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BERNSTEIN–SATO ROOTS FOR MONOMIAL IDEALS IN
POSITIVE CHARACTERISTIC

EAMON QUINLAN-GALLEGO

Abstract. Following the work of Mustaţă and Bitoun, we recently developed

a notion of Bernstein–Sato roots for arbitrary ideals, which is a prime

characteristic analogue for the roots of the Bernstein–Sato polynomial. Here,

we prove that for monomial ideals the roots of the Bernstein–Sato polynomial

(over C) agree with the Bernstein–Sato roots of the mod p reductions of the

ideal for p large enough. We regard this as evidence that the characteristic-p

notion of Bernstein–Sato root is reasonable.

§1. Introduction

Let R= C[x1, . . . , xn] be a polynomial ring over C. We denote by DR the ring of C-linear

differential operators on R, that is, the ring generated by R and its derivations inside of

EndC(R). Let f ∈R be a nonzero polynomial. Bernstein [1] and Sato [17] independently, and

in different contexts, discovered the following fact: there are a nonzero polynomial b(s) ∈
C[s] and a differential operator P (s) ∈DR[s] satisfying the following functional equation:

P (s) · fs+1 = b(s)fs.

The monic polynomial bf (s) of least degree for which there is some P (s) ∈DR[s] satisfying

the above equation is called the Bernstein–Sato polynomial for f . By a theorem of

Kashiwara, it is known to have negative rational roots [9].

Since its inception the Bernstein–Sato polynomial has seen a wide variety of applications.

Kashiwara [10] and Malgrange [12][13] exhibited a relation between the roots of bf (s) and

the eigenvalues of the monodromy action on the cohomology of the Milnor fiber of f and

introduced the notion of V -filtrations, which allow one to define nearby and vanishing cycle

functors for D-modules. Coming full circle, Budur, Mustaţă, and Saito then used this theory

of V -filtrations to define the Bernstein–Sato polynomial ba(s) of an arbitrary ideal a⊆R,

which still has negative rational roots in this setting [5].

A key application of Bernstein–Sato polynomials comes from the fact that the log-

canonical threshold of a (an invariant originally coming from complex analysis, but now

with strong applications in birational geometry) is the smallest root of ba(−s). Moreover,

any jumping number for the multiplier ideals in the interval [α, α+ 1), where α is the

log-canonical threshold of a, is a root of the Bernstein–Sato polynomial [5].

The test ideals, objects originally coming from the theory of tight closure [8] [7], are

known to give good characteristic-p analogues to multiplier ideals. It is thus reasonable to

ask whether one could develop a theory of Bernstein–Sato polynomials in characteristic

p > 0. This hope is encouraged by the fact that, in [15], the Bernstein–Sato polynomial of
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26 E. QUINLAN-GALLEGO

an ideal a in characteristic zero has also been linked to certain characteristic-p invariants

of a mod p reduction of a.

In [14] Mustaţă was the first to explore this avenue of research for the case of a principal

ideal a = (f) in a regular F -finite ring of characteristic p > 0. This technique has since

then been refined by Bitoun in [2], and it has also been generalized to the settings of unit

F -modules [18] and F -regular Cartier modules [4].

In [16] the approaches of Mustaţă and Bitoun were expanded to arbitrary ideals a⊆R
and, in particular, a notion of Bernstein–Sato root of a is defined by generalizing a previous

definition of Bitoun. These Bernstein–Sato roots are characteristic-p analogues of the roots

of the Bernstein–Sato polynomial (it is a question in [16] whether one can find an analogue

for the multiplicity of a root).

The Bernstein–Sato roots of a are negative, rational (i.e., they lie in Z(p)) and encode

some information about the F -jumping numbers of a [16]. Furthermore, the definition of the

Bernstein–Sato root in prime characteristic is compatible with that of the Bernstein–Sato

polynomial in characteristic zero [16, §6.1].

