
TLP 8 (2): 167–199, 2008. C© 2007 Cambridge University Press

doi:10.1017/S147106840700302X First published online 16 May 2007 Printed in the United Kingdom

167

Logic programs with monotone abstract
constraint atoms�

VICTOR W. MAREK

Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA

(e-mail: marek@cs.uky.edu)

ILKKA NIEMELÄ

Department of Computer Science and Engineering, Helsinki University of Technology, P.O. Box 5400,

FI-02015 TKK, Finland

(e-mail: Ilkka.Niemela@tkk.fi)

MIROS�LAW TRUSZCZYŃSKI

Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA

(e-mail: mirek@cs.uky.edu)

submitted 30 June 2004; revised 7 February 2006; accepted 23 August 2006

Abstract

We introduce and study logic programs whose clauses are built out of monotone constraint

atoms. We show that the operational concept of the one-step provability operator generalizes

to programs with monotone constraint atoms, but the generalization involves nondeterminism.

Our main results demonstrate that our formalism is a common generalization of (1) normal

logic programming with its semantics of models, supported models and stable models,

(2) logic programming with weight atoms (lparse programs) with the semantics of stable

models, as defined by Niemelä, Simons and Soininen, and (3) of disjunctive logic programming

with the possible-model semantics of Sakama and Inoue.

KEYWORDS: Logic programs, stable models, constraints

1 Introduction

In this paper, we introduce and study logic programs whose clauses are built of

generalized atoms expressing constraints on sets. We propose a generalization of

normal logic programming to this extended setting. Our generalization uses the

assumption of the monotonicity of constraints and it employs the nondeterminism

in deriving ways to satisfy constraints. In our approach the basic concepts, methods,

semantics and results of normal logic programming generalize to the proposed

� Parts of this paper appeared earlier in conference papers (Marek et al. 2004; Marek and Truszczyński
2004).

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

168 V. W. Marek et al.

context. Our work provides a theoretical framework to a recent extension of logic

programming with weight constraints (also known as pseudo-boolean constraints)

(Niemelä et al. 1999; Simons et al. 2002), and to an earlier formalism of disjunctive

logic programs with the semantics of possible models (Sakama and Inoue 1994), but

applies to a much broader class of programs.

In the 1990s researchers demonstrated that normal logic programming with

the stable-model semantics is an effective knowledge representation formalism. It

provides solutions to problems arising in such contexts as planning, reasoning

about actions, diagnosis and abduction, product configuration, and modeling and

reasoning about preferences. Moreover, due to the emergence of fast methods to

compute stable models (Niemelä and Simons 1997; Babovich and Lifschitz 2002;

Lin and Zhao 2002; Leone et al. 2004), the importance of the formalism increased

significantly as it became possible to use it not only as a modeling language

but also as a practical computational tool. The contributions of Baral (2003) and

Gelfond and Leone (2002) provide a detailed discussion of the formalism and its

applications.

In the last few years, researchers proposed extensions of the language of nor-

mal logic programming with means to model constraints involving aggregate

operations on sets. Simons et al. (2002) proposed a formalism integrating logic

programming with weight constraints, known in the SAT community as pseudo-

boolean constraints, generalized the concept of stable models to this extended

setting, and developed fast algorithms to compute them. Denecker et al. (2001) and

Pelov et al. (2004), introduced a formalism allowing for more general aggregates.

They extended to this new setting several semantics of normal logic programs,

including the stable-model semantics and the well-founded semantics. Related recent

work (Dell’Armi et al. 2003; Faber et al. 2004; Calimeri et al. 2005), incorporated

aggregates into the formalism of disjunctive logic programs with the answer-set

semantics. Yet another extension of normal logic programming has been proposed in

Marek and Remmel. (2004) as set-based constraints. Such extensions are important

as they simplify the task of modeling problem specifications, typically result in more

direct and concise encodings, and often significantly improve the computational

effectiveness of the formalism as a problem-solving tool.

