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Abstract

This paper presents a novel approach, which is based on integrated~automatic0 interactive! knowledge acquisition, to
rapidly develop knowledge-based systems. Linguistic rules compatible with heuristic expert knowledge are used to
construct the knowledge base. A fuzzy inference mechanism is used to query the knowledge base for problem solving.
Compared with the traditional interview-based knowledge acquisition, our approach is more flexible and requires a
shorter development cycle. The traditional approach requires several rounds of interviews~both structured and un-
structured!. However, our method involves an optional initial interview, followed by data collection, automatic rule
generation, and an optional final interview0rule verification process. The effectiveness of our approach is demonstrated
through a benchmark case study and a real-life manufacturing application.

Keywords: Drop Hammer Forming; Data Discretization; Fuzzy Inference; Knowledge Acquisition;
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1. INTRODUCTION

Global industrial competition requires enterprises to use
innovative technologies for manufacturing and provision of
goods and services in the shortest possible time frame with
minimum cost. To achieve the goal of assuring short devel-
opment cycles for new products, they are developing a
process-based knowledge-driven product development en-
vironment by employing information technology. One ma-
jor emphasis is knowledge-based engineering~KBE!, which
focuses on acquiring, storing, and utilizing knowledge for
design and manufacturing. One of the applications of KBE
is the knowledge-based system~KBS!, which represents an
interactive computer-based decision-making tool that uses
both factual and heuristic data acquired from domain ex-
perts for problem solving.

The success of a KBS critically depends on the amount
of knowledge embedded in the system. Expert knowledge,
which results from an individual’s extensive problem-

solving experience, has been described asunconscious
knowledge~Mitta, 1989!. As experts achieve greater com-
petency, their ability to explain the fine details associated
with problem solving strategies degrades. Intermediate so-
lution steps are unconsciously performed as a matter of
routine as strategies are compressed into a few major steps
~Gaines, 1987!. Thus, not all of the knowledge involved
can be decoded from schema to a semantic representation
that is available in human working memory and hence is
not accessible for the experts to report. This is especially
true in the field of manufacturing, where the experts are
those who actually work with the machines on the shop
floor. They usually do not receive formal scientific training,
and most of their knowledge is biased toward their own
heuristic. Although they can easily solve a complex prob-
lem, they usually have great difficulty explaining why and
how they make a particular decision. This is the hurdle
in smooth knowledge acquisition~Ham & Lu, 1988!. In
addition, the iterations involved in knowledge acquisition
and incremental development for building up a complete
KBS render the manual approach highly time consuming.
Because knowledge acquisition is a lengthy and painful
process, it is often referred to as the bottleneck in KBS
development~Gonzalez & Dankel, 1993!.
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To overcome the knowledge acquisition bottleneck, we
developed an integrated knowledge acquisition methodol-
ogy, which targets manufacturing application, as shown in
Figure 1. The key features and advantages of the method-
ology are that it can do the following:

• maintain a database of problem solving cases, which
allows domain experts to verify their knowledge and
discover data discrepancies and knowledge engineers
to gain better understanding of the problem domain;

• automatically extract high-level rules from the data-
base, which allow knowledge engineers to inde-
pendently acquire rule-type knowledge and become
“pseudo-experts”~as a result, they can interact more
effectively with domain experts!;

• integrate domain experts’ subjective knowledge with
general knowledge embedded in examples, which re-
sults in a system that covers a much wider problem
domain than otherwise possible; and

• provide closed-loop knowledge acquisition and utili-
zation, which results in optimal knowledge manage-
ment to achieve true manufacturing intelligence.

