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Global averaging and parametric resonances
in damped semilinear wave equations

S. Zelik∗

Institut für Analysis, Dynamik und Modelierung,
Universität Stuttgart, Pfaffenwaldring 57,
70569 Stuttgart, Germany

(MS received 10 March 2005; accepted 5 October 2005)

The long-time behaviour of solutions to a semilinear damped wave equation in a
three-dimensional bounded domain with the nonlinearity rapidly oscillating in time
(f = f(ε, u, t/ε)) is studied. It is proved that (under natural assumptions) the
behaviour of solutions whose initial energy is not very large can be described in terms
of global (uniform) attractors Aε of the corresponding dynamical processes and that,
as ε → 0, these attractors tend to the global attractor A0 of the corresponding
averaged system. We also give the detailed description of these attractors in the case
where the limit attractor A0 is regular.

Moreover, we give explicit examples of semilinear hyperbolic equations where the
uniform attractor Âε (for the initial data belonging to the whole energy phase space)
contains the irregular resonant part, which tends to infinity as ε → 0, and formulate
the additional restrictions on the nonlinearity f which guarantee that this part is
absent.

1. Introduction

We consider the following semilinear damped hyperbolic equation in a bounded
smooth three-dimensional domain Ω ⊂ R

3:

∂2
t u + γ∂tu − ∆xu + λ0u + f

(
ε, u,

t

ε

)
= g,

u|t=τ = uτ , ∂tu|t=τ = u′
τ , ∂nu|∂Ω = 0.

⎫⎪⎬
⎪⎭ (1.1)

Here γ and λ0 are fixed positive constants, the external forces g ∈ L2(Ω), ε > 0 is
a small parameter, and the nonlinear interaction function f(ε, u, z) is sufficiently
smooth with respect to u and ε and is almost periodic with respect to z (see § 2 for
the precise conditions).

As usual, we complete the family of problems (1.1) at ε = 0 by the following
averaged equation:

∂2
t ū + γ∂tū − ∆xū + λ0ū + f̄(ū) = g, (1.2)

where f̄(u) is the average of the almost-periodic function f(0, u, z). We also impose
the standard dissipativity and growth restrictions on the average f̄(u). These guar-
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antee the global existence and dissipativity of solutions of equation (1.2) in the
energy space

E1(Ω) := H2(Ω) ∩ {∂nu|∂Ω = 0} × H1(Ω)

(the critical cubic rate of growth of f̄ is also allowed; see § 2). It is also worth
noting that no growth and dissipativity assumptions on the nonlinearities f(ε, u, z)
for positive ε are imposed.

The long-time behaviour of solutions to (1.1) in the autonomous case is usually
described in terms of global attractors of the dynamical systems associated with
the problem under consideration (see [3, 19,29] and references therein).

The case of non-autonomous equations is essentially less understood. In fact,
until now there have been several natural approaches to extend the attractors the-
ory to the non-autonomous case. One of them is based on a reduction of the non-
autonomous dynamical process to the autonomous one, using the skew-product
technique. The realization of this approach leads to the so-called uniform attrac-
tor Aε of equation (1.1) which is independent of t and is uniform with respect
to all the nonlinearities φ(ε, u, t/ε) belonging to the hull H(f) of the initial non-
linearity f (see [11, 20]). The alternative approach interprets the attractor of the
non-autonomous equation (1.1) as a non-autonomous set as well: Af (t), t ∈ R (see,
for example, [12, 22]).

The homogenization problems for individual solutions of evolution equations with
rapidly oscillating spatial and temporal terms were investigated in [1,4,5,24,28,36]
(see also the references therein).

The homogenization of attractors has also been studied by many authors (see,
for example, [6, 27] for attractors of reaction–diffusion and hyperbolic equations in
non-homogenized spatially periodic media with asymptotic degeneracy). The case of
regular spatially almost-periodic media was considered in [13]. The homogenization
aspects of the evolution problems for spatially rapidly oscillations in subordinated
terms (i.e. for f = f(x/ε, u) or g = g(x/ε)) were considered in [16,17]. The temporal
averaging of uniform attractors for evolutionary problems was studied in [21] (for
the case of the nonlinear wave equation with external forces rapidly oscillating in
time) and in [33] (for the case of singularly perturbed reaction–diffusion system
with rapidly oscillating external forces). The non-autonomous regular attractors
for reaction–diffusion equations with nonlinearities rapidly oscillating in time were
investigated in [14]. The homogenization of trajectory attractors associated with
ill-posed evolutionary mathematical physics equations (such as three-dimensional
Navier–Stokes equations, damped wave equations with supercritical nonlinearities,
etc.) were studied in [10,11].

In this paper, we carry out a detailed analysis of problems related to the local
and global averaging of the solutions of semilinear hyperbolic equations (1.1). In
particular, we prove (in § 3) that the dissipativity of the averaged system (1.2)
in the energy space E1(Ω) implies the existence of a global bounded solution for
problem (1.1) with the initial data ξτ := (uτ , u′

τ ) belonging to a large ball BR0(ε)
(if ε > 0 is sufficiently small), where the radius R0(ε) → ∞ as ε → 0.

We also establish (in § 4) that the long-time behaviour of the solutions to equa-
tion (1.1) with the initial data belonging to BR0(ε) can be described in terms of
the uniform attractor Aε of the corresponding dynamical process, and that the
attractors Aε are uniformly bounded in E1(Ω) and tend (as ε → 0) to the global
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attractor A0 of the limit autonomous problem (1.2) (in the sense of the upper
semi-continuity in E1(Ω)).

Moreover, under the additional generic assumption that the limit attractor A0
is regular, we provide a detailed description (in the spirit of [14]) of the pull-back
attractor Af (τ) of equation (1.1) on the ball BR0(ε) for small positive ε. In particu-
lar, we establish that, in this case, equation (1.1) possesses only a finite number of
different almost-periodic solutions (which are close to the equilibria of the averaged
system), and that, as t → ∞, any other solution of this equation (belonging to the
ball BR0(ε)) tends to one of these almost-periodic solutions (see § 6). Furthermore,
the pull-back attractor Af (τ) has a regular structure (i.e. it is a finite collection of
the finite-dimensional unstable manifolds of the almost-periodic solution mentioned
above), attracts exponentially and uniformly with respect to ε and τ the images of
bounded subsets B ⊂ BR0(ε) and tends to the limit global attractor A0 as ε → 0
in the sense of upper and lower semi-continuity in E1(Ω) (see § 6 for the details).

We however note that, in contrast to the case of parabolic equations or hyper-
bolic equations with external forces rapidly oscillating in time considered in pre-
vious papers (see, for example, [11, 14, 34]), in our case the uniform attractor Âε

of equation (1.1) in the whole phase space E1(Ω) (i.e. the initial data outside of
the ball BR0(ε) is allowed), if it exists, does not necessarily coincide with the uni-
form attractor Aε described above and does not necessarily tend to the averaged
attractor A0 as ε → 0. Indeed, we give (in § 8) an example of an equation of the
form (1.1) whose attractor Âε consists of two parts. The first part (Aε) is regular,
has a large basin of attraction (which contains at least the ball BR0(ε)) and tends
to the limit-averaged attractor A0 as ε → 0. The second part is, however, irregular
(chaotic) and tends to infinity as ε → 0 (see examples 8.4 and 8.7). The existence of
the irregular part of the attractor Âε in our example can be explained in terms of
the so-called nonlinear parametric resonance phenomena (see § 8) which are typical
for hyperbolic equations and, therefore, we believe that the irregular part of the
attractor is non-empty for more-or-less general equations of the form (1.1), where
the leading part of the nonlinearity contains rapid oscillations in time.

Nevertheless, we introduce a rather wide class of equations of the form (1.1) (the
so-called subordinated oscillations), for which we prove that the irregular part of
the attractor is empty and

Âε = Aε (1.3)

exactly as in the case of reaction–diffusion equations.
The paper is organized as follows. The precise formulation of our assumptions

on the functions f(ε, u, z) and some auxiliary results, which are of fundamental
significance for what follows, are given in § 2.

The local averaging of equation (1.1) (over a finite interval of time) is considered
in § 3. Moreover, based on this result, we also establish there the existence of global
bounded solutions for problem (1.1), whose initial energy is not very large.

The uniform and pull-back attractors for equation (1.1) (with the initial data
belonging to BR0(ε)) are constructed in § 4 and their convergence to the limit global
attractor A0 is verified there.

We devote § 5 to the study of the behaviour of the solutions to equation (1.1) in
a small neighbourhood of the hyperbolic equilibrium z0(x) of the averaged equa-
tion (1.2), which is necessary for the regular attractors theory.
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In § 6 we give a detailed description of the pull-back attractors Af (τ) in the
case where the limit attractor A0 is regular. In particular, the upper and lower
semi-continuity of attractors Aε at ε = 0 is established.

In § 7, we formulate the additional assumptions on the nonlinearity f which
guarantee equality (1.3).

The results obtained are illustrated by several concrete examples of equations of
the form (1.1), which are given in § 8.

Finally, several auxiliary estimates for the linear hyperbolic equations are given
in the appendix.

2. Main assumptions and preliminary results

In this section we formulate our assumptions on the nonlinear interaction func-
tion f(ε, u, t/ε), recall some known facts on almost-periodic functions and prepare
the technical tools for the next sections. To be precise, we assume from now on
that, for every ε � 0 and z ∈ R, the functions f(ε, ·, z), f ′

u(ε, ·, z), f ′′
u (ε, ·, z) and

f ′′′
u (ε, ·, z) belong to C(R) and satisfy the following estimate:

|f(ε, u, z)| + |f ′
u(ε, u, z)| + |f ′′

u (ε, u, z)| + |f ′′′
u (ε, u, z)| � Q(|u|), (2.1)

for some monotonic function Q that is independent of ε and z. We also assume that
f(ε, u, z) → f(0, u, z) as ε → 0 in the following sense:

|f(ε, u, z) − f(0, u, z)| + |f ′
u(ε, u, z) − f ′

u(0, u, z)|
+ |f ′′

u (ε, u, z) − f ′′
u (0, u, z)| � CRε, ∀|u| � R, (2.2)

for every ε and z where the constant CR is independent of z and ε.
Our next assumption is that, for every ε � 0, the functions z → f(ε, u, z),

f ′
u(ε, u, z), f ′′

u (ε, u, z) and f ′′′
u (ε, u, z) are almost periodic as functions with values in

the space Cloc(R). We recall that a function φ(u, z) is almost periodic as a Cloc(R)-
valued function if and only if φ(u, z) is an almost-periodic real-valued function (in
the Bohr sense; see, for example, [23]) for every fixed u ∈ R, and it is uniformly
continuous with respect to u belonging to bounded subsets and z ∈ R, i.e. for every
R > 0 there exists a monotone function αR : R+ → R such that limε→0 αR(ε) = 0
and

|φ(u1, z)−φ(u2, z)| � αR(|u1−u2|), ∀u1, u2 ∈ R, |ui| � R and every z ∈ R (2.3)

(see, for example, [14,24] for the details). We also recall that every function almost
periodic with respect to z, z → φ(u, z), possesses the average

M(φ)(u) := lim
T→∞

1
T

∫ t+T

t

φ(u, z) dz, (2.4)

where the limit is uniform with respect to t ∈ R. Moreover, if, in addition, φ is
almost periodic as a Cloc(R)-valued function (i.e. (2.3) is satisfied), then the limit
(2.4) is uniform with respect to u belonging to bounded subsets as well. Namely,
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for every R ∈ R+, there exists a monotone function αR : R+ → R such that
limε→0 αR(ε) = 0 and∣∣∣∣M(φ)(u) − 1

T

∫ t+T

t

φ(u, z) dz

∣∣∣∣ � αR

(
1
T

)
, (2.5)

for every u such that |u| � R and every t ∈ R (see [24] for the details).
We now define, for every ε > 0, the function

fε(u, t) := f

(
ε, u,

t

ε

)
(2.6)

and complete this family of functions as ε = 0 by

f0(u) = f̄(u) := M(f(0, u, z))(u). (2.7)

We will consider the function f̄ as the average of the functions (2.6).
We do not impose any growth or dissipativity assumptions on the functions fε,

which guarantee the global solvability of equation (1.1) for ε > 0. In contrast to this,
the global solvability of the averaged equation (1.1) (with ε = 0) is crucial for our
method, so we need the average f̄ to satisfy the following additional assumptions:

f̄ ∈ C3(R), |f̄ ′′′(u)| � C, ∀u ∈ R, lim inf
|u|→∞

f̄ ′(u) � 0. (2.8)

We start our exposition with the following lemma, which clarifies the sense in which
the functions fε(u, t) → f̄(u) as ε → 0.

Lemma 2.1. Let the above assumptions hold and let ϕε and ϕ̄ be one of the following
functions: fε, ∂ufε, ∂2

ufε and f̄ , ∂uf̄ , ∂2
uf̄ . Then, for every R > 0, the following

estimate holds:∣∣∣∣
∫ t+τ

t

[ϕε(u, t) − ϕ̄(u)] dt

∣∣∣∣ � αR(ε), ∀|u| � R, t ∈ R, τ ∈ [0, 1], ε � 0, (2.9)

where the monotonic function αR(ε) is independent of u, t and τ and satisfies the
condition limε→0 αR(ε) = 0.

Proof. Thanks to (2.2), it is sufficient to estimate the term
∫ t+τ

t

[
f

(
0, u,

t

ε

)
− f̄(u)

]
dt = ε

∫ t/ε+τ/ε

t/ε

[f(0, u, z) − f̄(z)] dz (2.10)

and its first and second derivatives with respect to u. But, due to our assumptions,
the function z → f(0, u, z) and its first and second derivative with respect to u
are almost periodic as Cloc(R)-valued functions and, consequently, the required
estimate is an immediate corollary of estimates (2.1) and (2.5) (with φ = f, f ′

u, f ′′
u ,

t = t/ε and T = τ/ε). Indeed, if τ � ε1/2, estimate (2.9) follows from (2.1) and,
if ε1/2 � τ � 1, then, due to estimate (2.5), we may estimate the right-hand side
of (2.10) in terms of ταR(ε/τ) � αR(ε1/2) and lemma 2.1 is proven.

As usual, in order to study the attractors of the non-autonomous equation (1.1),
it is useful to consider not only the initial nonlinearity fε, but also all nonlinearities
belonging to the hull of the initial nonlinearity fε.
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Definition 2.2. Let f(ε, t, z) satisfy the above assumptions and let the function fε

be defined by (2.6). The hull H(fε) of fε is then the set

H(fε) := [Thfε, h ∈ R]Cb(R,C3
loc(Ω)), (Thfε)(u, t) := fε(u, t + h), (2.11)

where [·]V denotes the closure in the space V . Then, since the functions fε(u, t),
∂ufε(u, t), ∂2

ufε(u, t) and ∂3
ufε(u, t) are assumed to be almost periodic as Cloc(R)-

valued functions, hull (2.11) is a compact subset of Cb(R, Cloc(R)3) (due to the
Bochner–Amerio criterium [24]).

Lemma 2.3. Let the above assumptions hold. Then every function

φε(u, t) = φ(ε, u, z), z =
t

ε
,

belonging to the hull H(fε) of the initial nonlinearity fε satisfies inequalities (2.1),
(2.2) and (2.9) with the same constants CR and monotonic functions Q and αR as
the initial nonlinearity fε.

Indeed, this assertion is a standard corollary of the definition of the hull (2.11)
(see, for example, [11]).

We now define the scale Es(Ω), s ∈ R, of energy spaces associated with the
hyperbolic equation (1.1) with Neumann boundary conditions via

Es(Ω) := Hs+1
N (Ω) × Hs

N (Ω), where ξu(t) := (u(t), ∂tu(t)) ∈ Es(Ω) (2.12)

and H l
N (Ω) := D((−∆x + λ0)

l/2
N ) is a scale of Hilbert spaces generated by the

Laplace operator in Ω with Neumann boundary conditions. Then, as is well known,

H l
N (Ω) =

{
H l(Ω), − 1

2 < l < 3
2 ,

H l(Ω) ∪ {∂nu|∂Ω = 0}, 3
2 < l < 5

2 ,
(2.13)

where Hs(Ω) are the classical Sobolev spaces in Ω (see [31] for the details). To
simplify the notation, below we will write E(Ω) instead of E0(Ω).

In the next two lemmas, we obtain the analogues of estimate (2.9) for the case
where the parameter u depends on t and x (u = u(t, x)).