Our goal is to propose an abstract formalism of logic programs extended with

means to model constraints on sets, preserving as much as possible analogies between

our theory and normal logic programming. We introduce the notion of an abstract

constraint and its linguistic counterpart – an abstract constraint atom. We then

use abstract constraint atoms as building blocks of program clauses in the same

way propositional atoms form clauses of normal logic programs. For the most part,

we restrict our attention to monotone constraints, as monotonicity is essential for

preserving the notion of a logic program as a computational device. We show that

basic concepts, techniques, and results of normal logic programming have direct

generalizations for the class of programs built of monotone abstract constraints.

What distinguishes our work from other recent approaches to integrating logic

programming with aggregates is that we allow constraint atoms in the heads of

clauses, while formalisms proposed and studied by several authors (Denecker et al.

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

Logic programs with monotone abstract constraint atoms 169

2001; Pelov et al. 2004; Dell’Armi et al. 2003; Faber et al. 2004; Calimeri et al. 2005)

do not1.

In many respects the theory we built in this paper mirrors closely an operator-

based treatment of normal logic programs. There is, however, a basic difference.

Abstract constraint atoms are inherently nondeterministic. They can be viewed as

shorthands for certain disjunctions and, in general, there are many ways to make

an abstract constraint atom true. This nondeterminism has a consequence. The

one-step provability operator, which generalizes the one-step provability operator

of Van Emden and Kowalski (1976) defined for normal programs, is no longer

deterministic. It assigns to an interpretation M a set T (M) of interpretations. Each

interpretation in the set T (M) is regarded as possible and equally likely outcome of

applying the operator to M .

The nondeterministic one-step provability operator is a key tool in our work. It

generalizes the one-step provability operator of van Emden and Kowalski (1976).

Thanks to close parallels between these two concepts, we are able to reconstruct

operator-based characterizations of models, supported models, and the concept

of a bottom-up computation for programs with abstract constraints that generalize

Horn programs. We then extend to programs with abstract monotone constraints the

definitions of the Gelfond-Lifschitz reduct and a stable model (Gelfond and Lifschitz

1988). We also distinguish and discuss the class of definite programs (programs with

clauses whose heads can be satisfied in one way only). For these programs the

one-step provability operator becomes deterministic and the theory of normal logic

programming extends to deterministic programs without any significant change. In

particular, it follows that normal logic programming with all its major 2-valued

semantics can be viewed as a special case of logic programming with monotone

abstract constraints.

In addition, we show that programs with abstract constraints provide a formal

account of a class of logic programs with weight (pseudo-boolean) atoms introduced

in Simons et al. (2002). We call programs in the syntax proposed in that paper lparse

programs. Simons et al. (2002) defined for lparse programs the notion of a stable

model and showed that lparse programs generalize normal logic programming with

the stable-model semantics of Gelfond and Lifschitz (Gelfond and Lifschitz 1988).

However, the notion of the reduct underlying the definition of a stable model given in

Simons et al. (2002) is different from that proposed in Gelfond and Lifschitz (1988)

and the precise nature of the relationship between normal logic programs and lparse

programs was not clear.

Our work explicates this relationship. On one hand, the formalism of programs

with abstract constraints parallels normal logic programming. In particular, major

concepts, results and techniques in normal logic programming have counterparts in

the setting of programs with abstract constraints. On the other hand, under some

simple transformations, lparse programs can be viewed as a special case of programs

with abstract constraints. Thus, through this connection, the theory of normal logic

1 We note though that recently Son et al. (2006) also considered programs with constraints in the heads
of rules.

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

170 V. W. Marek et al.

programming can be lifted to the setting of lparse programs leading, in particular,

to new characterizations of stable models of lparse programs.

Finally, we show that programs with monotone abstract constraints generalize

the formalism of disjunctive logic programs with the semantics of possible models

(Sakama and Inoue 1994). In fact, as we point out, several ideas that are stated in

abstract terms in our paper have their roots in Sakama and Inoue (1994).

2 Basic concepts, motivation, examples

We consider a language determined by a fixed set At of propositional atoms. An

abstract constraint is a collection C ⊆ P(At) (if X is a set, by P(X) we denote

the family of all subsets of X). We say that elements of C satisfy the constraint

C or have the property C . An abstract constraint atom (or ac-atom, for short)

is an expression C (X), where X ⊆ At is finite and C is an abstract constraint.