2. BACKGROUND

In the 1970s, KBSs emerged as software systems that be-
have like human experts when solving application prob-
lems in certain domains. The major reason that prohibited
both building and maintaining such systems was the lack of
robust and highly efficient computational technologies.
Therefore, developing new technologies received a great
deal of attention. Facilities to develop large KBSs exist, for

example, development methodologies such as KADS~Wiel-
inga et al., 1992!, environments such as KEATS~Motta
et al., 1988!, and shells such as DEX~Bohanec & Rajkovicˇ,
1990!. Constructing KBSs to test the feasibility of new tech-
nologies and approaches brought forth rather promising
results. The field of KBSs has expanded enormously. Ap-
plications of KBS range from medical diagnosis, chemical
analysis, geological exploration, computer configuration,
and recently to real-time process control, nuclear power
plant operation, and marine navigation~Coenen & Bench-
Capon, 1993!. In the manufacturing and production envi-
ronment, expert systems have been used for tasks such as
scheduling, engineering design, plant layout, manufactur-
ing system modeling, product quality control, process plan-
ning, and production management~Mital & Anand, 1994!.

However, the maintenance difficulty of KBSs hindered
their general acceptance. In addition, the building of large-
scale commercial KBSs is always associated with long de-
velopment time, high costs, and high risk. Just as the software
crisis resulted in the establishment of the discipline of soft-
ware engineering, the unsatisfactory situation in the con-
struction and maintenance of KBSs made clear the need for
engineering the development procedure for KBSs. In other
words, there is an urgent need to construct and maintain
KBSs in a systematic and controllable manner~Studer et al.,
1998!.

A typical KBS consists of three basic components: the
knowledge base~KB! indicating the domain application area,
the system context and working memory, and the inference
engine controlling the problem-solving strategy. The KB
comprises the knowledge that is specific to the application
domain, including such things as simple facts about the

Fig. 1. The integrated knowledge acquisition methodology.
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domain, rules or frames that describe relations or phenom-
ena in the domain, and possibly also methods, heuristics,
and ideas for solving problems in this domain. The infer-
ence engine contains methods of manipulating the knowl-
edge in the KB.

The most popular KBS approach adopted by the indus-
try, the symbolic artificial intelligence~AI ! approach, is
usually applied for constructing the KB of a KBS. In this
approach, the knowledge is represented using IF–THEN
production rules; in this way, the KB can be called the rule
base~RB!. Such a knowledge-based system is also called
an expert system or production system. It symbolically ma-
nipulates IF–THEN rules to solve various problems.

Although this approach is successful, it suffers from the
so-called knowledge acquisition bottleneck because it is
challenging and time consuming to acquire and represent
knowledge in terms of rules. In other words, this bottleneck
obstructs the efficiency and effectiveness of building the
RB of a KBS. In addition, the performance of the resultant
KBS will be impaired, when the amount of extracted rules
is very large and certain flaws such as redundancy, conflict,
subsumption, and circularity exist~Higa, 1996!.

Recent advance in information technology has resulted
in several learning techniques that can potentially be used
for automatic knowledge acquisition, including artificial neu-
ral networks and decision tree learning~Mitchell, 1997!.
Neural networks belong to a family of models that are based
on a learning by example paradigm in which problem-
solving knowledge is automatically generated according to
actual examples presented to them. The knowledge, how-
ever, is represented at a subsymbolic level in terms of con-
nections and weights. Neural networks act like black boxes
in providing little insight into how decisions are made, which
limits their usefulness in many decision support applica-
tions. On the other hand, decision trees can be easily trans-
lated into highly intelligible IF–THEN rules. However,
current decision tree learning algorithms are only suited for
problems that are described by a fixed set of attributes~add-
ing new attributes is impractical or inconvenient!; param-
eters should have discrete values~if not, discretization should
be carried out!; and the target function to be learned should
have discrete output values. Some other shortcomings of
decision tree learning are discussed in Quinlan~1993!.

In order to overcome these problems, techniques such
as data discretization, automatic rule extraction, and rule
simplification and pruning are needed. These techniques,
described in Section 3, are the major components of a sys-
tematic approach for rapid KBS development.