Lemma 2.4. Let the above assumptions hold and let u(t) = u(t, x) be a function
satisfying

‖ξu(t)‖E1(Ω) � R, ∀t ∈ [0, T ]. (2.14)

Then, for every ε > 0 and φε ∈ H(fε), the following estimate holds:∥∥∥∥
∫ t+τ

t

[φε(u(t), t) − f̄(u(t))] dt

∥∥∥∥
L2(Ω)

� CRαC′
R
(ε), (2.15)

for all t, t + τ ∈ [0, T ] and τ ∈ [0, 1], where the monotonic function αR(ε) is the
same as in (2.9) and the constants CR and C ′

R are independent of ε, t, T , φε and u.
Moreover, if v(t) is another function such that ξv ∈ L∞([0, T ], E1(Ω)), then∥∥∥∥

∫ t+τ

t

[∂uφε(u(t), t) − ∂uf̄(u(t))]v(t) dt

∥∥∥∥
L2(Ω)

� CR‖ξv‖L∞([0,T ],E1(Ω))αC′
R
(ε),

(2.16)
for all t, t + τ ∈ [0, T ] and τ ∈ [0, 1].
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Proof. We consider below only the case φε = fε (the general case reduces to this
one, due to lemma 2.3). Let us first prove estimate (2.15). To this end, we use the
following obvious identity:

d
ds

∫ s

t

[fε(u(s), κ) − f̄(u(s))] dκ

= [fε(u(s), s) − f̄(u(s))] + ∂tu(s)
∫ s

t

[∂ufε(u(s), κ) − ∂uf̄(u(s))] dκ. (2.17)

Integrating this identity over s ∈ [t, t + τ ], we derive
∫ t+τ

t

[fε(u(s), s) − f̄(u(s))] ds

=
∫ t+τ

t

[fε(u(t + τ), κ) − f̄(u(t + τ))] dκ

−
∫ t+τ

t

∂tu(s)
(∫ s

t

[∂ufε(u(s), κ) − ∂uf̄(u(s))] dκ

)
ds. (2.18)

We now note that the estimate (2.14) and the embedding H2(Ω) ⊂ C(Ω) (we recall
that n = 3) imply that

‖u(s)‖C(Ω) + ‖∂tu(s)‖L2(Ω) � CR (2.19)

and, consequently, we may use inequality (2.9) (with φε = fε and φε = ∂ufε) in
order to estimate the first term and the internal integral in the second term on the
right-hand side of (2.18) which gives estimate (2.15).

Let us now consider estimate (2.16). Indeed, integrating by parts the left-hand
side of (2.16), we have

∫ t+τ

t

[∂ufε(u(s), s) − ∂uf̄(u(s))]v(s) ds

= v(t + τ)
∫ t+τ

t

[∂ufε(u(s), s) − ∂uf̄(u(s))] ds

−
∫ t+τ

t

∂tv(s)
(∫ s

t

[∂ufε(u(κ), κ) − ∂uf̄(u(κ))] dκ

)
ds. (2.20)

Estimating the first term and the internal integral in the second term on the right-
hand side of (2.20) using (2.18) (with fε replaced by ∂ufε) and lemma 2.1, we derive
estimate (2.16) and finish the proof of lemma 2.4.

We now consider the analogue of estimate (2.15) for the case of less regular
functions u. To this end, we need the following additional assumption on the growth
of the nonlinearity f :

|fε(w, t)| � C(1 + |w|3−δ), |∂ufε(w, t)| � C(1 + |w|), ∀w ∈ R, (2.21)

where C is independent of t ∈ R and δ is some positive number.
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Lemma 2.5. Let the nonlinearity fε satisfy the additional assumption (2.21) and
let u(t, x) be a function satisfying

‖ξu‖L∞([0,T ],E(Ω)) � R. (2.22)

Then, for every φε ∈ H(fε), estimate (2.15) holds (with some new monotonic func-
tion αR that is independent of t, τ , φε and u and tends to zero as ε → 0).

Proof. As in lemma 2.4, we give the proof for φε = fε only; the general case
is analogous, due to lemma 2.3. We also note, that in contrast to the proof of
lemma 2.4, we do not now have the estimate of the C-norm of the function u and,
consequently, we cannot directly apply lemma 2.1 to estimate the integrals on the
right-hand side of (2.18). In order to overcome this difficulty, we introduce, for every
N > 0 and t ∈ [0, T ], the sets

V N
t (u) := {x ∈ Ω, |u(t, x)| � N}, WN

t (u) := Ω \ V N
t (u). (2.23)

Then, due to embedding H1(Ω) ⊂ L6(Ω), growth restriction (2.21), estimate (2.22)
and the Hölder inequality, we have

‖fε(u(t), s)‖L2(W N
t (u)) + ‖f̄(u(s))‖L2(W N

t (u)) � CR|WN
t (u)|α1 � C ′

RN−α2 , (2.24)

where the positive constants CR, C ′
R, α1 and α2 are independent of N , ε, u, s and t.

Thus, due to estimate (2.24) and lemma 2.1, we have
∥∥∥∥

∫ t+τ

t

[fε(u(κ), s) − f̄(u(κ))] ds

∥∥∥∥
L2(Ω)

�
∥∥∥∥

∫ t+τ

t

[fε(u(κ), s) − f̄(u(κ))] ds

∥∥∥∥
L2(V N

κ (u))
+ C ′

RN−α2

� |Ω|1/2αN (ε) + C ′
RN−α2 , (2.25)

where the constants C ′
R and α2 are defined in (2.24) and the function αN (ε) is

the same as in lemma 2.1. Fixing now the parameter N = N(ε) on the right-
hand side of (2.25) in an optimal way (i.e. as a solution of N−α1 = αN (ε)), we
find that the right-hand side of (2.25) tends to zero as ε → 0 uniformly with
respect to u, t, κ ∈ [0, T ] and τ ∈ [0, 1]. Moreover, arguing analogously, we can
verify that (2.25) remains true with fε and f̄ replaced by ∂ufε and ∂uf̄ , respec-
tively. Now, inserting these estimates into the right-hand side of (2.18) and using
‖∂tu(s)‖2

L2(Ω) � R, we find that∥∥∥∥
∫ t+τ

t

[fε(u(s), s) − f̄(u(s))] ds

∥∥∥∥
L1(Ω)

� α′
R(ε), (2.26)

where the monotonic function α′
R(ε) is independent of u, t and τ ∈ [0, 1] and

tends to zero as ε → 0. In order to deduce the analogue of (2.26) for the L2-norm,
it remains to note that, due to estimate (2.22), embedding H1(Ω) and growth
restrictions (2.21), we have

∥∥∥∥
∫ t+τ

t

[fε(u(s), s) − f̄(u(s))] ds

∥∥∥∥
L2+δ1 (Ω)

� C ′′
R, (2.27)
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for some positive exponent δ1 = δ1(δ). Estimates (2.26) and (2.27) together with the
interpolation inequality give estimate (2.15) and complete the proof of lemma 2.5.

To conclude the section, we discuss the rate of convergence to zero of the func-
tions αR(ε) in lemma 2.1 as ε → 0. To this end, we assume, in addition, that the
function f(0, u, z) − f̄(u) has a bounded primitive F (u, z), i.e.

∂zF (u, z) = f(0, u, z) − f̄(u) (2.28)

and

|F (u, z)| + |∂uF (u, z)| + |∂2
uF (u, z)| � Q(|u|), (2.29)

for some monotonic function Q which is independent of z.
Under these assumptions, we have the linear rate of decay of αR as ε → 0.

Lemma 2.6. Let the additional assumptions (2.28) and (2.29) hold. Then the func-
tion αR(ε) introduced in lemma 2.1 (and used on the right-hand sides of esti-
mates (2.15) and (2.16)) possesses the upper bound

αR(ε) � CRε, (2.30)

where the constant CR is independent of ε.

Proof. Indeed, due to estimate (2.2), it is sufficient to estimate the term on the
left-hand side of (2.10) and its first and second derivatives with respect to u. In
order to do so, we transform the right-hand side of (2.10), using (2.28), as follows:

∫ t+τ

t

[
f

(
0, u,

t

ε

)
− f̄(u)

]
dt = ε

(
F

(
u,

t

ε
+

τ

ε

)
− F

(
u,

t

ε

))
. (2.31)

Estimate (2.30) is now an immediate corollary of assumption (2.29). Lemma 2.6 is
proven.

Remark 2.7. By definition (see (2.7)), the function fε(0, u, z) − f̄(u) has zero
mean. Therefore, condition (2.29) will be always satisfied if the function f(0, u, z)
is periodic with respect to z. Consequently, (2.30) is automatically satisfied for
periodic nonlinearities f . Unfortunately, for more general quasi-periodic or almost-
periodic functions, the sole zero mean assumption is not sufficient to obtain the
bounded primitive (since the so-called small denominators may appear under the
integration [23, 24]). Thus, in this case, some additional assumptions (e.g. some
decay assumptions on the Fourier amplitudes of f(0, u, z) or some kind of Dio-
phantine conditions on its Fourier frequencies) are required in order to have esti-
mate (2.30) (see [14,16,17,24]).

3. The local averaging and the global existence of strong solutions

In this section, we prove the existence of a global strong solution of the non-averaged
equation (1.1) if ε is sufficiently small and the initial E1-energy is not very large.
We obtain this result by comparison of the solution of equation (1.1) with the
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corresponding solution of the averaged equation, which obviously has the following
form:

∂2
t ū + γ∂tū − ∆xū + λ0ū + f̄(ū) = g,

ξū|t=τ = ξτ , ∂nū|∂Ω = 0.

}
(3.1)

We start by recalling the classical result on the global solvability of equation (3.1).

Theorem 3.1. Let the function f̄ satisfy assumptions (2.8) and g ∈ L2(Ω). Then,
for every τ ∈ R and ξτ ∈ E1(Ω), equation (3.1) has a unique solution ū(t) that
satisfies the following estimate:

‖ξū(t)‖E1(Ω) � Q(‖ξū(τ)‖E1(Ω))e−α(t−τ) + Q(‖g‖L2(Ω)), (3.2)

where t � τ and the positive constant α and the monotonic function Q are inde-
pendent of τ , t, ξτ and g.

The proof of this result can be found, for example, in [3].
Let us now consider the non-averaged equation (1.1). As usual, in order to study

the long-time behaviour of solutions of this equation, it is useful to consider a family
of equations of the form (1.1) with all nonlinearities φε, belonging to the hull H(fε)
of the initial nonlinearity. To be more precise, for every ε > 0, τ ∈ R and every
φε ∈ H(fε), we consider the following problem:

∂2
t u + γ∂tu − ∆xu + λ0u + φε(u, t) = g,

ξu|t=τ = ξτ , ∂nu|∂Ω = 0.

}
(3.3)

We first establish the existence of a solution u(t) on a finite interval [0, T ] if ε is
sufficiently small.

Theorem 3.2. Let the function f(ε, u, z) satisfy the assumptions of lemma 2.1.
Then, for every T > 0 and R > 0, there exists ε0 = ε0(T, R) such that, for every ε <
ε0, φε ∈ H(fε), τ ∈ R and ξτ ∈ E1(Ω) that satisfies ‖ξτ‖E1(Ω) � R, equation (3.3)
has a unique strong solution uε(t) on the interval t ∈ [τ, τ + T ] and the following
estimate holds:

‖ξuε(t) − ξū(t)‖E1(Ω) � CT,RαCR
(ε)β , ∀t ∈ [τ, τ + T ], (3.4)

where the function αR(ε) is the same as in lemma 2.1 and positive constants CT,R,
CR and β are independent of τ , ξτ , ε � ε0 and φε ∈ H(fε).

Proof. We will construct the desired solution uε(t) as a small perturbation of the
corresponding solution ū(t) of the averaged equation (3.1) (with the same initial
conditions) based on estimates of lemma 2.4, estimate (3.2) and the implicit function
theorem. For simplicity, we consider below only the case φε = fε and τ = 0 (the
general case is analogous to this, due to lemma 2.3). We introduce a new unknown
function wε(t) := uε(t) − ū(t), which should satisfy

∂2
t wε + γ∂twε − ∆xwε + λ0wε + [f̄(wε + ū(t)) − f̄(ū(t))]

= [fε(wε + ū, t) − f̄(wε + ū)], ξwε |t=0 = 0. (3.5)
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We will apply the implicit function theorem to equation (3.5). To this end, we define
the space

LT := {ξu ∈ C([0, T ], E1(Ω)), ξu(0) = 0} (3.6)

and invert the linear part of equation (3.5). We then obtain the relation

ξwε + HT (f̄(wε + ū) − f̄(ū)) = HT (fε(wε + ū, t) − f̄(wε + ū)), (3.7)

where HT : h → ξθ is the solution operator of the linear hyperbolic problem

∂2
t θ + γ∂tθ − ∆xθ + λ0θ = h, t ∈ [0, T ], ξθ(0) = 0. (3.8)

Let us introduce an operator Φ : LT × E1(Ω) × R+ → LT as follows:

Φ(ξw, ξ0, ε) := ξw − T0(ξw, ξ0) + T1(ξw, ξ0, ε), (3.9)

where

T0(·) := HT (f̄(w + ū(ξ0)) − f̄(ū(ξ0))), T1(·) = HT (fε(w + ū(ξ0), t) − f̄(w + ū(ξ0)))

and ū(ξ0) is a solution of (3.1) on [0, T ] with ξū(0) = ξ0. In order to study func-
tion (3.9), we need the following lemma.

Lemma 3.3. The operator T1 satisfies the estimate

‖T1(ξw, ξ0, ε)‖LT
+ ‖DξwT1(ξw, ξ0, ε)‖L(LT ,LT ) � CT,RαCR

(ε)β (3.10)

if ‖ξw‖LT
+ ‖ξ0‖E1(Ω) � 2R, where the function αR(ε) is the same as in lemma 2.1

and the positive constants CT,R, CR and β are independent of ε, ξ0 and ξw.

Proof. Indeed, due to estimates (2.15), (3.2) and (A 4) (with s = 0), we have

‖T1(ξw, ξ0, ε)‖C([0,T ],E−1(Ω)) � C ′
T,RαC′

R
(ε). (3.11)

On the other hand, it follows from assumption (2.1) and the dissipative esti-
mate (3.2) that ‖fε(w(t) + ū(t), t) − f̄(w(t) + ū(t))‖H2(Ω) � C ′′

R and, consequently,
due to (A 2), we have

‖T1(ξw, ξ0, ε)‖C([0,T ],E1+δ(Ω)) � C ′
R, (3.12)

for some 0 < δ < 1
2 . Inequalities (3.11) and (3.12), together with the interpolation

inequality, give (3.10). Estimates of the derivative can be proven analogously, except
that estimate (2.16) should be used instead of (2.15). Lemma 3.3 is proven.

Estimate (3.10) implies, in particular, that

Φ(0, ξ0, 0) ≡ 0. (3.13)

Moreover, since the differentiability of the operator T0 with respect to ξw is obvious,

DξwΦ(0, ξ0, 0)ξθ = ξθ + HT (f̄ ′(ū(ξ))θ) (3.14)

and Φ(ξw, ξ0, ε) and DξwΦ(ξw, ξ0, ε) tend to Φ(ξw, ξ0, 0) and Dξw
Φ(ξw, ξ0, 0), respec-

tively, as ε → 0 (and this convergence is uniform with respect to ξ0). Thus, in order
to deduce estimate (3.4) from (3.7) and the implicit function theorem, it remains
only to verify that the operator (3.14) is (uniformly with respect to ξ0) invertible
in LT .
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Lemma 3.4. The equation

DξwΦ(0, ξ0, 0)ξθ = ξv (3.15)

has a unique solution ξθ, for every ξv ∈ LT , and the estimate

‖ξθ‖LT
� CR,T ‖ξv‖LT

, (3.16)

holds for all ξ0 ∈ E1(Ω) such that ‖ξ0‖E1(Ω) � R.

Proof. Indeed, let w(t) := θ(t) − v(t), where ξθ is a solution of (3.15). This function
then obviously satisfies

∂2
t w + γ∂tw − ∆xw + λ0w + f ′(ū(t))(w(t) + v(t)) = 0, ξw(0) = 0. (3.17)

We recall that, due to estimate (3.2), we have

‖f ′(ū(t))‖C(Ω) + ‖f ′(ū(t))‖H2(Ω) � CR, ∀t � 0. (3.18)

The existence of a solution of (3.17) and estimate (3.16) is now an immediate
corollary of this estimate and the classical E1-energy estimates for the solutions of
linear hyperbolic equations (see, for example, [3, 29]). Lemma 3.4 is proven.

Thus, we have verified that operator (3.9) (in which ξ0 is interpreted as a param-
eter) satisfies all of the assumptions of the implicit function theorem and, conse-
quently, the desired solution ξwε can be found in a unique way from

Φ(ξwε , ξ
0, ε) ≡ 0 (3.19)

if ε is sufficiently small. Moreover, estimate (3.4) is now a standard corollary of
estimates (3.10). Theorem 3.2 is proven.