An ac-literal is an expression of the form C (X) or not(C (X)), where C (X) is an

ac-atom. We call X the atom set of an ac-literal A of the form C (X) or not(C (X))

and denote it by aset(A).

An intended meaning of an ac-atom C (X) is to represent a requirement on subsets

of X that they must satisfy the constraint C . Formally, we interpret ac-atoms by

means of propositional interpretations (truth assignments), which we represent as

subsets of At: an atom p is true in an interpretation M ⊆ At if p ∈ M , otherwise, p is

false in M . An interpretation M ⊆ At satisfies an ac-atom C (X), written M |= C (X),

if M ∩ X ∈ C (that is, if the set of atoms in X that are true in M satisfies the

constraint C). Otherwise, M does not satisfy C (X), written M �|= C (X). In that

case, we also say that M satisfies the ac-literal not(C (X)) and write M |= not(C (X)).

An ac-atom C (X) is consistent if there is an interpretation M such that M |= C (X)

or, equivalently, if C contains at least one subset of X . We will now illustrate these

concepts with several examples of common constraints.

Pseudo-boolean constraints. These constraints are also known as weight constraints.

Given a real number w and a function W , assigning to each atom in At a real

number (its weight), a pseudo-boolean constraint PB (w ,W ,�) imposes a restriction

that “the total weight of atoms in a set is at least w”. Formally, we set PB (w ,W ,

�) = {A ⊆ At: w �
∑

a∈A W (a)} (comparison relations <, >, � give rise to other

types of weight constraints).

Cardinality constraints. They are pseudo-boolean constraints in which a bound w is

a non-negative integer and a weight of every atom is 1. Throughout the paper, we

use cardinality constraints to illustrate concepts we study. To simplify the notation

and to make it consistent with the notation used in (Simons et al. 2002), we write

kX to denote an ac-atom C (X), where C = PB (k ,W ,�) and W (a) = 1 for every

a ∈ At.

Product constraints. They differ from weight constraints in that they restrict the

product of individual weights of atoms in allowed sets, depending on the type

of the comparison relation used. Selecting the relation � and assuming the same

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

Logic programs with monotone abstract constraint atoms 171

notation as before, we express product constraints as abstract constraints of the

form Π(w ,W ,�) = {A ⊆ At: w � Πa∈AW (a)}.

Maximum constraints. Given a weight function W on the set of atoms and a real

bound w , the maximum constraint restricts allowed sets of atoms to those with the

maximum weight at least w . Formally, we express them as abstract constraints of the

form Max(w ,W ,�) = {A ⊆ At: w � max{W (a): a ∈ A}} (or its variants, depending

on the comparison relation).

Even- and odd-cardinality constraints. They impose a parity requirement on the

cardinality of allowed sets. Formally, we express them as abstract constraints E =

{A ⊆ At: |A| is even} and O = {A ⊆ At: |A| is odd}.

Containment constraints. Such constraints require that allowed sets contain some

prespecified configurations (subsets). We capture them by abstract constraints C (A)

that consist of all subsets of At that contain at least one set from a prespecified

collection A of finite subsets of At.

Each of these constraints determines associated ac-atoms. Let At = {p1, p2, . . .} and

let us consider a weight function W such that for every integer i � 1, W (pi) = i . The

expression PB (6,W ,�) is an example of a pseudo-boolean constraint. If we denote

it by C1, then C1({p1, p2, p5, p6}) is an example of a pseudo-boolean constraint atom.

A set M ⊆ At satisfies C1({p1, p2, p5, p6}) if and only if the total weight of atoms in

M ∩ {p1, p2, p5, p6} is at least 6 (that is, if and only if M contains p6, or p5 together

with at least one other atom). Similarly, Max(5,W ,�) is an example of a maximum

constraint and, if we denote it by C2, C2({p2, p4, p6, p8}) is a maximum constraint

atom that enforces the restriction on sets of atoms to contain p6 or p8. An abstract

constraint atom E ({p1, p7}) (E stands for the even-cardinality constraint) forces

allowed sets of atoms to contain none or both of p1 and p7. All these constraint

atoms are consistent. An atom C3({p1, p2, p3}), where C3 = PB (7,w ,�) is an example

of an inconsistent constraint atom. No selection of atoms from {p1, p2, p3} satisfies

it and, consequently, it has no models.