3. INTEGRATED KNOWLEDGE ACQUISITION

The system architecture for integrated knowledge acquisi-
tion is illustrated in Figure 2. Engineering raw data contain-
ing the cases is accumulated by observing and recording
the operations from experienced operators. Raw data are
preprocessed using methods such as discretization, normal-

ization, and cleansing. Apparently, wrong cases are re-
moved from raw data after consulting with domain experts.
For those cases with similar inputs and outputs, some of
them can be removed as redundant cases after data discret-
ization. After data preprocessing, each of the input attributes
can be described by a fuzzy linguistic term~such as small,
medium, and large!. Because each linguistic term can be
represented by a set, a continuous-valued input can thus be
classified into a specific set and represented in a binary
scheme. After all the cases have been converted using lin-
guistic terms, some inconsistent cases can be removed. This
procedure can effectively scale down the cases in engineer-
ing raw data and makes the subsequent rule extraction eas-
ier. Finally, rules are extracted through neural network
learning or using decision tree learning. These rules are
described using humanly intelligible linguistic terms, which
can be easily verified, modified, or supplemented by do-
main experts. Rule pruning and simplification will make
the RB more concise and consistent. Because linguistic terms
~which are imprecise! are involved, a Mamdani-type fuzzy
inference mechanism is used as the inference engine.

It should be noted that, during the process of eliciting
knowledge from industry personnel, some knowledge is de-
ductive~from general to specific, from premise to conclu-
sion!, some is inductive~from individual cases to general
conclusion!, and some is abductive~unbounded inference!.
The KBSs discussed in this paper handle deductive knowl-
edge. However, this paper points out that some quantitative
method can be introduced to transfer the other two types of
knowledge~inductive and abductive! into deductive knowl-
edge. For example, probability can be used to measure the
confidence of the conclusion of an abductive rule. Such
quantitative information is represented by the weight of a
rule, which will be discussed.

3.1. Discretization

Discretizing continuous parameters is inspired in part by
the fact that experts usually describe parameters using lin-
guistic terms instead of an exact value. There are several
advantages of data discretization: it provides regularization
because it is less prone to variance in estimation from small
fragmented data, the amount of data can be greatly reduced
because some redundant data can be identified and re-
moved, and some rule extraction method such as decision
trees can perform better if all of the continuous-valued
attributes are discretized before rule induction.

Equal width is one of the most frequently used unsuper-
vised data discretization methods. It is also the simplest
one, which divides the range of observed values for a vari-
able intoN intervals of equal sized intervals. The range of
each interval is calculated by

range of interval5
range of observed attribute

number of intervals
,
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where the number of intervals should be determined by
users.

This method applies to the situation where the distribu-
tion of sample data is quite uniform. However, it is vulner-
able to outliers that may drastically skew the range~Catlett,
1991!. A statistically justified heuristic method for super-
vised discretization is thechi-mergealgorithm ~Kerber,
1992!. This algorithm begins by placing each observed real
value into its own interval and proceeds by using thex2 test
to determine when adjacent intervals should be merged.
The extent of the merging process is controlled by the use
of a x2 thresholda, indicating the maximumx2 value that
warrants merging two intervals. The author reports that on
random data, a very high threshold must be set to avoid
creating too many intervals.

Chi2 ~Liu & Setiono, 1997! is a variant of the chi-merge
algorithm. It consists of two phases. In phase 1, a rough
commona ~significance level! for all variables is used. In
phase 2, the intervals are further merged using a separatea
for each variable. In general, Chi2 can form simpler terms,
which leads to improved predictive accuracy. However, it is
computationally complicated because it takes each differ-

ent data point as an initial interval. In addition, it merges
variables sequentially rather than trying to minimize the
inconsistency resulting from merging. To overcome these
drawbacks, we developed agreedy chi-mergealgorithm for
data discretization.

Greedy chi-merge also contains two phases: crude dis-
cretization and fine-tuning. Compared to the Chi2 algo-
rithm, which takes the number of distinct values of a variable
as the initial number of intervals, greedy chi-merge per-
forms an initial partitioning based on the change in the
output value, as illustrated in Figure 3. In this way, the
number of intervals for each variable can be greatly reduced.

The next phase, fine tuning, is based on greedy search,
which always chooses to merge the intervals of a variable
that causes the least inconsistency rate among all merge-
able variables. Although all the attributes are considered
simultaneously, only the merging that causes the lowest
inconsistency rate takes place. The pseudocodes of the greedy
chi-merge are shown in Figure 4.

