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The drying dynamics inside a network of interconnected channels driven by
pervaporation, e.g. by diffusion of water through a permeable material surrounding
the channels, is studied. The channels are initially filled with water and a single
air/water meniscus is initiated at the entrance of the network; drying proceeds as menisci
progressively invade the network. The study is focused on elementary networks: simple
branched networks without reconnections, or simple loops, in order to get a clear physical
picture on which an understanding of drying on more complex networks, such as those
encountered in leaves, could be built in the near future. Experiments are compared with
models which elaborate on a previously published single-channel model (Dollet et al.,
J. R. Soc. Interface, vol. 16, 2019, 20180690). In branched networks, experiments reveal
velocity discontinuities of the menisci as they split at the nodes. In loops, it is found
that the drying rate depends on the number of menisci bounding a given connected
water region; when there are two such menisci, a prediction of the dynamics of each of
them is proposed, based on the pervaporation-induced hydrodynamics inside the channels.
Experiments and model predictions compare favourably for the global drying rate. Some
deviations are found for the dynamics of individual menisci, which are ascribed to the
sensitivity of the dynamics to small fluctuations in wetting conditions.

Key words: condensation/evaporation, microfluidics

1. Introduction

Pervaporation is the process of drying of a liquid region by mass transport through a
permeable medium. It occurs naturally in vascular plant leaves: water (or more precisely
sap) is flowing in a network of veins, diffuses out of the veins through the leaf tissue
and then evaporates at the surface of the leaf. This fascinating network of veins, called
venation, can be very simple, with only one vein per leaf for Selaginella species, or can
be very complex, with multiple connections between veins for flowering plants. A first
aspect of this complexity is the hierarchy of vein sizes with main veins, secondary
veins, tertiary veins and so forth. Another important aspect is the connectivity of the
network, on which we focus here. When starting from the main vein where water is
entering the leaf, veins can either: (i) split into several branches, (ii) reconnect, creating
loops and a net-like reticulation of the network. In normal conditions water is flowing
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through the whole network. However, under severe drought, a cavitation bubble can appear
and grow (Tyree & Sperry 1989; Cochard 2006), the remaining water in the network
then dries out, eventually disabling the leaf function. This mechanism may threaten a
growing proportion of plants and trees in the context of global warming (Choat et al.
2018). In a different context, pervaporation through thin slabs of a water-permeable
polymer, polydimethylsiloxane (PDMS) is used in so-called microevaporators in chemical
engineering. It is useful because it ensures a homogeneous concentration of solutes or
colloids and therefore a proper study of their phase diagrams (Walker & Beebe 2002;
Eijkel, Bomer & van den Berg 2005; Leng et al. 2006; Merlin, Salmon & Leng 2012; Ziane
et al. 2015; Ziemecka, Haut & Scheid 2015). However, despite the importance of these
biological and chemical applications, pervaporation-induced flows in channel networks
are little known, in contrast with the well-established field of pressure-driven flows in
porous media.

To bridge this gap with a physical standpoint, our approach is to understand the drying
using artificial channels in a permeable material, following the concept of biomimetic
leaves incorporating a man-made microfluidic network in a porous material (Noblin et al.
2008). Geometry and physical properties of the channels in the network are then well
controlled. During drying, air invades the microfluidic network initially filled with water.
The interfaces (menisci), separating air and remaining liquid, travel along all the branches
of the network, and eventually either reach endpoints or merge with other ones.

The dynamics of moving menisci and expelled liquid has been observed in a
two-dimensional (2-D) network of microchannels in the literature, but with different
driving mechanisms: first, when a source of air pressure pushes liquid plugs out of a
microfluidic network towards openings, for instance to study airway reopening in lungs
(Song, Manneville & Baroud 2010; Song et al. 2011; Signe Mamba et al. 2018). Note the
behaviour of these liquid plugs is similar to long droplets trapped in a network, causing
them to potentially divide (Link et al. 2004; Salkin et al. 2013). There is also a similarity
with the drainage of a large amount of liquid when pushed by another liquid (Armstrong
& Berg 2013). Second, the motion of menisci in networks has been studied when wetting
drives the liquid, in the case of the spontaneous imbibition of a 2-D network by a wetting
liquid (Sadjadi & Rieger 2013). Here, the specificity of our study is that water constantly
pervaporates all over the network, driving the flow.

The goal of this article is to provide a physical study on the dynamics of drying by
pervaporation in channel networks. Such a dynamics has been previously studied and
understood in single, straight channels (Noblin et al. 2008; Ziane et al. 2015; Dollet et al.
2019). In this paper, we build up on this knowledge to study the most elementary network
topologies: simple branches and loops; our aim is to provide a quantitative picture in these
simple cases, which could be the ‘building block’ for more complex networks such as
those encountered in natural leaves.

2. Materials and methods

2.1. Materials
In all our designs, there is a straight entrance channel into which drying starts. We added
to all designs a circle of radius 1 mm at the root of the entrance channel. In plant leaves,
embolism starts always in larger conduits (Brodribb, Bienaimé & Marmottant 2016a;
Brodribb et al. 2016b). The larger conduits are located on the larger veins, which occur
at the base of the leaf in the petiole. Artificial embolism has therefore been proposed
by injecting gas in the petiole of plant leaves (Hochberg et al. 2019), to mimic the
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FIGURE 1. Snapshots of single-node networks, with (a) two, (b) three, (c) five and (d) four
branches. (e) Transverse side view of the channels of width w and height h between a glass
slide and a PDMS sheet of thickness H. ( f ) Longitudinal side view of a branch. The meniscus,
sketched as a vertical line inside the channel, separates a water-filled region on its right side
and an air-filled region on its left side. The varying blue shade depicts the decreasing water
vapour concentration ca in the air-filled region, also sketched by the red dashed curve which
shows the decrease of ca over the characteristic length Lg. The green dashed arrows show the
water flux leaving the channel by pervaporation through PDMS. The red dashed arrow shows
the evaporation across the meniscus. The blue arrows inside the water-filled region represent the
liquid flow induced by pervaporation.

development of embolism in natural conditions. In our set-up, the entrance channel thus
mimics the main vein of leaves.

To study the effect of branching (without reconnections), we start with four designs with
a single node where the entrance channel arrives and from where several straight branches,
either two, three, four or five, emerge (figure 1). We shall henceforth call these designs
single-node networks. All branches are of length Lb = 4.0 mm. For each single-node
network, all channels (entrance channel and branches) have an equal angular distance from
the node.

We then study branched networks with a larger number and a higher hierarchy of nodes,
but at which each incoming branch subdivides in only two branches. First, we designed
such a ‘tree’ with three levels of nodes (figure 2a). At each node, the two branches are
separated by an angle of 60◦. Contrary to figure 1, not all the branches have the same
length, to determine whether length variations have an effect on the drying kinetics.
Finally, we study a natural vein network, namely the leaf of the fern Adiantum (Brodribb
et al. 2016a). To do this, we adapted a mask drawn from the real leaf (Bienaimé 2016)
and modified the channel widths such that they all have the same width w = 100 μm
(figure 2b), which is the common width of all the branched designs in the current study.