Despite these nice properties about Bernstein–Sato roots in prime characteristic, if the

concept is to be reasonable, one would expect that if a⊆ Z[x1, . . . , xn] is a monomial ideal

then the Bernstein–Sato roots of the ideal ap in Fp[x1, . . . , xn] given by the image on a in

Fp[x1, . . . , xn] should recover those of the ideal aC ⊆ C[x1, . . . , xn], the expansion of a to

C[x1, . . . , xn]. Indeed, we expect a similar statement for families of ideals in polynomial

rings whose behavior does not depend on the characteristic of the base field.

In this paper, our goal is to show that this expectation is indeed true. More precisely,

our theorem is as follows.

Theorem. (3.1). Let a⊆ Z[x1, . . . , xn] be a monomial ideal. Then the set of roots of

baC(s) coincides with the set of Bernstein–Sato roots of ap for p large enough.

Our proof relies heavily on results from [6]. In Section 2, we review the notion of

Bernstein–Sato root as defined in [16] as well as the needed theorems from [6]. We then

prove our result in Section 3. We finish with two examples in Section 4 that illustrate the

behavior in small characteristics.

Let us fix the notation already used above: if I ⊆ Z[x1, . . . , xn] is an ideal we denote by

Ip the image of I in Fp[x1, . . . , xn] and by IC the expansion of I to C[x1, . . . , xn]. A ring

R of prime characteristic p > 0 is F -finite if it is finite as a module over its subring Rp of

pth powers.

§2. Background

Until stated otherwise, we work with the following setup: R is a regular ring of

characteristic p > 0 which is F -finite.

2.1 Cartier operators

We denote by F :R→R the Frobenius endomorphism on R and, given an integer e > 0,

we write F e for its eth iterate. We define F e∗ : Mod(R)→Mod(R) to be the functor that

restricts scalars via F e. The R-module F e∗R is then equal to R as an abelian group and we

will denote an element r ∈R as F e∗ r when viewed as an element of F e∗R. In this way, the

R-module action on F e∗R is given by s · F e∗ r = F e∗ (sp
e
r) for all s, r ∈R.

Given an ideal I ⊆R and an integer e > 0, the ideal I [p
e] is defined to be the ideal

generated by peth powers of elements of I; that is, I [p
e] := (fp

e
: f ∈ I).
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Given an integer e > 0 we let CeR := HomR(F e∗R, R). An operator φ ∈ CeR acts on R via

φ · r := φ(F e∗ r) for all r ∈R. In this way, given an ideal I ⊆R, the new ideal CeR · I is

generated by the set {φ(F e∗ r) : φ ∈ CeR, r ∈ I}. When R is a polynomial ring over k and I is

principal, the ideal CeR · I also admits the following description.

Proposition 2.1. [3, Proposition 2.5] Let R := k[x1, . . . , xn] be a polynomial ring over

k; fix e > 0 and consider the set of multi-exponents L := {0, 1, . . . , pe − 1}n. If f is expressed

in the Rp
e
-basis {xγ : γ ∈ L} as f =

∑
γ∈L g

pe
γ xγ, then CeR · f = (gγ : γ ∈ L).

2.2 The ν-invariants

Let a⊆R be an ideal. The invariants νJa (pe) were introduced in [15]. We recall the

definition.

Definition 2.2. Given a proper ideal J ⊆R containing a in its radical and an integer

e > 0, we define νJa (pe) := max{n> 0 : an 6⊆ J [pe]}. The set ν•a (pe) := {νJa (pe) | (1) 6=
√
J ⊇ a}

is called the set of ν-invariants of level e for a.

It is clear from the definition that νJ
[p]

a (pe) = νJa (pe+1), and therefore the ν-invariants

come in a descending chain

ν•a (p0)⊇ ν•a (p1)⊇ ν•a (p2)⊇ · · · .

We will need the following results about ν-invariants, which are well known to experts.

Proposition 2.3. [16, Proposition 4.2] Fix an integer e > 0. The set of ν-invariants of

level e for a is given by

ν•a (pe) = {n> 0 | CeR · an 6= CeR · an+1}.

Corollary 2.4. [16, Corollary 4.3] If n> rpe is a ν-invariant of level e, then so is

n− pe.

We next state the following fact from [15], which connects the Bernstein–Sato polynomial

with these characteristic-p invariants of singularities.