The problem of data inconsistency results when, after
discretization, data samples exist in which the inputs are
the same but the outputs are different. The inconsistency

Fig. 2. The system architecture.
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Fig. 3. The initial partitioning of greedy chi-merge.

Fig. 4. The pseudocodes for greedy chi-merge.
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rate is calculated using the following expression, based upon
the method proposed by Liu and Setiono~1997!:

(
i

~ni 2 ci,max!0N,

whereN is the total number of cases,ni is the number of
cases with the same input~i 5 1, 2, . . . ,I !, (i ni 5 N; ci, j is
the count of classj in ni ~ j 5 1, 2, . . . ,J!, (i ci, j 5 ni ; and

ci,max 5 max
j

~ci, j !.

3.2. Rule extraction

Once all continuous variables are discretized, linguistic terms
can be used to describe these variables. The original data
samples are converted accordingly. As a result, all the in-
puts and outputs become discrete. A procedure, which uti-
lizes the learning ability of a neural network, has been
developed to extract rules for these converted data samples.
The details of the procedure have been described in a pre-
vious publication~Huang et al., 2001!. An outline of the
five-step approach is provided in Figure 5. In summary, the
converted data is represented using a binary scheme and
used to train a neural network, which is specially structured
according to the linguistic terms used. Linguistic IF–THEN
rules are then extracted by analyzing the connections and
weights of the trained neural network, using a dynamic depth-
first search algorithm to reduce computation complexity.

An alternative rule extraction approach is through the
use of decision tree learning. Decision trees are currently a
highly developed technique for partitioning data samples
into a set of covering decision rules~Weiss & Kulikowski,
1991!. Decision tree learning algorithms such as ID3 and
C4.5 have been widely publicized by Quinlan. Readers in-
terested in the details should refer to Quinlan~1986, 1993!.
Once the decision tree is constructed for a specific prob-
lem, rules can be extracted directly from left to right and
from top to bottom of the decision tree. Usually the number
of rules extracted equals the number of leaves existing in
the decision tree. Decision tree induction algorithms scale
up very well for large data sets.

The extracted rules, represented using a linguistic IF–
THEN format, are easily understood. They can be used to
enrich the knowledge engineer’s understanding of the un-
derlying domain. With this knowledge, the knowledge en-
gineer can have a more intelligent interview with domain
experts. Asking domain experts more detailed questions
can result in more refined and comprehensive knowledge in
that domain. The knowledge engineer can then transfer the
unstructured knowledge acquired from domain experts into
structured knowledge in IF–THEN format and combine these
rules with rules automatically extracted from data samples.

3.3. Rule simplification and pruning

The performance of a KBS will be adversely affected when
the KB increases in size and contains conflicting rules. In

this sense, a compact KB is desirable. However, a trade-off
always exists between completeness~covering the entire
knowledge domain! and compactness~using as few rules as
possible!. In the manufacturing domain, shop floor opera-
tors prefer to have a small amount of highly intuitive rules
by sacrificing a small loss in predictive accuracy. There-
fore, we believe rule simplification and pruning are justi-
fied in manufacturing application. Two concepts, namely,
PofM ~Possibility of Merging! and AofP~Accuracy of Pre-
diction!, are introduced to reduce the size of a KB while
maintaining an acceptable level of performance. Details of
rule simplification and pruning are discussed as follows.

