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Abstract

This paper presents a novel approach, which is based on integaatietnati¢interactive knowledge acquisition, to

rapidly develop knowledge-based systems. Linguistic rules compatible with heuristic expert knowledge are used to
construct the knowledge base. A fuzzy inference mechanism is used to query the knowledge base for problem solving.
Compared with the traditional interview-based knowledge acquisition, our approach is more flexible and requires a
shorter development cycle. The traditional approach requires several rounds of inteffvatvstructured and un-
structured. However, our method involves an optional initial interview, followed by data collection, automatic rule
generation, and an optional final intervigwle verification process. The effectiveness of our approach is demonstrated
through a benchmark case study and a real-life manufacturing application.

Keywords: Drop Hammer Forming; Data Discretization; Fuzzy Inference; Knowledge Acquisition;
Knowledge-Based System; Rule Simplification

1. INTRODUCTION solving experience, has been describeduasonscious
knowledgg Mitta, 1989. As experts achieve greater com-
Global industrial competition requires enterprises to useetency, their ability to explain the fine details associated
innovative technologies for manufacturing and provision ofwith problem solving strategies degrades. Intermediate so-
goods and services in the shortest possible time frame witlution steps are unconsciously performed as a matter of
minimum cost. To achieve the goal of assuring short develroutine as strategies are compressed into a few major steps
opment cycles for new products, they are developing dGaines, 198Y. Thus, not all of the knowledge involved
process-based knowledge-driven product development ean be decoded from schema to a semantic representation
vironment by employing information technology. One ma-that is available in human working memory and hence is
jor emphasis is knowledge-based enginee(iigE), which  not accessible for the experts to report. This is especially
focuses on acquiring, storing, and utilizing knowledge fortrue in the field of manufacturing, where the experts are
design and manufacturing. One of the applications of KBEthose who actually work with the machines on the shop
is the knowledge-based syst¢kBS), which represents an floor. They usually do not receive formal scientific training,
interactive computer-based decision-making tool that usesnd most of their knowledge is biased toward their own
both factual and heuristic data acquired from domain exheuristic. Although they can easily solve a complex prob-
perts for problem solving. lem, they usually have great difficulty explaining why and
The success of a KBS critically depends on the amounkow they make a particular decision. This is the hurdle
of knowledge embedded in the system. Expert knowledgein smooth knowledge acquisitioftHam & Lu, 1988. In
which results from an individual’s extensive problem- addition, the iterations involved in knowledge acquisition
and incremental development for building up a complete
KBS render the manual approach highly time consuming.
_ Because knowledge acquisition is a lengthy and painful
Reprint requests to: Samuel H. Huang, ICAMS, Department of Me- . .
chanical, Industrial and Nuclear Engineering, University of Cincinnati, process, It Is often referred to as the bottleneck in KBS
Cincinnati, OH 45221. E-mail: shuang@gauss.mie.uc.edu developmentGonzalez & Dankel, 1993
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To overcome the knowledge acquisition bottleneck, weexample, development methodologies such as KADEI-
developed an integrated knowledge acquisition methodolinga et al., 1992 environments such as KEATGMotta
ogy, which targets manufacturing application, as shown iret al., 1988, and shells such as DEgBohanec & Rajkovig
Figure 1. The key features and advantages of the method-990. Constructing KBSs to test the feasibility of new tech-
ology are that it can do the following: nologies and approaches brought forth rather promising
o . _ results. The field of KBSs has expanded enormously. Ap-

* maintain a database of problem solving cases, whichyjications of KBS range from medical diagnosis, chemical
allows domain experts to verify their knowledge and ynqysis, geological exploration, computer configuration,
discover data discrepancies and knowledge engineelg,q recently to real-time process control, nuclear power
to gain better understanding of the problem domain; plant operation, and marine navigatié®oenen & Bench-

° automatic_ally extract high-level rules_ from the (_Jlata- Capon, 1998 In the manufacturing and production envi-
base, which allow knowledge engineers to inde-ronment, expert systems have been used for tasks such as
pendently acquire rule-type knowledge and becomecheqyling, engineering design, plant layout, manufactur-
“pseudo-experts'as a result, they can interact more j,q system modeling, product quality control, process plan-
effectively with domain exper}s _ning, and production managemeiital & Anand, 1994.