To study simple loops, we created four designs where the entrance channel splits at a first
node, henceforth called the entrance node, into two channels making a circle of diameter
2R� = 4.3 mm, and reconnecting at a second node, henceforth called the exit node, from
which a single straight terminal channel emerges. One of the loops is symmetric, i.e. the
distance between both nodes is equal in the two channels connecting them (figure 3a), and
the three others are asymmetric, with a shortest angular distance β between the nodes,
measured from the centre of the circle, equal to 120◦ (figure 3b,d) or 60◦ (figure 3c);
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(b)

(a)

FIGURE 2. Snapshots of branched networks with more than one hierarchical level: (a) network
with three hierarchical levels, and (b) network from an Adiantum leaf (Brodribb et al. 2016a).
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FIGURE 3. Snapshots of the four designs with loops. In (a–c), the terminal channel is inside
the circle merely to spare some space. (e) Sketch of the different elements of the loop.

this angle is obviously 180◦ in figure 3(a). The terminal channel has a length Lt = 3.0 mm
in figure 3(a–c), and 39 mm in figure 3(d), to determine whether Lt has an effect on the
drying dynamics.

We fabricated the channels based on all these designs as described in Dollet et al.
(2019). We created masks from the designs using high-resolution printing. The channels
were moulded in PDMS using standard soft lithography techniques. From the masks, we
created a mould in a photoresistive material (SU8) on a silicon wafer. We mixed liquid
PDMS (Sylgard 184, Dow Corning) with a curing agent in volumetric proportions 9 : 1.
This mixture was degassed then spin coated on the mould at 300 revolutions per minute
(r.p.m.) for 15 s then 900 r.p.m. for 40 s, to create an imprint of small thickness, and
baked at 65 ◦C for one hour to reticulate the PDMS. This imprint was then bonded to a
glass slide as follows. The bare glass slide was exposed for 30 s to a plasma, then the
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Single-node networks (figure 1) Tree and Adiantum (figure 2) Loops (figure 3)

h (μm) 40.2 34.6 36.9
H (μm) 79.6 106.1 89.8

TABLE 1. Values of the channel thickness h and PDMS thickness H measured for all the
channels.

thin, flexible PDMS imprint was immediately deposited on top of the plasma-activated
glass surface, carefully avoiding folding of the PDMS sheet. This simple procedure was
sufficient to firmly bond PDMS and glass. We measured the channel thickness h and the
PDMS thickness H using an interferometer. This is crucial because these thicknesses
presented significant variations between different designs, despite the use of the same
spin-coating parameters. The values of the thicknesses are tabulated in table 1. To speed
up the measurements, we gathered the four single-node networks on one slide, the tree and
Adiantum networks on a second one and all loops on a third one, at a distance large enough
that diffusive interactions remain negligible. After figure 3 from Noblin et al. (2008), it is
the case as soon as channels are separated by a distance of order 5δ, with δ = H − h. In
our case, δ ≈ 60 μm (table 1), hence the distance between channels should be larger than
0.3 mm. In practice, the distance between different designs is larger than 1 mm.

2.2. Methods
The experiments are performed as described in Dollet et al. (2019); we only repeat here
the main steps. We opened the channels by manually cutting through the PDMS layer
across the circle with a scalpel at the junction between the channels and the round part
(these cuts are clearly visible in figures 1 and 2). Once the channels were water filled, we
placed them under a dry atmosphere by imposing a constant dry air flux above the PDMS
layer. Each channel progressively dried out, as menisci separating water from air advanced
downstream through the channel from the roots to farther branches, until reaching the ends
of the terminal branches. The motion of the menisci was imaged with a CCD camera.

To measure the location of the menisci as a function of time, we used the reslice
operation of the freeware ImageJ and a home-made Matlab script. For each design, we
draw a series of segmented lines following the middle of each channel, and we generate
spatio-temporal diagrams along each line, for which we get the time evolution of the
location of the menisci. Obtaining the velocity of the meniscus required us to take the
discrete derivative of the length of the channel filled with water as a function of time. We
chose to approximate the data for each meniscus, between its creation and annihilation
(e.g. at a node), by a polynomial function of degree n ≤ 9. We chose the degree of the
polynomial which gives the best coefficient of determination R2 between the experimental
data and the interpolating polynomial. We performed such an operation on each meniscus
as long as it could be unambiguously defined between splitting or annihilation events (see
next section).

3. Qualitative description of the experimental drying dynamics

3.1. Branched networks
In branched networks, the single meniscus in the entrance channel first moves until it splits
at the entrance node, as shown in figure 4. In the single-node networks, each meniscus then
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moves until it annihilates against the terminal wall of each terminal branch. The dynamics
in each branch has the same speed to within a few per cent (figure 4a). In the tree and
Adiantum (figure 4b), there is a ‘cascade’ of consecutive splitting events as deeper nodes
are reached by the different menisci, until the terminal branches are reached.

3.2. Loops
Drying in loops proceeds as follows. First, a single meniscus moves in the entrance channel
until it splits in two menisci at the entrance node. Then we distinguish two cases. For the
symmetric loop (figure 5a), the two menisci move almost symmetrically, until they merge
at the exit node; the resulting meniscus in the terminal channel moves until it annihilates
on the terminal wall of this channel, which ends the drying process. For the asymmetric
loops (figure 5b), where the loop has a short and a long arm, the meniscus in the short arm
reaches first the exit node, where it splits in two. We have then two disconnected water
regions and three menisci: one water region is in the terminal channel, while the other,
bounded by two menisci, is in the long arm, until both regions dry.

4. Theory

4.1. Drying dynamics for a single channel
In this section, we recall the main ingredients to model the drying dynamics by
pervaporation in a single channel; see Dollet et al. (2019) for full details. This case is
important because the drying models in networks, derived in §§ 4.2 and 4.3, elaborate on
this simplest case, and also because it describes drying in each terminal branch of the
various networks.

