈1lr (d+j ), c j ∈1lr (d+k ), ck ∈1lr (d+j ) and c j ∈1lr (d+i ).

Applying Lemma 3.2, we conclude that ci ∈1lr (d+k ) and ck ∈1lr (d+i ), which implies
that ci ∼

+ ck . �

For any point c ∈1lr , we let [c] denote the equivalence class of c. In order to define
an order relation on the (non-empty) set 1lr/∼

+ of the equivalence classes of 1lr , we first
prove the following lemma.

LEMMA 3.4. Let i and j ∈ {1, . . . , N − 1} be such that ci and c j ∈1lr . If ci ∈1lr (d+j ),
then ci ′ ∈1lr (d+j ′ ) for all i ′ and j ′ ∈ {1, . . . , N − 1} such that ci ′ ∈ [ci ] and c j ′ ∈ [c j ].

Proof. Suppose that ci ′ ∼
+ ci and c j ′ ∼

+ c j . First, assume that ci ′ 6= ci and c j ′ 6= c j . In this
case, the definition of ∼+ implies that

ci ′ ∈1lr (d+i ) and c j ∈1lr (d+j ′ ).
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Applying Lemma 3.2 for ci ′ ∈1lr (d+i ) and ci ∈1lr (d+j ), we obtain that ci ′ ∈1lr (d+j ).
Applying once again the same lemma but for ci ′ ∈1lr (d+j ) and c j ∈1lr (d+j ′ ), we conclude
that ci ′ ∈1lr (d+j ′ ), as wanted. To obtain the same result in the complementary case ci ′ = ci

or c j ′ = c j , we can use similar arguments. �

Definition 3.2. Let i and j ∈ {1, . . . , N − 1} be such that ci and c j ∈1lr . We define the
relation 4+ between the equivalence classes [ci ] and [c j ] in 1lr/∼

+ by

[ci ]4
+
[c j ] if and only if [ci ] = [c j ] or ci ∈1lr (d+j ).

Note that Lemma 3.4 proves that the above definition is well posed, since it is
independent of the choice of the elements ci , c j in the equivalence classes [ci ] and [c j ].

LEMMA 3.5. (1lr/∼
+,4+) is a partially ordered set.

Proof. Take [c], [c′] and [c′′] ∈1lr/∼
+. Let i, j and k ∈ {1, . . . , N − 1} be such that

[ci ] = [c], [c j ] = [c′] and [ck] = [c′′].
Reflexive property: It follows trivially from Definition 3.2.
Antisymmetric property. Suppose that [ci ]4+ [c j ] and [c j ]4+ [ci ]. Then, from

Definition 3.2, it follows that either [ci ] = [c j ], and we are done, or ci ∈1lr (d+j ) and
c j ∈1lr (d+i ). In this last case, we deduce from Definition 3.1 that ci ∼

+ c j , which implies
that [ci ] = [c j ].

Transitive property: Suppose that [ci ]4+ [c j ] and [c j ]4+ [ck]. If [ci ] = [c j ] or [c j ] =

[ck], then [ci ]4+ [ck]. Otherwise, we have ci ∈1lr (d+j ) and c j ∈1lr (d+k ). Applying
Lemma 3.2, we obtain ci ∈1lr (d+k ) and we conclude that [ci ]4+ [ck]. �

Definition 3.3. (Minimal classes) Let [c] ∈1lr/∼
+. We say that [c] is a minimal class if

it is a minimal element of the partially ordered set (1lr/∼
+,4+). In other words, [c] is a

minimal class if for every [c′] ∈1lr/∼
+ such that [c′]4+ [c], we have [c′] = [c].

It is well known that any finite partially ordered set has at least one minimal element.
Since our partially ordered set (1lr/∼

+,4+) is finite, it always has minimal classes.

PROPOSITION 3.1.
(a) Let j ∈ {1, . . . , N − 1} be such that c j ∈1lr . Then there exists i ∈ {1, . . . , N − 1}

such that [ci ] is a minimal class and [ci ]4+ [c j ].
(b) Let [c] ∈1lr/∼

+ and i ∈ {1, . . . , N − 1} be such that ci ∈ [c]. Then [c] is a
minimal class if and only if ci ∈1lr (d+j ) for every j ∈ {1, . . . , N − 1} such that
c j ∈1lr (d+i ).