» integrate domain experts’ subjective knowledge with 5y ever, the maintenance difficulty of KBSs hindered
general knowledge embedded in examples, which reg,qjr general acceptance. In addition, the building of large-
sults in & system that covers a much wider problemy.a e commercial KBS is always associated with long de-
domain than otherwise possible; and . velopmenttime, high costs, and high risk. Just as the software

» provide closed-loop knowledge acquisition and utili- ¢yigis resulted in the establishment of the discipline of soft-
zation, which results in optimal knowledge manage-\yare engineering, the unsatisfactory situation in the con-
ment to achieve true manufacturing intelligence. struction and maintenance of KBSs made clear the need for

engineering the development procedure for KBSs. In other
words, there is an urgent need to construct and maintain
KBSs in a systematic and controllable man¢&uder et al.,

In the 1970s, KBSs emerged as software systems that bd998.

have like human experts when solving application prob- A typical KBS consists of three basic components: the
lems in certain domains. The major reason that prohibitedknowledge baséKB) indicating the domain application area,
both building and maintaining such systems was the lack othe system context and working memory, and the inference
robust and highly efficient computational technologies.engine controlling the problem-solving strategy. The KB
Therefore, developing new technologies received a greatomprises the knowledge that is specific to the application
deal of attention. Facilities to develop large KBSs exist, fordomain, including such things as simple facts about the
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Fig. 1. The integrated knowledge acquisition methodology.
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domain, rules or frames that describe relations or phenomization, and cleansing. Apparently, wrong cases are re-
ena in the domain, and possibly also methods, heuristicsnoved from raw data after consulting with domain experts.
and ideas for solving problems in this domain. The infer-For those cases with similar inputs and outputs, some of
ence engine contains methods of manipulating the knowlthem can be removed as redundant cases after data discret-
edge in the KB. ization. After data preprocessing, each of the input attributes
The most popular KBS approach adopted by the indusean be described by a fuzzy linguistic tefauch as small,
try, the symbolic artificial intelligenc€Al) approach, is medium, and large Because each linguistic term can be
usually applied for constructing the KB of a KBS. In this represented by a set, a continuous-valued input can thus be
approach, the knowledge is represented using IF-THENIlassified into a specific set and represented in a binary
production rules; in this way, the KB can be called the rulescheme. After all the cases have been converted using lin-
base(RB). Such a knowledge-based system is also calledjuistic terms, some inconsistent cases can be removed. This
an expert system or production system. It symbolically mafprocedure can effectively scale down the cases in engineer-
nipulates IF-THEN rules to solve various problems. ing raw data and makes the subsequent rule extraction eas-
Although this approach is successful, it suffers from theier. Finally, rules are extracted through neural network
so-called knowledge acquisition bottleneck because it isearning or using decision tree learning. These rules are
challenging and time consuming to acquire and represerdescribed using humanly intelligible linguistic terms, which
knowledge in terms of rules. In other words, this bottleneckcan be easily verified, modified, or supplemented by do-
obstructs the efficiency and effectiveness of building themain experts. Rule pruning and simplification will make
RB of a KBS. In addition, the performance of the resultantthe RB more concise and consistent. Because linguistic terms
KBS will be impaired, when the amount of extracted rules(which are impreciseare involved, a Mamdani-type fuzzy
is very large and certain flaws such as redundancy, conflictinference mechanism is used as the inference engine.
subsumption, and circularity exiétiga, 1996. It should be noted that, during the process of eliciting
Recent advance in information technology has resultednowledge from industry personnel, some knowledge is de-
in several learning techniques that can potentially be useductive (from general to specific, from premise to conclu-
for automatic knowledge acquisition, including artificial neu- sion), some is inductivéfrom individual cases to general
ral networks and decision tree learnigiglitchell, 1997. conclusion, and some is abducti@nbounded inferenge
Neural networks belong to a family of models that are based’he KBSs discussed in this paper handle deductive knowl-
on a learning by example paradigm in which problem-edge. However, this paper points out that some quantitative
solving knowledge is automatically generated according tanethod can be introduced to transfer the other two types of
actual examples presented to them. The knowledge, hovknowledgeginductive and abductiyento deductive knowl-
ever, is represented at a subsymbolic level in terms of conedge. For example, probability can be used to measure the
nections and weights. Neural networks act like black boxegonfidence of the conclusion of an abductive rule. Such
in providing little insight into how decisions are made, which quantitative information is represented by the weight of a
limits their usefulness in many decision support applicarule, which will be discussed.
tions. On the other hand, decision trees can be easily trans-
lated into highly intelligible IF-THEN rules. However,
current decision tree learning algorithms are only suited fo3.1. Discretization
problems that are described by a fixed set of attrib(ads-
ing new attributes is impractical or inconvenigmaram- Discretizing continuous parameters is inspired in part by
eters should have discrete valiigsot, discretization should the fact that experts usually describe parameters using lin-
be carried oyt and the target function to be learned shouldguistic terms instead of an exact value. There are several
have discrete output values. Some other shortcomings gdvantages of data discretization: it provides regularization
decision tree learning are discussed in Quin(b993. because it is less prone to variance in estimation from small
In order to overcome these problems, techniques sucffagmented data, the amount of data can be greatly reduced
as data discretization, automatic rule extraction, and rul@ecause some redundant data can be identified and re-
simplification and pruning are needed. These techniqueéT‘OVed’ and some rule extraction method such as decision
described in Section 3, are the major components of a Syé[ees can perform better if all of the continuous-valued