According to the experimental configurations, we consider a semi-infinite channel of
width w and height h between a glass slide and a PDMS layer of thickness H (figure 1e),
filled with water over a length L between the channel extremity and an air/water meniscus.
The outer air is at controlled relative humidity RH = cout

a /csat
a with cout

a the water vapour
concentration in the outer air and csat

a the water vapour concentration in saturated air;
in our experiments, RH = 0. The channels dry because of water diffusion from the
water-filled part of the channel to the outer air through the water-permeable PDMS. We
showed in Dollet et al. (2019) that there are two contributions to the rate of decrease
of the liquid volume: one by diffusion from the water–PDMS interface (Q�), and one
by evaporation from the meniscus (Qg). Assuming that L is much greater than H and
w, a condition generally met in practice because microfluidic channels are very slender,
the water concentration profile in the PDMS between the water-filled part of the channel
and the outer air is almost invariant along the channel length; hence, Q� = q�L with q�

the diffusive flux per unit length along the channel. We henceforth consider Q� and Qg
as volumetric fluxes, and not molar fluxes as in Dollet et al. (2019), for simplicity; the
main conclusions are unaffected by this choice. Equating the variation of volume of the
water-filled part of the channel to the diffusive flux yields hwL̇ = −q�L + Qg, hence

L̇ + L + Lg

τ
= 0, (4.1)

with

Lg = Qg

q�

, τ = hw
q�

. (4.2a,b)
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4 min 5 min 6.4 min 9 min

18.3 min 28.7 min 48 min 1.5 h

3.1 min 5.3 min 7.9 min

12.8 min 34.1 min 50.2 min

(b)

(a)

FIGURE 4. Snapshots of the progressive drying in (a) a single-node network with four branches,
and (b) the Adiantum design. Darker areas in the networks represent dried parts of the channels,
while lighter areas are still filled with water. Horizontal bars represent a length of 1 mm.
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2.6 min 4.3 min 6.6 min 13.4 min

24.7 min 47.5 min 1.2 h 1.22 h

4 min 6 min 7.8 min 15.6 min

39 min 53 min 1.18 h 1.49 h

(b)

(a)

FIGURE 5. Snapshots of the progressive drying in (a) the symmetric loop, and (b) an
asymmetric loop (the dynamics is qualitatively similar for the other asymmetric loops).
Horizontal bars represent a length of 1 mm.

Equation (4.1) has the solution

L(t) = [L(t = 0) + Lg]e−t/τ − Lg, (4.3)
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for t ≤ τ ln[L(t = 0)/Lg], which is the time at which the channel fully dries. In Dollet
et al. (2019), we derived analytical predictions for both q� and Qg, hence, for Lg and τ , by
solving first the two-dimensional diffusion problem in the cross-section of the water-filled
part of the channel, then the three-dimensional diffusion problem in the PDMS and the
air-filled part of the channel away from the meniscus. These calculations yield

Lg =
√

αDa

DP

√√√√ hw
w
δ

+ ξ
, (4.4)

and

τ = ρ

DPMCsat
P (1 − RH)

hw
w
δ

+ ξ
, (4.5)

with α = 0.03 the Henry constant quantifying the water affinity in PDMS (Harley, Glascoe
& Maxwell 2012), Da = 2 × 10−5 m2 s−1 the diffusivity of water vapour in air, DP =
10−9 m2 s−1 the diffusivity of water in PDMS (Watson & Baron 1996), ρ = 103 kg m−3

the density of water, M = 0.018 kg mol−1 the molar mass of water, Csat
P = 40 mol m−3

the saturation concentration of water in PDMS (Randall & Doyle 2005), δ = H − h the
PDMS thickness between the channel top and the outer air and ξ a dimensionless factor
quantifying diffusion between the channel sidewalls and the outer air; under reasonable
geometrical assumptions quantified in Dollet et al. (2019), it equals

ξ = 2
π

[
ln

(H + δ)h
δ2

+ H
δ

ln
H + δ

h

]
. (4.6)

In anticipation of what follows, it is worth reminding that the evaporative flux Qg
across the meniscus is related to water vapour in the air inside the channel: by Fick’s law,
Qg = −hwDadca/dx ′|x ′=0, with ca the water vapour concentration field and x ′ the distance
from the meniscus. The spatial dependence ca(x ′) is itself related to the water transfer
from the channel to the outer atmosphere through PDMS, hence it results from the
coupled diffusion of water in air and in PDMS. In Dollet et al. (2019) we showed that
d2ca/dx ′2 − ca/L2

g = 0, with Lg given by (4.4). Hence, Lg can be interpreted as the typical
distance over which air (and also PDMS) dries away from the meniscus (figure 1f ). This
distance is much larger than the typical cross-section dimensions: from (4.4), Lg ≈ M

√
hδ

with an amplification factor

M =
√

αDa

DP
, (4.7)

which equals 30 with the aforementioned values for the different parameters. It is much
larger than one, mostly because the diffusivity of water through PDMS is much less
efficient than in air (DP � Da), which ‘delays’ the drying of air inside the channel. This
implies that the evaporation flux per unit area of the meniscus is much stronger (by a factor
M) than the liquid pervaporation flux per unit area of the PDMS/channel interface. Yet,
the contribution of liquid pervaporation to the total drying rate dominates if Q� > Qg or if
L > Lg ≈ M

√
hδ, which is the most common case in our experiments.

Increasing Lg implies weaker concentration gradients, which may at first sight lower Qg
and contradict the very definition (4.2a,b) of Lg. This apparent contradiction is solved
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by the fact that increasing Lg also implies increasing the prefactor relating Qg to the
concentration gradient, relative to the prefactor relating q� to the concentration gradient.

The role of the evaporation through the meniscus into the air is somewhat reminiscent of
the role of fins in heat transfer, which enhance the heat flux from a heated surface (Bejan
1993). In some sense, evaporation through the air channel acts as an extra effective ‘fin’
(in the sense of mass transfer, not of heat transfer) which adds up to the pervaporation flux
from the PDMS/water interface.

4.2. Drying dynamics for branched channels
In branched channels, our experiments always begin with a single meniscus inside the
entrance channel; as soon as the meniscus meets the first node of the network, it splits into
two or more menisci, depending on the number of branches; and so forth for each of these
menisci if they reach further nodes (figure 4).

We start our discussion with the single meniscus in the entrance channel at the
beginning. Because the water-filled part spans multiple branches, the water concentration
profile in the PDMS may differ from the single-channel case. More precisely, in the
vicinity of a node, different branches are close enough to ‘compete’ for drying because
they are coupled in the diffusion problem. However, as shown in Noblin et al. (2008),
diffusive interactions between two neighbouring channels decay exponentially with H as
the characteristic length scale. Hence, except if branches start from a node with a small
separation angle, diffusive interactions thus fade away at a distance of order H along
each branch from a node. Therefore, provided the length of each branch between two
consecutive nodes (or between a node and an extremity) is much larger than H, we can
neglect the edge effect due to the nodes and extremities and consider, as in the case of
a single channel, that the concentration profile between each water-filled branch and the
outer air is invariant along the branch length, and similar to the single-channel case. In
this case, the diffusive flux from the water–PDMS interface and the outer air still writes:
Q� = q�L, with L the total length of the water-filled branches ahead of the meniscus
(figure 6a). Hence, the single meniscus in the entrance channel is predicted to obey (4.1)
with solution (4.3).