Proposition 2.5. [15, Proposition 3.11] Let a⊆ (x1, . . . , xn)Z[x1, . . . , xn] be an ideal.

Then for every p� 0 and every ideal J ⊆ (x1, . . . , xn)Z[x1, . . . , xn] containing a in its

radical we have

baC(ν
Jp
ap (pe))≡ 0 mod p

for all e > 0.

This has the following interesting corollary, which suggests a way of trying to find roots

of baC(s).

Corollary 2.6. [15, Remark 3.13] Suppose that for some ideal J ⊆ (x1, . . . , xn)

Z[x1, . . . , xn] there exists some integer M , and a polynomial P (t) ∈Q[t] such that ν
Jp
ap (pe) =

P (pe) whenever pe ≡ 1 mod M . Then P (0) is a root of baC(s).

Proof. By Dirichlet’s theorem, there are infinitely many primes p with p≡ 1 mod M .

Therefore, baC(P (0))≡ baC(P (pe))≡ 0 mod p for infinitely many primes p, and thus

baC(P (0)) = 0.
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28 E. QUINLAN-GALLEGO

2.3 The ν-invariants of monomial ideals

Fix a nonzero monomial ideal a⊆ Z[x1, . . . , xn]. In this setting whenever J is also a

monomial ideal, one can define the invariant νJa (s) (cf., Definition 2.2) in a characteristic-

free way. First of all, given a monomial ideal J ⊆ Z[x1, . . . , xn] and a positive integer q (not

necessarily a prime power) we define an ideal J [q] of Z[x1, . . . , xn] as follows:

J [q] := (µq : µ ∈ J a monomial).

If J is a monomial ideal containing a in its radical, we define

νJa (q) := max{n> 0 : an 6⊆ J [q]}.

Observe that both of these notations are compatible with reduction mod p in the appropriate

sense.

We now state two theorems from [6], which roughly say that the method suggested by

Corollary 2.6 for finding the roots of the Bernstein–Sato polynomial works for monomial

ideals. While the behavior illustrated below has been shown to also hold for some examples

of hypersurfaces [15, Section 4], monomial ideals exhibit remarkable behavior in two ways:

in order to recover all the roots, it suffices to take pe ≡ 1 mod M large and for J to be a

monomial ideal.

We state the theorems in a slightly weaker form which suffices for our purposes.

Theorem 2.7. [6, Theorem 4.1] If a⊆ Z[x1, . . . , xn] is a nonzero monomial ideal, then

there is a positive integer M with the following property: if J is a monomial ideal whose

radical contains a, then there are rational numbers β > 0 and η such that νJa (q) = βq + η

for all q large enough with q ≡ 1 mod M .

Observe that, by Corollary 2.6, the rational number η in Theorem 2.7 will be a root of

baC(s).

Theorem 2.8. [6, Theorem 4.9] Let a⊆ Z[x1, . . . , xn] be a nonzero monomial ideal and

α be a root of baC(s). Then there is a monomial ideal J together with a rational number β and

a positive integer M such that νJa (q) = βq + α for all q large enough with q ≡ 1 mod M .

2.4 Bernstein–Sato roots in positive characteristic

We begin by reviewing the notion of Bernstein–Sato root from [16], to which we refer

the reader for details. Let R be a regular F -finite ring of prime characteristic p > 0 and let

a⊆R be an ideal.

Using a choice of generators a = (f1, . . . , fr) for a, one defines a directed system of

modules N1→N2→N3→ · · · and a family sp0 , sp1 , sp2 , . . . of differential operators on

R[t1, . . . , tr] with the following properties.

(i) The operators sp0 , sp1 , . . . , spe−1 act on the module N e and the maps N e→N e+1 are

compatible with respect to this action.

(ii) The operators spi are pairwise commuting, that is, spispj = spjspi for all i, j > 0.

(iii) The operators spi satisfy sp
pi

= spi .