Equal width is one of the most frequently used unsuper-

vised data discretization methods. It is also the simplest
3. INTEGRATED KNOWLEDGE ACQUISITION one, which divides the range of observed values for a vari-
The system architecture for integrated knowledge acquisi@Ple intoN intervals of equal sized intervals. The range of
tion is illustrated in Figure 2. Engineering raw data contain-€ach interval is calculated by
ing the cases is accumulated by observing and recording
the operations from experienced operators. Raw data are . range of observed attribute

. . o range of intervak -

preprocessed using methods such as discretization, normal- number of intervals
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Fig. 2. The system architecture.

where the number of intervals should be determined byent data point as an initial interval. In addition, it merges
users. variables sequentially rather than trying to minimize the
This method applies to the situation where the distribuinconsistency resulting from merging. To overcome these
tion of sample data is quite uniform. However, it is vulner- drawbacks, we developedjeeedy chi-mergalgorithm for
able to outliers that may drastically skew the raf@atlett, data discretization.
199)). A statistically justified heuristic method for super-  Greedy chi-merge also contains two phases: crude dis-
vised discretization is thehi-mergealgorithm (Kerber, cretization and fine-tuning. Compared to the Chi2 algo-
1992. This algorithm begins by placing each observed realithm, which takes the number of distinct values of a variable
value into its own interval and proceeds by using fiféest  as the initial number of intervals, greedy chi-merge per-
to determine when adjacent intervals should be mergedorms an initial partitioning based on the change in the
The extent of the merging process is controlled by the useutput value, as illustrated in Figure 3. In this way, the
of a 2 thresholdw, indicating the maximuny? value that  number of intervals for each variable can be greatly reduced.
warrants merging two intervals. The author reports that on The next phase, fine tuning, is based on greedy search,
random data, a very high threshold must be set to avoidvhich always chooses to merge the intervals of a variable
creating too many intervals. that causes the least inconsistency rate among all merge-
Chi2 (Liu & Setiono, 1997 is a variant of the chi-merge able variables. Although all the attributes are considered
algorithm. It consists of two phases. In phase 1, a rouglsimultaneously, only the merging that causes the lowest
commone (significance levelfor all variables is used. In inconsistency rate takes place. The pseudocodes of the greedy
phase 2, the intervals are further merged using a separatechi-merge are shown in Figure 4.
for each variable. In general, Chi2 can form simpler terms, The problem of data inconsistency results when, after
which leads to improved predictive accuracy. However, it isdiscretization, data samples exist in which the inputs are
computationally complicated because it takes each differthe same but the outputs are different. The inconsistency
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Fig. 3. The initial partitioning of greedy chi-merge.

Greedy Chi-merge Algorithm

Phase 1:

Use rough discretization method to get rough number of intervals for each continuous attribute. Form
numeric attribute lists (list;, i=1, 2, ... N. N is the number of attributes).

Here a list (list;) is made of a sequence of numeric pairs, which separates the whole region (firom a; to b;) of
an attribute into certain intervals (M;). That is, list; = {(a;,vi;), (Vi2,Vi3), ... Vai,bi)}.

Phase 2:
for each attribute 7 {
set a; = 0,; / The significance level (100%-a) to check Chi® values
}
set mergeable = true;
while (mergeable == true) {
set mergeable = false;
for each numeric attribute list (list;) {
tempList; < list; // Save current discretized interval list temporarily
/| Try to merge neighbor discretized interval; Calculate the Chi® value; and
// Get the minimum Chi’ value
set minChi2 = MinChi2 (tempList,);
if (minChi2 < the value looked up in the Chi table based on o) {
Mergelnterval(tempList;); // Merging in the temporary list
set inCon; = InConCheck(tempList); // Calculate the inconsistency rate
tempList; < list;; // Recover the interval list
}
else{
set inCon; = oo
¥
set o; = DecreSig(a); // Decrease the significance level
}
/I Find minimum inconsistency rate (The related index is “mini_irate”)
set minInCon = MinInCon(inCon);
if (minInCon < d) {
Mergelnterval(list,isi irare); // Real merging
set mergeable = True;

Fig. 4. The pseudocodes for greedy chi-merge.
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rate is calculated using the following expression, based upothis sense, a compact KB is desirable. However, a trade-off

the method proposed by Liu and Setiofdi®97): always exists between completendssvering the entire
knowledge domainand compactnegsising as few rules as
Z(ni — Ci,max)/N, possible. In the manufacturing domain, shop floor opera-

tors prefer to have a small amount of highly intuitive rules
whereN is the total number of cases, is the number of by sacrificing a small loss in predictive accuracy. There-
cases with the same inp(it=1, 2,... 1), 20, = N; ¢; ; is fore, we believe rule simplification and pruning are justi-
the count of clasgin n, (j =1, 2,...J), 3¢ =n; and fied in manufacturing application. Two concepts, namely,

PofM (Possibility of Merging and AofP(Accuracy of Pre-

Gi,max = Max(c,j). diction), are introduced to reduce the size of a KB while
maintaining an acceptable level of performance. Details of
3.2. Rule extraction rule simplification and pruning are discussed as follows.