Let us now consider one meniscus inside one of the branches, obtained after a splitting
event. From the previous discussion, we still have Q� = q�L, with L the total length of the
water-filled branches ahead of the meniscus. For simplicity, we shall henceforth call this
quantity L the ‘water length’. However, if the distance � travelled by the meniscus from the
node where it has been created (figure 6b) is smaller than, or of the order of magnitude of
Lg, the water concentration profile behind the meniscus, responsible for the contribution
Qg (see § 4.1), is affected by the presence of the node. In other words, menisci issued from
a given splitting event interact over a range of order Lg, which is much larger than H or w
(see § 4.1). Hence, in the case � � Lg, we cannot use the single-channel prediction for Qg.

In appendix A, we derive a prediction for the diffusive flux from the meniscus
accounting for this interaction. We show in § 5.1.1 that the discrepancy between this
prediction and the single-channel prediction remains small in the parameter range of our
experiments. Hence, to simplify the forthcoming discussion of our experiments, we shall
simply use (4.1) as a prediction with L the total length of the water-filled branches ahead
of the meniscus under consideration, unless explicitly stated.

4.3. Drying dynamics for loops
The key difference between branched channels without loops, on the one hand, and loops
on the other hand, is the following. In branched channels, each connected water region is
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(b)

0

(a)

L0

L0

L1
L1

L

L2 L2

x0

x2

x1(c)

�

FIGURE 6. In branched networks, (a) for a meniscus before a node, L is the total length of
the water-filled branches ahead of the meniscus, here L = L0 + L1 + L2. (b) Meniscus created
after splitting in a node, having travelled a distance � from the node where it has been created.
(c) Sketch of the topology corresponding to the phase of the drying dynamics in loops shown in
figure 5(a) (snapshots at t = 15.6 and 39 min) and figure 5(b) (snapshot at t = 13.4 min).

bounded by one meniscus. On the contrary, once the meniscus has split at the entrance
node of the designs with loops, there is a connected water region bounded by two menisci
(snapshots at t = 15.6 and 39 min in figure 5(a), and at t = 13.4 min in figure 5b).
However, the model developed in § 4.2 predicts the rate of drying of a given connected
water region, but not how such a rate determines the individual velocity of two (or more
generally multiple) menisci bounding that region.

To go one step further, we must delve into the details of the hydrodynamics driven by
pervaporation. We start with the simplest case, namely the single channel with a water
region of length L bounded by one meniscus and one terminal wall, a case for which
pervaporation-induced flow is well documented (Verneuil, Buguin & Silberzan 2004;
Randall & Doyle 2005; Leng et al. 2006). We denote by x the streamwise axis, with
x = 0 at the wall and x = L at the meniscus and u(x, t) the velocity, averaged over the
cross-section. Since q� is the flux of water leaving the channel per unit length, water
conservation inside the channel (assuming incompressible flow) implies that ∂u/∂x =
−q�/hw. To integrate this equation, we use the classical impermeability condition at the
terminal wall

u(0, t) = 0, (4.8)

to get

u = − q�

hw
x . (4.9)

It is worth noting that u(L, t) /= L̇(t), because of the evaporation flux Qg leaving the
meniscus; this is an illustration of Stefan flows. The correct relationship is

u(L, t) = L̇ + Qg

hw
. (4.10)

Moreover, the impermeability assumption (4.8) is, strictly speaking, wrong because of the
‘leakiness’ of the PDMS walls. However, because of the large value of the amplification
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factor (4.7), the water velocity across the terminal wall remains small in comparison
to Qg/hw, which justifies using (4.8) as a first approximation. This also enables us to
neglect the velocity across the walls everywhere, hence we can use a no-slip boundary
condition there, and we can also neglect the transverse pressure gradients compared to
the longitudinal pressure gradient. Therefore, we can use the Poiseuille law relating the
average velocity to the pressure gradient for a laminar flow in a rectangular channel

u = −S
η

∂p
∂x

, (4.11)

with the section S equal to (see e.g. Bruus 2007)

S = 1
12

h2 − 16
π5

h3

w

∞∑
n=0

1
(2n + 1)5

tanh
(2n + 1)πw

2h
. (4.12)

The boundary condition for the pressure field comes from the Laplace pressure jump
across the meniscus

pa − p(L, t) = γ κ, (4.13)

with pa the atmospheric pressure, γ the surface tension and κ the curvature, counted
positive if the centre of curvature is on the air side. The curvature depends on the width
and height of the channel, and on the contact angles of water on both glass and PDMS; it
is positive with our convention because both contact angles are smaller than 90◦, as can
be seen from the meniscus curvature in the snapshots. From (4.9) and (4.11), we thus get
the pressure field in a single channel

p(x, t) = pa − γ κ − ηq�

2hwS (L2 − x2). (4.14)

We now consider a connected water region with two menisci. If it spans a single channel,
in particular the long arm of a loop as in figure 5(b) (see the snapshot at t = 47.5 min), its
drying dynamics is very similar to the single-channel case discussed in § 4.1, except that
the water flux Qg across a given meniscus must be counted twice. Hence instead of (4.1),
we have

L̇ + L + 2Lg

τ
= 0, (4.15)

provided that the distance travelled by each meniscus from the node where it has been
created is smaller than, or of the order of magnitude of Lg (see the discussion of § 4.2).
Under this assumption, the dynamics of each of the two menisci must be similar and they
must move at the same velocity.

If a connected water region with two menisci spans three ‘branches’ connecting at a
node, as in figure 5(b) (see the snapshot at t = 13.4 min), we must consider each branch.
For the terminal channel of length L0, we simply adapt (4.8) and (4.9): u0(L0, t) = 0 and
∂u0/∂x0 = −q�/hw (see figure 6c for the orientation of the axis); in particular, we get
U0 ≡ u0(0, t) = q�L0/hw. For each of the two parts between the node and one meniscus,
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∂ui/∂xi = −q�/hw (for i = 1, 2), hence

ui(xi, t) = Ui − q�

hw
xi, (4.16)

where Ui is the velocity in channel i at the node. One relation between the two unknowns
U1 and U2 comes from the flux conservation at the node

U0 + U1 + U2 = 0. (4.17)

To get a second relation, we compute the pressure difference between the node and each
of the two menisci ∫ Li

0

∂pi

∂xi
dxi = pa − γ κ − p0, (4.18)

for i = 1, 2, after (4.13), and denoting p0 the pressure at the node. We also have∫ Li

0

∂pi

∂xi
dxi = − η

S
∫ Li

0
ui dxi = − η

S
(
− q�

2hw
L2

i + UiLi

)
, (4.19)

from (4.11) and the expression (4.16) of the velocity, whence the second relation between
U1 and U2

− q�

2hw
L2

1 + U1L1 = − q�

2hw
L2

2 + U2L2. (4.20)

Solving the system (4.17) and (4.20), we get

U1 = q�

hw

[
1
2
(L1 − L2) − L2

L1 + L2
L0

]
, U2 = − q�

hw

[
1
2
(L1 − L2) + L1

L1 + L2
L0

]
.