Remark 3.5. We note that the right-hand side of (3.4) tends to zero as ε → 0 and,
consequently, the solution uε(t) of equation (3.3) with rapidly oscillating-in-time
coefficients tends to the corresponding solution ū(t) as ε → 0 on every finite interval
[τ, τ +T ]. Thus, theorem 3.2 can be interpreted as the analogue of Bogolubov’s first
theorem for the hyperbolic equation of the form (3.3) (see [5, 26]).

We now recall that only the averaged nonlinearity f̄ is assumed to satisfy the
dissipativity and growth assumptions that guarantee the existence of the global
solutions. Thus, in general, we do not have the existence of a global solution for
equation (3.3) if ε > 0. Nevertheless, estimates (3.2) and (3.4) allow us to prove the
global existence if ε > 0 is sufficiently small and the E1-energy of the initial data
ξτ is not very large. To be more precise, the following result holds.

Corollary 3.6. Let the assumptions of theorem 3.2 hold. There then exists ε0 > 0
and a monotone decreasing function R0 : (0, ε0] → R+ such that limε→0 R0(ε) = ∞
and, for every ε � ε0, τ ∈ R, φε ∈ H(fε) and ξτ ∈ E1(Ω) that satisfies the condition

‖ξτ‖E1(Ω) � R0(ε), (3.20)

equation (3.3) possesses a unique global solution u ∈ L∞(R+, E1(Ω)) and the esti-
mate

‖ξu(t)‖E1(Ω) � Q̃(‖ξu(τ)‖E1(Ω))e−α(t−τ) + Q̃(‖g‖L2(Ω)) (3.21)
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is valid, where the positive constant α and monotonic function Q̃ are independent
of ε, τ , φε and ξτ .

Proof. Instead of constructing the function R0(ε), it is more convenient to construct
the inverse function ε0(R). Indeed, let R be an arbitrary sufficiently large number
(R � 4Q(‖g‖L2(Ω)), where Q is the same as in estimate (3.2)). Then, we fix T =
T (R) as a solution of

Q(R)e−αT = Q(‖g‖L2(Ω)). (3.22)

Finally, we fix ε0 = ε0(R) such that

CT,RαCR
(ε0)β = Q(‖g‖L2(Ω)), (3.23)

where the constants CR, β and CT,R and the function αR(ε) are the same as in
theorem 3.2. We claim that, if ε � ε0 and ‖ξτ‖E1(Ω) � R, then equation (3.3) has
a solution u(t) that satisfies estimate (3.21). Indeed, due to theorem 3.2, equa-
tion (3.3) has a solution u(t) that satisfies the estimate

‖ξu(t) − ξū(t)‖E1(Ω) � Q(‖g‖L2(Ω)), ∀t ∈ [τ, τ + T ], (3.24)

where ū(t) is the corresponding solution of the averaged equation (3.1). On the
other hand, thanks to estimate (3.2) and equation (3.22), we have the estimate
‖ξū(τ + T )‖E1(Ω) � 2Q(‖g‖L2(Ω)). Combining this estimate with (3.24), we can
derive

‖ξu(τ + T )‖E1(Ω) � 3Q(‖g‖L2(Ω)) < R. (3.25)

Thus, we may again apply theorem 3.2 in order to construct the solution of equa-
tion (3.3) on the interval [τ + T, τ + 2T ] with ξu|t=τ+T = ξu(τ + T ). By iterating
this procedure, we obtain the global solution u(t) of equation (3.3) defined for every
t ∈ [τ, +∞) such that

‖ξu(τ + nT )‖E1(Ω) � 3Q(‖g‖L2(Ω)), ∀n ∈ N. (3.26)

Estimate (3.21) is now a corollary of (3.2), (3.26) and (3.24). Since the strong
solution ξu ∈ L∞([τ, +∞], E1(Ω)) is unique, corollary 3.6 is proven.

Thus, for sufficiently small ε and every φε ∈ H(fε), equation (3.3) defines a family
of solution operators

Uφε(t, τ) : BR0(ε) → E1(Ω), t, τ ∈ R, t � τ on the ball,

BR0(ε) := {ξ ∈ E1(Ω), ‖ξ‖E1(Ω) � R0(ε)}

}
(3.27)

via Uφε(t, τ)ξτ = ξu(t), where u(t) is a solution of (3.3) which exists due to corol-
lary 3.6. Moreover, these families, obviously, satisfy the following translation iden-
tity:

Uφε(t + s, τ + s) = UTsφε(t, τ), (3.28)

for every φε ∈ H(fε), t, τ, s ∈ R and t � τ , where the shift operator is defined
in (2.11). We also note that the limit case ε = 0 corresponds to the autonomous
equation (3.1), whose solutions exist globally for every ξτ ∈ E1(Ω). Consequently,
this equation generates a semigroup {St, t � 0} in the whole phase space E1(Ω):

Stξ := Uf̄ (t, 0)ξ, ∀ξ ∈ E1(Ω) and St ◦ Sh = St+h, ∀t, h ∈ R+. (3.29)
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The rest of this section is devoted to the study of the analytic properties of opera-
tors (3.27). We start with the standard result on the differentiability with respect
to the initial data ξτ .

Proposition 3.7. Let the assumptions of corollary 3.6 hold. Then, for every ξτ ∈
BR0(ε), the function ξτ → Uφε

(t, τ)ξτ is Frechet differentiable and its derivative
Dξτ Uφε(t, τ) can be computed as follows: [Dξτ Uφε(t, τ)ξτ ]θ := ξwθ

(t), where θ ∈
E1(Ω) is an arbitrary vector and wθ(t) is a solution of the following equation of
variations:

∂2
t wθ + γ∂twθ − ∆xwθ + λ0wθ + ∂uφε(u(t), t)wθ = 0,

ξwθ
|t=τ = θ, u(t) := Uφε(t, τ)ξτ .

}
(3.30)

Moreover, this derivative satisfies the following estimates:

‖Dξτ Uφε(t, τ)‖L(E1,E1) � CeK(t−τ), (3.31)

where the constants C and K depend on ‖ξτ‖E1 , but are independent of ε, t, τ
and φε and, for every ξτ

1 and ξτ
2 belonging to BR0(ε), we have

‖Dξτ Uφε(t, τ)(ξτ
1 ) − Dξτ Uφε

(t, τ)(ξτ
2 )‖L(E1,E1) � CeK(t−τ)‖ξτ

1 − ξτ
2‖E1(Ω), (3.32)

where the constants C and K are also independent of t, τ , ε and φε.

Indeed, proposition 3.7 is a standard corollary of estimate (A 2) with s = 1, esti-
mate (3.21) and assumption (2.1) on the nonlinearity f (since all of these estimates
are uniform with respect to ε, (3.31) and (3.32) will also be uniform with respect
to ε), so we leave its rigorous proof to the reader.

We now establish the convergence of operators (3.27) to the limit semigroup St

as ε → 0.

Proposition 3.8. Let the assumptions of corollary 3.6 hold. Then the operators
Uφε(t, τ) tend to St−τ as ε → 0 in the following sense:

‖Uφε(t, τ)(ξτ ) − St−τ (ξτ )‖E1(Ω) + ‖Dξτ Uφε(t, τ)(ξτ )

− Dξτ St−τ (ξτ )‖L(E1,E1) � CReK(t−τ)αCR
(ε)β , (3.33)

where the constants CR and K depend on R (we recall that ‖ξτ‖E1(Ω) � R � R0(ε))
but are independent of t, τ , ε and φε, and the positive constant β and the monotonic
function αR(ε) are the same as in theorem 3.2.

Proof. Estimate (3.33) can be easily deduced from the implicit function theorem
(to this end, we need only to verify that function (3.9) is differentiable with respect
to ξ0), but we prefer to give an independent proof of this fact. We restrict ourselves
to considering only the case φε = fε and τ = 0 (the general case is analogous, due
to lemma 2.3). Let us first verify estimate (3.33) for the first term on the left-hand
side. Indeed, let uε(t) := Ufε(t, 0)ξ0 and ū(t) := Stξ

0 be solutions of equations (3.3)
and (3.1), respectively, and let wε(t) := uε(t) − ū(t). Then, this function satisfies
equation (3.5). Let us now introduce a new function θ(t) as a solution of the fol-
lowing auxiliary equation:

∂2
t θ + γ∂tθ − ∆xθ + λ0θ = [fε(uε(t), t) − f̄(uε(t))] := huε

(t), ξθ(0) = 0. (3.34)
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Estimates (2.1), (2.15) and (3.21) imply that
∥∥∥∥

∫ t+τ

t

huε
(s) ds

∥∥∥∥
L2(Ω)

� CRαCR
(ε) and ‖huε

(t)‖H2(Ω) � C ′
R, (3.35)

for every t ∈ R+, τ ∈ [0, 1], where the constant CR depends only on R, and the
function αR is the same as in (2.15). Thus, due to estimates (A 2), (A 4) and the
interpolation inequality, we have (see the proof of lemma 3.3)

‖θ(t)‖E1(Ω) � C ′′
RαCR

(ε)β , t ∈ R+, (3.36)

where the constants C ′′
R and CR depend only on R, and the positive constant β and

the function αR are the same as in theorem 3.1.
Now let vε(t) := wε(t) − θ(t). This function then satisfies

∂2
t vε +γ∂tvε −∆xvε +λ0vε = [f̄(ū(t))− f̄(ū(t)+vε(t)+θ(t))] := hθ(t), ξvε(0) = 0.

(3.37)
Now using estimates (2.1), (3.2), (3.21) and the fact that the space H2(Ω) is an
algebra (we recall that n = 3), we deduce in a standard way that

‖hθ(t)‖H1(Ω) � C ′′′
R (‖vε(t)‖H2(Ω) + ‖θ(t)‖H2(Ω)), (3.38)

where C ′′′
R depends only on R. Applying estimate (A 2) to equation (3.37) and using

estimates (3.36), (3.38) and Gronwall inequality, we finally obtain

‖vε(t)‖E1(Ω) � CReKtαCR
(ε)β . (3.39)

Thus, the first term on the right-hand side of (3.33) is estimated. The second term
can be estimated analogously: we should consider the difference between the non-
averaged (see (3.30)) and averaged equation of variations and use estimate (3.16)
instead of (3.15). Proposition 3.8 is proven.

Remark 3.9. We now discuss some generalizations of the results obtained. We first
note that the almost-periodicity of functions fε with respect to t is necessary only
for the proof of estimate (2.9) in lemma 2.1. Thus, all the results of this section
remain true if, instead of the almost-periodicity, we postulate the existence of a
function f̄(u) that satisfies estimates (2.9).

We also note that, although we consider only the spatially homogeneous nonlin-
earities fε(u, t), this assumption is not crucial for our method and the results remain
true for more general nonlinearities fε(u, t, x) (under some smoothness assumptions
on fε with respect to x).

To conclude, we observe that the Neumann boundary condition is also not essen-
tial for our technique. The only difference (e.g. with the case of Dirichlet boundary
conditions) is that the analogue of estimate (A 2) with s > 1

2 requires the boundary
condition h(t)|∂Ω = 0 (in fact, we do not know whether or not estimate (A 2) holds
without this assumption). Thus, in the case of Dirichlet boundary conditions, we
need to assume, in addition, that

fε(0, t) ≡ 0, ∀t ∈ R. (3.40)
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4. The attractors and their averaging

In this section, we start to study the long-time behaviour of solutions of (3.3) in the
case where ε > 0 is sufficiently small. We recall that, in contrast to the case ε = 0,
for positive ε, we have the global existence of a solution for the initial data belonging
to the ball BR0(ε) of radius R0(ε) in E1(Ω) only (see §§ 6 and 7 for a discussion of
the case where the initial data do not belong to this ball). Therefore, it is natural
to consider this ball as the phase space for problem (3.3) and, thus, to construct
the attractors for the solutions whose initial data belong to BR0(ε) only. We also
note that the main estimate (3.21) is not strong enough for us to conclude that
the solution operators (3.27) map BR0(ε) to itself, for every t � τ . Nevertheless, it
follows from (3.21) that there exists T0 = T0(ε), which is independent of t, τ and φε

such that

Uφε(t, τ) : BR0(ε) → BR0(ε), for all t, τ ∈ R, t − τ � T0, φε ∈ H(fε), (4.1)

which is quite enough for the attractors theory.
It is worth recalling here that, in contrast to the limit equation (3.1), equa-

tions (3.3) are non-autonomous. Thus, operators (4.1) do not generate a semigroup
in the phase space BR0(ε) and the standard concept of a global attractor is not
directly applicable here. Until now, two major possibilities of generalizing the con-
cept of a global attractor to non-autonomous equations have been known. The
first is to reduce the non-autonomous dynamical system to the autonomous system
defined on the properly extended phase space. This approach naturally leads to
the concept of the so-called uniform attractor (see [11, 19] and the explanations
below). The alternative approach is the so-called pull-back attractor, which treats
the attractor of the non-autonomous equation as a non-autonomous set as well and,
therefore, does not require the reduction to the autonomous system (see [12,22]).

We start our exposition by the uniform attractor (and the pull-back attractor
will be discussed at the end of the section). To this end (following the standard
scheme; see, for example, [11]), we define the extended phase space for dynamical
system (4.1) as

Φε := BR0(ε) × H(fε) (4.2)

(where the hull H(fε) is endowed by the topology of Cb(R+, C3
loc(R))) and define

the extended semigroup S
ε
t associated with problems (3.3) on Φε via

S
ε
t (ξ

0, φε) := (Uφε(t, 0)ξ0, Ttφε), ξ0 ∈ BR0(ε), φε ∈ H(fε). (4.3)

It is well known that (4.3) indeed generates a semigroup in Φε. Therefore, we may
consider its global attractor.

Definition 4.1. The set Aε ⊂ Φε is a (global) attractor of semigroup (4.3) if

(i) the set Aε is compact in Φε;

(ii) this set is strictly invariant, i.e. S
ε
tAε = Aε;

(iii) this set attracts all (bounded) subsets of Φε, i.e. for every B ⊂ Φε and every
neighbourhood O(Aε) of the attractor Aε in Φε, there exists T = T (B,O)
such that

S
ε
tB ⊂ O(Aε), for every t � T. (4.4)
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If the set Aε is the global attractor of the extended semigroup (4.3), then, by
definition, the uniform attractor Aε of the family (4.1) is a projection of Aε to the
first component of the Cartesian product Φε = BR0(ε) × H(fε):

Aε = Π1Aε (4.5)

(see [11] for details).

The following theorem establishes the existence of the uniform attractor Aε for
the family (4.1) associated with non-autonomous hyperbolic equations (3.3).

Theorem 4.2. Let the assumptions of corollary 3.6 hold. Then, semigroup (4.3)
possesses a global attractor Aε and, consequently, each dynamical processes (4.1)
possesses a uniform attractor Aε. Moreover, these attractors are uniformly (with
respect to ε) bounded in the space E1(Ω), i.e.

‖Aε‖E1(Ω) � R̄, for every ε ∈ [0, ε0] (4.6)

and possess the following description:

Aε =
⋃

φε∈H(fε)

Πt=0Kφε
, (4.7)

where Kφε
is a union of all solutions u(t) of equation (3.3) (with the fixed nonlin-

earity φε ∈ H(fε)) that are defined for every t ∈ R and satisfy ‖ξu(t)‖E1(Ω) � R̄,
for every t ∈ R (Kφε is a kernel of equation (3.3) in the terminology of [11]).

Proof. According to the existence theorem for the global and uniform attractors
(see [11,29]), we need to verify the following conditions:

(i) operators (4.3) are continuous in Φε for every fixed t;

(ii) there exists a compact attracting set Bε ⊂ BR̄ × H(fε) of this semigroup.