Proof. (a) For any Hasse graph of a partial order on a finite non-empty set, and for any
of its nodes, say j , there exists at least one minimal node, say i , smaller than or equal to
j . Applying this assertion to the partially ordered set (1lr/∼

+,4+), we deduce that for all
[c j ] ∈1lr/∼

+, there exists at least one minimal class [ci ] such that [ci ]4+ [c j ].
(b) Let [c] ∈1lr/∼

+ and let i ∈ {1, . . . , N − 1} be such that ci ∈ [c].
Suppose that [c] is a minimal class. If c j ∈1lr (d+i ) for some j ∈ {1, . . . , N − 1}, then

[c j ]4+ [ci ]. This implies that [c j ] = [ci ], because [ci ] = [c] and [c] is a minimal class.
It follows that ci ∼

+ c j and therefore we have that ci ∈1lr (d+j ).
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Now suppose that ci ∈1lr (d+j ) for all j ∈ {1, . . . , N − 1} such that c j ∈1lr (d+i ).
Let j ∈ {1, . . . , N − 1} be such that [c j ]4+ [c]. Since [c] = [ci ], to prove that [c] is a
minimal class, we have to show that [c j ] = [ci ]. By definition of4+, either [c j ] = [ci ], and
we are done, or c j ∈1lr (d+i ). By hypothesis, the second case implies that ci ∈1lr (d+j ).
It follows that ci ∼

+ c j and therefore [c j ] = [ci ]. �

3.3. Asymptotic dynamics and minimal classes. In this section, we show that the non-
periodic asymptotic dynamics is supported on the closure of the orbits of the one-sided
limits of the map at its minimal class points. Precisely, we will prove the following
theorem.

THEOREM 3.1. If x ∈ X̃ and 1lr (x) 6= ∅, then there exists i ∈ {1, . . . , N − 1} such that
ci ∈1lr (x) and [ci ] is a minimal class. Moreover, if f is injective on each of its contraction
pieces, then ω(x)= ω(d+i )=O(d+i ).

Note that we can define equivalence classes and a partial order 4− based on the left-
sided limits of the map f at the points of1lr , just exchanging the superscripts + and − in
our definitions and proofs. Therefore, the same Theorem 3.1 is also true for the left-sided
limits of the map. Actually, in the next subsection, Theorem 3.2 will make precise and
(re)prove this assertion.

To prove Theorem 3.1, we need the following two lemmas.

LEMMA 3.6. Let x ∈ X̃ . There exists ε(x) > 0 such that if for some l, r ∈ N and c ∈1 we
have f l(x) ∈ (c − ε(x), c) and f r (x) ∈ (c, c + ε(x)), then c ∈1lr (x).

Proof. If 1lr (x)=1, then the lemma is true for any ε(x) > 0. Now suppose that 1 \
1lr (x) 6= ∅. By Definition 2.2, we have that for any c ∈1 \1lr (x) there exists εc > 0
such that f t (x) /∈ (c − εc, c) for all t ∈ N or f t (x) /∈ (c, c + εc) for all t ∈ N. Now we
define

ε(x) := min
c∈1\1lr (x)

εc > 0.

Suppose that there exist l, r ∈ N and c ∈1 such that

f l(x) ∈ (c − ε(x), c) and f r (x) ∈ (c, c + ε(x)).

Then, by definition of ε(x), we must have that c /∈1 \1lr (x). Therefore, c ∈1lr (x). �

LEMMA 3.7. Suppose that f is injective on each of its contraction pieces and let x ∈ X̃
be such that 1lr (x) 6= ∅. If there exist i, j ∈ {1, . . . , N − 1} such that

ci ∈1lr (d+j ) ∩1lr (x) and c j ∈1lr (d+i ) ∩1lr (x), (14)

then there exist ε0 > 0, m0 > 0 and two sequences {αk}k∈N and {βk}k∈N such that:
(1) {αk}k>1 is a subsequence of O(d+i ) and {βk}k>1 is a subsequence of O(d+j );
(2) the closed interval Ik whose end points are αk and βk satisfies

|βk − αk |< λ
kε0 and f m0+k(x) ∈ Ik for all k ∈ N. (15)
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Proof. First, we construct ε0, m0, α0 and β0. Let ε(d+i ) and ε(d+j ) be as in Lemma 3.6
and

0< ε1 :=min{|c − c′| : c, c′ ∈1, c 6= c′}. (16)

We define ε0 as ε0 :=min{ε(d+i ), ε(d
+

j ), ε1}.
As ci ∈1lr (d+j ) ∩1lr (x), from Definition 2.2, we deduce that there are n0 > 0 and

m0 > 0 such that

f m0(x) ∈ (ci , f n0(d+j ))⊂ (ci , ci + ε0)⊂ X i+1.