(4.21a,b)

We can finally predict the velocity of the menisci. Inserting U1 and U2 in (4.16), taking
into account that L̇i = ui(Li, t) − Qg/hw from (4.10) and using (4.2a,b), we get

L̇1 = −1
τ

[
1
2
(L1 + L2) + L2

L1 + L2
L0 + Lg

]
,

L̇2 = −1
τ

[
1
2
(L1 + L2) + L1

L1 + L2
L0 + Lg

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.22)

These predictions deserve some comments. First, L̇i < 0, which is of course consistent
with the loss of liquid water upon drying. Second, the largest velocity |L̇i| is predicted
to occur in the shortest arm. This is also expected, because the same pressure drop
drives the liquid between the node and each meniscus. Third, when L0 = 0, the equations
are compatible with (4.15) when setting L = L1 + L2. Fourth, the dynamics becomes
nonlinear, contrary to (4.1) and (4.15).

We now solve (4.22). As expected, the sum of the lengths obeys a simple equation

L̇1 + L̇2 = −L1 + L2 + L0 + 2Lg

τ
, (4.23)

with solution L1 + L2 = (L10 + L20 + L0 + 2Lg)e−t/τ − (L0 + 2Lg), denoting the initial
conditions: Li(t = 0) = Li0 for i = 1, 2. Inserting this solution in (4.22), we find that the
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difference of the lengths obeys a linear equation, albeit with a time-dependent coefficient

L̇1 − L̇2 = L0

τ

L1 − L2

(L10 + L20 + L0 + 2Lg)e−t/τ − (L0 + 2Lg)
. (4.24)

This is a separable equation which is easy to solve, and which yields

L1 − L2 = (L10 − L20)

[
(L10 + L20 + L0 + 2Lg)e−t/τ − (L0 + 2Lg)

L10 + L20

]L0/(L0+2Lg)

× exp
(

− L0

L0 + 2Lg

t
τ

)
. (4.25)

Of course, this solution holds only as long as both lengths remain positive, which ceases
when the length in the shortest arm decreases to zero. This occurs at a critical time which
must be solved numerically using the expressions of L1 and L2.

5. Experiments

Having derived all theoretical tools to predict the dynamics in our elementary networks,
we now proceed to a quantitative description of the experiments, and compare them to our
predictions.

5.1. Branched networks

5.1.1. Single-node networks
We begin by measuring the drying dynamics in single-node networks (figure 1). The

distance travelled by the menisci is plotted as a function of time in figure 7; the time
origin here is somewhat arbitrary, corresponding to the beginning of the camera recording.
The distance increases with time, as drying proceeds. For a given number of branches,
all branches show a similar dynamics, with a drying velocity decreasing with increasing
distance. The striking feature of the drying dynamics is a velocity jump: the meniscus
velocity is larger in the main channel than in the branches, the jump being larger at
increasing number of branches (figure 7).

The origin of the jump can be qualitatively explained from the discussion in § 4.2,
illustrated in figure 6(a,b). The water length from the meniscus coming from the entrance
channel, as it arrives at the node, equals NLb with Lb the length of each branch. As it splits
into N menisci, each of these has its own water length equal to the branch length Lb. More
quantitatively, the dynamics of all menisci should obey (4.1). To test this idea, we plot
the meniscus velocity as a function of the water length for all menisci in figure 8(a). This
shows indeed that all data follow a common trend, which is well fitted by a straight line.
The entrance channels show small deviations from this trend. We have no clear explanation
for these deviations, but they may be due to the somewhat uncontrolled opening of the
channels by scalpel cutting (see § 2.2). However, they remain within 10 % from the straight
line, suggesting that the simple model (4.1) already captures the dynamics of drying
in branched channels with good accuracy. The value of the fitting parameters will be
discussed in § 6.1 for all experiments.

As discussed at the end of § 4.2, we should in principle not use the single-channel
version of the flux Qg from the meniscus for the dynamics inside the branches, but rather
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FIGURE 7. Drying dynamics in branched networks. Displacement of the meniscus from the
origin as a function of time for networks with (a) two, (b) three, (c) four and (d) five branches.
Symbols correspond to different branches as sketched on each panel: round symbols correspond
to the main channel, other symbols correspond to branches. The origin is marked with a filled
black circle.
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FIGURE 8. (a) Velocity of the meniscus as a function of the water length, in the main channel of
the network of two (◦), three (∗), four (+) and five (×) branches, and in the branches (triangles).
The line is a linear fit of all data, with best fitting parameters in (4.1): τ = 1.8 × 103 s and
Lg = 1.1 mm. (b) Velocity of the meniscus as a function of the water length, in branches of the
network of two (�), three (�), four (�) and five () branches. The curves are fits of the data for
two (plain curve), three (dashed curve), four (dotted curve) and five (dash-dotted curve) branches
by (5.1) and (5.2), with best fitting parameters: τ = 1.7 × 103 s and Lg = 1.1 mm. The straight
line corresponds to (4.1) using the latter two parameters.
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the expression (A 8) derived in appendix A, which accounts for the coupled evaporation
from different menisci issued from the same node. Hence, (4.1) should be replaced by

L̇ + L + fLg

τ
= 0, (5.1)

with a factor f given by, after (A 8) and since Lb = � + L (figure 6b)

f = cosh[(Lb − L)/Lg] + N sinh[(Lb − L)/Lg]
sinh[(Lb − L)/Lg] + N cosh[(Lb − L)/Lg]

. (5.2)

To quantify the magnitude of this correction, we focus on the data for the branches, and we
fit them by (5.1) and (5.2), using τ and Lg as free fitting parameters. The results are shown
in figure 8(b). They show indeed a small deviation from a linear relationship between the
meniscus velocity and the water length as the latter tends towards the branch length, i.e.
as the meniscus is close to the node. This is in qualitative agreement with our model of
evaporation coupling of the menisci, even though the agreement is not fully quantitative,
perhaps because the hypotheses underlying the model (notably that w and H are much
lower than other lengths under consideration) become questionable in the range of lengths
where evaporation coupling is significant. However, the main result from this analysis is
that evaporation coupling has only a small effect on the velocity of the menisci inside the
branches, because the difference of velocity is only 10 % lower with coupling than without
(compare the straight lines and the curves in figure 8b). Hence, to simplify the forthcoming
discussion of our experiments, we shall simply use (4.1) as a prediction with L the total
length of the water-filled branches ahead of the meniscus under consideration.

5.1.2. Multinode networks
Overall, the results on single-node networks suggest a strong correlation between the

meniscus velocity and the water length. We further test this idea by studying more complex
branched channels. We consider first the ‘tree’ network of figure 2(a). We first plot the
distance travelled by the menisci as a function of time in figure 9(a). This graph shows
that at each node, there is a jump of velocity, consistent with the previous observations
of single-node networks. Moreover, there is a signature of the asymmetry of the eight
terminal branches: the drying occurs in a shorter time, but with a lower velocity, in the
two short branches (inset of figure 9a). According to the previous discussion, we measure
the meniscus velocity and water length in the main channel and in each branch, and we
plot the dependency between these two quantities in figure 9(b). This shows that the data
are gathered in four subgroups, depending on the level of the branch considered inside
the tree; as in the previous case, the gaps between each subgroup are associated with a
velocity jump as a meniscus splits in two at each node. Moreover, the data collapse very
well onto a straight line, which confirms that the simple model (4.1) describes well the
drying dynamics even in cases with multiple nodes.