Moreover, the first condition of this theorem is obvious (see proposition 3.7), so it
remains only to construct the compact attracting set Bε. To this end, we first note
that, due to estimate (3.21), the set

B̃ε := BR̄ × H(fε), (4.8)

where BR̄ is the R̄ ball of the space E1(Ω), will be an absorbing set for semi-
group (4.3) if R̄ is sufficiently large (but which is, however, not compact in Φε).
In order to construct the compact analogue of (4.8), we split an arbitrary solu-
tion u of (3.3) with the initial data belonging to BR̄ as a sum of three functions:
u(t) = G + v(t) + w(t), where G solves the linear elliptic problem

−∆xG + λ0G = g, ∂nG|∂Ω = 0, (4.9)

the function v(t) solves the linear homogeneous hyperbolic problem

∂2
t v + γ∂tv − ∆xv + λ0v = 0, ξv|t=τ = ξu|t=τ (4.10)

and the remainder w(t) is a solution of

∂2
t w + γ∂tw − ∆xw + λ0w = hu(t) := −φε(u(t), t), ξw|t=τ = 0. (4.11)

https://doi.org/10.1017/S0308210500004881 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004881


1070 S. Zelik

Then, obviously G ∈ H2(Ω) and, consequently, ξG := (G, 0) ∈ E1(Ω) and, due to
proposition A.1, we have

‖ξv(t)‖E1(Ω) � Ce−α(t−τ)‖ξu(0)‖E1(Ω) (4.12)

for some positive α. Moreover, due to estimates (2.1), (3.27), lemma 2.3 and the
fact that ξu(τ) ∈ BR̄, we have

‖hu(t)‖H2(Ω) � C, (4.13)

where C is independent of ε, ξu(τ), t and φε. Thus, applying proposition A.1 to
equation (4.11), we derive that

‖ξw(t)‖E1+δ(Ω) � R̄1, (4.14)

where 0 < δ < 1
2 and the constant R̄1 is independent of ε, t, τ and φε. Esti-

mates (4.12) and (4.14) show that the set

BR̄1,δ(G) := ξG + {ξ ∈ E1+δ(Ω), ‖ξ‖E1+δ(Ω) � R̄1} (4.15)

is a uniform (with respect to t, τ and φε) attracting set for the family of pro-
cesses (4.1). Thus, taking into account the fact that the hull H(fε) is compact in
Cb(R, C3

loc(R)) (due to the almost-periodicity of fε; see definition 2.2), we finally
derive that the set Bε := BR̄1,δ(G) × H(fε) is a compact attracting set for semi-
group (4.3) in Φε.

Therefore, all the assumptions of the attractor existence theorem are verified for
the semigroup (4.3) and, consequently, this semigroup indeed possesses the global
attractor Aε ⊂ Bε. It remains to note that estimate (4.6) is an immediate corollary
of this embedding and our construction of the set Bε, and description (4.7) is a
standard corollary of the abstract attractors’ existence theorem mentioned above
(see [11]). Theorem 4.2 is proven.

Remark 4.3. There exists an intrinsic definition of the uniform attractor Aε that
does not use the extended semigroup S

ε
t ; namely, the set Aε is a uniform attractor

for equation (1.1) if the following conditions are satisfied:

(i) Aε is compact in E1(Ω);

(ii) Aε is a uniform (with respect to τ ∈ R) attracting set of (4.1), i.e. for every
(bounded) B ⊂ BR0(ε), we have

lim
t→∞

sup
τ∈R

distE1(Ω)(Ufε(τ + t, τ)B,Aε) = 0,

where distV (X, Y ) denotes the non-symmetric Hausdorff distance between
sets X and Y in a metric space V ;

(iii) the set Aε is a minimal compact set that satisfies properties (i) and (ii).

The equivalence of this definition and definition 4.1 is proved in [11].

We now recall, that in the limit case ε = 0, we have the autonomous equation (3.1)
which generates semigroup (3.29) on the whole space E1(Ω) and, consequently, has
a global attractor A0. The next result shows that, in a sense, this attractor can be
interpreted as the average of attractors Aε.
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Corollary 4.4. Let the assumptions of theorem 4.2 hold. Then the family Aε,
ε ∈ [0, ε0], is upper semi-continuous at ε = 0, i.e. for every neighbourhood O(A0)
in E1(Ω), there exists ε′ = ε′(O) such that

Aε ⊂ O(A0) if ε � ε′. (4.16)

Indeed, due to proposition 3.8, family (4.1) of the dynamical processes associated
with equation (3.3) tends uniformly (with respect to φε ∈ H(fε)) as ε → 0 to the
limit semigroup (3.29) associated with the limit autonomous equation (3.1). Thus,
semi-continuity (4.16) is an immediate corollary of estimate (4.6) and the abstract
theorem on the upper semi-continuity of the global (uniform) attractors (see, for
example, [3, 11] and also the proof of corollary 4.5, below).

We now discuss the rate of convergence of the non-averaged attractors Aε to the
averaged one A0 (in the sense of upper semi-continuity) as ε → 0. We recall that
this rate of convergence essentially depends on the rate of attraction to the limit
attractor A0 and, since this rate of attraction can be arbitrarily slow in general,
we cannot obtain the estimates of the rate of convergence of Aε → A0 without the
additional assumptions on the limit attractor A0. One of the most natural additional
assumptions is that the limit global attractor A0 is exponential (see [3,13,14]). The
latter means that there exists a positive constant α > 0 and a monotonic function Q
such that, for every bounded subset B ⊂ E1(Ω), we have

distE1(Ω)(StB,A0) � Q(‖B‖E1(Ω))e−αt. (4.17)

Here and below, the symbol distV (X, Y ) denotes the non-symmetric Hausdorff semi-
distance between sets X and Y in a metric space V .

Corollary 4.5. Let the assumptions of theorem 4.2 hold and, in addition, let
estimate (4.17) be satisfied. The following estimate then holds:

distE1(Ω)(Aε,A0) � CαCR̄
(ε)κ, (4.18)

where the positive constants C and κ are independent of ε, R̄ is the same as in
theorem 4.2, and the function αCR

(ε) is the same as in (3.33).

Proof. Indeed, let ε > 0 be sufficiently small and ξ ∈ Aε be an arbitrary point.
Then, due to description (4.7), there exist φε ∈ H(fε) and a solution uε(t), t ∈ R,
of equation (3.3) such that ξuε ∈ Kφε and ξuε(0) = ξ. Now fix an arbitrary T > 0
and consider a solution ū(t), t � −T , such that ξuε(−T ) = ξū(−T ). Then, on the
one hand, due to proposition 3.8 and estimate (4.6), we have

‖ξ − ξū(0)‖E1(Ω) � CR̄eKT αCR̄
(ε)β (4.19)

and, on the other hand, due to (4.17), we have

distE1(Ω)(ξū,A0) � CR̄e−αT . (4.20)

Combining (4.19) and (4.20) and taking into account the fact that ξ ∈ Aε is arbi-
trary, we derive

distE1(Ω)(Aε,A0) � CR̄(e−αT + eKT αCR̄
(ε)β). (4.21)

https://doi.org/10.1017/S0308210500004881 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004881


1072 S. Zelik

Optimizing the right-hand side of (4.21) with respect to T (i.e. fixing T = T (ε) as
a solution of e−αT = eKT αCR̄

(ε)β), we derive estimate (4.18) and finish the proof
of corollary 4.5.

We now recall that assumption (4.17) is satisfied for generic external forces g ∈
L2(Ω) (for which all of the equilibria of equation (3.1) are hyperbolic [3]). In this
case, the limit attractor A0 has a specific structure (the so-called regular attractor
in the terminology of [3]; see also § 6, below) which allows us to prove, for instance,
that the family of attractors Aε is also lower semi-continuous as ε = 0 and to
obtain the analogue of (4.18) for the symmetric Hausdorff distance. However, in
order to study the non-autonomous perturbations of regular attractors, it is more
convenient to use the alternative concept of the pull-back attractor.

Definition 4.6. Let {U(t, τ), τ ∈ R, t � τ} be a dynamical process in a metric
space Ψ that satisfies the co-cycle property

U(t, τ) ◦ U(τ, s) = U(t, s), t � s � τ. (4.22)

The set-valued function t → A(t) is then a pull-back attractor of this process if the
following conditions hold:

(i) the sets A(t) ⊂ Ψ are compact for every t ∈ R;

(ii) the sets A(t) are strictly invariant, i.e. U(t, τ)A(τ) = A(t);

(iii) the pull-back attraction property is satisfied, i.e. for every bounded subset
B ⊂ Ψ and every t ∈ R, we have

lim
T→+∞

distE1(Ω)(U(t, t − T )B,A(t)) = 0. (4.23)

Corollary 4.7. Let the assumptions of theorem 4.2 hold. Then, for every ε � ε0
and every φε ∈ H(fε), dynamical process (4.1) possesses the pull-back attractor
Aφε(t) which has the following structure:

Aφε(τ) = Πt=τKφε

where the sets Kφε are defined in theorem 4.2.

Indeed, according to the general theory (see [11]), the existence of the uniform
attractor Aε implies the existence of the pull-back attractors Aφε(t) for every
dynamical process Uφε(t, τ), φε ∈ H(fε), and relation (4.7).

Remark 4.8. In general, the convergence in (4.23) is not uniform with respect
to t ∈ R and (consequently) the sets Uφε

(t + T, t)B are not necessarily convergent
to Aφε(t + T ) as T → +∞. Nevertheless, in contrast to what generally happens, we
prove in § 6, below, that we have this convergence (which will be even exponential)
in the case where the limit attractor A0 is regular and ε > 0 is sufficiently small.

We also mention the following obvious, but useful, relation between the uniform
and pull-back attractors:

Aε =
⋃

φε∈H(fε)

Aφε(0), (4.24)

which is an immediate corollary of (4.7) and (4.7).
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5. Averaging near the hyperbolic equilibrium

In this section, we investigate the behaviour of solutions of the non-averaged sys-
tem (3.3) in a small neighbourhood of the hyperbolic equilibrium of the averaged
system (3.1) if ε > 0 is sufficiently small. In particular, we construct here the
non-autonomous unstable manifold associated with this equilibrium, which is nec-
essary for studying (in the next section) the non-autonomous perturbations of the
averaged regular attractor A0. Since all the results of this section are more or less
standard corollaries of propositions 3.7 and 3.8 and the implicit function theorem,
we give below only the necessary definitions and statements and indicate the main
ideas of their proofs, leaving the details to the reader (see also [14,18]).

We assume from now on that ξz0 := (z0, 0), z0 = z0(x), is a hyperbolic equilibrium
of equation (3.1), i.e.

−∆xz0 + λ0z0 + f̄(z0) = g, z0|∂Ω = 0, (5.1)

and the spectrum of the linearization of (5.1) near ξz0 does not contain zero:

0 /∈ σ(−∆x + λ0 + f̄ ′(z0), L2(Ω)). (5.2)

Then, according to proposition 3.7, the Frechet derivative Dξ0St(ξz0) of the semi-
group St generated by the averaged equation (3.1) at ξz0 satisfies the linear equation

∂2
t vθ + γ∂tvθ − ∆xvθ + λ0vθ + f̄ ′(z0)vθ = 0, ξvθ

|t=0 = θ (5.3)

where θ ∈ E1(Ω) and vθ := [Dξ0St(ξz0)]θ. Moreover, hyperbolicity assumption (5.2)
implies the existence of an exponential dichotomy for equation (5.3), i.e. there exist
two subspaces E± of E1(Ω) such that

E1(Ω) = E+ ⊕ E−, Dξ0St(ξz0)E± = E±, dim E+ = ind+(z0) < ∞ (5.4)

and there exist positive constants C and α such that, for every t � 0,

‖Dξ0St(z0)θ‖E1(Ω)

{
� Ce−αt‖θ‖E1(Ω), ∀θ ∈ E−,

� C−1e+αt‖θ‖E1(Ω), ∀θ ∈ E+
(5.5)

(see, for example, [3]). We denote by Π± : E1(Ω) → E± the spectral projectors
associated with decomposition (5.5).

The main task of this section is to obtain the nonlinear and non-autonomous
analogue of decomposition (5.4) for the case of equation (3.3) in a small neighbour-
hood of z0. To this end, we first construct the analogue of the equilibrium z0 for
equation (3.3).

Theorem 5.1. Let the assumptions of theorem 4.2 hold and let ξz0 be a hyperbolic
equilibrium of equation (3.1). There then exist ε0 > 0 and a small neighbourhood
Vz0 of the equilibrium ξz0 in E1(Ω) such that, for every ε < ε0 and φε ∈ H(fε),
equation (3.3) possesses a unique solution uφε,z0(t), t ∈ R such that

ξuφε,z0
(t) ∈ Vz0 , ∀t ∈ R. (5.6)

Moreover, this solution is almost periodic with respect to t (as an E1(Ω)-valued
function) with the same frequency basis as the nonlinearity fε and tends to ξz0
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as ε → 0:
‖ξuφε,z0

(t) − ξz0‖E1(Ω) � CαCR̄
(ε)β , ∀t ∈ R, (5.7)

where R̄ is the same as in theorem 4.2 the function αCR̄
(ε)β is the same as in

proposition 3.8 and the constant C is independent of ε, t and φε.

Sketch of the proof. Following [14], instead of solving (3.3), we solve the equivalent
difference equation

ξ(n) = Uφε(n, n − 1)ξ(n − 1), n ∈ Z, (5.8)

in the space L(E1) := L∞(Z, E1(Ω)) of E1(Ω)-valued sequences. To this end, we
introduce an operator

Φ : L(E1) × R+ → L(E1), Φ(ξ, ε)(n) := ξ(n) − Uφε(n, n − 1)ξ(n − 1). (5.9)

Then, due to propositions 3.7 and 3.8, the operators Uφε(n, n − 1), tend together
with the Frechet derivative, to the solution operator S1 of the averaged equa-
tion (3.1) (uniformly with respect to n and φε). Thus, Φ(ξz0 , 0) = 0. Consequently,
in order to apply the implicit function theorem to (5.9), it remains to verify that
the derivative

(DξΦ(ξz0 , 0)ψ)(n) = ψ(n) − Dξ0S1(ξz0)ψ(n − 1) (5.10)

is invertible in L(E1), but this fact is a standard corollary of exponential dichotomy
(5.5). Thus, due to the implicit function theorem, there exists a neighbourhood Vz0

of ξz0 and ε0 > 0 such that, for every ε < ε0 and φε ∈ H(fε), there exists a unique
sequence ξ(n) = ξφε,z0(n) that belongs to Vz0 , solves (5.8), satisfies (5.7) for t ∈ Z

and depends continuously on φε ∈ H(fε) (the detailed derivation of this fact is given
in [14]). Moreover, since ξφε,z0 is unique, the translation identity (3.28) implies that

Uφε(n + t, n)ξφε,z0(n) = ξTtφε,z0(n), ∀t ∈ R+. (5.11)

The required continuous solution uφε,z0(t) can then be defined via

uφε,z0(t) := uTtφε,z0(0), t ∈ R. (5.12)

Indeed, the fact that (5.12) solves (3.3) follows from (5.11), and the almost-peri-
odicity of (5.12) is an immediate corollary of the fact that the flow Tt is almost
periodic on the hull H(fε) (see [24]). Theorem 5.1 is proven.

We are now ready to define the nonlinear analogue of the space E+ for equa-
tion (3.3).

Definition 5.2. Let the assumptions of theorem 5.1 hold and let Ṽz0 be a suffi-
ciently small neighbourhood of ξz0 in E1(Ω). Then, for every ε � ε0, φε ∈ H(fε)
and τ ∈ R, we define the unstable set M+,loc

φε,z0
(t) as follows:

M+,loc
φε,z0

(τ) := {ξτ ∈ E1(Ω), ∃ξuε
∈ Kφε

such that ξuε(τ) = ξτ and ξuε(t) ∈ Ṽz0 , ∀t � τ}. (5.13)

The following theorem shows that sets (5.13) are finite-dimensional manifolds if
ε is sufficiently small.
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Theorem 5.3. Let the assumptions of theorem 5.1 hold. There then exists a neigh-
bourhood Ṽz0 of the equilibrium ξz0 and ε′

0 > 0 such that the sets (5.13) are finite-
dimensional submanifolds of E1(Ω), for every ε � ε′

0, φε ∈ H(fε) and τ ∈ R. To
be more precise, there exist a neighbourhood W+ ⊂ E+ of zero in E+ (which is
independent of ε, τ and φε), a family of neighbourhoods W+

φε
(τ) of zero in E+ such

that W+ ⊂ W+
φε

(τ) and a family of C1-maps

M
+
φε,τ : W+

φε,τ → E− (5.14)

such that

M+,loc
φε,z0

(τ) = uφε,z0(τ) + {ξ+ + M
+
φε,τ (ξ+), ξ+ ∈ W+

φε
(τ)} (5.15)

and
‖M

+
φε,τ‖C1 � C, M

+
φε,τ (0) = 0, (5.16)

where the constant C is independent of ε, τ and φε. Moreover, for every ξτ ∈
M+,loc

φε,z0
(τ), the corresponding solution ξuε ∈ Kφε (which exists due to definition

(5.13)) tends exponentially, as t → −∞, to the almost-periodic solution ξuφε,z0
:

‖ξuε(t) − ξuφε,z0
(t)‖E1(Ω) � Ceα(t−τ)‖ξ − ξuφε,z0

‖E1(Ω), t � τ, (5.17)

where the positive constants C and α are independent of ε, ξ, φε and τ .