Denote α0 := ci and β0 := f n0(d+j ). Since d+j ∈ X̃ , we have that α0 6= β0 and the relation
above implies that

0< |β0 − α0|< ε0 and f m0(x) ∈ (α0, β0)⊂ X i+1, (17)

which shows that (15) holds for k = 0.
Now we show by induction that for any k > 1 there exist two points αk and βk ∈ X that

satisfy the following properties:

αk ∈O(d+i ), βk ∈O(d+j ), |βk − αk |< λ
kε0 and f m0+k(x) ∈ Ik, (18)

where Ik is the compact interval whose end points are αk and βk .
Let us show (18) for k = 1. Let I0 := [α0, β0]. According to (17), we have that I0 ⊂

X i+1 and, as fi+1 is λ-Lipschitz, we deduce that I1 := fi+1(I0) is a compact interval of
size smaller than λε0 such that f m0+1(x) ∈ I1. As fi+1 is a strictly monotonic function,
the end points of I1 are

α1 := d+i and β1 := f (β0) (19)

and belong to O(d+i ) and O(d+j ), respectively. It follows that (18) holds for k = 1.
Assume that (18) holds for some k > 1. We discuss two cases.
Case 1: There is no point of 1 in the interval Ik . Then f |Ik is a λ-Lipschitz strictly

monotonic function and, using the induction hypothesis (18), we obtain that

αk+1 := f (αk) and βk+1 := f (βk) (20)

satisfy (18) replacing k by k + 1.
Case 2: There exists a point c` ∈ Ik ∩1. First, note that such a point c` is unique,

because of (16) and
length(Ik)= |αk − βk |< λ

kε0 6 λ
kε1.

Second, note that
c` ∈ int(Ik),

because the end points αk and βk of Ik belong to X̃ . Indeed, by the induction hypothesis
αk ∈O(d+i )⊂ X̃ and βk ∈O(d+j )⊂ X̃ (recall that D ⊂ X̃ ). Therefore,

αk, βk ∈ (c` − λkε0, c` + λkε0)

and one of the two points αk , βk is at the left-hand side of c` while the other one is at the
right-hand side of c`. Without loss of generality, we will suppose that

αk ∈ (c` − λkε0, c`) and βk ∈ (c`, c` + λkε0). (21)
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Now we show that c` ∈1lr (αk) ∩1lr (βk). Recall that by (14) we have c j ∈1lr (d+i )
and that by Lemma 2.4 this implies that O(d+j )⊂ ω(d

+

i ). As αk ∈O(d+i ), we have
ω(αk)= ω(d+i ) and, as βk ∈O(d+j ), we deduce from the right-hand relation of (21) that
there exists n > 0 such that

f n(αk) ∈ (c`, c` + λkε0).

Then, from the left-hand relation of (21), the definition of ε0 and Lemma 3.6, it follows that
c` ∈1lr (αk). Analogously, using that ci ∈1lr (d+j ), we obtain c` ∈1lr (βk). This ends the
proof of c` ∈1lr (αk) ∩1lr (βk).

Now let us construct αk+1 and βk+1. By (18), we have f m0+k(x) ∈ [αk, βk]. Suppose
that f m0+k(x) ∈ (c`, βk]. Since c` ∈1lr (αk), there exists r > 0 such that

f r (αk) ∈ (c`, f m0+k(x)).

Therefore, the interval [ f r (αk), βk] satisfies the same properties (18) as the interval Ik and
moreover does not intersect 1. So, we can use the same proof as in Case 1, to show that

αk+1 := f r+1(αk) and βk+1 := f (βk) (22)

satisfy (18) replacing k by k + 1. Now, if we suppose that f m0+k(x) ∈ [αk, c`), then using
this time that c` ∈1lr (βk) we obtain that there exists l > 0 such that

f l(βk) ∈ ( f m0+k(x), c`).