Because we are in characteristic p, property (iii) is equivalent to
∏p−1
j=0(spi − j) = 0. From

properties (ii) and (iii), it follows that if an integer e > 0 is fixed, then any module for the

operators sp0 , sp1 , . . . , spe−1 splits as a direct sum of multi-eigenspaces for these operators.

https://doi.org/10.1017/nmj.2020.3 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2020.3


BERNSTEIN–SATO ROOTS FOR MONOMIAL IDEALS IN POSITIVE CHARACTERISTIC 29

In particular, we have

N e =
⊕
α∈Fe

p

N e
α,

where given α= (α0, . . . , αe−1) ∈ Fep, we define N e
α := {u ∈N e : spi · u= αiu for all i=

0, 1, . . . , e− 1}.
Let N = lim−→e

N e be the limit of the directed system N e. Since we have multi-eigenspace

decompositions for each N e it is reasonable to ask whether N has a multi-eigenspace

decomposition—although, in this case, it will be for infinitely many operators. The answer

is positive and it leads to the notion of Bernstein–Sato root.

Theorem 2.9. [16, Proposition 6.1] We have a decomposition N =
⊕

α∈FN
p
Nα, where

given α= (α0, α1, . . . ) ∈ FN
p , Nα = {u ∈N : spi · u= αiu for all i> 0}. Moreover, the

number of α ∈ FN
p for which Nα 6= 0 is finite.

Definition 2.10. [16, Definition 6.2] A p-adic integer α with p-adic expansion α=

α0 + pα1 + p2α2 + · · · (i.e., αi ∈ {0, 1, . . . , p− 1}) is a Bernstein–Sato root of a if

N(α0,α1,...,) 6= 0.

Even though Bernstein–Sato roots are a priori defined as p-adic integers, they turn out to

be rational (i.e., they lie in the subring Z(p) of Zp) and negative, and they are independent

of the initial choice of generators for a.

We end by stating the following characterization of Bernstein–Sato roots, which expresses

them in terms of the ν-invariants of a.

Proposition 2.11. [16, Proposition 6.13] The following sets are equal.

(a) The set of Bernstein–Sato roots of the ideal a.

(b) The set of p-adic limits of sequences (νe)⊆ N where νe ∈ ν•a (pe).

(c) The set
∞⋂
e=0

ν•a (pe),

where (̄ ) stands for p-adic closure.

§3. Main result

Let a⊆ Z[x1, . . . , xn] be a monomial ideal. One can then consider the expansion aC of a

in the polynomial ring C[x1, . . . , xn] and let baC(s) be its Bernstein–Sato polynomial. On

the other hand, given a prime number p we can also consider the ideal ap, the image of a

in Fp[x1, . . . , xn] and consider its set of Bernstein–Sato roots (which, recall, lie in Z(p)).

In this section, we use results from [6] to show the following.

Theorem 3.1. Let a⊆ Z[x1, . . . , xn] be a monomial ideal. Then the set of roots of

baC(s) coincides with the set of Bernstein–Sato roots of ap for p large enough.

We begin with two preliminary results. The following lemma already appears implicitly

in the proof of [3, Proposition 3.2].

Lemma 3.2. Let a be an ideal in the polynomial ring R := Fp[x1, . . . , xn] and let e > 0

be an integer. If a can be generated by polynomials of degree at most D then CeR · am can be

generated by polynomials of degree at most bDm/pec.
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Proof. First observe that am is generated in degrees 6Dm. That is, if we let G :=

am ∩R6Dm then am = (f : f ∈G). It follows that CeR · am =
∑

f∈G CeR · f and therefore it

suffices to show that if f has degree 6Dm then CeR · f is generated by elements of degree

6Dm/pe.

Thus suppose f has degree 6Dm, and let L be the set of multi-exponents L :=

{0, 1, . . . , pe − 1}n. Suppose that, in the Rp
e
-basis {xγ : γ ∈ L} for R, f is expressed as

f =
∑

γ∈L g
pe
γ xγ . Since f has degree 6Dm, all gγ have degrees 6Dm/pe. By Proposition

2.1, CeR · f = (gγ : γ ∈ L) and the result follows.