When rules are provided by domain experts, they may be
in a compound format. A rule that contains OR and0or NOT
is a compound rule, which brings potential and indetectable
inconsistency and thus hinders the maintainability of rules
~Higa, 1996!. Automatically extracted rules are never in a
compound format. Compound rules acquired manually
should be transformed in order to maintenance consistency.
For example, we have the following rule:

• IF ~a1 is LARGE OR a2 is MEDIUM ! AND ~a3 is NOT
SMALL ! THEN o1 is MEDIUM

Assume that a3 is described using three linguistic terms,
SMALL, MEDIUM, and LARGE. The rule can be trans-
formed into four noncompound rules:

• IF a1 is LARGE AND a3 is MEDIUM THEN o1 is
MEDIUM

• IF a1 is LARGE AND a3 is LARGE THEN o1 is
MEDIUM

• IF a2 is MEDIUM AND a3 is MEDIUM THEN o1 is
MEDIUM

• IF a2 is MEDIUM AND a3 is LARGE THEN o1 is
MEDIUM

A typical problem with automatically extracted rules is
that the rules could overlap, which means these rules can be
combined to form a simpler rule. For example, we have the
following three rules:

• IF a1 is SMALL AND a2 is LARGE THEN o1 is
LARGE

• IF a1 is MEDIUM AND a2 is LARGE THEN o1 is
LARGE

• IF a1 is LARGE AND a2 is LARGE THEN o1 is
LARGE

Assume that a1 is described using three linguistic terms,
SMALL, MEDIUM, and LARGE. These three rules can be
combined into one simpler rule:

• IF a2 is LARGE THEN o1 is LARGE

The Quine–McCluskey algorithm is known as an ap-
proach of Boolean functions simplification~McCluskey,
1956!. In this paper, it is used to automatically combine
overlapping rules that may exist in the automatically ex-
tracted rule set. When combining manually acquired rules
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Fig. 5. Rule extraction using a neural network.
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with automatically extracted rules, especially when com-
pounded rules are transformed, redundant rules may ap-
pear. Redundant rules means that rules having identical
premises also have identical consequences. Removal of re-
dundant rules is trivial because it can be realized through a
simple search.

Rules are simplified once redundant rules are removed
and overlapping rules are combined. A further step is to
prune these rules to make the rule base more compact. The
criterion used for pruning is the generalization ability~pre-
dictive accuracy!. The user may provide a testing data set
and define an acceptable level of predictive accuracy. Rules
are pruned by merging similar rules and removal of insig-
nificant rules, as long as these actions do not result in a
predictive accuracy with an unacceptable low level. This is
accomplished by using the concepts of PofM and AofP.

When a weight is associated with a rule, as in the case of
rule extraction using dynamic depth-first search~the neural
network approach!, an insignificant rule means a rule that
has a small weight. If a rule does not have a weight origi-
nally, as in the case of rule induction using ID3 or rule
provided by a domain expert, an insignificant rule is one
that applies to few data samples. In this case, we can assign
a weight to each rule based on how many data samples they
apply. Thus, weight is used as a unified measure for rule
significance.

The rule simplification and pruning algorithm is shown
in Figure 6 using the following definitions:

• SR ~Similar Rules!: rules that have identical output
values and only one different input value.

• KI ~Key Input!: the input that distinguishes SR.

• SRG~Similar Rule Group!: a rule group that holds all
SR. Note that a rule can belong to different SRG.

• MSRG~Mergeable Similar Rule Group!: a SRG where
the KI values of all the rules have adjacent values and
the number of the rules equals to the number of avail-
able values for the KI. For example, the following rules
can be put into a MSRG:

• IF a1 is LARGE AND a2 is MEDIUM THEN o1 is
MEDIUM

• IF a1 is SMALL AND a2 is MEDIUM THEN o1 is
MEDIUM

• IF a1 is MEDIUM AND a2 is MEDIUM THEN o1 is
MEDIUM

• PofM: each MSRG has a PofM value

PofM 5
number of rules in mergeable similar rule group

total number of intervals of key input

• DC ~Don’t Care!: An input does not appear in a rule;
its value can be ignored by the rule.

• AofP: In general, previous unseen cases are used to
test the predictive accuracy of a rule base. AofP is
defined as

AofP 5
number of correct predictions

total number of testing cases

Note that all rules are in digital format, for example,
2 0 4 21 5. The first 3 digits stand for the input value, 5
is the output value, and21 is for wherever the DC attribute
exists. Each attribute is represented by a number, ranging
from 0 to the number of intervals21. Take the three rules
listed above for MSRG as example. Two attributes are con-
cerned, a1 and a2. Both have three intervals; so does the
output. The three rules are represented as 2 1 1, 0 1 1,
and 1 1 1.