We finally consider the Adiantum design (figure 2b). Since there are many edges (45
in total), we measure only the average velocity in each edge, and we retain the standard
deviation of velocity as an error bar. We plot the meniscus velocity as a function of the
water length in figure 10. All data collapse again very well on a single straight line, with
only one significant outlier. This collapse is all the more remarkable that the Adiantum
design does not really obey the model approximations; because it comprises many veins,
which are not all slender, and they are close enough that diffusive interactions may become
significant.
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FIGURE 9. Drying dynamics in the network of figure 2(a). (a) Displacement of the meniscus
from the origin as a function of time (inset: zoom on the terminal branches). (b) Velocity of
the meniscus as a function of the water length, and sketch of all branches with their symbols
used in this figure. The line is a linear fit of all data, with best fitting parameters giving in (4.1):
τ = 2.9 × 103 s and Lg = 0.8 mm.
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FIGURE 10. Velocity of the meniscus as a function of the water length in the different edges of
the Adiantum network. The line is a linear fit of all data, with best fitting parameters giving in
(4.1): τ = 3.0 × 103 s and Lg = −0.4 mm.

5.2. Loops

5.2.1. Meniscus position and water length
In the branched networks without reconnections, we have quantified the position of the

menisci by the distance travelled from the origin, which was unambiguous. Conversely,
in loops, there are several possible choices to quantify the position x of a meniscus. We
proceed as follows, and as illustrated in figure 11(a); in each case, we also relate x to the
water length L or to the quantities L1 and L2 previously introduced.

For the meniscus in the terminal channel, we use the distance s from the end of the
channel (figure 11a,iii). In this case, we thus have simply: x = s and L = s.

When there is one meniscus per arm, for the meniscus in the short arm, we set x =
Lt + R�θ , where we recall that Lt the length of the terminal channel, R� the radius of the
loop and where 0 ≤ θ ≤ β is the angular distance between the meniscus and the exit node
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FIGURE 11. (a) Snapshots of the different menisci in a loop, superimposed with the symbols
used to plot their positions in panels (b,c). (i) Meniscus coming from the entrance channel, and
splitting at the entrance node into (ii) two menisci in each branch of the loop. Then the meniscus
in the short arm splits at the exit node and (iii) the remaining water splits in two disconnected
regions, one in the terminal channel and the other, bounded by two menisci, in the long arm. (b,c)
Dynamics of individual menisci in two asymmetric loops: time evolution of the different menisci
(b) in the loop of figure 3(b,c) in the loop of figure 3(c); the menisci are distinguished by different
symbols and colours as shown by in panel (a). The lines are the predictions of the dynamics
of each meniscus by the model of § 4.3, with best fitting parameters: (b) τ = 2.6 × 103 s and
Lg = 1.7 mm and (c) τ = 2.5 × 103 s and Lg = 1.7 mm.

(figure 11a,ii), and β the small angle between both nodes. For the menisci in the long arm,
we set x = Lt + R�θ

′ with 0 ≤ θ ′ ≤ 2π − β the angular distance between the meniscus
and the exit node (figure 11a,ii). We thus have: L = Lt + R�(θ + θ ′). For these menisci, the
lengths L1 and L2 introduced in § 4.3 are proportional to the angular distances: L1 = R�θ

′

and L2 = R�θ . When there are two menisci in the long arm (figure 11a,iii), we define their
position x± = Lt = R�θ± (with θ− ≤ θ+), and the water length of the region between them
is L = R�(θ+ − θ−).

For the meniscus in the entrance channel, we set x = Lt + R�β + s, and we have: L =
Lt + 2πR� + s (figure 11a,i).

5.2.2. Symmetric loop
In the symmetric loop, the position of each meniscus is plotted as a function of time

in figure 12(a). The dynamics of the meniscus in the entrance channel and that in the
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FIGURE 12. Drying dynamics in the symmetric loop: (a) time evolution of the position of the
menisci, in the entrance channel (◦), in both arms (� and �) and in the terminal channel (♦).
The curves are fits by (4.3) and (4.22), with best fitting parameters: τ = 2.6 × 103 s and Lg =
2.1 mm. (b) Drying velocity |L̇| as a function of the water length in the different phases of drying
in the symmetric loop. The new symbol (∗) as compared to panel (a) corresponds to the water
length of the region bounded by two menisci, one in each arm. The lines are fits by (4.1) and
(4.23).

terminal channel is smooth, and as before, the velocity of each meniscus decreases in time.
The two menisci in the arms of the loop do not behave perfectly symmetrically, and their
displacement curves show some irregular inflections, but the difference remains small and
they reach the exit node simultaneously. As for the single-node branched networks, there
is a velocity jump as the meniscus splits in two at the entrance node, the velocity of each
of the two new menisci being smaller. Interestingly, the opposite velocity jump is observed
at the exit node: the velocity of the meniscus in the terminal channel is greater than that
of the two menisci merging at the exit node.

We now compare this experimental dynamics with our model. The dynamics of the
entrance and the terminal meniscus is simple, since each is the only meniscus present in
the network during their period of existence; they should obey (4.3), provided the water
length is defined as before. When there are two menisci in the symmetric loop, the model
of § 4.3 show that they should have the same velocity; it is a special case of the coupled
equations (4.22). The fitting parameters τ and Lg are taken once and for all the data
(and not separately for each curve). Figure 12(a) shows a good agreement between the
experiments and the predictions, except for the aforementioned small difference between
the two menisci in the two arms. Furthermore, the sum of their velocity, which is the
drying velocity |L̇|, is predicted to follow (4.23), which is similar to (4.1) except for the
prefactor of Lg, which counts the number of menisci bounding the drying water region.
Therefore, we plot the drying velocity |L̇| as a function of the water length in figure 12(b).
Indeed, the data gather into three subgroups, with the same slope as expected from (4.1)
and (4.23), but with an offset when there are two menisci. More precisely, the data are
very well fitted by (4.1) and (4.23).