Lemma 3.3. Let A be a commutative ring and consider the polynomial ring R :=

A[x1, . . . , xn]. Consider the monomial µ= xb11 · · · xbnn , where bi > 0 and the ideal J =

(xb1+1
1 , . . . , xbn+1

n ). Then for all monomial ideals I ⊆R, µ ∈ I if and only if I 6⊆ J .

Proof. The (⇒) direction is clear, since µ /∈ J . For (⇐), suppose I 6⊆ J . This means that

there exists some monomial xa11 · · · xann in I with ai 6 bi for all i. By multiplying it with

the appropriate monomial, we conclude µ ∈ I.

We are now ready to prove a characteristic-p analogue of Theorem 2.8, which will be key

in the proof.

Proposition 3.4. Let ap ⊆ Fp[x1, . . . , xn] be a monomial ideal, let α be a Bernstein–

Sato root of ap and let d > 0 be an integer such that α(pd − 1) ∈ Z. Then there is a monomial

ideal J whose radical contains a, a rational number β and a sequence ei↗∞ of positive

integers such that

νJap(peid) = βpeid + α.

We remark that, by [16, Theorem 6.9], α is in Z(p) and thus we can always find some

d > 0 such that α(pd − 1) ∈ Z.

Proof. By enlarging d if necessary we may find m ∈ {0, 1, . . . , pd − 1} and some rational

number γ with −1 6 γ 6 0 such that α=m+ pdγ (consider the p-adic expansion of α, which

is eventually repeating; see [16, §7]). If α= α0 + pα1 + p2α2 + · · · is the p-adic expansion

for α then, for all e > 0,

α0 + · · ·+ ped−1αed−1 = α− pedγ.

By Proposition 2.11, α is the p-adic limit of a sequence (νe)⊆ N where νe ∈ ν•a (pe). By

passing to a subsequence we assume that νe ∈ ν•a (ped) and that νe ≡ αmod ped. By Corollary

2.4, we can also assume that 0 6 νe < rped. From our assumptions it follows that for every

e > 0 there is some s ∈ {0, 1, . . . , r − 1} such that

νe = α0 + pα1 + · · ·+ ped−1αed−1 + peds

= α+ (s− γ)ped.

From Proposition 2.3 we conclude that for all e > 0 there exists some s ∈ {0, 1, . . . , r − 1}
such that

CedR · aα+(s−γ)ped 6= CedR · aα+(s−γ)ped+1.

Since {0, 1, . . . , r − 1} is a finite set, there exists some fixed s0 ∈ {0, 1, . . . , r − 1} and a

sequence ei↗∞ such that

CeidR · a
α+(s0−γ)peid 6= CeidR · a

α+(s0−γ)peid+1,

for all i > 0.
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By Proposition 2.1 the two ideals above are monomial ideals and, by Lemma 3.2, there

is some constant K > 0 independent of e such that both ideals are generated in degrees

6K. As there are finitely many monomials of degree 6K, by passing to a subsequence

we may assume that there exists some monomial µ= xb11 · · · xbnn such that for all i > 0,

µ ∈ CeidR · aα+(s0−γ)peid and µ /∈ CeidR · aα+(s0−γ)peid+1. Finally, we let J = (xb1+1
1 , . . . , xbn+1

n )

and, from Lemma 3.3, we conclude that νJa (peid) = α+ (s0 − γ)peid as required.

Before going into the proof of Theorem 3.1, we give an example to illustrate how one

obtains a Bernstein–Sato root of ap from a root of baC(s).

Example 3.5. Let a = (X2Y Z, XY 2Z, XY Z2) (cf., [6, Example 5.2]). Then baC(s) =

(s+ 3/4)(s+ 5/4)(s+ 6/4)(s+ 1)3. Let us consider the root λ=−5/4. Theorem 2.8 implies

that there is a monomial ideal J , a positive integer M and a rational number β such that

νJa (q) = βq − 5/4 whenever q ≡ 1 mod M .

In this case, we claim that J = (X3, Y 3, Z3) with M = 4 works. Indeed, the ideal as is

generated by monomials

(X2Y Z)u(XY 2Z)v(XY Z2)w =X2u+v+wY u+2v+wZu+v+2w,

where u, v, w range through all nonnegative integers with u+ v + w = s, whereas J [q] =

(X3q, Y 3q, Z3q). We conclude that

νJa (q) := max{u+ v + w | 2u+ v + w 6 3q − 1

and u+ 2v + w 6 3q − 1 and u+ v + 2w 6 3q − 1}.