Once all continuous variables are discretized, linguistic terms When rules are provided by domain gxperts, they may be
can be used to describe these variables. The original da{gacompound format.AruIe.that °°”ta".‘s OR ;é}odNOT

samples are converted accordingly. As a result, all the int> acompound rule, wh|ch brings potentllal qnd |'n'detectable
puts and outputs become discrete. A procedure, which utilnghSlstency and thu's hinders the maintainability of rules
lizes the learning ability of a neural network, has been(H'ga’ 1996. Automatically extracted rules are never in a

compound format. Compound rules acquired manually
developed to extract rules for these converted data samplesshould be transformed in order to maintenance consistenc
: ) ; y.
The details of the procedure have been described in a Preor example, we have the following rule:
vious publication(Huang et al., 2001 An outline of the ' '
five-step approach is provided in Figure 5. In summary, the e IF (3, is LARGE OR gis MEDIUM)AND (agis NOT
converted data is represented using a binary scheme and SMALL) THEN o, is MEDIUM
used to train a neural network, which is specially structured
according to the linguistic terms used. Linguistic IF-THEN
rules are then extracted by analyzing the connections an
weights of the trained neural network, using a dynamic depth-
first search algorithm to reduce computation complexity. e IF a is LARGE AND & is MEDIUM THEN o, is
An alternative rule extraction approach is through the MEDIUM
use of decision tree learning. Decision trees are currently a o IF a, is LARGE AND & is LARGE THEN q, is
highly developed technique for partitioning data samples MEDIUM
into a set of covering decision rul¢g/eiss & Kulikowski, e IF &, is MEDIUM AND a; is MEDIUM THEN o, is
1991). Decision tree learning algorithms such as ID3 and MEDIUM
C4.5 have been widely publicized by Quinlan. Readers in- e IF a, is MEDIUM AND ag is LARGE THEN g is
terested in the details should refer to Quin(4886, 1993. MEDIUM

Once the decision tree is constructed for a specific prob- A typical problem with automatically extracted rules is

lem, rules can be extracted directly from left to right and :
L that the rules could overlap, which means these rules can be
from top to bottom of the decision tree. Usually the number . .
... ~.combined to form a simpler rule. For example, we have the
of rules extracted equals the number of leaves existing "?ollowin three rules:
the decision tree. Decision tree induction algorithms scale 9 ’
up very well for large data sets. e IF @, is SMALL AND a, is LARGE THEN o, is
The extracted rules, represented using a linguistic IF-  LARGE
THEN format, are easily understood. They can be used to e IF a is MEDIUM AND a, is LARGE THEN o, is
enrich the knowledge engineer’s understanding of the un- LARGE
derlying domain. With this knowledge, the knowledge en- e IF a, is LARGE AND & is LARGE THEN o, is
gineer can have a more intelligent interview with domain LARGE
experts. Asking domain experts more detailed questions Assume that ais described using three linguistic terms
can resultin more refined and comprehensive knowledge i '
that domain. The knowledge engineer can then transfer th%gﬂn?bﬁrﬁégﬂﬁltjc:%wé ang LIQrRrSIE: These three rules can be
unstructured knowledge acquired from domain experts into P '
structured knowledge in IF-THEN format and combine these e IF a, is LARGE THEN ¢, is LARGE

rules with rules automatically extracted from data samples.

Assume that gis described using three linguistic terms,
MALL, MEDIUM, and LARGE. The rule can be trans-
ormed into four noncompound rules:

The Quine—McCluskey algorithm is known as an ap-
proach of Boolean functions simplificatiofMcCluskey,
1956. In this paper, it is used to automatically combine
The performance of a KBS will be adversely affected whenoverlapping rules that may exist in the automatically ex-
the KB increases in size and contains conflicting rules. Intracted rule set. When combining manually acquired rules

3.3. Rule simplification and pruning
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Step 1. Classify the continuous-valued inputs into sets
described using a linguistic term.

v

Step 2. Represent the sets using a binary scheme. .
l ]1
Y
Step 3. Construct a neural network with binary inputs.
' r
Iy

Step 4. Train the constructed neural network. L

v

let L denote the target leave to be explored;
initialize all 7, to 1, in whichi=1, 2, ..., N, // the left most leaf
loop {

s€<-B;i< 1,

while (s <0 and i < N) do {
s<ste, ; // traverse the edges
i<—it1;