These examples demonstrate that abstract constraints and abstract constraint

atoms express a broad range of common constraints. In this paper, we show that

abstract constraint atoms can be combined into logic program clauses to represent

even more complex constraints, and that much of the theory of normal logic

programs generalizes to the extended setting.

3 Logic programs built of F-atoms

LetF be a class of abstract constraints over At. By anF-atom we mean an abstract

constraint atom A(X) such that A ∈ F and X ⊆ At. An F-literal (or simply, a

literal, if the context is clear) is an expression of the form A(X) or not(A(X)), where

A(X) is an F-atom. An F-clause is an expression

A(X)← B1(X1), . . . ,Bm (Xm), not(C1(Y1)), . . . , not(Cn (Yn)) (1)

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

172 V. W. Marek et al.

where A(X), Bi (Xi) and Cj (Yj) are F-atoms. An F-clause (1) is called a constraint

clause if A(X) is not consistent. An F-program is a finite collection of F-clauses2.

If r is a clause of the form (1), A(X) is the head of r , denoted by hd(r), and

X is the head set of r , denoted by hset(r). We also call the conjunction of literals

B1(X1), . . . ,Bm (Xm), not(C1(Y1)), . . . , not(Cn (Yn)), the body of r and denote it by bd(r).

Occasionally, we use the same term to denote the set of all literals in the body of

a clause. Finally, for an F-program P , we define hset(P) to be the union of sets

hset(r), for r ∈ P .

An interpretation M ⊆ At satisfies a set (conjunction) L of literals, if it satisfies

every literal in L. We say that M satisfies an F-clause r if M satisfies the head of

the clause whenever it satisfies the body of r . Finally, M satisfies an F-program P

if it satisfies all clauses in P . We write M |= L, M |= r and M |= P to denote these

three types of the satisfaction relation. We will often write “is a model of” instead

of “satisfies”. F-programs that have models are called consistent.

Clauses of normal logic programs are typically regarded as computational devices:

assuming that preconditions of a clause have been established, the clause provides

a justification to establish (compute) its head. Crucial concepts behind formal

accounts of that intuition are those of a Horn program, the corresponding bottom-

up computation, and a least Herbrand model, which defines the result of the

computation. Computations and their results are well defined due to the monotone

behavior of Horn programs.

To extend normal logic programming to the class of programs with abstract

constraint atoms, one needs a generalization of the class of Horn programs

supporting an appropriate notion of a computation, with the results of computations

playing the same role as that played by the least Herbrand model. In order to

accomplish that, it is not enough simply to disallow the negation operator in the

bodies of F-clauses. It is also necessary to restrict the class of constraints to those

that are monotone (that is, intuitively, once true in an interpretation, they remain

true in every superset of it). Without that assumption, the monotonicity of normal

Horn programs does not generalize and there is no straightforward way to define

the concept of a computation. (We refer to Marek (2005) for a study of properties

of monotone constraints.)

Formally, we say that an abstract constraint C is monotone if for every A,A′ ⊆ At,

if A ∈ C and A ⊆ A′ then A′ ∈ C (in other words, monotone constraints are

precisely upward-closed families of subsets of At). An abstract constraint atom

C (X) is monotone if its constraint C is monotone.

Proposition 1

Let C be an abstract monotone constraint over At, X ⊆ At, and let M ,M ′ ⊆ At be

two interpretations. If M |= C (X) and M ⊆ M ′, then M ′ |= C (X).

2 We note that the assumption of the finiteness of programs is not essential. The entire theory of
F-programs extends to the case when we admit infinite programs. However, additional means of proof,
such as Zorn Lemma, may be required in some arguments (for instance, in the argument for the
existence of minimal models of F-programs).