Therefore, for the same reason as for the case where f m0+k(x) ∈ (c`, βk], we conclude
that

αk+1 := f (αk) and βk+1 := f l+1(βk) (23)

satisfy (18) replacing k by k + 1.
We have constructed by induction two sequences {αk}k>1 and {βk}k>1 satisfying (18)

for all k > 1, which are moreover subsequences of O(d+i ) and O(d+j ), respectively (see
(19), (20), (22) and (23)). �

Note that in Lemma 3.7, as well as in its following Corollary 3.3, the integers i and j
are not necessarily different. As a consequence, their results can be applied even if 1lr (x)
contains only one point.

COROLLARY 3.3. Suppose that f is injective on each of its contraction pieces and let
x ∈ X̃ be such that 1lr (x) 6= ∅. If i, j ∈ {1, . . . , N − 1} are such that

ci ∈1lr (d+j ) ∩1lr (x) and c j ∈1lr (d+i ) ∩1lr (x),

then ω(x)= ω(d+i )= ω(d
+

j ).

Proof. Applying Lemma 2.4, we immediately obtain that ω(d+i )⊂ ω(x) and ω(d+j )⊂
ω(x). Now, according to Lemma 3.7, there exist m0 > 0, ε0 > 0, a subsequence {αk}k>1
of O(d+i ) and a subsequence {βk}k>1 of O(d+j ) such that

| f m0+k(x)− αk |6 λ
kε0 and | f m0+k(x)− βk |6 λ

kε0 for all k > 1. (24)

Let y ∈ ω(x) and {kn}n∈N be an increasing sequence such that limn→∞ f kn ( f m0(x))= y.
Then (24) implies that limn→∞ αkn = y = limn→∞ βkn and therefore y ∈ ω(d+i ) ∩
ω(d+j ). So, we have proved that ω(x)⊂ ω(d+i ) and ω(x)⊂ ω(d+j ). �
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Proof of Theorem 3.1. Let x ∈ X̃ and suppose that 1lr (x) 6= ∅. Then there exists
k ∈ {1, . . . , N − 1} such that ck ∈1lr (x). Applying part (a) of Proposition 3.1, we
know that there exists i ∈ {1, . . . , N − 1} such that [ci ] ∈1lr/∼

+ is a minimal class and
[ci ]4+ [ck]. From Definition 3.2, it follows that either ci ∈1lr (d+k ) and Lemma 3.2
ensures that ci ∈1lr (x), or [ci ] = [ck] and we also conclude that ci ∈1lr (x). We have
proved that there exists a point

ci ∈1lr (x)

whose equivalence class [ci ] is minimal.
Applying Corollary 3.2, we deduce that there exists j ∈ {1, . . . , N − 1} such that

c j ∈1lr (d+i ). Using once more Lemma 3.2, we obtain that

c j ∈1lr (d+i ) ∩1lr (x).

On the other hand, as the class of ci is a minimal class, c j ∈1lr (d+i ) also implies that
ci ∈1lr (d+j ); see part (b) of Proposition 3.1. It follows that

ci ∈1lr (d+j ) ∩1lr (x).

Therefore, the hypotheses of Corollary 3.3 are verified and ω(x)= ω(d+i ). Besides, as
ci ∈1lr (x), by Lemma 2.4, we have

O(d+i )⊂ ω(x)= ω(d
+

i )⊂O(d+i ),
which ends the proof of Theorem 3.1. �

3.4. End of proof of Theorem 2.3. In this section, we study the orbits of the points
of D corresponding to the minimal classes of 1lr/∼

+. By Theorem 3.1, we know that
these orbits determine all the non-periodic asymptotic dynamics. Among other results, we
show that the closure of such an orbit is a X̃ -minimal Cantor set, which together with
Theorem 3.1 will achieve the proof of Theorem 2.3.

LEMMA 3.8. Let i ∈ {1, . . . , N − 1} and suppose that [ci ] ∈1lr/∼
+ is a minimal class.

Then, for any x ∈ ω(d+i ) ∩ X̃ , we have ci ∈1lr (x) and

ω(x)=O(x)= ω(d+i )=O(d+i ).

Proof. Let x ∈ ω(d+i ) ∩ X̃ . Since ω(d+i ) ∩ X̃ is invariant, we have that

ω(x)⊂O(x)⊂ ω(d+i ). (25)

As ci ∈1lr , from Corollary 3.1, we know that ω(d+i ) ∩ X̃ does not contain any periodic
point and, therefore, by (25), ω(x) ∩ X̃ does not either. It follows by Theorem 2.2 that
there exists j ∈ {1, . . . , N − 1} such c j ∈1lr (x).