Sketch of the proof. By definition (5.13), in order to construct the unstable mani-
fold M+,loc

φε,z0
(τ), it is sufficient to find all the backward solutions of equation (3.3)

defined for t � τ and belonging to the small neighbourhood Ṽz0 of ξz0 , and to prove
that the set of all these solutions generates a manifold. Moreover, without loss of
generality, we may assume that τ = 0. The general case reduces to this particular
one using the obvious translation formula

M+,loc
φε,z0

(τ) = M+,loc
Tτ φε,z0

(0). (5.18)

As in the proof of theorem 5.1, instead of finding the backward solutions of prob-
lem (3.3), it is more convenient to solve the equivalent difference equation (5.8)
on the space of one-sided sequences L

−(E1) := L∞(Z−, E1(Ω)), but, in contrast to
the proof of theorem 5.1, we now need to endow equation (5.1) with the appropri-
ate initial condition at n = 0. To be more precise, we make the change of variables
ξ̃(n) := ξ(n) − ξuφε,z0

(n) and we consider, for every ξ+ ∈ E+, the following problem
in the space L

−(E1):

ξ̃(n) = Uφε(n, n − 1)(ξuφε,z0
(n − 1) + ξ̃(n − 1))

− Uφε(n, n − 1)(ξuφε,z0
(n − 1)), Π+ξ̃(0) = ξ+. (5.19)

As in the proof of theorem 5.1, the uniform convergence of operators Uφε
(n, n − 1)

to the limit semigroup S1 established in propositions 3.7 and 3.8 and the exponential
dichotomy (5.5) allow us to prove, using the implicit function theorem, that, for
sufficiently small ε � ε′

0, equation (5.19) possesses a unique solution ξvφε,ξ+ (n),
n � 0, which belongs to Ṽz0 and this solution depends smoothly (C1) on the initial
data ξ+ belonging to some small neighbourhood W+

φε
of zero in E+ (the detailed
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proof of this is given in [14]). Thus, the desired maps M
+
φε,0(ξ

+) can now be defined
via

M
+
φε,0(ξ

+) := Π−ξvφε,ξ+ (0), ξ+ ∈ W+
φε

. (5.20)

Indeed, the representation (5.15) is an immediate corollary of the construction of
the solution ξvφε,ξ+ and estimate (5.16) follows from (5.19) and the implicit function
theorem. Thus, it only remains to verify (5.17) or (analogously) that the constructed
solution vφε,ξ+(n) of equation (5.19) decays exponentially as n → −∞. To this end,
following [14], it is sufficient to consider equation (5.19) in the weighted space
L

−
β (E1) of sequences decaying exponentially as n → −∞ (the norm of this space

is given by ‖ξ‖
L

−
β (E1) := supn�0 e−βn‖ξ(n)‖E1(Ω), β > 0). As shown in [14], the

exponential dichotomy (5.5) allows us to apply the implicit function theorem to
equation (5.19) not only in the space L

−(E1), but also in L
−
β for β > 0 sufficiently

small, and obtain a solution ξṽφε,ξ+ ∈ L
−
β (E1). Finally, the uniqueness part of the

implicit function theorem implies that ξṽφε,ξ+ = ξvφε,ξ+ . Therefore, (5.17) is verified
and theorem 5.3 is proven.

Remark 5.4. According to theorem 5.3,

dim M+,loc
φε,z0

(τ) = dimE+ = ind+(z0).

Moreover, it follows from the proof of theorem 5.3 that these manifolds are C1-
diffeomorphic to R

ind+(z0). We also note that, analogously to theorem 5.3, we may
also construct the local stable manifolds M−,loc

φε,z0
(τ), which are diffeomorphic to E−

and consist of all solutions of (3.3) stabilizing to uφε,z0(t) as t → +∞, but these
manifolds are not necessary for the construction of regular attractors and, therefore,
we do not consider them here.

We are now ready to define the global unstable sets M+
φε,z0

(τ) via

M+
φε,z0

(τ) :=
{

ξτ ∈ E1(Ω), ∃ξuε ∈ Kφε such that

ξuε(τ) = ξτ and lim
t→−∞

‖ξuε(t) − ξuφε,z0
(t)‖E1(Ω) = 0

}
, (5.21)

which consist of values at t = τ of all solutions ξu ∈ Kφε that stabilize to the
‘equilibrium’ ξuφε,z0

(t) as t → −∞. Then, obviously, the sets M+
φε,z0

(τ), τ ∈ R, are
strictly invariant with respect to Uφε

(t, τ), i.e.

Uφε(t, τ)M+
φε,z0

(τ) = M+
φε,z0

(t), t � τ. (5.22)

Moreover, due to definition 5.2 and theorem 5.3, the global unstable sets can be
expressed in terms of the local sets via

M+
φε,z0

(τ) =
∞⋃

n=1

Uφε(τ, τ − n)M+,loc
φε,z0

(τ − n) (5.23)

if ε is sufficiently small. It is also worth mentioning that, in the limit case ε = 0,
we have the autonomous equation (3.1) and, consequently, the limit unstable sets
M+

f̄ ,z0
(τ) that correspond to equation (3.1) are independent of τ , i.e.

M+
f̄ ,z0

(τ) ≡ M+
f̄ ,z0

, ∀τ ∈ R and StM+
f̄ ,z0

= M+
f̄ ,z0

. (5.24)

https://doi.org/10.1017/S0308210500004881 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004881


Global averaging and parametric resonances 1077

Remark 5.5. We recall that (5.23) and the fact that

M+,loc
φε,z0

(τ) ∼ R
ind+(z0)

allows us to endow the set M+
φε,z0

(τ) with the structure of a C1-manifold diffeo-
morphic to R

ind+(z0). But, in contrast to the local sets, generally these sets may not
be submanifolds of E1(Ω), since the recurrent motions (e.g. homoclinic orbits to
uφε,z0(t)) may exist near uφε,z0(t). Nevertheless, in our case, the limit equation (3.1)
possesses a global Lyapunov function, which does not allow the motions mentioned
above to exist if ε � 0 is sufficiently small (see lemma 6.4, below). Thus, as proved
for example, in [14] (see also [3, 18]), the sets (5.21) are indeed C1-submanifolds
of E1(Ω) diffeomorphic to R

ind+(z0) if ε is sufficiently small.

To conclude this section, we formulate the standard fact that every trajectory of
equation (3.3) is exponentially attracted to M+

φε
(t) while staying in the neighbour-

hood of ξz0 . This is the main technical tool in the proof of the exponential rate of
the attraction to the regular attractor (see [3, 14]).

Theorem 5.6. Let the assumptions of theorem 5.1 hold. Then, there exist ε′′
0 > 0

and a neighbourhood Vz0 of the equilibrium ξz0 in E1(Ω) such that if ε � ε′′
0 , τ ∈ R

and φε ∈ H(fε) is arbitrary and ξu(t), t � τ is an arbitrary solution of (3.3) which
satisfies

ξu(t) ∈ Vz0 , ∀t ∈ [τ, τ + N ], (5.25)

for some N ∈ N̄ (N = +∞ is allowed), then there exists a solution ξu+(t) of equa-
tion (3.3) such that ξu+(t) ∈ M+,loc

φε,z0
(t), t � τ + N , and

‖ξu(t) − ξu+(t)‖E1(Ω) � Ce−β(t−τ)‖ξu(τ) − ξu+(τ)‖E1(Ω), t ∈ [τ, τ + N ], (5.26)

where positive constants C and β are independent of ε, N , τ , ξu and φε.

The detailed proof of this theorem (which is based on propositions 3.7 and 3.8
and the dichotomy (5.5)) is given in [14] (in fact, in an abstract setting). This
is the reason why we only mention here that the desired solution ξu+(t) of (3.3)
or (analogously) its discrete analogue ξ(n) = ξu+(τ + n), n ∈ {0, . . . , N}, can be
obtained by applying the implicit function theorem to the following problem:

ξ(n) = UTτ φε(n, n − 1)ξ(n − 1), n = 1, . . . , N,

Π−(ξ(0) − ξuφε,z0
(τ)) = M

+
φε,τ (Π+(ξ(0) − ξuφε,z0

(τ))),

Π−ξ(N) = Π−ξu(τ + N),

⎫⎪⎪⎬
⎪⎪⎭

(5.27)

and the remaining details are left to the reader.

Remark 5.7. We note that, in the case N = +∞ in theorem 5.6, we necessarily
have ξu+(t) ≡ ξuφε,z0

(t) (since, due to (5.17), this is the only solution belonging to
the unstable manifold M+

φε,z0
(t), which remains in a small neighbourhood of ξz0

for all t � τ). Thus, thanks to theorem 5.6, every solution ξu(t) of equation (3.3)
which belongs to Vz0 for every t � τ stabilizes exponentially to ξuφε,z0

(t) as t → ∞.
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6. The regular pull-back attractor and its averaging

This section is devoted to the detailed study of the pull-back attractors Aφε
(t) in

the case where ε > 0 is sufficiently small and the limit attractor A0 is regular using
the theory of the non-autonomous perturbations of regular attractors developed
in [14] (see also [18]).

We start with the limit case ε = 0. In this case, as known, equation (3.1) possesses
a global Lyapunov function of the form

L(ξu) :=
∫

Ω

[|∂tu(x)|2 + |∇xu(x)|2 + λ0|u(x)|2 + 2F (u(x)) − 2g(x)u(x)] dx, (6.1)

where F (u) :=
∫ u

0 f̄(v) dv (see, for example, [3]).
The main additional assumption of this section is that all of the equilibria of

equation (3.1) are hyperbolic, i.e. that all the solutions of equation (5.1) satisfy
condition (5.2). In this case, obviously, the set R0 of all the equilibria of (3.1) is
finite:

R0 = {ξzi}N
i=1 and zi satisfies (5.1) and (5.2). (6.2)

Under the above assumptions, the limit attractor A0 possesses the following descrip-
tion.

Theorem 6.1. Let the assumptions of theorem 3.1 hold and, in addition, let (6.2)
be satisfied. The global attractor A0 is then a finite collection of the finite-dimen-
sional unstable manifolds M+

f̄ ,z0
associated with the equilibria (6.2):

A0 =
⋃

z0∈R0

M+
f̄ ,z0

, M+
f̄ ,z0

∼ R
ind+(z0). (6.3)

Furthermore, every solution ξu ∈ Kf̄ is a heteroclinic orbit between two different
equilibria ξz+

0
and ξz−

0
belonging to R0 and every solution ξu(t) of equation (3.1)

defined on a semi-interval [τ, +∞) tends, as t → ∞, to one of the equilibria
ξz0 ∈ R0. Moreover, the attractor A0 attracts exponentially all bounded subsets
of E1(Ω), i.e. estimate (4.17) is satisfied.

The proof of this theorem can be found in [3]; see also the explanations in the
proof of theorem 6.3 below.

Remark 6.2. We recall that the hyperbolicity assumption (6.2) is generic in the
sense that it is satisfied for all external forces g(x) belonging to an open and dense
subset of L2(Ω) (see [3]).

The main result of this section is the following theorem which gives the analogous
description of the pull-back attractors Aφε(τ) of equations (3.3) for sufficiently
small, but positive ε and establish the upper and lower semi-continuity of them
as ε → 0.

Theorem 6.3. Let the assumptions of theorems 4.2 and 6.1 hold. Then, there
exists ε0 > 0 such that, for every ε � ε0, the following assertions are satisfied.

(i) For every φε ∈ H(fε), equation (3.3) possesses exactly N = #R0 different
almost-periodic solutions ξuφε,zi

(t), i = 1, . . . , N , in the ball BR0(ε), which
are constructed in theorem 5.1.
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(ii) Every complete bounded solution ξu ∈ Kφε of equation (3.3) is a heteroclinic
orbit between the two different almost-periodic solutions mentioned above, i.e.

lim
t→±∞

‖ξu(t) − ξuφε,z±
(t)‖E1(Ω) = 0, ξz± ∈ R0, z+ �= z−, (6.4)

and every solution ξu(t) of (3.3) defined on a semi-interval t ∈ [τ, +∞) (which
satisfies ξu(τ) ∈ BR0(ε)) converges as t → ∞ to one of these almost-periodic
solutions.

(iii) The pull-back attractor Aφε(τ) possesses the description

Aφε(τ) =
⋃

z0∈R0

M+
φε,z0

(τ), τ ∈ R, (6.5)

analogous to (6.3), where the C1-submanifolds M+
φε,z0

(τ) are the (global)
unstable manifolds of the almost-periodic solution uφε,z0(t) associated with
the equilibrium ξz0 ∈ R0 (which are constructed in the previous section).

(iv) The pull-back attractors Aφε are uniformly (with respect to τ ∈ R and φε ∈
H(fε)) exponential, i.e. there exist a positive constant α and a monotonic
function Q (which is independent of ε, τ and φε) such that, for every (bound-
ed) subset B ⊂ BR0(ε), we have

distE1(Ω)(Uφε
(τ + t, τ)B,Aφε

(τ + t)) � Q(‖B‖E1(Ω))e−αt. (6.6)

(v) The attractors Aφε(τ) tend as ε → 0 to the limit attractor A0 in the following
sense:

distsymm
E1(Ω)(Aφε

(τ),A0) � CR̄[αC′
R̄
(ε)]κ, (6.7)

where the function αR(ε) is the same as in proposition 3.8, R̄ is the same as
in theorem 4.2, the positive constants κ, CR̄ and C ′

R̄
are independent of τ ,

ε, B and φε, and distsymm
V (X, Y ) denotes the symmetric Hausdorff distance

between subsets X and Y of V .

Sketch of the proof. We give below only an overview of the proof of theorem 6.3,
(the details can be found in [14], see also [3,18]). As usual, this proof is based on the
following lemma which allows us to reduce the analysis of the global behaviour of
solutions of (3.3) to the local analysis of equation (3.3) near the equilibria ξz0 ∈ R0.

Lemma 6.4. Let the assumptions of theorem 6.1 hold. The following statements are
then valid.

(i) For every neighbourhood V of zero in E1(Ω) and every bounded subset B ⊂
E1(Ω), there exist ε0 = ε0(B, V ) and T = T (B, V ) > 0 such that every
solution ξu(t) of equation (3.3) (with ε � ε0, τ ∈ R, φε ∈ H(fε)), such that
ξu(τ) ∈ B, visits the V -neighbourhood of the set R0 on every time-interval
of length T , i.e. for every s � τ , there exists Ts = Ts(u) ∈ [s, s + T ] and
ξz0 ∈ R0 such that

ξu(Ts) ∈ ξz0 + V.
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(ii) There exist small neighbourhoods W and W ′ of zero in E1(Ω), W ′ ⊂ W , and
positive ε0 such that every solution ξu(t), t � τ , of equation (3.3) (with ε � ε0,
τ ∈ R and φε ∈ H(fε)) satisfies the following condition: if ξu(τ) ∈ ξz0 + W ′

for some ξz0 ∈ R0 and ξu(T ) /∈ ξz0 + W for some T � τ , then this trajectory
never returns to the W ′-neighbourhood of ξz0 :

ξu(t) /∈ ξz0 + W ′, ∀t � T. (6.8)

Sketch of the proof. Assume that the first assertion of the lemma is false. There
then exist a neighbourhood V0 of zero, a sequence Tn → ∞ and a sequence of
solutions ξun

(t) := Uφεn
(t, τn)ξn of equation (3.3) such that εn → 0 as n → 0 and

ξun
(t) /∈ V0 + R0, ∀t ∈ [τn, τn + Tn] and ξun

(τn) ∈ B. (6.9)

Let us consider a new sequence of solutions ξũn(t) := ξun(t + τn + 1
2Tn). Then, (6.9)

and (3.21) imply that these solutions are defined on t ∈ [− 1
2Tn, 1

2Tn] and

ξũ(t) /∈ V0 + R0, ‖ξũn(t)‖E1(Ω) � C, ∀t ∈ [− 1
2Tn, 1

2Tn]. (6.10)

Using proposition 3.8 and the fact that the limit equation (3.1) possesses a global
attractor, we can assume without loss of generality that, as n → ∞, the sequence
ξũn(t) tends to some complete solution ξū ∈ Kf̄ of the limit equation (3.1) (e.g. in
the space L∞

loc(R, E1(Ω))). Now, on passing to the limit n → ∞ in (6.10), we deduce
that ξū(t) /∈ V0 + R, for all t ∈ R, which contradicts the fact that (3.1) possesses a
global Lyapunov function (see theorem 6.1). Thus, the first assertion of the lemma
is proven.

Analogously, assuming that the second assertion is wrong, we construct a homo-
clinic structure for the limit equation (3.1) that also contradicts the existence of a
global Lyapunov function (see [14] for the details). Lemma 6.4 is proven.

We are now ready to finish the proof of theorem 6.3. To this end, we fix a
neighbourhood V0 ⊂ W ′ (where W ′ is the same as in lemma 6.4) such that the
assertions of theorems 5.1, 5.3, 5.6 are satisfied for all neighbourhoods ξzi + V0,
i = 1, . . . , N . We then fix B = BR̄ to be a uniform absorbing set for the processes
Uφε(t, τ) in E1(Ω) (which exists due to estimate (3.21)). Finally, we assume that
ε0 > 0 and T > 0 are such that assertions of theorems 5.1, 5.3, 5.6 and lemma 6.4
hold, for every ε � ε0 and every ξz0 ∈ R0.