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

Logic programs with monotone abstract constraint atoms 173

We note that if all the individual weights used by a weight function are

non-negative, the corresponding pseudo-boolean constraints are monotone. The

maximum constraints are monotone for every weight function. On the other hand,

we note that some common constraints, for instance, even- and odd-cardinality

constraints E and O , are not monotone.

From now on we restrict our attention to constraints that are monotone. We will

write a monotone F-clause and a monotone F-program to make it explicit that all

constraints in F are monotone.

An important consequence of the monotonicity assumption is that monotone

F-programs without constraint clauses have models (and so, also minimal models).

Proposition 2

Let P be a monotone F-program without constraint clauses. Then the set At of all

atoms in the language is a model of P .

Proof

Let r ∈ P . Since the constraint hd(r) is consistent, there is a set of atoms M ⊆ At

such that M |= hd(r). By the monotonicity of constraints in F, At |= hd(r). Thus,

At |= P . �

Another important consequence of the monotonicity assumption is that the

concept of a Horn program has an obvious direct generalization.

Definition 1

A monotoneF-program that contains no occurrences of the operator not is a Horn

F-program.

Horn F-programs defined in this way have many properties that generalize well-

known properties of normal Horn programs. We will state and prove several of

them later in the paper.

4 Nondeterministic one-step provability operator

Following a fundamental idea underlying normal logic programming, we assign to

F-clauses a procedural interpretation, which views them as derivation clauses. In

the discussion that follows we do not assume that constraints in F are monotone.

Intuitively, if an F-clause r has its body satisfied by some set of atoms M , then

r provides support for deriving from M any set of atoms M ′ such that

1. M ′ consists of some atoms from the headset of r (r provides no grounds for

deriving atoms that do not appear in its headset)

2. M ′ satisfies the head of r (since r “fires”, the constraint imposed by its head

must hold).

Clearly, the process of deriving M ′ from M by means of r is nondeterministic in

the sense that, in general, there are several sets that are supported by r and M .

This interpretation of F-clauses extends to F-programs. Given an F-program

P and a set of atoms M , each clause r ∈ P such that M satisfies the body of r

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

174 V. W. Marek et al.

provides a support for a subset of the head set of r . The union, say M ′, of such

sets – each supported by some clause r , with r ranging over those clauses in P

whose body is satisfied by M – can be viewed as “derived” from M by means of

P . In general, given P and M , there may be several such derived sets. Thus, the

notion of derivability associated with a program is nondeterministic, as in the case

of individual clauses.

We describe formally this intuition of derivability in terms of a nondeterministic

one-step provability operator. Before we give a precise definition, we note that by a

nondeterministic operator on a set D we mean any function f : D → P(D). One can

view the set f (d) as the collection of all possible outcomes of applying f to d one

of which, if f (d) �= ∅, can be selected nondeterministically as the actual outcome of

f . We emphasize that we allow f (d) to be empty, that is, nondeterministic operators

are, in general, partial – for some elements of the domain they do not assign any

possible outcomes.

Definition 2

LetF be a class of constraints (not necessarily monotone). Let P be anF-program

and let M ⊆ At.

1. A clause r ∈ P is M -applicable, if M |= bd(r). We denote by P (M) the set of all

M -applicable clauses in P .

2. A set M ′ is nondeterministically one-step provable from M by means of P , if

M ′ ⊆ hset(P (M)) and M ′ |= hd(r), for every clause r in P (M).

3. The nondeterministic one-step provability operator Tnd
P , is a function from P(At)

to P(P(At)) such that for every M ⊆ At, Tnd
P (M) consists of all sets M ′ that are

nondeterministically one-step provable from M by means of P .

Since an abstract constraint forming the head of anF-clause may be inconsistent,

there exist programs P and interpretations M ⊆ At such that Tnd
P (M) is empty.

The concepts introduced above have especially elegant properties for monotone

F-programs. First, to illustrate them, let us consider a simple example involving a

program with cardinality constraints (cf. Section 2). The program discussed in this

example is not a Horn program.