4. CASE STUDIES

4.1. Benchmark case

To illustrate how to use automatic knowledge acquisition to
rapidly develop a KBS and to demonstrate its effectiveness,
the popular iris flower classification problem is used as a
benchmark case study. The problem is based on a data set
first used by Fisher~1936! for illustrating discriminant analy-
sis techniques. The classification problem then became a
standard benchmark problem for testing different classifi-
cation methods. The data set can be obtained from the Uni-
versity of California at Irvine ftp server~ftp:00128.195.1.460
pub0machine-learning-databases0 iris0!. It contains 150
patterns: 50 of them belong to the class ofIris setosa, 50
belong to the class ofIris versicolor, and 50 belong to the
class ofIris virginica. There are four input parameters to
describe the three classes of flowers, namely, sepal length,
sepal width, petal length, and petal width. They are all
continuous-valued attributes.

A knowledge-based system is developed with the follow-
ing steps. First, after discretization with greedy chi-merge,
two parameters of sepal length and sepal width are re-
moved because they have only one interval. Both petal length
and petal width have three intervals after merging. The dis-
cretization result is shown in Table 1.

Second, we used 75 data samples with odd index for
training and the rest for testing. Using the dynamic depth-
first search algorithm, four rules are extracted as follows.
The weight attached to a rule shows its significance degree,
as described in Section 4. The weights of rules have been
normalized for easy handling, so weight 1.0 stands for the
most significant and weight 0.0 for insignificant.

• IF petal length is SMALLAND petal width is SMALL,
THEN iris class is Iris Setosa~weight 1.0!

• IF petal length is SMALLAND petal width is LARGE,
THEN iris class is Iris Setosa~weight 0.035636!

• IF petal length is MEDIUM, THEN iris class is Iris
Versicolour~weight 1.0!

• IF petal length is LARGE, THEN iris class is Iris Vir-
ginica ~weight 1.0!
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Third, after rule simplification and pruning, the follow-
ing rules are obtained:

• IF petal length is SMALLAND petal width is SMALL,
THEN iris class is Iris Setosa~weight 1.0!

Fig. 6. Rule simplification and pruning and an algorithm.
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• IF petal length is MEDIUM, THEN iris class is Iris
Versicolour~weight 1.0!

• IF petal length is LARGE, THEN iris class is Iris Vir-
ginica ~weight 1.0!

Fourth, these rules are used to develop a fuzzy inference
system. Triangular membership functions are used for the
input parameters and singleton spikes are used for output.
Among the 75 testing data samples, 70 are correctly
classified.

A comparison with prior results published in the litera-
ture is shown in Table 2. Although our approach did not
achieve 100% accuracy, it yielded a more concise rule set
~three rules! while still maintaining high accuracy~93.3%!.
Compared with the approach we proposed, REFuNN and
RULES-3 Plus need many more rules to attain higher accu-
racy; REFuNN and Premises Learning use much larger train-
ing sets, which means higher computing cost. A trade-off
exists here between conciseness and complexity. In a man-
ufacturing environment, easy to understand and concise rules
are preferred by operators to guide their daily operations.
Therefore, a smaller rule set that has acceptable perfor-
mance is desirable.

4.2. Industrial application

The integrated knowledge acquisition approach is also suc-
cessfully applied to a real-world manufacturing process,
drop hammer forming. Drop hammer forming is one of
the most versatile processes for forming sheet metal parts,

which is used extensively by B.F. Goodrich Aerospace0
Aerostructures group in the production of aircraft engine
nacelles. Basically, three process methods are used for drop
hammer forming: bare punch, blow down, and blow up.
Bare punch is the simplest procedure. Parts are produced
using a single hammer strike and no forming aids are needed.
Blow down and blow up procedures require the use of form-
ing aids and multiple hammer strikes. The forming aids,
usually rubbers, are placed on~blow down! or under~blow
up! the part to form a pyramid. During the forming process,
the pyramid causes the impact force to flow in the direction
of the least rubber build up, thus preventing wrinkles and
folding.