We claim that if q ≡ 1 mod 4 then

νJa (q) =
9q − 5

4
.

Indeed, adding the inequalities gives νJa (q) 6 b(9q − 3)/4c= (9q − 5)/4, and equality is

proven by taking u= v = (3q − 3)/4, w = (3q + 1)/4.

Now suppose that p≡ 3 mod 4. Then for all e we have p2e ≡ 1 mod 4 and therefore

(9p2e − 5)/4 ∈ ν•a (p2e). Since the p-adic limit of the sequence ((9p2e − 5)/4)∞e=0 is −5/4,

Proposition 2.11 implies that −5/4 is a Bernstein–Sato root of ap, as required. The case

p≡ 1 mod 4 follows similarly.

We are now ready to begin the proof of Theorem 3.1.

Proof of Theorem 3.1. First, let α be a root of the baC(s). By Theorem 2.8 we may find

a monomial ideal J ⊆ Z[x1, . . . , xn], a rational number β ∈Q and an integer M such that

νJa (q) = βq + α whenever q is large enough and q ≡ 1 mod M . Observe that, by replacing

M with a big multiple, M can be chosen independently of α, and we may also assume that

Mβ ∈ N. Let p be a prime number that does not divide M and such that α ∈ Z(p). Then

there exists some d such that pd ≡ 1 mod M and therefore νJa (ped) = βped + α for all e > 0.

Since the p-adic limit of the sequence (ped + α)∞e=0 is α, Proposition 2.11 implies that α is

a Bernstein–Sato root of ap.

We now prove the other containment. We let M be a number satisfying the conclusion of

Theorem 2.7 for the ideal a, and pick p large enough so that it does not divide M . Suppose

then that α is a Bernstein–Sato root of ap, and we will show that α is a root of baC .
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By [16, Thm. 6.9], α is in Z(p) and thus we may find some d > 0 such that α(pd − 1) ∈ N.

By replacing d with a multiple, we may also assume that pd ≡ 1 mod M . By Proposition

3.4 we can find some monomial ideal J containing a in its radical, a rational number β

and a sequence ei↗∞ such that νJa (peid) = βpeid + α. On the other hand, Theorem 2.8

says that there are some rational numbers β′ and η such that νJa (q) = β′q + η for all q ≡ 1

mod M large enough. We conclude that β′ = β and η = α and, by Corollary 2.6, α is a root

of baC(s).

§4. Examples in small characteristics

To conclude, we would like to illustrate the behavior in small characteristics by computing

some examples. Let us remark that both of the examples below exhibit the following

behavior: the Bernstein–Sato roots of ap are always roots of baC(s) and, moreover, they

are precisely the roots that lie in Z(p). We do not know any example where this is not the

case.

We begin by making some general observations from [6]. Let R= k[x1, . . . , xn] be a

polynomial ring over an F -finite field k of characteristic p > 0, let fj =
∏
i x

aij
i for j =

1, . . . , r be monomials in R and let a = (f1, . . . , fr) be the monomial ideal they generate.

Let `i(t) be the linear form `i(t) =
∑

j aijtj on Zr, where i= 1, 2, . . . , n. With this notation,

the ideal as is generated by monomials

x
`1(β)
1 · · · x`n(β)n ,

where β = (β1, . . . , βr) ∈ Nr0 ranges through all tuples satisfying
∑

j βj = s.

Next, observe that all ν-invariants ν ∈ ν•a (pe) arise as ν = νJa (pe) where J is a monomial

ideal of the form J = (xa11 , . . . , x
an
n ) (see the proof of Proposition 3.4).

For such an ideal J = (xa11 , . . . , x
an
n ) we further observe the following:

νJa (pe) = max{s > 0 : as 6⊆ J [pe]}

= max
β∈Nr

0

{
∑

j βj : `i(β) 6 aip
e − 1 for all i}.