Example 1

Let P be a program with cardinality constraints consisting of the following clauses:

r1 = 2{a} ← 2{b, d}
r2 = 1{b, c} ← not(1{e})
r3 = 1{a , d} ← 2{b, c}

We note that the cardinality atom in the head of the first clause is inconsistent.

Let us consider a set M = {b, c, e}. Since M �|= 2{b, d}, r1 is not M -applicable.

Similarly, M �|= not(1{e}) and r2 is not M -applicable, either. On the other hand,

M |= 2{b, c} and so, r3 is M -applicable.

There are three subsets of {a , d} that satisfy the constraint 1{a , d} in the head of

the clause r3: {a}, {d} and {a , d}. Thus, each of these sets is nondeterministically

one-step provable from M and, consequently,

Tnd
P (M) = {{a}, {d}, {a , d}}.

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

Logic programs with monotone abstract constraint atoms 175

We also note that if |M | = 1 and e /∈ M then r2 is the only M -applicable clause

in P . For such sets M , Tnd
P (M) = {{b}, {c}, {b, c}}. On the other hand, if M contains

both b and d , then r1 is M -applicable and since the head of r1 is inconsistent,

Tnd
P (M) = ∅ (no set is nondeterministically one-step provable from such a set M).

The example shows, in particular, that it may be the case that Tnd
P (M) = ∅. If,

however, P is a monotone F-program without constraint clauses, then it is never

the case.

Proposition 3

Let P be a monotone F-program without constraint clauses. For every M ⊆ At,

hset(P (M)) ∈ Tnd
P (M). In particular, Tnd

P (M) �= ∅.

Proof

Let us consider r ∈ P (M). Then, hset(P (M)) ∩ hset(r) = hset(r). Since hd(r) is

consistent, it follows by the monotonicity of constraints in F that hset(r) |= hd(r).

Thus, hset(P (M)) |= hd(r) and, consequently, hset(P (M)) ∈ Tnd
P (M). �

The operator Tnd
P plays a fundamental role in our research. It allows us to

formalize the procedural interpretation of F-clauses and identify several classes of

models.

Our first result characterizes models of monotone F-programs. Models of a

normal logic program P are prefixpoints of the one-step provability operator TP

van Emden and Kowalski (1976). This characterization lifts to the class of monotone

F-programs, with the operator Tnd
P replacing TP .

Theorem 1

Let P be a monotone F-program and let M ⊆ At. The set M is a model of P if

and only if there is M ′ ∈ Tnd
P (M) such that M ′ ⊆ M .

Proof

Let M be a model of P and M ′ = M∩hset(P (M)). Let r ∈ P (M). Since M is a model

of r , M |= hd(r). Clearly, hset(r) ⊆ hset(P (M)). Thus, M ∩ hset(r) = M ′ ∩ hset(r)

and, consequently, M ′ |= hd(r). It follows that M ′ ∈ Tnd
P (M). Since M ′ ⊆ M , the

assertion follows.

Conversely, let us assume that there is M ′ ∈ Tnd
P (M) such that M ′ ⊆ M . Let

r ∈ P be a clause such that M |= bd(r). Since M ′ ∈ Tnd
P (M), M ′ |= hd(r). We recall

that the constraint involved in hd(r) is monotone (as we consider only monotone

constraints). Thus, by Proposition 1, M |= hd(r), as well. It follows that M is a

model of every clause in P and, consequently, of P . �

5 Supported models of F-programs

For a set M of atoms, we say that M -applicable clauses in an F-program P

provide support to atoms in the heads of these clauses. In general, a model M of an

F-program may contain elements that have no support in a program and M itself,

that is, cannot be derived from M by means of clauses in the program.