5.2.3. Asymmetric loops
For the asymmetric loops, the three cases described for the symmetric loop, namely (i)

the meniscus in the entrance channel, (ii) one meniscus in each arm of the loop and (iii)
the meniscus in the terminal channel, are supplemented with a fourth case: the existence
of a water region bounded by two menisci in the long arm. For all these cases, we plot the
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experimental dynamics of each single meniscus in figure 11(b,c) for two of the asymmetric
loops, and we compare it to the predictions of § 4.3. As discussed in that section, the
dynamics of the menisci in the entrance and terminal channel is predicted to obey (4.1).
When there is one meniscus in the short arm and another in the long arm, their dynamics
is predicted to obey the coupled equations (4.22), until the meniscus in the short arm
reaches the exit node. Finally, when there is a water region in the long arm bounded by
two menisci, its dynamics is predicted to follow (4.15) where each meniscus contributes to
half of the velocity. Figure 11(b,c) shows that, while the agreement between experiments
and theory is good for the meniscus in the entrance and terminal channels, and still rather
good for the two menisci bounding a water region in the long arm, there is a significant
discrepancy in the phase of drying where there is one meniscus per arm. While our model
predicts that the meniscus in the short arm should have the largest velocity, the contrary
occurs in figure 11(c). In figure 11(b), even if the meniscus in the short arm is faster, the
difference of velocities between the two menisci is much larger than the prediction. A
likely origin of this discrepancy is discussed in § 6.2.

To go further, we plot the water length of the different water regions as a function of
time in figure 13(a,c,e), and the drying velocity |L̇| as a function of the water length in
figure 13(b,d, f ). This shows that, in the spite of the discrepancy for individual menisci,
the drying velocity of the water region bounded by a meniscus in the short arm and
another in the long arm is well captured by the model. Another striking feature is the
significantly larger drying velocity, for a given water length, of the water region in the
long arm compared to the water region in the terminal channel. This is perhaps the best
illustration of the influence of the contribution of the menisci to the drying of a given
water region. For instance, in the asymmetric loop of figure 3(b), even though it is initially
twice shorter, the water region in the terminal channel takes almost the same time to dry
as the water region in the long arm. Comparing figures 12(a) and 13(a,c) also shows that,
for the same total channel length, the total drying time is shorter in asymmetric loops
compared to the symmetric one. To compare these data with the model, we proceed as
for the symmetric loop, with as new feature the water region in the long arm. Since it is
bounded by two menisci, its dynamics should obey (4.15). Hence, as previously, we plot
the velocity of the meniscus, or the sum of the velocity of the menisci if there are two,
as a function of the water length, in figure 13(b,d, f ). Here again, the data gather in four
subgroups, with the same slope but with an offset correlated to the number of menisci.
The data are well fitted by (4.1), (4.15) and (4.23) with τ and Lg as fitting parameters taken
once and for all the data; the agreement is slightly less good than for the symmetric loop,
but the deviations remain relatively small.

We notice finally that there are no qualitative differences between the three asymmetric
loops. In the most asymmetric loop (figure 3c), the duration of the phase of coexistence
of two menisci in the two arms decreases, while the water region created in the long arm
after meniscus splitting at the exit node is initially longer and takes a longer time to dry,
as expected. For a longer terminal channel, the durations of the phase of coexistence and
of the water region in the long arm are both reduced.

6. Discussion

In this section, we focus on two further aspects of our study. First, we must now discuss
the values of the fitting parameters τ and Lg, especially the first one, which gives the typical
drying time. Second, we shall discuss the discrepancy observed between the experiments
and the model in the specific case of individual menisci in the loops.
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FIGURE 13. Drying dynamics in the asymmetric loops of figure 3(b) (a,b), 3(c) (c,d) and 3(d)
(e, f ). (a,c,e) Time evolution of the water length, for the meniscus in the entrance channel (◦), for
two menisci with one in each arm of the loop (∗), for the meniscus in the terminal channel (�)
and for the water region in the long arm (�). (b,d, f ) Drying velocity |L̇| as a function of the water
length in the different phases of drying. The lines are fits by (4.1), (4.15) and (4.23), with best
fitting parameters: (b) τ = 2.6 × 103 s and Lg = 1.7 mm, (d) τ = 2.5 × 103 s and Lg = 1.7 mm
and ( f ) τ = 2.6 × 103 s and Lg = 2.7 mm.

6.1. Values of the fitting parameters
The fits of all our data are related to the two same parameters: the typical drying time τ ,
and a length Lg related to the contribution of the meniscus to drying. We summarise the
values of these parameters in table 2, together with their theoretical predictions using (4.4)
and (4.5).
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Single-node
networks Tree Adiantum Loops

Figure 1 2(a) 2(b) 3(a) 3(b) 3(c) 3(d)

τ (×103 s) 1.8 2.9 3.0 2.5 2.6 2.5 2.6
Theoretical τ (×103 s) from (4.5) 1.20 1.57 1.37
Lg (mm) 1.1 0.8 −0.4 1.9 1.7 1.6 2.7
Theoretical Lg (mm) from (4.4) 0.72 0.82 0.77

TABLE 2. Values of the fitting parameters τ and Lg for all the channels, and their theoretical
predictions.

The value of the typical time τ shows some dispersion: it is lowest for the single-node
networks, highest for the tree and Adiantum and intermediate for the loops; the values for
the tree and Adiantum on the one hand, and for the various loops on the other hand, are very
similar. This apparent dispersion is actually well correlated with the difference in thickness
for the different designs (table 1). Indeed, our model predicts the following dependence
of τ on the geometrical parameters, see (4.5): τ ∝ hw/(ξ + w/δ). Therefore, we plot τ

as a function of hw/(ξ + w/δ) in figure 14. The data then align correctly on an affine
trend, although the data for the single-node networks lie slightly below the line. Moreover,
the slope of the affine fit, equal to 1.9 s μm−2, compares favourably with the prediction,
from (4.5): ρ/DPMCsat

P = 1.4 s μm−2, although it is somewhat higher (likewise, fitted
values of τ are larger than theoretical estimates). However, the values of Csat

P and DP taken
from the literature are known only with poor precision. Hence, to get a better check, we
have repeated experiments on single channels, on two different chips, performed with the
same protocol as for the various networks. Fits of the resulting curves L(t) (not shown)
by (4.3) yield fitting values for τ which are added on figure 14 as cross symbols. These
single-channel data follow the same trend as the data for the networks to within a few per
cent. This constitutes a further validation of our models, and of their extension from single
channels to networks.

Table 2 shows that the values of Lg are more dispersed than that of τ , and the value for
Adiantum is even negative. However, we believe that this dispersion is largely artificial.
Indeed, we fit over quite an extended range of water lengths (larger than 50 mm for
Adiantum and for the asymmetric loop with a long terminal channel, see figures 10 and
13 f ) compared to the expected value of Lg (of order 1 mm). Hence, a small uncertainty
on the slope of the curves may result in a very large relative deviation on Lg. More
importantly, this shows that the meniscus contribution is secondary compared to the
drying by direct pervaporation between the water-filled part of the channels and the outer
atmosphere through the PDMS.

6.2. Individual menisci in the loops
Most of our experimental measurements agree very well with our predictions. However,
significant deviations have been noticed for menisci inside the loops, more precisely when
there is one meniscus per arm (figure 11b,c).