Operator skills play a critical role in assuring product
quality in drop hammer forming. Experienced operators can
produce high quality products by adjusting die configura-
tion, using appropriate forming aids, and controlling punch
blow. Their skills are accumulated through years of hands-on
experience, and they have great difficulty explaining how
and why they make a certain decision. Therefore, new op-
erators have to learn through observation. This is very in-
efficient and it usually takes at least 6 months for a new
operator to gain enough knowledge to be able to work in-
dependently. B.F. Goodrich engineers attempted to use tra-
ditional interview-based techniques to develop a KBS. They
were not successful, mainly because the knowledge engi-
neers have very little understanding of the drop hammer
forming process, while experienced operators typically have
no formal engineering education and were unable to ex-
plain the decisions they made.

Table 1. Data discretization for the Iris classification problem

Attribute
Name

No.
Intervals Linguistic Terms Interval Ranges

Sepal length 1 N0A $4.40–7.70%
Sepal width 1 N0A $2.00–4.10%
Petal length 3 Small, medium, large $1.00–3.00, 3.00–5.00, 5.00–6.90%
Petal width 3 Small, medium, large $0.10–1.00, 1.00–1.70, 1.70–2.50%

N0A, not available.

Table 2. Comparison of the Iris classification problem

Method
No.

Rules Predictive Accuracy

Our approach 3 93.3%~75 training cases!
REFuNN~Kasabov, 1996! 8 100, 90, and 90%~using 3 different fuzzy inference techniques with 120 training cases!
RULES-3 Plus~Pham & Dimov, 1996! 10 97.5%~70 training cases!
ID3 8 92.5%
Premises Learning~Xiong et al., 2002! 4 98.6%~150 training cases!
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Armed with the integrated knowledge acquisition method,
a student was sent to B.F. Goodrich’s drop hammer forming
facility at Chula Vista, California. An initial interview with
domain experts identified the following inputs: material type,
maximum draw depth, presence of transitions and corners,
and die type; while the outputs are identified as the forming
process method, number and type of forming aids, and num-
ber of punch blows. For new operators, to decide which
forming process method is the most challenging task. There-
fore, we worked on rule extraction for process method de-
termination first. We collected 73 historical cases, 35 of
them are used for training and the remaining used for test-
ing. Among all of the inputs, only maximum draw depth
has continuous values. We used equal width as the discret-

ization method and four intervals were formed. The follow-
ing rules are obtained:

• IF maximum draw depth is LARGE AND material type
is SOFT AND transitions and corners is YES, THEN
forming process is BLOW UP~weight 1.0!

• IF maximum draw depth is LARGE AND material type
is SOFT AND die type is MALE, THEN forming pro-
cess is BLOW UP~weight 0.297073!

• IF maximum draw depth is LARGE AND material type
is HARD AND transitions and corners is YES AND
die type is MALE, THEN forming process is BLOW
UP ~weight 0.267993!

Fig. 7. The drop hammer forming digital assistant.
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• IF transitions and corners is YES, THEN forming pro-
cess is BLOW DOWN~weight 1.0!

• IF transitions and corners is NO, THEN forming pro-
cess is BARE PUNCH~weight 1.0!

These rules achieved a 95% predictive accuracy when
applied to the testing cases. With these rules, the student
gained a good understanding of the drop hammer forming
process. A final interview with domain experts was then
conducted. The experts concluded that these rules are valid
and were able to provide additional details. Specifically,
part material can determine the selection of different types
of rubber as forming aids. If part material is hard and heat
treatment is required before the forming process is applied,
then harder and more heat resistant rubbers are needed as
forming aids. In addition, thinner rubber pads are used for
harder parts. The material of a part, combined with its max-
imum draw depth, can be used to decide the number of
punch blows needed to produce the part. Softer materials,
such as Aluminum, can be drawn in one stage to around 1
in. However, hard materials, such as titanium, can only be
drawn in one stage to a maximum of 0.5 in. When the
thickness of forming aids is determined, denotedt, then the
number of punch blows~denotedn! can be easily calcu-

lated asn 5 m0t 1 1. One sheet of forming aids is removed
after each punch blow. The last blow is applied when all the
forming aids are removed. Combining the knowledge ac-
quired, a software tool is then developed to assist operator
decision making in drop hammer forming. Figure 7 shows a
snapshot of the software tool.