}

if s = 0 then { // arule is found

report v iy, 852 rule with weight s

ki
forj<—itoN
t; <= L; // no need to explore child nodes

}

J<=N
while (j =1 and ,=1) do {
Lt Lpj<j-1
}
ifj=Nthent, < L, ;
Jj < N;t;<t;+1;// advance to the next leaf

}
while (=L, +1andj>1)do {
t=Lj=j-Lg =4+ 1
}
if (f, = L, + 1) then exit loop; // no more leaves to traverse
} // end loop

Step 5. Extract rules from the trained neural network based on the behavior of neurons.
procedure dynamic_depth-first search (e /*converted weight matrix*/, B /*bias*/) {

else { // rule not found when reaching a leaf; no need to explore less promising leaves

Fig. 5. Rule extraction using a neural network.

https://doi.org/10.1017/50890060403173052 Published online by Cambridge University Press

227


https://doi.org/10.1017/S0890060403173052

228 H. Xing et al.

with automatically extracted rules, especially when com- number of correct predictions
pounded rules are transformed, redundant rules may ap- AofP = total number of testing cases
pear. Redundant rules means that rules having identical
premises also have identical consequences. Removal of re-Note that all rules are in digital format, for example,
dundant rules is trivial because it can be realized through 2 0 4 —1 5. The first 3 digits stand for the input value, 5
simple search. is the output value, ané 1 is for wherever the DC attribute
Rules are simplified once redundant rules are removedxists. Each attribute is represented by a number, ranging
and overlapping rules are combined. A further step is tdfrom 0 to the number of intervals 1. Take the three rules
prune these rules to make the rule base more compact. Thigted above for MSRG as example. Two attributes are con-
criterion used for pruning is the generalization abilipre-  cerned, a and g. Both have three intervals; so does the
dictive accuracy. The user may provide a testing data setoutput. The three rules are represented as 2, D 1 1,
and define an acceptable level of predictive accuracy. Rulesnd 1 1 1.
are pruned by merging similar rules and removal of insig-
nificant rules, as long as these actions do not result in a
predictive accuracy with an unacceptable low level. This is4, CASE STUDIES
accomplished by using the concepts of PofM and AofP.
When a weight is associated with a rule, as in the case of 1  ganchmark case
rule extraction using dynamic depth-first seafttte neural

network approach an insignificant rule means a rule that 1o jjjystrate how to use automatic knowledge acquisition to
has a small weight. If a rule does not have a weight origi-apjdly develop a KBS and to demonstrate its effectiveness,
nally, as in the case of rule induction using ID3 or rule the popular iris flower classification problem is used as a
provided by a domain expert, an insignificant rule is onepenchmark case study. The problem is based on a data set
that applies to few data samples. In this case, we can assigfist ysed by Fishef1936 for illustrating discriminant analy-
aweight to each rule based on how many data samples theys techniques. The classification problem then became a
apply. Thus, weight is used as a unified measure for rulgtandard benchmark problem for testing different classifi-

significance. _ o cation methods. The data set can be obtained from the Uni-
~ The rule simplification and pruning algorithm is shown yersity of California at Irvine ftp serveftp://128.195.1.46
in Figure 6 using the following definitions: pub/machine-learning-databagéss/). It contains 150

e SR (Similar Rules: rules that have identical output patterns: 50 of them k_)elong_to the classlig setosa 50
values and only one different input value. belong to the class dfis versicolor, and 50 belong to the

« KI (Key Inpub: the input that distinguishes SR class oflris virginica. There are four input parameters to

« SRG(Similar I.?ule Groupx a rule group that holas all describe the three classes of flowers, namely, sepal length,
SR. Note that a rule can belong to different SRG. sepe}l width, petal Iength, and petal width. They are all

« MSRG(Mergeable Similar Rule Groupa SRG where ~ continuous-valued attributes. ,
the Kl values of all the rules have adjacent values and Aknowledge-based §yster_n |s_develloped with th? follow-
the number of the rules equals to the number of availlng steps. First, after discretization with greedy chi-merge,

able values for the KI. For example, the following rules two parameters of sepal length gnd sepal width are re-
can be put into a MSRG: moved because they have only one interval. Both petal length

and petal width have three intervals after merging. The dis-
e IF a is LARGE AND &, is MEDIUM THEN o, is  cretization result is shown in Table 1.