Then, the second statement of lemma 6.4 implies that every solution ξu(t), t � τ
(such that ε � ε0 and ξu(τ) ∈ B) can leave the neighbourhood V0 + R0 only a
finite number (Nu � N) of times and, consequently, due to the first assumption
of lemma 6.4, there exists ξz+

0
∈ R0 such that ξu(t) ∈ ξz+

0
+ V0 for all sufficiently

large t. Now theorem 5.6 and remark 5.7 imply that ξu(t) stabilizes exponentially
to ξu

φε,z
+
0

(t) as t → +∞. Analogously, if ξu ∈ Kφε is a complete solution of (3.3),
then, due to lemma 6.4 and the fact that the number of the equilibria is finite,
we have ξu(t) ∈ V0 + ξz−

0
for all sufficiently small t. Now, theorem 5.3 implies that

ξu(t) stabilizes to ξu
φε,z

−
0

(t) as t → −∞. Thus, theorem 6.3(i) and (ii) are verified.
Description (6.5) is an immediate corollary of stabilization (6.4), definition (5.21)

of the unstable manifolds and formula (4.7).
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The exponential attraction (6.6) is a standard corollary of the following facts:
every trajectory of (3.1) spends only a finite time T̃ � T · #R0 outside the neigh-
bourhood V0 + R0 (due to lemma 6.4); this trajectory is exponentially attracted
to Aφε(t) while staying inside V0 + R0 (due to theorem 5.6). Moreover, since the
time T̃ and the rate of the attraction in theorem 5.6 are independent of ε, (6.6) will
also be uniform with respect to ε (see [14] for the details).

Finally, estimate (6.7) is a formal corollary of the uniform exponential attrac-
tion (6.6) and proposition 3.8 (and can be obtained exactly as in corollary 4.5; see
also [3, 14]). Theorem 6.3 is proven.

Remark 6.5. We recall that the constructed uniform (Aε) and pull-back (Aφε(τ))
attractors of equation (3.3) attract the solutions u(t) whose initial data belong to
the large ball BR0(ε) in E1(Ω) only (with limε→0 R0(ε) = ∞). We note, however,
that, even in the case where we have the global solvability of problem (3.3) for
every ξτ ∈ E1(Ω) and the associated family of processes has the attractor in the
whole space E1(Ω), it does not necessarily coincide with Aε and may even diverge
to infinity as ε → 0. We will give the corresponding examples in § 8.

We now formulate two corollaries of theorem 6.3.

Corollary 6.6. Let the assumptions of theorem 6.3 hold. Then the uniform at-
tractors Aε of problems (3.3) are upper and lower semi-continuous as ε → 0. More-
over, the following estimate holds:

distsymm
E1(Ω)(Aε,A0) � CR̄[αC′

R̄
(ε)]κ, (6.11)

where the right-hand side of (6.11) is the same as in (6.7).

Indeed, estimate (6.11) is an immediate corollary of (6.7) and (4.24).

Corollary 6.7. Let the assumptions of theorem 6.3 and lemma 2.6 hold (e.g. let
fε be periodic with respect to t). Then, estimate (6.7) can be improved as follows:

distsymm
E1(Ω)(Aφε(τ),A0) � C ′′

R̄εκ, (6.12)

where R̄ and κ > 0 are the same as in (6.7) and the positive constant C ′′
R̄

is
independent of independent of τ , ε and φε.

Indeed, on inserting estimate (2.30) into the right-hand side of (6.7), we may
derive (6.12).

Remark 6.8. It is worth noting that, under the assumptions of theorem 6.3, we
have a simpler relation between the uniform and pull-back attractors, namely,

Aε =
[ ⋃

t∈R

Aφε
(t)

]
E1(Ω)

, for every fixed φε ∈ H(fε). (6.13)

Indeed, description (6.13) follows from the uniform attraction (6.6) and the alter-
native definition of the uniform attractor (see remark 4.3).

It is also worth noting that, under the assumptions of theorem 6.3, the pull-back
attractors Aφε(t) are almost periodic with respect to t as the set-valued functions
t → Aφε(t) for every φε ∈ H(fε) (see [14] for details).
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7. The subordinated oscillations

In this section, we study the case of the so-called subordinated oscillations where
we have the global existence of solutions and uniform (with respect to ε → 0)
dissipativity of system (3.3) not only for ξτ ∈ BR0(ε) but for every ξτ ∈ E1(Ω)
(and even for every ξτ ∈ E(Ω)).

We first recall that in the previous sections we imposed the dissipativity and
growth assumptions (see (2.8)) to the averaged function f̄ only, so, if we want to
have the global solvability of problems (3.3) for arbitrary ξτ ∈ E1(Ω), we need to
impose some assumptions to the functions φε(u, t) for positive ε. It seems natural
to require, analogously to the case of autonomous equation (3.1), the nonlinear-
ity fε(u, t) to satisfy conditions (2.8) uniformly with respect to t and ε. We note,
however, that in the non-autonomous case the sole assumption (2.8) is not sufficient
to obtain the dissipative estimate for the solutions of (3.3) (see, for example, exam-
ple 8.4 below). The standard additional assumption (see, for example, [8,11]), which
guarantees the dissipativity of the non-autonomous equation (3.3), is as follows:

∂tφε(u, t) � δφε(u, t) · u + Cδ, ∀t, u ∈ R, (7.1)

where δ = δ(γ) is a sufficiently small positive number. We note, however, that the
function φε(u, t) contains the rapidly oscillating term t/ε, so the derivative ∂tφε

is of order 1/ε as ε → 0 and, consequently, estimate (7.1) cannot be uniform with
respect to ε. Thus, using (7.1), we cannot obtain uniform (with respect to ε) bounds
for the corresponding attractors.

This is why, instead of (7.1), we use below the following (in a sense, more restric-
tive) assumption that

|fε(u, t) − f̄(u)|2 � δf̄(u) · u + Cδ, ∀t, u ∈ R, ε � 0, (7.2)

where δ and Cδ are independent of ε and t, and δ = δ(γ) is sufficiently small. In par-
ticular, (7.2) implies that the leading part of the nonlinearity fε(u, t) is autonomous
(which justifies the title ‘subordinated oscillations’ of this section). We start from
the following theorem, which gives the uniform (with respect to ε) dissipative esti-
mate in the space E(Ω) for the solutions of (3.3).

Theorem 7.1. Let the functions f(ε, u, z) satisfy the assumptions of lemma 2.1.
Assume, in addition that estimate (7.2) holds, where the average f̄ satisfies assump-
tions (2.8) and that the growth restriction

|∂2
ufε(u, t)| � C(1 + |u|), ∀t, u ∈ R, (7.3)

holds, where C is independent of ε. Then, for every ε � 0, τ ∈ R, φε ∈ H(fε) and
ξτ ∈ E(Ω), equation (3.3) possesses a unique solution ξu(t) ∈ E(Ω) for every t � τ ,
and the following estimate holds:

‖ξu(t)‖E(Ω) � Q(‖ξτ‖E(Ω))e−α(t−τ) + Q(‖g‖L2(Ω)), (7.4)

where the positive constant α and the monotonic function Q are independent of ε,
τ , φε ∈ H(fε) and ξτ ∈ E(Ω).
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Proof. Although the assertion of the theorem is more or less standard, we give below
the derivation of (7.4), in order to show that it is indeed uniform with respect to ε.
For simplicity, we consider below only the case φε = fε and τ = 0 (the general
case is analogous due to lemma 2.3). Moreover, we give only the formal derivation
of estimate (7.4), which can be easily justified using, for example, the Galerkin
approximations method (we recall that assumption (7.3) guarantees the uniqueness
of a solution to (3.3) in the three-dimensional case; see [3]). To this end, following
the standard procedure (see, for example, [3, 29]), we multiply equation (3.3) by
∂tu + βu, for some positive β, and integrate over Ω. Then, after the integration by
parts, we have

∂t[‖ξu(t)‖2
E(Ω) + 2‖F (u(t))‖L1(Ω) + λ0‖u(t)‖2

L2(Ω) + 2β(u(t), ∂tu(t))]

+ 2(γ − β)‖∂tu(t)‖2
L2(Ω) + 2β‖∇xu(t)‖2

L2(Ω)

+ 2λ0‖u(t)‖2
L2(Ω) + 2β(f̄(u(t)), u(t))

= 2(g, ∂tu(t) − βu(t)) − 2(f̃ε(u(t), t), ∂tu(t) + βu(t)), (7.5)

where

F (v) :=
∫ v

0
f̄(u) du

and f̃ε(u, t) := fε(u, t) − f̄(u). We recall that dissipativity assumption (2.8)3 implies
that

F (v) � f(v) · v + C, f(v) · v � −Cµ − µ|v|2 and F (v) � −Cµ − µ|v|2, (7.6)

where µ > 0 can be arbitrarily small and the constants C and Cµ are independent
of v ∈ R. Now, using estimates (7.2), (7.6) and the Cauchy–Schwarz inequality, we
find from (7.5) that there exist sufficiently small (but independent of ε) positive
constants β = β(γ), δ = δ(γ) (which is the same as in assumption (7.2)) and α =
α(γ) such that

∂t[‖ξu(t)‖2
E(Ω) + 2‖F (u(t))‖L1(Ω) + λ0‖u(t)‖2

L2(Ω) + 2β(u(t), ∂tu(t))]

+ α[‖ξu(t)‖2
E(Ω) + 2‖F (u(t))‖L1(Ω) + λ0‖u(t)‖2

L2(Ω) + 2β(u(t), ∂tu(t))]

� C(1 + ‖g‖2
L2(Ω)). (7.7)

By applying the Gronwall inequality to this relation, we derive estimate (7.4), and
theorem 7.1 is proven.

Thus, under the assumptions of theorem 7.1, equations (3.3) define a family of
dynamical processes which are defined globally on E(Ω):

Uφε
(t, τ) : E(Ω) → E(Ω), φε ⊂ H(fε), τ ∈ R, t � τ. (7.8)

The main result of this section is the following theorem, which establishes the
existence of a uniform attractor for (7.8) and verifies that, for small ε, this attractor
coincides with the one constructed in theorem 4.2 starting from the ball BR0(ε) of
the space E1(Ω).
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Theorem 7.2. Let the assumptions of theorem 7.1 hold. Then, for every ε > 0,
family (7.8) possesses a uniform attractor Aε that is compact in E(Ω) and is uni-
formly bounded with respect to ε:

‖Aε‖E(Ω) � C. (7.9)

Moreover, there exists a small positive ε0 such that, for every ε � ε0, the attractors
Aε are compact in E1(Ω) and

‖Aε‖E1(Ω) � C1, (7.10)

where the constant C1 is independent of ε.

Proof. We first consider the case of small ε, where we have regularity (7.10) of
the attractor. We also recall that, in the subcritical case, where the growth rate
of fε is strictly less than cubic (see assumptions (2.21)) this regularity can be
obtained using, for example, bootstrap arguments, exactly as in the autonomous
case (see [3]). Therefore, we mainly consider the critical case of a cubic rate of
growth. In this case, the derivation of dissipative estimate (3.2) in the E1(Ω)-norm
in the autonomous case (see [3]) essentially uses the so-called dissipation integral
which equals infinity in the non-autonomous case. Therefore, the methods of [3]
cannot be directly applied in order to obtain regularity (7.10). Nevertheless, there is
a possibility to adapt these methods to equation (3.3) with small ε > 0. Since we are
mainly interested in the limit ε → 0, this is sufficient for our purposes (see [35] for
the case of damped wave equations with general non-autonomous external forces).

We give below the proof only of the Eα(Ω)-regularity of the attractor Aε for
some positive α that is the most difficult part of the derivation of regularity (7.10)
in the critical cubic rate of growth, leaving the proof of E1-regularity to the reader
(since the cubic rate of growth is subcritical with respect to the Eα(Ω)-norm, the
bootstrap arguments work starting with the Eα(Ω)-energy and allow us to deduce
estimate (7.10) exactly as in the autonomous case; see [3,29] for the details). Thus,
due to the standard theorem on the existence of a global attractor (see the proof
of theorem 4.2), we need only to prove the following proposition, which gives the
uniform (with respect to ε) attracting set in Eα(Ω).

Proposition 7.3. Let the assumptions of theorem 7.2 hold. There then exist ε0 >
0, α > 0 and a sufficiently large ball B(Eα) of the space Eα(Ω) such that, for every
ε ∈ (0, ε0] and every bounded subset B ⊂ E(Ω), we have

distE(Ω)(Uφε
(t + τ, τ)B, B(Eα)) � Q(‖B‖E(Ω))e−βt, (7.11)

where the positive constant β and the monotonic function Q are independent of t,
τ , ε and φε.

Proof. As before, we consider below only the case φε = fε and τ = 0 (the general
case is analogous due to lemma 2.3). Moreover, due to estimate (7.4), we may
prove (7.11) only for the ball B = BR of a sufficiently large radius R in E(Ω).

In order to handle the rapid oscillations in time in equation (3.3), it is convenient
to introduce the auxiliary function w(t) = wu(t) which solves the following equation

∂2
t w + γ∂tw − ∆xw + λ0w = hu(t) := −f̃ε(u(t), t), ξw|t=0 = 0. (7.12)
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Then, due to assumptions (7.2) and (7.3), the function f̃ε satisfies condition (2.21)
(with δ = 1). Consequently, thanks to lemma 2.5, estimate (7.4) and proposi-
tion A.2, we have

‖ξw(t)‖E−1(Ω) � α(ε), ∀t � 0, ξ0 ∈ BR, (7.13)

where the monotonic function α tends to zero as ε → 0. Moreover, it follows
from (7.2)–(7.4) and the Hölder inequality that

‖∇xhu(t)‖L3/2(Ω) + ‖hu(t)‖L3(Ω) � C. (7.14)

Applying the appropriate interpolation inequality to (7.14), we derive that there
exists a positive α, such that

‖hu(t)‖H2α(Ω) � C1. (7.15)

Applying proposition A.1 to equation (7.12) and using (7.13) together with the
interpolation inequality, we finally derive that

‖ξw(t)‖Eα(Ω) � α̃(ε), t ∈ R+, (7.16)

where the monotonic function α̃ is independent of t and ξ0 ∈ BR and tends to zero
as ε → 0.

We now set v(t) := u(t)−w(t), where u(t) solves (3.3). This function then satisfies
the equation

∂2
t v + γ∂tv − ∆xv + λ0v + f̄(v + w(t)) = g, ξv|t=0 = ξu|t=0. (7.17)

Thus, instead of equation (3.3), we will prove the existence of an exponentially
attracting set in Eα(Ω) for equation (7.17). To this end, we split (following [3])
the solution v(t) as follows: v(t) = v0(t) + θ(t), where v0(t) is a solution of the
autonomous equation

∂2
t v0 + γ∂tv0 − ∆xv0 + λv0 + f̄(v0) + Lv0 = 0, ξv0 |t=0 = ξu|t=0, (7.18)

where L is a sufficiently large positive number and the remainder θ(t) satisfies the
equation

∂2
t θ +γ∂tθ −∆xθ +λ0θ +[f̄(θ +v0 +w)− f̄(v0)] = g +Lv0(t), ξθ|t=0 = 0, (7.19)

where we may assume without loss of generality that f̄(0) = 0. Then, arguing anal-
ogously to the proof of theorem 7.1, we derive that the solution v0(t) decays expo-
nentially if L = L(f̄) is sufficiently large:

‖ξv0(t)‖E(Ω) � Q(‖ξu(0)‖E(Ω))e−βt, t � 0, (7.20)

where the positive constant β and the monotonic function Q is independent of ξ0

and t (see [3] for details). Thus, in order to finish the proof of proposition 7.3, it
only remains to verify that the solution θ(t) is uniformly bounded in Eα(Ω). To this
end, we need the following lemma, which plays the role of a ‘dissipation integral’
in the case of small positive ε.
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Lemma 7.4. Let the above assumptions hold. The following estimate is then valid
for the solution v(t) of equation (7.17):

∫ T

0
‖∂tv(t)‖2

L2(Ω) dt � C(T + 1)α̃(ε), T ∈ R+, (7.21)

where the function α̃ is the same as in (7.16) and the constant C is independent
of ε, ξ0 ∈ BR and T .

Indeed, estimate (7.21) can be obtained in a standard way by multiplying equa-
tion (7.17) by ∂tv(t), integrating over [0, T ]×Ω and using estimates (7.4) and (7.16).