Example 1:

Consider the ideal a = (x21, x
3
2). In this case, using computational software [11], we find:

baC(s) = (s+ 5
6)(s+ 7

6)(s+ 4
3)(s+ 3

2)(s+ 5
3)(s+ 2).

For J = (xa11 , x
a2
2 ) we have `1(t1, t2) = 2t1, `2(t1, t2) = 3t2 and therefore

νJa (pe) = max
t1,t2∈N0

{t1 + t2 : 2t1 6 a1p
e − 1, 3t2 6 a2p

e − 1}

=

⌊
pea1 − 1

2

⌋
+

⌊
pea2 − 1

3

⌋
and therefore

ν•a (pe) =

{⌊
pea1 − 1

2

⌋
+

⌊
pea2 − 1

3

⌋
: a1, a2 ∈ N

}
.

Suppose that p= 2 and that e is even. Then for all a1 ∈ N we have ba1(pe − 1)/2c=

a1p
e−1 − 1, while ⌊

a2p
e − 1

3

⌋
=


cpe − 1 if a2 = 3c

(c− 1
3)pe − 1

3 if a2 = 3c− 1

(c− 2
3)pe − 2

3 if a2 = 3c− 2,
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where we always take c ∈ N. We conclude that, for even e,

ν•a (pe) = {a1pe−1 − 2 : a1, ∈ N} ∪ {a1pe−1 + (c− 1
3)pe − 4

3 : a1, c ∈ N}

∪{a1pe−1 + (c− 2
3)pe − 5

3 : a1, c ∈ N}

and therefore BS(a) = {−4/3,−5/3,−2} by Proposition 2.11.

When p= 3, a similar computation yields

ν•a (pe) = {a2pe−1 − 2 : a2 ∈ N} ∪ {(c− 1
2)pe + a2p

e−1 − 3
2 : c, a2 ∈ N}

and therefore BS(a) = {−3/2,−2}.
When p> 5 the same method yields BS(a) = {−5/6,−7/6,−4/3,−3/2,−5/3,−2} as

predicted by Theorem 3.1.

Example 2:

Let a = (x2x3, x1x3, x1x2). By again using [11] we find that

baC = (s+ 2)2(s+ 3
2),

and for all p > 2 we obtain precisely the above Bernstein–Sato roots.

In this case we have `1(t1, t2, t3) = t2 + t3, `2(t1, t2, t3) = t1 + t3, and `3(t1, t2, t3) = t1 +

t2. For J = (xa11 , x
a2
2 , x

a3
3 ) we claim

νJa (pe) = min

{
pe(a1 + a2)− 2, pe(a1 + a3)− 2, pe(a2 + a3)− 2,

⌊
pe(
∑

j aj)− 3

2

⌋}
.

Indeed, when the minimum is given by pe(a1 + a2)− 2 then we have a1 + a2 6 a3 and

we can take t1 = a2p
e − 1, t2 = a1p

e − 1. The case where the minimum is pe(a1 + a3)− 2

and the case where the minimum is pe(a2 + a3)− 2 follow similarly. We therefore may

assume that the minimum is b(pe(a1 + a2 + a3)− 3)/2c and that a1 + a2 > a3, a1 + a3 > a2
and a2 + a3 > a1. The case where pe(

∑
j aj)− 3 is divisible by 2 is dealt with by taking

ti = 1
2(pe(

∑
j aj − 2ai)− 1). In the case where pe(

∑
j aj)− 3 is not divisible by 2 we can take

t1 = 1
2(pe(−a+ b+ c) + 2), t2 = 1

2(pe(a1 − a2 + a3)− 2) and t3 = 1
2(pe(a1 + a2 − a3)− 2).

It follows that for p= 2 we have

ν•a (pe) = {pea− 2 : a ∈ N0}

and therefore BS(a) = {−2}.
For p > 2 we find that

ν•a (pe) = {pea− 2 : a ∈ N0} ∪ {(pea− 3)/2 : a ∈ 2N + 1}

and therefore BS(a) = {−3/2,−2}, again in agreement with Theorem 3.1.
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