MEDIUM Second, we used 75 data samples with odd index for
e IF 3, is SMALL AND a, is MEDIUM THEN o, is  training and the rest for testing. Using the dynamic depth-

MEDIUM first search algorithm, four rules are extracted as follows.
e IFa is MEDIUMAND a,is MEDIUMTHEN o,is  The weight attached to a rule shows its significance degree,

MEDIUM as described in Section 4. The weights of rules have been

normalized for easy handling, so weight 1.0 stands for the

e PofM: each MSRG has a PofM value most significant and weight 0.0 for insignificant.

number of rules in mergeable similar rule group o |F petal length is SMALL AND petal width is SMALL,

PofM = total number of intervals of key input THEN iris class is Iris Setosaveight 1.0
e IF petal length is SMALL AND petal width is LARGE,
e DC (Don’t Care: An input does not appear in a rule; THEN iris class is Iris Setos@veight 0.035636
its value can be ignored by the rule. o IF petal length is MEDIUM, THEN iris class is Iris

e AOfP: In general, previous unseen cases are used to  Versicolour(weight 1.0
test the predictive accuracy of a rule base. AofP is e IF petal length is LARGE, THEN iris class is Iris Vir-
defined as ginica(weight 1.0
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Rule Simplification and Pruning Algorithms

= M is the number of different output values.
= N is the number of premises of the rule.

1. Transfer compound rules and get the rule set A.
2. Remove overlapping rules based upon Quine-McCluskey algorithm (Combine MSRG):
a. Group rules in 4 into M sub sets (B;, i = 1, 2, ..., M) according to the output intervals,

A=Y B, .

b. Assignrule set4'=J.
c. Foreach B;:
i. Group rules in B; into N+ 1 sub sets (C;,j =0, 1, 2, ..., N) according to the DC numbers. A rule in C; has
jDCs. B, =Y C,.
ii. ForeachC;(j=0,1,...,N-1):
a) Group rules in C; into N+ 1 sub sets (Dy, k=0, 1, 2, ..., N) according to the zero numbers in the
rules. A rule in D; has k zeros. C, =z D, -

b) Repeat R = COMBINE(Dy, Dy ), k=1,2, ..., N-1.
For each rule in Dy, find SR in Dy, ;. If the resulted SRG is a MSRG, (1) put a combined new rule in

R; (2) rules in SRG are removed from Dy; and (3) if £ = N-1, rules in SRG are removed from Dy, ;
as well.

c) Cj+1 = Cj+1 +R.
4 A'=A+Y D,
d. Assignrule set A = A". 4 is the simplified rule set.

3. Combine rules with similar inputs (rules have only one different input value but may have different output
values) in A.

a. Group rules in 4 into N+1 sub sets (C;, j =0, 1, 2, ..., N) according to the DC numbers. A= 2 Cj- .
b. ForeachC,;(j=0,1, ..., N-1):
i. Group rules in C; into N+ 1 sub sets (D, k=0, 1, 2, ..., N) according to the zero numbers in the rules.
¢, =sz )
ii. Repeat R = COMBINESIMILAR(Dy, Dy 1), k=1,2, ..., N-1.
For each rule in Dy, find rules with similar inputs in Dy, ;. If the resulted rule set satisfies (1) PofM is
acceptable; and (2) AofP is acceptable, (1) put a combined new rule (with an output value determined
by the majority of rules) into R; (2) rules in the resulted rule set are removed from Dy; and (3) if £ = N-
1, rules in the resulted rule set are removed from Dy, ; as well.
iii. Cj+1 = Cj+1 +R.
iv. A'= A'+2:D/c

c. Assignrule set A = A" A is the simplified rule set.
4. Remove redundant rules.
5. Ifrules are weighted, carry our the rule pruning procedure:

a. Normalizing rule weights.

. Set RW a small value (normally given by the user, e.g., 0.25).

c. Remove rules with weight < R value. Check the AofP value. If AofP is acceptable currently, go to d; else
gotoe.
Increase R and return back to c.
If ¢ is the 1* removal operation, undo it.
f. Decrease RW and return back to c.

oo

Fig. 6. Rule simplification and pruning and an algorithm.

Third, after rule simplification and pruning, the follow- e IF petal length is SMALL AND petal width is SMALL,
ing rules are obtained: THEN iris class is Iris Setosaveight 1.0
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Table 1. Data discretization for the Iris classification problem

Attribute No.

Name Intervals Linguistic Terms Interval Ranges

Sepal length 1 XA {4.40-7.70

Sepal width 1 NA {2.00-4.10

Petal length 3 Small, medium, large {1.00-3.00, 3.00-5.00, 5.00-6}90
Petal width 3 Small, medium, large {0.10-1.00, 1.00-1.70, 1.70-2}50

N/A, not available.

o IF petal length is MEDIUM, THEN iris class is Iris which is used extensively by B.F. Goodrich Aerospace

Versicolour(weight 1.0 Aerostructures group in the production of aircraft engine
o IF petal length is LARGE, THEN iris class is Iris Vir- nacelles. Basically, three process methods are used for drop
ginica(weight 1.0 hammer forming: bare punch, blow down, and blow up.

Fourth, these rules are used to develop a fuzzy im‘erencgare punch is the simplest procedure. Parts are produced

system. Triangular membership functions are used for th using a single hammer strike and no forming aids are needed.