Let us now differentiate equation (7.19) with respect to t and denote W (t) :=
∂tθ(t). We then have

∂2
t W + γ∂tW − ∆xW + λ0W

= −f̄ ′(v0)(W + ∂tw) + (f̄ ′(v0 + θ + w) − f̄ ′(v0))∂tu(t) + L∂tv0(t)
:= h1(t) + h2(t) + h3(t), ξW (0) = (0, g). (7.22)

On multiplying equation (7.22) by (−∆x + λ0)α−1
N (∂tW + βW ), where α > 0 is the

same as in estimate (7.16) (without loss of generality, we may assume that α < 1
2 )

and β is a sufficiently small positive number, we derive

∂t[‖ξW (t)‖2
Eα−1 + 2β(∂tW (t), W (t))Hα−1 ]

+ 2(γ − β)‖∂tW (t)‖2
Hα−1 + 2β‖W (t)‖2

Hα

= 2(h1(t), (−∆x + λ0)α−1
N (∂tW (t) + βW (t)))

+ 2(h2(t), (−∆x + λ0)α−1
N (∂tW (t) + βW (t)))

+ 2(h3(t), (−∆x + λ0)α−1
N (∂tW (t) + βW (t))). (7.23)

In order to estimate the right-hand side of (7.23), we need the following standard
inequalities:

‖u1 · (−∆x + λ0)α−1
N u2‖L3(Ω) � C‖u1‖H1+α‖u2‖Hα−1 , (7.24 a)

‖u3 · (−∆x + λ0)α−1
N u2‖L3/2(Ω) � C‖u3‖Hα‖u2‖Hα−1 , (7.24 b)

which hold for every u1 ∈ Hα+1(Ω), u2 ∈ Hα−1(Ω) and u3 ∈ Hα(Ω) and every
0 � α < 1

2 (indeed, these estimate can be easily verified using (2.13), Sobolev’s
embedding theorem and the appropriate Hölder’s inequality [35]).

Now by applying Hölder’s inequality to the first term on the right-hand side
of (7.23) and using estimate (7.24 b), we have

|(h1, (−∆x + λ0)α−1
N (∂tW + βW ))|

� C‖f̄(v0(t))‖L3(Ω)‖W + β∂tw‖Hα‖∂tW + βW‖Hα−1(Ω)

� C1‖f̄(v0(t))‖L3(Ω)(‖ξW (t)‖2
Eα−1 + ‖ξw(t)‖2

Eα). (7.25)

In order to estimate the second term, we first note that, expressing the term ∆xθ
from equation (7.19) and using the elliptic regularity theorem for the Laplacian and
the fact that the E(Ω)-norm of ξθ and ξv0 are uniformly bounded, we derive

‖θ(t)‖H1+α � C2(‖ξW (t)‖Eα−1(Ω) + 1). (7.26)
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By applying the Hölder inequality to the second term on the right-hand side
of (7.23) and using (7.24 a), (7.26) and the growth restriction (7.3), we have

|(h2, (−∆x + λ0)α−1
N (∂tW + βW ))|

� C ′(‖u‖L6(Ω) + ‖v0‖L6(Ω))‖∂tu‖L2(Ω)‖θ + w‖H1+α‖∂tW + βW‖Hα−1

� C ′′‖∂tu(t)‖L2(Ω)(‖ξW (t)‖2
Eα−1 + ‖ξw(t)‖2

Eα + 1). (7.27)

Inserting estimates (7.25) and (7.27) into the right-hand of (7.23) and using that
the Eα-norm of ξw is uniformly bounded (due to (7.16)), we finally derive

∂tEW (t) + c(t)EW (t) � C ′′′, (7.28)

where EW (t) := ‖ξW (t)‖2
Eα−1 + 2βλ0‖W (t)‖2

Hα−1 + 2β(∂tW (t), W (t))Hα−1 and the
function c(t) has the form

c(t) = γ0 − C ′′′(‖f̄(v0(t))‖L3(Ω) + ‖∂tu(t)‖L2(Ω)) (7.29)

for some positive constant γ0. It remains only to note that estimates (7.16), (7.20)
and (7.21) imply that there exists a small positive ε0 such that, for every ε � ε0,
we have ∫ T

0
c(t) dt � 1

2γ0T − C3, ∀T ∈ R+, (7.30)

where the constant C3 is independent of T and ε. Thus, applying Gronwall’s inequal-
ity to (7.28) gives

‖ξW (t)‖Eα−1(Ω) � C4, ∀t ∈ R+ (7.31)

and, returning to the variable θ(t) (using (7.26)), we prove that

‖ξθ(t)‖Eα(Ω) � C5, ∀t ∈ R+, (7.32)

where the constant C5 is independent of ε � ε0, t and ξ0 ∈ BR. Estimates (7.16),
(7.20) and (7.32) give (7.11) and finish the proof of proposition 7.3.

Therefore, we have proven that, for ε � ε0, family (7.8) of the dynamical processes
associated with equation (3.3) possesses a uniform attractor Aε, which is uniformly
(with respect to ε) bounded in the space Eα(Ω) for some positive exponent α < 1

2 .
Since the cubical rate of growth of the nonlinearity is subcritical with respect to
the Eα(Ω)-norm, then, starting with this Eα(Ω)-estimate and using the bootstrap
arguments (exactly as in the subcritical case; see, for example, [3]), we obtain the
required estimate (7.10). Thus, the second part of theorem 7.2 is proven.

Let us now consider the case of an arbitrary (not necessarily small) ε > 0. In
this case, ‘dissipation integral’ (7.21) is not necessarily small and we cannot obtain
estimate (7.30). Therefore, instead of estimate (7.32), we have only that

‖ξθ(t)‖Eα(Ω) � CeKt, (7.33)

for some positive constant K. Although estimate (7.33) is not strong enough in
order to construct a bounded attracting set in Eα(Ω) for positive α, it obviously
(since E(Ω) ⊂⊂ Eα(Ω)) implies that

KE(Ω)(Uφε
(t + τ, τ)B) � Ce−βt, (7.34)
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where KV (X) is a Kuratowski measure of non-compactness of the set X in the
space V (i.e. the infimum over all µ > 0 for which the set X possesses the finite
covering by µ-balls of V ) and the positive constants C and β are independent of φε,
t and τ . This estimate implies the analogous estimate for the extended semigroup
S

ε
t on E(Ω) × H(fε) associated with family (7.8):

KE(Ω)×H(fε)(Sε
t (B × H(fε))) � Ce−βt, (7.35)

which is sufficient in order to conclude that this semigroup possesses a global attrac-
tor in E(Ω) × H(fε) (see, for example, [19]). Thus, theorem 7.2 is proven.

Remark 7.5. Arguing as in the proof of theorem 7.2, we may prove that, in the
case ε � ε0, equation (3.3) possesses a global solution ξu(t) ∈ E1(Ω), for every
ξτ ∈ E1(Ω) that satisfies the dissipative estimate

‖ξu(t)‖E1(Ω) � Q(‖ξτ‖E1(Ω))e−α(t−τ) + Q(‖g‖L2(Ω)), (7.36)

where the positive constant α and the monotonic function Q are independent of ε.

Corollary 7.6. Let the assumptions of theorem 7.1 hold. There then exists an
ε′
0 > 0 such that, for any ε ∈ (0, ε′

0), the uniform attractor of the processes (4.1)
(defined on the phase space BR0(ε) ⊂ E1(Ω)), which is constructed in theorem 4.2,
coincides with the uniform attractor of processes (7.8) (defined on E(Ω)), which
exists due to theorem 7.2. In particular, if, in addition, assumptions of theorem 6.3
are satisfied, then the pull-back attractors Aφε

(τ) of processes (7.8) are regular
(i.e. they satisfy the properties formulated in theorem 6.3).

Remark 7.7. We note that the assertion of corollary 7.6 may be false if the condi-
tions of theorem 7.1 are violated, even in the case where equation (3.3) has globally
defined and bounded solutions, for every ξτ ∈ E(Ω), and the corresponding uniform
attractor is bounded in E1(Ω), for every fixed ε > 0. We give the corresponding
example in the next section.

Remark 7.8. To conclude, we recall that, according to corollary 7.6 and theo-
rem 6.1, the pull-back attractors Aφε(τ) attract subsets exponentially only bounded
in E1(Ω) (see estimate (6.6)). Nevertheless, it is not difficult to deduce from (6.6)
and (7.11), using the so-called transitivity of the exponential attraction (see [15]),
that every bounded in E(Ω) subsets are also attracted exponentially to these attrac-
tors, i.e. for every bounded B ⊂ E(Ω), we have

distE(Ω)(Uφε(t + τ, τ)B,Aφε(t + τ)) � Q(‖B‖E(Ω))e−αt, (7.37)

where the constant α > 0 and the monotonic function Q are independent of ε � ε′
0,

φε ∈ H(fε), τ ∈ R and t � 0.

8. Examples and concluding remarks

In this concluding section, we illustrate the results obtained above by several con-
crete examples of equations of the form (1.1). We start with the most natural
example of the subordinated oscillations.
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Example 8.1. Let us consider the following semilinear hyperbolic problem in a
bounded smooth domain Ω ⊂ R

3:

∂2
t u + γ∂tu − ∆xu + u3 − a

(
t

ε

)
u = g, ξu|t=τ = ξτ , ∂nu|∂Ω = 0, (8.1)

where a(z) is an almost-periodic (in the sense of Bohr) real-valued function. Then,
the averaged equation for (8.1) obviously has the form

∂2
t ū + γ∂tū − ∆xū + ū3 − āū = g, ξū|t=τ = ξτ , ∂nū|∂Ω = 0, (8.2)

where ā := M(a) is the average of the almost-periodic function a(z).
It is not difficult to verify that equation (8.1) satisfies all of the assumptions of

theorem 7.2 and, consequently, for every ε � 0, equation (8.1) possesses a uniform
attractor Aε in the whole phase space E(Ω) which is uniformly (with respect to ε)
bounded in it. Furthermore, according to the second part of theorem 7.2, these
attractors Aε are uniformly bounded in E1(Ω) if ε � ε0 is sufficiently small (we
recall that the nonlinearity in equation (8.1) has a critical cubic growth where the
higher regularity of the attractors is a rather delicate problem, especially in the
non-autonomous case in absence of the dissipation integral and, to the best of the
author’s knowledge, the E1(Ω)-regularity of the attractors of equation (8.1) (even
for small positive ε) has not previously been known).

Moreover, due to theorem 4.2 and corollary 7.6, as ε → 0, the uniform attractors
Aε tend to the global attractor A0 in the space E1(Ω) (in the sense of the upper
semi-continuity). Finally, under the additional generic assumption that all of the
equilibria of the averaged problem (8.2) are hyperbolic, we (due to theorem 6.3)
also have the lower semi-continuity of these uniform attractors as ε → 0 and the
associated pull-back attractor Afε(τ) is regular (and satisfies assertions (i)–(v) of
theorem 6.3) if ε � ε0 is sufficiently small.

In the next example we apply the results of previous sections to the autonomous
equation with supercritical nonlinearity.

Example 8.2. Let us consider the following semilinear hyperbolic problem in a
bounded domain Ω ⊂ R

3:

∂2
t u + γ∂tu − ∆xu + εu|u|p + u3 − āu = g, ξu|t=0 = ξ0, ∂nu|∂Ω = 0, (8.3)

where ā ∈ R is an arbitrary and the exponent p > 2. In this case the nonlinearity
has the supercritical rate of growth and, a priori, we only have the global existence
(without uniqueness) of weak energy solutions of equation (8.3). Nevertheless, since
the nonlinearity of equation (8.3) satisfies the assumptions of § 3, due to corol-
lary 3.6, this equation possesses a (unique) global strong solution ξu(t) ∈ E1(Ω)
if ε � ε0 and the initial E1(Ω)-energy is not very large, i.e. ‖ξ0‖E1(Ω) � R0(ε),
where the monotonic function R0(ε) tends to +∞ as ε → 0. Moreover, the semi-
group Sε

t generated by this equation on the ball BR0(ε) of the space E1(Ω) possesses
(due to theorem 4.2) a global attractor Aε which is uniformly bounded in E1(Ω)
and tends as ε → 0 to the global attractor A0 of the ‘averaged’ equation (8.2).
Finally, under the generic assumption that all the equilibria of equation (8.2) are
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hyperbolic, the global attractor Aε is regular if ε � ε0 (due to theorem 6.3) and
tends to the limit attractor A0 as ε → 0 in the following sense:

distsymm
E1(Ω)(Aε,A0) � Cεκ, (8.4)

for some positive C and κ (we recall that the considered nonlinearity obviously
satisfies assumptions (2.28) and (2.29) and, thus, (8.4) follows from corollary 6.7).

Remark 8.3. The uniqueness problems with equation (8.3) can be partly overcome
using the so-called trajectory approach (see [8,11,28,32]). We recall that, under this
approach, instead of the classical way of constructing a dynamical system in a phase
space E(Ω) associated with equation (8.3) (which can be defined as a semigroup of
multi-valued maps only), one considers the so-called trajectory dynamical system

T ε
h : K+

ε → K+
ε , (T ε

hu)(t) := u(t + h), h � 0, (8.5)

where the trajectory phase space K+
ε ⊂ L∞(R+, E(Ω)) is the set of all (properly

defined) weak energy solutions of problem (8.3) endowed by the appropriate topol-
ogy (see [11, 34]). Then, the global attractor Atr

ε of shift semigroup (8.5) is called
the trajectory attractor associated with problem (8.3). It is also worth emphasizing
that, in the case where we have the uniqueness, the trajectory dynamical system is
usually equivalent to the classical system (see [11,34] for the details).

The existence of trajectory attractors Atr
ε for equations (8.3) and their weak

convergence to the attractor Atr
0 of the limit equation (8.2) (which is equivalent

to the global attractor A0, since we have uniqueness for (8.2)) was established
in [8, 9]. Moreover, as proved in [34], every complete bounded weak solution ξu(t),
t ∈ R, of equation (8.3) belonging to the attractor Atr

ε becomes regular as t → −∞
(ξu(t) ∈ E1(Ω) if t is sufficiently small) and tends to the set Rε of the equilibria
of equation (8.3) (in fact, this result holds for every ε > 0). Since the set Rε is
uniformly bounded in E1(Ω) as ε → 0, we have the following result. For every
complete weak solution ξu(t) of equation (8.3), there exists a time T = Tu such
that

‖ξu(t)‖E1(Ω) � C, ∀t � T, (8.6)

where the constant C is independent of ξu and ε � ε0. Combining this result
with corollary 3.6 and arguing as in [34], we then establish that ξu(t) ∈ E1(Ω) for
every t ∈ R if ε > 0 is sufficiently small (i.e. such that R0(ε) > C). Therefore, we
proved that, in this case,

Atr
ε ⊂ L∞(R+, E1(Ω)) (8.7)

and is uniformly bounded (with respect to ε → 0) in this space. Thus, the tra-
jectory attractor Atr

ε that describes the long-time behaviour of weak solutions of
equation (8.3) with ξ0 ∈ E(Ω) coincides with the attractor Aε constructed in the-
orem 4.2; more precisely, we have the relation

Aε = Atr
ε |t=0, ε � ε0. (8.8)

Therefore, every weak energy solution ξu(t), t � 0 of equation (8.3) with arbitrary
initial data ξ0 ∈ E(Ω) (and not necessarily ξ0 ∈ BR0(ε)) is attracted as t → +∞ by
the global attractor Aε constructed in theorem 4.2.
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The next example shows that (3.3) may have additional complete bounded solu-
tions outside of the ball BR0(ε) for every ε > 0.

Example 8.4. Let us consider the following semilinear hyperbolic equation in a
smooth bounded domain Ω ⊂ R

3:

∂2
t u + γ∂tu − ∆xu + u3

(
1 + ν cos

(
2t

ε

))
− āu = 0, ξu|t=τ = ξτ , ∂nu|∂Ω = 0,

(8.9)
where ā ∈ R and ν > 0 is a small parameter. The averaged equation for (8.9) is,
obviously, has the form of (8.2) with g = 0.

Then, thanks to corollary 3.6 and theorem 4.2, for every ξτ ∈ BR0(ε), equa-
tion (8.9) possesses a unique global bounded solution ξu(t), t � τ , and the dynam-
ical processes generated by this equation on the ball BR0(ε) possess the uniform
attractors Aε which are uniformly (with respect to ε → 0) bounded in E1(Ω) and
tend to the global attractor A0 of the averaged equation (8.2) in the sense of the
upper semi-continuity in E1(Ω).

Moreover, under the additional generic assumption that all the equilibria of (8.2)
are hyperbolic, the corresponding pull-back attractors Aφε

(τ) are regular (due to
theorem 6.3) and we have estimate (8.4) for the symmetric distance between Aε

and A0 (due to corollary 6.7 and lemma 2.6).
Nevertheless, as shown in the next lemma, equation (8.9) possesses additional

complete bounded solutions outside the ball BR0(ε) which tend to infinity as ε → 0.