Moreover, still by (25), we have that O(x)⊂O(d+i ), which allows us to deduce that
c j ∈1lr (d+i ). Since ci is of minimal class, we must have that ci ∈1lr (d+j ), which together
with c j ∈1lr (x) implies by Lemma 3.2 that ci ∈1lr (x).

Once we know that ci ∈1lr (x), we deduce from Lemma 2.4 that O(d+i )⊂ ω(x) and
using (25) we obtain that

O(d+i )⊂ ω(x)⊂O(x)⊂ ω(d+i )⊂O(d+i ). �
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THEOREM 3.2. Let i ∈ {1, . . . , N − 1} and suppose that [ci ] ∈1lr/∼
+ is a minimal class.

Then Ki := ω(d+i ) is a X̃-minimal Cantor set. Moreover, if f is injective on each of its
contraction pieces, then for any k ∈ {1, . . . , N − 1} such that [ci ]4+ [ck], we have

ck ∈ Ki and Ki =O(d+k )=O(d−k ). (26)

Proof. Let i ∈ {1, . . . , N − 1}, Ki := ω(d+i ) and suppose that [ci ] ∈1lr/∼
+ is a minimal

class.
Ki is X̃ -minimal: It is a direct consequence of Lemma 3.8. It also proves that Ki is a

compact set.
Ki is a perfect set: Let y ∈ Ki . As Ki is pseudo-invariant (see Lemma 2.1), there exists

x ∈ Ki ∩ X̃ (see Lemma 2.3) and O(x)= Ki . As ci ∈1lr and D ⊂ X̃ , from Corollary 3.1,
we deduce that Ki ∩ X̃ does not contain periodic points. Therefore, O(x)⊂ X̃ does not
contain periodic points and there exists n0 ∈ N such that y /∈O( f n0(x)). As O( f n0(x)) is
dense in Ki , there exists {yn}n∈N ⊂O( f n0(x))⊂ Ki \ {y} which converges to y.

Ki is totally disconnected: In [5, Theorem 5.2], it is proved that, if f is a piecewise-
contracting map on a one-dimensional compact space X , then its attractor 3 is totally
disconnected. As any ω-limit set is contained in 3, we conclude that Ki is also totally
disconnected.

Now let k ∈ {1, . . . , N − 1} be such that [ci ]4+ [ck]. As ck ∈1lr , there exists x ∈ X̃
such that

ck ∈1lr (x). (27)

According to Theorem 3.1, this implies that there exists i ′ ∈ {1, . . . , N − 1} such that
[ci ′ ] is a minimal class and ω(x)= ω(d+i ′ ). We have proved above that if [ci ′ ] is a minimal
class, then Ki ′ := ω(d

+

i ′ ) is a X̃ -minimal Cantor set. Therefore, Lemma 2.4 and (27) imply
that

ck, d+k , d−k ∈ Ki ′ and Ki ′ =O(d+k )=O(d−k ).

To finish the proof of the theorem, we only have to show that Ki ′ = Ki . To this end, note
that

ci ∈1lr (x). (28)

Indeed, (28) follows from [ci ]4+ [ck], (27) and Lemma 3.2. We deduce from (28) and
Lemma 2.4 that ω(d+i )⊂ ω(x), that is,

Ki ⊂ Ki ′ .

Since Ki and Ki ′ are both X̃ -minimal, and Ki ∩ X̃ 6= ∅, we conclude that Ki ′ = Ki . �

Now we can prove Theorem 2.3, which, as said in §2.3, will also complete the proof of
Theorem 1.1.

Proof of Theorem 2.3. Suppose that f is injective on each of its contracting pieces
and that D ⊂ X̃ . Let x ∈ X̃ . If 1lr (x) 6= ∅, then, according to Theorem 3.1, there
exists i ∈ {1, . . . , N − 1} such that [ci ] is a minimal class and ω(x)= ω(d+i ). Using
Theorem 3.2, we deduce that ω(x) is a X̃ -minimal Cantor set. Reciprocally, if ω(x) is
a X̃ -minimal Cantor set, then ω(x) is not a periodic orbit and we obtain from Theorem 2.2
that 1lr (x) 6= ∅. �
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Note that Theorem 3.2 allows us to prove Theorem 2.3, but also states in addition,
through (26), that all the points in 1 belonging to a same minimal class, as well as those
belonging to a class comparable with it, generate the same Cantor set (through the orbits
of both lateral limits) and belong to it.
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