. . . low down and blow up procedures require the use of form-
input parameters and singleton spikes are used for outpuf, = _. . . . :

) ing aids and multiple hammer strikes. The forming aids,
Among the 75 testing data samples, 70 are correctl

- ){Jsually rubbers, are placed @olow down) or under(blow
classified. . ; :
. . . . . . up) the part to form a pyramid. During the forming process,
A comparison with prior results published in the litera- the pyramid causes the impact force to flow in the direction
ture is shown in Table 2. Although our approach did not Py P

achieve 100% accuracy, it yielded a more concise rule s (%f the least rubber build up, thus preventing wrinkles and

efolding
(three rulegwhile still maintaining high accurac{®3.3%. ' . . . .
Compared with the approach we proposed, REFUNN and Operator skills play a critical role in assuring product

RULES-3 Plus need many more rules to attain higher accuguality in drop hammer forming. Experienced operators can

racy; REFUNN and Premises Learning use much larger trai _.roducg high quall'ty produc;ts b)_/ adjusting die qonflgura-
. . ) : ion, using appropriate forming aids, and controlling punch
ing sets, which means higher computing cost. A trade-o s
. ; . low. Their skills are accumulated through years of hands-on
exists here between conciseness and complexity. Inaman-"_" . e .
: : : experience, and they have great difficulty explaining how
ufacturing environment, easy to understand and concise rules : .
) . . . and why they make a certain decision. Therefore, new op-
are preferred by operators to guide their daily operations, . o :
érators have to learn through observation. This is very in-
Therefore, a smaller rule set that has acceptable perfor- . .
. . efficient and it usually takes at least 6 months for a new
mance is desirable. . ;
operator to gain enough knowledge to be able to work in-
dependently. B.F. Goodrich engineers attempted to use tra-
ditional interview-based techniques to develop a KBS. They
were not successful, mainly because the knowledge engi-
The integrated knowledge acquisition approach is also suaieers have very little understanding of the drop hammer
cessfully applied to a real-world manufacturing processforming process, while experienced operators typically have
drop hammer forming. Drop hammer forming is one of no formal engineering education and were unable to ex-

the most versatile processes for forming sheet metal partglain the decisions they made.

4.2. Industrial application

Table 2. Comparison of the Iris classification problem

No.
Method Rules Predictive Accuracy
Our approach 3 93.3%5 training cases
REFuNN (Kasabov, 1996 8 100, 90, and 90%using 3 different fuzzy inference techniques with 120 training gases
RULES-3 PlugPham & Dimov, 19986 10 97.5%(70 training cases
ID3 8 92.5%
Premises LearningXiong et al., 2002 4 98.6%(150 training cases
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B Browsing Setup Card - SetupCard [=] E3
File Record Edit Wiew Help

s L E & 28 Kar M+ -E

Inputs
Part Number |313N5094-8 =
Material Type |6AL-4TI
haximum Draw Depth (inch) |2_5
Die Configuration M Comers [ Transition
Die Type ~ hale  Female
Ovarall Size
Length (inch) |21
Widith (inch) |6
—Outputs
Farming Process " Bare Punch © BlowUp & Blow Down

Forming Aids Material Type  |0.5" thick hot form - 80 share

MNumber of Hits [2

Detailed Frocess Flan I hodification Nutes“ﬁ_gi

Don't Save Changes and Exit Database |

For Help, press F1 | NUM | o

Fig. 7. The drop hammer forming digital assistant.

Armed with the integrated knowledge acquisition method,ization method and four intervals were formed. The follow-
a student was sent to B.F. Goodrich’s drop hammer formingng rules are obtained:
facility at Chula Vista, California. An initial interview with
domain experts identified the following inputs: material type,
maximum draw depth, presence of transitions and corners, ¢ IF maximum draw depth is LARGE AND material type
and die type; while the outputs are identified as the forming is SOFT AND transitions and corners is YES, THEN
process method, number and type of forming aids, and num-  forming process is BLOW URweight 1.0
ber of punch blows. For new operators, to decide which e IF maximum draw depth is LARGE AND material type
forming process method is the most challenging task. There-  is SOFT AND die type is MALE, THEN forming pro-
fore, we worked on rule extraction for process method de-  cess is BLOW URweight 0.297078
termination first. We collected 73 historical cases, 35 of e IF maximum draw depth is LARGE AND material type
them are used for training and the remaining used for test- is HARD AND transitions and corners is YES AND
ing. Among all of the inputs, only maximum draw depth die type is MALE, THEN forming process is BLOW
has continuous values. We used equal width as the discret- UP (weight 0.267993
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¢ |F transitions and corners is YES, THEN forming pro-
cess is BLOW DOWNweight 1.0

¢ |F transitions and corners is NO, THEN forming pro-
cess is BARE PUNCHweight 1.0