Some examples are used to illustrate how the acquired
process knowledge is applied for drop hammer forming pro-
cess planning. The tool shown in Figure 8a is used to pro-
duce an aluminum part. Its maximum draw depth is 3 in.
Since it is a male tool and there are four corners, forming
aids need to be placed under the part~see Fig. 8b!. In other
words, the blow up process method is used. Since alumi-
num is soft, rubber pads are used as the forming aid. Three
1-in. rubber pads are used since the maximum draw depth
is 3 in. One sheet of rubber is removed after each punch
blow. The last punch blow is applied when all three sheets
of rubber are removed. Therefore, a total of four punch
blows are needed.

The tool shown in Figure 9a is also used to produce an
aluminum part. Its maximum draw depth is 0.5 in. Since it
is a female tool and there are transitions, the blow downFig. 8. A part that requires blow up:~a! tool and~b! configuration.

Fig. 9. A part that requires blow down:~a! part and tool and~b! forming
aids placement.
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process method is used. One sheet of 0.5-in. rubber pad
approximately the size of the part is placed on top of the
part ~Fig. 9b!. After one punch blow is applied, the rubber
pad is removed. Another punch blow is then applied to
obtain the final part.

Figure 10 shows a tool that is used to produce an alumi-
num part. The tool is essentially flat, with a maximum draw
depth ~the difference between the highest and the lowest
point of the area enclosed by the bead! of 0.05 in. It has no
transitions. Note that the bead is used to lock the part. Ex-
cess material will then be trimmed away to obtain the final
part. Therefore, there are no corners either. In this care,
bare punch is sufficient to produce the part. Care should be
exercised when determining the presence of transitions.

Figure 11 shows a not-so-flat part that clearly shows a
transition, which needs to be produced using blow down
rather than bare punch.

5. CONCLUSION

This paper presents an integrated automatic0interactive
knowledge acquisition approach to rapidly develop
knowledge-based systems. This approach relies on several
key algorithms, including data discretization, rule extrac-
tion, and rule simplification and pruning. After data discret-
ization, linguistic terms can be used to describe the input
and output parameters of the underlying problem. This al-
lows the extraction of IF–THEN rules that are compatible
with domain experts’ heuristic reasoning. As a result, do-
main experts can easily verify these rules and provide ad-
ditional rules in the same format. These rules are then
combined and processed using rule simplification and prun-
ing, which results in a more compact rule base. This paper
recognizes the trade-off between completeness and com-
pactness of rules. The goal is to obtain concise and easy to
understand knowledge while maintaining an acceptable level
of system performance.

A benchmark case study showed that the proposed ap-
proach has satisfactory performance.An industrial case study
further showed its practicality and effectiveness. The re-
search work related to this paper is useful to build up knowl-
edge based systems with small rule sets. This is somehow a
neglected aspect of AI in engineering, especially in manu-
facturing. The concise rules can form the foundation of
training modules that can jump-start workers’ skills to new
and higher levels of competence.

The effectiveness of the algorithms also depends on the
quality of the training and testing data. This paper assumes
the data used is representative of the problem domain. If
not, some preprocessing should be carried out, which forms
another direction of research work. Major tasks in this area
include missing data treatment, data cleansing, dimension-
ality reduction, and so forth, which are beyond the scope of
this paper. Further research will focus on automatic tuning
of the developed KBS. Note that fuzzy inference is used to
operate on the RB; thus, the membership functions used
will influence the predictive accuracy. We are currently de-
veloping automatic tuning algorithms based on neural net-
work learning that can adjust parameters of membership
functions for improved performance.
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