Lemma 8.5. For all sufficiently small ν > 0, ε > 0 and ε � ν, equation (8.9)
possesses at least one spatially homogeneous time-periodic solution uν,ε(t) (of period
2πε) which satisfies the following estimates:

C1ε
−2 � ‖ξuν,ε(t)‖E(Ω) = ‖ξuν,ε(t)‖E1(Ω) � C2ε

−2, (8.10)

where the positive constants C1 and C2 are independent of ε and ν.

Proof. Making the change of variables z = t/ε and v(z) = εu(t/ε) in equation (8.9),
we have

∂2
zv + εγ∂zv − ε2∆xv + v3(1 + ν cos(2z)) − ε2āv = 0. (8.11)

Recall that we seek for the spatially homogeneous solutions of (8.11) only, so we
may forget about the Laplacian and obtain the second-order ordinary differential
equation

V ′′(z) + V 3(z)(1 + ν cos(2z)) + εγV ′(z) − ε2āV (z) = 0. (8.12)

Moreover, since u(t) = ε−1V (t/ε), to prove the lemma, it is sufficient to construct
the 2π-periodic solution of (8.12) of order O(1) as ε → 0. In order to do so, we first
construct a 2π-periodic solution Vν(z) of the equation

V ′′
ν (z) + V 3

ν (z)(1 + ν cos(2z)) = 0, (8.13)

which corresponds to the case ε = 0 in (8.12). Then, if the constructed solution
is non-degenerate (e.g. hyperbolic), it is preserved under small perturbations of
equation (8.13) and, in particular, (8.12) possesses a limit cycle close to Vν(z)
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if ε � ν is sufficiently small. Thus, it only remains to find a hyperbolic 2π-periodic
solution of equation (8.13) for small positive ν.

It is worth recalling now that equation (8.13) is a Hamiltonian system with 3
2

degrees of freedom (see, for example, [1, 2, 7, 25] and the references therein). In
particular, it is known that the desired periodic solution Vν(z) can be computed in
the form of a power series with respect to the parameter ν:

Vν(z) = V0(z) + νV1(z) + ν2V2(z) + · · · , (8.14)

where the Vi(z) are the appropriate 2π-periodic functions that can be found by
standard recursive procedure. In particular, V0(z) should satisfy the conservative
Hamiltonian equation (8.13) with ν = 0:

V ′′
0 (z) + V 3

0 (z) = 0. (8.15)

Thus, we first need to find the 2π-periodic solution V0(z) of equation (8.15). To this
end, we endow equation (8.15) with the initial conditions V0,L(0) = L and V ′

0,L(0) =
0, where L > 0 is a parameter, and denote the obtained unique solution of equa-
tion (8.15) by V0,L(z). It is then not difficult, using the explicit integral formula for
the solutions of (8.15), to verify that V0,L(z) is T -periodic, where

T = T (L) = CL−1 (8.16)

and the constant C > 0 is independent of L. In particular, fixing L = L0 := C/(2π),
we obtain the desired 2π-periodic solution V0(z) = V0,L0(z) of equation (8.15). We
recall that, in a fact, we have the one-parametric family {V0(z + h)}h∈R of 2π-
periodic solutions of equation (8.15), consequently, following the general procedure,
in order to determine h, we should consider the so-called Poincaré integral, which
has the form

P (h) = −
∫ 2π

0
V0(t + h)3 cos(2z)V ′

0(z + h) dz = 2
∫ 2π

0
V0(z + h)4 sin(2z) dz (8.17)

(see [25]). We claim that P (0) = 0. Indeed, the function z → V0(z)4 is even with
respect to z and z → sin(2z) is odd. Consequently, the function V 4

0 (z) sin(2z) is
odd and its mean is equal to zero. The analogous arguments show that

P ′(0) = 8
∫ 2π

0
V0(z)3V ′

0(z) sin(2z) dz = 4
∫ 2π

0
V0(z)4 cos(2z) dz > 0. (8.18)

Indeed, due to the symmetries V0(z) → −V0(z) and V0(z) → V0(−z) of equa-
tion (8.15) and our assumption for the initial data, we see that the function [V0(z)]4

is π-periodic, has a unique zero on the interval [0, π] at z = 1
2π and is symmetric

with respect to z → π − z. This allows us to rewrite (8.18) as

P ′(0) = 16
∫ π/2

0
[V0(z)]4 cos(2z) dz = 16

∫ π/4

0
([V0(z)]4 − [V0( 1

2π − z)]4) cos(2z) dz.

Since V0(z) is monotonically decreasing on [0, 1
2π], [V0(z)]4 − [V0( 1

2π − z)]4 > 0 for
z ∈ [0, 1

4π), which confirms that P ′(0) > 0.
Thus, according to the general theory (see, for example, [25, ch. 6, § 6]), the

power series (8.14) indeed defines a unique 2π-periodic solution of equation (8.13)
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(for small ν) that tends to V0(z) as ν → 0. Thus, the desired solution Vν(z) of
equation (8.13) is constructed and it only remains to verify that this solution is
non-degenerate. To this end, we use the standard expansions of the multipliers λ1
and λ2 of this solution:

λ1 = α1ν
1/2 + O(ν), λ2 = −α1ν

1/2 + O(ν), (8.19)

where

α2
1 =

1
2πK

P ′(0) and K = −πL4
0

(
dT

dL
(L0)

)−1

(8.20)

and the function T = T (L) is defined by (8.16) (see [25, ch. 6, § 7]).
In our case, we obviously have K > 0 and, consequently, α2

1 > 0 and α1 ∈ R.
Thus, due to (8.19), the limit cycle Vν(z) is indeed hyperbolic for small ν > 0 and
thus equation (8.12) possesses a limit cycle close to Vν(z) if ε � ν is sufficiently
small. Lemma 8.5 is proven.

Hence, due to lemma 8.5, we have the time-periodic solution uν,ε(t) of equation
(8.9) outside the ball BR0(ε) if ν > 0 and ε � ν are sufficiently small. Moreover,
estimates (8.10) show that this solution tends to infinity as ε → 0.

Remark 8.6. The existence of the solution vν,ε(z) in the last example is closely
related with the so-called nonlinear parametric resonance phenomena which is typ-
ical for the hyperbolic equations (see [7,30] and the references therein) and which is
usually not observed in reaction–diffusion equations. Indeed, according to lemma 8.5
the solution uν,ε(t) is close (for small ε and ν) to the solution v0(t) := (1/ε)V0(t/ε)
of the conservative equation

∂2
t v0 + v3

0 = 0, (8.21)

and the period πε of the parametrical exciting of system (8.9) differs by a factor
two from the period 2πε of the internal oscillations in conservative system (8.21)
(solution v0(t)), which is typical for the parametric resonance phenomena.

We also note that, in contrast to the linear equation, the period of oscillations
in (8.21) depends on its energy E and decays as E → ∞ (Tint = CE−1/2) and this
is the main reason why the solution uν,ε(t) → ∞ as ε → 0. Indeed, in order to com-
pensate for the energy decay provided by the dissipation term γ∂tu by the energy
income provided by the parametrical resonance, we need to have Tint ∼ Tpar = πε
and, consequently, E ∼ ε−2 in complete agreement with (8.10).

It is worth noting here that example 8.4 has an essential drawback, namely, we
cannot construct the uniform attractor in the whole space E1(Ω) for positive ε
(in fact, we do not know whether or not every solution equation remains bounded
as t → ∞). In order to overcome this drawback, we conclude our exposition by the
following modification of example 8.4.

Example 8.7. Let us consider the following semilinear hyperbolic problem in the
bounded two-dimensional domain Ω ⊂ R

2:

∂2
t u + γ∂tu − ∆xu + ε3u5 + u3

(
1 + ν cos

(
2t

ε

))
− āu = 0, ξu|t=τ = ξτ . (8.22)
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Since the two-dimensional case can be considered as a particular case of the three-
dimensional one, as in example 8.4, we have the global solvability of (8.22) for all
ξτ ∈ BR0(ε), the existence of uniform attractors Aε for the dynamical processes
generated by this equation on the ball BR0(ε) and their convergence as ε → 0 to
the global attractor of the limit equation (8.2) (with g = 0) in the space E1(Ω).
Moreover, the change of variables described in lemma 8.5 in equation (8.22) gives
the following equation:

∂2
t v + εγ∂tv − ε2∆xv + v3(1 + cos(2z)) + εv5 − ε2āv = 0, (8.23)

which is also close (for small ε) to equation (8.13). Therefore, the assertion of
lemma 8.5 also remains valid for equation (8.22).

On the other hand, the nonlinearity in equation (8.22) obviously satisfies esti-
mate (7.1) (where the constant Cδ is non-uniform with respect to ε). Conse-
quently, since every polynomial rate of growth is subcritical in the two-dimensional
case [3, 29], by arguing in a standard way we can verify that equation (8.22) is
dissipative for all ξτ ∈ E(Ω) for every fixed ε > 0 and the corresponding dynamical
process possesses a uniform attractor Ãε, which is a compact set of E1(Ω). Nev-
ertheless, due to the existence of a solution uν,ε(z) constructed in lemma 8.5, this
attractor does not coincide with Aε:

Ãε �= Aε, ∀ε � 1. (8.24)

Thus, in contrast to the previous results on averaging of global and uniform attrac-
tors (see [14, 21] and references therein), we now see that, roughly speaking, the
uniform attractor Ãε consists of two basically different parts for small ε. The first
part (Aε) is regular, has a large basin of attraction (which contains at least the ball
BR0(ε) with R0(ε) → ∞ as ε → 0) and tends to the attractor A0 of the averaged
equation as ε → 0. In contrast to this, the irregular part which is provided by the
parametric resonance phenomena (it is not empty, due to lemma 8.5) tends to infin-
ity as ε → 0. We believe that this picture is typical for the averaging of hyperbolic
equations of the form (1.1) where the leading part of the nonlinearity contains the
terms rapidly oscillating in time.

Remark 8.8. We note that it is not difficult to deduce from equation (8.11) and
formula (8.19) for the multipliers that the instability index of the time periodic
orbit uν,ε(t) tends to infinity as ε → 0. Consequently, the fractal dimension of the
attractor Ãε of equation (8.22) also tends to infinity as ε → 0:

lim
ε→0

dimf Ãε = ∞. (8.25)

Moreover, it is also well known that, generically, equation (8.13) contains the so-
called stochastic layers and chaotic hyperbolic sets inside them (see, for example,
[2]). Since any hyperbolic set is preserved under the small perturbations, we may
also construct the chaotic hyperbolic set for equation (8.22). Thus, in contrast to
the regular part of the attractor Âε (the dynamic which is close to the gradient
dynamics of the averaged system; see theorem 6.3), the dynamics on the irregular
part of Âε are usually chaotic.
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Appendix A. Auxiliary estimates for the linear wave equation

We formulate and prove some auxiliary results on the regularity of solutions of linear
non-homogeneous wave equations that are essential for our study of averaging of
the nonlinear equations. We start with the following standard result.

Proposition A.1. Let u(t) be a solution of

∂2
t u + γ∂tu − ∆xu + λ0u = h(t), ξu(0) = 0, ∂nu|∂Ω = 0, (A 1)

in a smooth bounded domain Ω with positive constants γ and λ0. Assume also that
the right-hand side h belongs to the space L2([0, T ], Hs(Ω)) for some 0 � s < 3

2 and
s �= 1

2 . Then, the solution ξu ∈ L∞([0, T ], Es(Ω)) and the following estimate holds:

‖u(t)‖2
Hs+1(Ω) + ‖∂tu(t)‖2

Hs(Ω) � C

∫ t

0
e−α(t−r)‖h(r)‖2

Hs(Ω) dr, (A 2)

for some positive constants C and α.

Proof. Indeed, in the case s = 0, (A 2) is a well-known energy estimate (see, for
example, [29]) and the general case s �= 0 can easily be reduced to this particular
one by applying the operator (−∆x)s/2

N to both parts of equation (A 1) (which
may be done since D((−∆x)s/2

N ) = Hs(Ω) for 0 � s < 3
2 and s �= 1

2 ; see [31]) and
proposition A.1 is proven.

The next result, which gives the analogue of estimate (A 2) for the case where
only the norm of h in H−1([0, T ], Hs(Ω)) is known, is a basic technical tool in our
averaging of semilinear hyperbolic equations.

Proposition A.2. Let u(t) be a solution of equation (A 1) and let the external
force h satisfy the condition

∥∥∥∥
∫ t+τ

t

h(z) dz

∥∥∥∥
Hs(Ω)

� M, ∀t, t + τ ∈ [0, T ], τ ∈ [0, 1], (A 3)

where the exponent s is the same as in proposition A.1. Then, the following estimate
holds:

‖u(t)‖2
Hs(Ω) + ‖∂tu(t)‖2

Hs−1
N (Ω) � CM2, (A 4)

where the constant C is independent of u, t and h.

Proof. Let us introduce a new unknown function w(t) as follows:

w(r) :=
∫ r

0
e−α(r−t)u(t) dt, i.e. ∂tw(t) + αw(t) = u(t), w(0) = 0, (A 5)

where α is some fixed positive number. Then, by multiplying equation (A 1) by
e−α(r−t) and then integrating over [0, r] and by parts and using the fact that ξu(0) =
0, we derive that this new function satisfies

∂2
t w + γ∂tw − ∆xw + λ0w = H̃(t), ξw(0) = 0, (A 6)
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where

H̃(t) :=
∫ t

0
e−α(t−r)u(r) dr.

We now note that equation (A 6) has the form of (A 1). Consequently, due to propo-
sition A.1, we have the following estimate:

‖ξw(t)‖Es(Ω) � C ′‖H̃‖L∞([0,T ],Hs(Ω)) � C ′′M. (A 7)

Moreover, expressing ∂2
t w from equation (A 6) and by using (A 7), we derive that

‖∂2
t w(t)‖Hs−1

N (Ω) � C1M. (A 8)

Since u(t) = ∂tw(t) + αw(t) and ∂tu(t) = ∂2
t w(t) + α∂tw(t), estimates (A 7) and

(A 8) imply (A 4) and complete the proof of proposition A.2.
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20 A. Haraux. Systèmes dynamiques dissipatifs et applications (Paris: Masson, 1991).
21 A. Ilyin. Averaging for dissipative dynamical systems with rapidly oscillating right-hand

sides. Mat. Sb. 187 (1996), 15–58.
22 P. Kloeden and B. Schmalfuss. Nonautonomous systems, cocycle attractors and variable

time-step discretization. Num. Algorithms 14 (1997), 141–152.
23 B. Levitan. Almost-periodic functions (Moscow: Gostekhizdat, 1953).
24 B. Levitan and V. Zhikov. Almost periodic Functions and differential equations (Moscow

University Press, 1978).
25 I. G. Malkin. Some problems of the theory of nonlinear oscillations (Moscow: Gostechizdat,

1956). (In Russian.)
26 Yu. Mitroploskii. The averaging method in nonlinear mechanics (Kiev: Naukova Dumka,

1971).
27 L. Pankratov and I. Chueshov. Homogenization of attractors of non-linear hyperbolic equa-

tions with asymptotically degenerate coefficients. Sb. Math. 190 (1999), 1325–1352.
28 G. Sell. Global attractors for the three-dimensional Navier–Stokes equations. J. Dynam.

Diff. Eqns 1 (1996), 1–33.
29 R. Temam. Infinite dimensional dynamical systems in mechanics and physics (Springer,

1988).
30 A. Tondl, T. Ruijgrok, F. Verhulst and R. Nabergoj. Autoparametric resonance in mechan-

ical systems (Cambridge University Press, 2000).
31 H. Triebel. Interpolation theory, function spaces, differential operators (Amsterdam: North-

Holland, 1978).
32 M. Vishik and S. Zelik. The trajectory attractor for a nonlinear elliptic system in an un-

bounded domain. Mat. Sb. 187 (1996), 21–56.
33 S. Zelik. The dynamics of fast nonautonomous travelling waves and homogenization. In Non

Linear Partial Differential Equations: Applications to Fluid Mechanics and Meteorology,
Proc. Conf. in Honor of Roger Temam, 7–10 March 2000, pp. 131–142 (Poitou-Charentes:
Atlantique Editions de l’Actualite Scientifique, 2001).

34 S. Zelik. Asymptotic regularity of solutions of singularly perturbed damped wave equations
with supercritical nonlinearities. Discrete Contin. Dynam. Syst. A11 (2004), 351–392.

35 S. Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation
with a critical growth exponent. Commun. Pure Appl. Analysis 3 (2004), 921–934.

36 V. Zhikov, S. Kozlov and O. Oleinik. Homogenization of differential operators and integral
functionals (Springer, 1994).

(Issued 6 October 2006 )

https://doi.org/10.1017/S0308210500004881 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004881


https://doi.org/10.1017/S0308210500004881 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004881