These rules achieved a 95% predictive accuracy when
applied to the testing cases. With these rules, the student
gained a good understanding of the drop hammer forming
process. A final interview with domain experts was then
conducted. The experts concluded that these rules are valid
and were able to provide additional details. Specifically,
part material can determine the selection of different types
of rubber as forming aids. If part material is hard and heat
treatment is required before the forming process is applied,
then harder and more heat resistant rubbers are needed as
forming aids. In addition, thinner rubber pads are used for
harder parts. The material of a part, combined with its max-
imum draw depth, can be used to decide the number of
punch blows needed to produce the part. Softer materials,
such as Aluminum, can be drawn in one stage to around 1
in. However, hard materials, such as titanium, can only be
drawn in one stage to a maximum of 0.5 in. When the
thickness of forming aids is determined, dendigtien the
number of punch blowsdenotedn) can be easily calcu-

H. Xing et al.

(b)

Fig. 8. A part that requires blow uga) tool and(b) configuration.
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(b)

Fig. 9. A part that requires blow dowr{a) part and tool andb) forming
aids placement.

lated asn = m/t + 1. One sheet of forming aids is removed
after each punch blow. The last blow is applied when all the
forming aids are removed. Combining the knowledge ac-
quired, a software tool is then developed to assist operator
decision making in drop hammer forming. Figure 7 shows a
snapshot of the software tool.

Some examples are used to illustrate how the acquired
process knowledge is applied for drop hammer forming pro-
cess planning. The tool shown in Figure 8a is used to pro-
duce an aluminum part. Its maximum draw depth is 3 in.
Since it is a male tool and there are four corners, forming
aids need to be placed under the gage Fig. 8l In other
words, the blow up process method is used. Since alumi-
num is soft, rubber pads are used as the forming aid. Three
1-in. rubber pads are used since the maximum draw depth
is 3 in. One sheet of rubber is removed after each punch
blow. The last punch blow is applied when all three sheets
of rubber are removed. Therefore, a total of four punch
blows are needed.

The tool shown in Figure 9a is also used to produce an
aluminum part. Its maximum draw depth is 0.5 in. Since it
is a female tool and there are transitions, the blow down
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5. CONCLUSION

This paper presents an integrated autonmyatieractive
knowledge acquisition approach to rapidly develop
knowledge-based systems. This approach relies on several
key algorithms, including data discretization, rule extrac-
tion, and rule simplification and pruning. After data discret-
ization, linguistic terms can be used to describe the input
and output parameters of the underlying problem. This al-
lows the extraction of IF-THEN rules that are compatible
with domain experts’ heuristic reasoning. As a result, do-
main experts can easily verify these rules and provide ad-
ditional rules in the same format. These rules are then
combined and processed using rule simplification and prun-
ing, which results in a more compact rule base. This paper
Fig. 10. A nearly flat part with no corners and transitions. recognizes the trade-off between completeness and com-
pactness of rules. The goal is to obtain concise and easy to
understand knowledge while maintaining an acceptable level
of system performance.

A benchmark case study showed that the proposed ap-
process method is used. One sheet of 0.5-in. rubber pgaroach has satisfactory performance. An industrial case study
approximately the size of the part is placed on top of thefurther showed its practicality and effectiveness. The re-
part(Fig. 9b). After one punch blow is applied, the rubber search work related to this paper is useful to build up knowl-
pad is removed. Another punch blow is then applied toedge based systems with small rule sets. This is somehow a
obtain the final part. neglected aspect of Al in engineering, especially in manu-

Figure 10 shows a tool that is used to produce an alumifacturing. The concise rules can form the foundation of
num part. The tool is essentially flat, with a maximum drawtraining modules that can jump-start workers’ skills to new
depth(the difference between the highest and the lowesand higher levels of competence.
point of the area enclosed by the bgatl0.05 in. It has no The effectiveness of the algorithms also depends on the
transitions. Note that the bead is used to lock the part. Exquality of the training and testing data. This paper assumes
cess material will then be trimmed away to obtain the finalthe data used is representative of the problem domain. If
part. Therefore, there are no corners either. In this carejot, some preprocessing should be carried out, which forms
bare punch is sufficient to produce the part. Care should banother direction of research work. Major tasks in this area
exercised when determining the presence of transitions. include missing data treatment, data cleansing, dimension-

Figure 11 shows a not-so-flat part that clearly shows aality reduction, and so forth, which are beyond the scope of
transition, which needs to be produced using blow dowrthis paper. Further research will focus on automatic tuning
rather than bare punch. of the developed KBS. Note that fuzzy inference is used to
operate on the RB; thus, the membership functions used
will influence the predictive accuracy. We are currently de-
veloping automatic tuning algorithms based on neural net-
work learning that can adjust parameters of membership
functions for improved performance.
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