To discuss a likely origin of this discrepancy, we recall that we have based our model
on a pressure argument. In the water regions, the pressure relative to the reference
atmospheric pressure is fixed by a Laplace pressure jump across the menisci, �pc, and
by a viscous pressure drop, �pv. We have assumed that the capillary jump is the same
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FIGURE 14. Value of the fitting parameter τ (see table 2) as a function of the geometrical
parameter hw/(ξ + w/δ). The line is an affine fit of the data for networks (round symbols),
with a value of the slope 1.9 s μm−2 as free fitting parameter. Cross symbols are data for single
channels.

across each meniscus. At this stage, it is worth getting an order of magnitude of the
two contributions. A reasonable estimate of the meniscus curvature is the channel width:
κ ≈ 1/w = 104 m−1, hence �pc = γ κ ≈ 7 × 102 Pa with γ = 70 mN m−1 the surface
tension of water. From (4.14), the order of magnitude of the viscous pressure drop is
�pv ≈ ηq�L2/hwS = ηL2/τS , using (4.2a,b). With w = 10−4 m and h = 4 × 10−5 m in
our experiments, we compute S = 1.1 × 10−10 m2 from (4.12). With η = 10−3 Pa s the
viscosity of water and using τ = 2.5 × 103 s (table 2) and L ≈ 10−2 m as the typical water
length in our experiments, we get �pv ≈ 0.3 Pa. Even if this estimate is approximate, it
shows that the viscous pressure drop is much smaller than the Laplace pressure jump,
typically three orders of magnitude smaller. Hence, even a minute change in wetting
conditions may easily induce a difference in Laplace pressure between different menisci of
the order of the viscous pressure drop, and it can easily slow down or even immobilise one
of the menisci while the theory of § 4.3 would predict a smooth dynamics. We believe
that this is the main source of uncertainty on the dynamics of individual menisci. It
is probably illusory to control the wetting conditions to such an extent that variations
of wetting conditions are such that differences of Laplace pressure jump remain below
the viscous pressure jump, especially in view of the vegetal applications, and we have
checked (data not shown) that redoing the PDMS design of the loops with the same recipe
gives different individual dynamics. A crucial point is that, in spite of these uncontrolled
variations of the dynamics of individual menisci, the sum of their velocities is perfectly
smooth, since it is determined by the global water loss by pervaporation.

7. Conclusions

We have unravelled the dynamics of two elementary events during the drying of a
hydraulic networks by pervaporation: (i) the splitting of a meniscus in several branches
and (ii) the annihilation of two menisci.

Concerning the splitting, our main result is that further away from a node the meniscus
velocity is always proportional to the remaining liquid length plus a constant axial
diffusion flux. Just after splitting events, these fluxes interact before tending to a steady
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value. Because of the creation of new interfaces and thus a multiplication of axial diffusion
fluxes, there is overall a slightly enhanced total drying rate compared to a drying process
with only one meniscus.

Concerning the annihilation of menisci in loops around a liquid plug, we found that
menisci velocities may present an irregular behaviour, owing to the extreme sensitivity
of the system to slight inhomogeneities in wetting properties. However, the sum of the
velocities, thence the total drying rate, is remarkably regular.

This work opens a lot of perspectives. First, the present findings show that drying is
enhanced by the multiplication of menisci and patterns with a lot of branches should
therefore accelerate drying compared to networks with the same water length but fewer
branches. This principle should be helpful to design networks.

Second, an indetermination of velocities is often observed when a liquid region is
bounded by several menisci before annihilation, even with homogeneously designed
channels. We thus expect very original behaviour of menisci in networks with controlled
geometrical inhomogeneities, such as varying channel width. This proves important since
in real networks, such as the ones found in plant tissues, where the channel size is actually
highly heterogeneous.
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Appendix A. Computation of Qg in the case of multiple menisci

In this appendix, we will quantify how the diffusive flux Qg from a meniscus is modified
in the presence of multiple menisci. We consider the situation where N menisci are issued
from the same node and are a distance � from it; to simplify, we assume that this distance
is the same for all menisci, a condition which is reasonably well met in experiments
(figure 7).

Let us consider one of the N menisci. The diffusive flux Qg issued from it is given by

Qg = −hwDaVm
dca

dx ′

∣∣∣∣
x ′=0

, (A 1)

where Vm is the gas molar volume and ca(x ′) is the water vapour concentration field
in the air-filled part 0 < x ′ < � of the branch where the meniscus belongs, where x ′

designates the distance from the meniscus. Equation (A 1) relies on the assumption that
the concentration field does not vary significantly in the cross-section, which as shown in
Dollet et al. (2019) holds provided the amplification factor (4.7) is much larger than one,
a condition met in practice.

Predicting Qg requires us to predict the concentration field. In Dollet et al. (2019), we
showed that it obeys the simple differential equation

d2ca

dx ′2 − ca

L2
g

= 0, (A 2)
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FIGURE 15. Plot of Qg/Qg0 as a function of �/Lg, for N = 2 (plain curve), 3 (long dashed
curve), 4 (short dashed curve) and 5 (dash-dotted curve).

with Lg given by (4.4). In contact with the meniscus, air is saturated with water vapour,
which yields the boundary condition

ca(x ′ = 0) = csat
a . (A 3)

The other boundary condition is

ca(x ′ = �) = c�, (A 4)

with c� the concentration at the node, yet to be determined. Solving (A 2) with boundary
conditions (A 3) and (A 4) yields

ca(x ′) = c� sinh x ′/Lg + csat
a sinh(� − x ′)/Lg

sinh �/Lg
. (A 5)

Let us now consider the entrance channel on the other side of the node, considered
infinitely long. Let us denote by x ′′ the distance from the node. The concentration
field inside the entrance channel also obeys (A 2) with x ′′ instead of x ′, with
boundary conditions: ca(x ′′ = 0) = c� by continuity of the concentration field, and
limx ′′→∞ ca(x ′′) = 0, hence

ca(x ′′) = c�e−x ′′/Lg . (A 6)

To close the problem, in the limit where the volume of the node is negligible, the total
diffusive flux from all channels issued from it must vanish, hence

dca

dx ′′

∣∣∣∣
x ′′=0

= N
dca

dx ′

∣∣∣∣
x ′=�

. (A 7)

Computing these fluxes from (A 5) and (A 6), we obtain that c� = Ncsat
a /[sinh(�/Lg) +

N cosh(�/Lg)]. From this value and (A 5), we can compute dca/dx ′|x ′=0 and, from (A 1),
the flux at the meniscus

Qg = Qg0
cosh(�/Lg) + N sinh(�/Lg)

sinh(�/Lg) + N cosh(�/Lg)
, (A 8)

with Qg0 = hwDaVmcsat
a /Lg the flux at the meniscus in a single channel.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

79
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.794


906 A6-26 B. Dollet and others

The quantity Qg/Qg0 is plotted as a function of �/Lg, for various numbers of branches,
in figure 15. At given N, it increases from 1/N for � = 0 to 1 for �/Lg → ∞. At fixed �/Lg,
it is a decreasing function of N. It is significantly smaller than one only if �/Lg remains
close to one or lower.
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