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

176 V. W. Marek et al.

Example 2

Let P be a program with cardinality constraints consisting of a single clause:

1{p, q} ← not(1{q}),

where p and q are two different atoms. Let M1 = {q}. Clearly, M1 is a model of

P . However, M1 has no support in P and itself. Indeed, Tnd
P (M1) = {∅} and so, P

and M1 do not provide support for any atom. Similarly, another model of P , the set

M2 = {p, s}, where s ∈ At is an atom different from p and q , has no support in P

and itself. We have Tnd
P (M2) = {{p}, {q}, {p, q}} and so, p has support in P and M2,

but s does not. Finally, the set M3 = {p}, which is also a model of P , has support

in P and itself. Indeed, Tnd
P (M3) = {{p}, {q}, {p, q}} and there is a way to derive M3

from P and M3.

For M to be a model of P , M must satisfy the heads of all applicable clauses.

To this end, M needs to contain some of the atoms appearing in the headsets of

these clauses (atoms with support in M and P) and, possibly, also some atoms that

do not have such support. Models that contain only atoms with support form an

important class of models generalizing the class of supported models for normal

logic programs (Clark 1978; Apt 1990).

Definition 3

Let F be a class of constraints (not necessarily monotone) and let P be an

F-program. A set of atoms M is a supported model of P if M is a model of P and

M ⊆ hset(P (M)).

Supported models have the following characterization generalizing a character-

ization of supported models of normal logic programs as fixpoints of the van

Emden-Kowalski operator (the characterizing condition is commonly used as a

definition of a fixpoint of a nondeterministic operator).

Theorem 2

LetF be a class of constraints (not necessarily monotone). Let P be anF-program.

A set M ⊆ At is a supported model of P if and only if M ∈ Tnd
P (M).

Proof

If M is a supported model of P then it is a model of P (by the definition).

Moreover, M ⊆ hset(P (M)). Thus, M ∈ Tnd
P (M). Conversely, if M ∈ Tnd

P (M), then

M ⊆ hset(P (M)) and M |= hd(r), for every r ∈ P (M). Thus, M |= r , for every

r ∈ P (M). If r ∈ P \ P (M), then M �|= bd(r) and so, M |= r . Thus, M is a model

of P . Since M ∈ Tnd
P (M) also implies M ⊆ hset(P (M)), M is a supported model

of P . �

In Section 8 we show that the use of the term supported for the class of

models defined in this section is not a misnomer; supported models of F-programs

generalize supported models of normal logic programs.

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

Logic programs with monotone abstract constraint atoms 177

6 Horn F-programs

For the concepts of the one-step provability and supported models we did not

need a restriction to monotone constraints. To properly generalize the notion of a

stable model, however, this restriction is essential. Thus, from this point on, we will

consider only monotone F-programs.

First, we will study Horn F-programs (we recall that the notion of a Horn

F-program assumes thatF consists of monotone constraints only) viewing them as

representations of certain nondeterministic computational processes. We will later

use the results of this section to extend to the class of F-programs the concept of a

stable model.

Definition 4

Let P be a Horn F-program. A P -computation is a sequence (Xn)n=0,1,... such that

X0 = ∅ and, for every non-negative integer n:

1. Xn ⊆ Xn+1, and

2. Xn+1 ∈ Tnd
P (Xn).

Given a computation t = (Xn)n=0,1,..., we call
⋃∞

n=0 Xn the result of the computation

t and denote it by Rt .

Our stipulations that P -computations have length ω does not restrict the gener-

ality. Since atom sets of ac-atoms are finite, if a clause is applicable with respect to

the result of the computation, it is applicable at some step n of the computation.

Consequently, like in the case of normal Horn programs, all possible results of

computations of arbitrary transfinite lengths can be reached in ω steps, even in the

case of infinite programs.

Results of computations are supported models.

Theorem 3

Let P be a Horn F-program and let t be a P -computation. Then Rt is a supported

model of P , that is, Rt is a model of P and Rt ⊆ hset(P (Rt)).

Proof

Let t = (Xn)n=0,1,.... Clearly X0 = ∅ ⊆ hset(P (Rt)). Let n be a non-negative integer.

Since Xn+1 ∈ Tnd
P (Xn), Xn+1 ⊆ hset(P (Xn)). Since P is a HornF-program, it follows

that if r ∈ P , X ⊆ Y and X |= bd(r), then Y |= bd(r). Thus, since Xn ⊆ Rt , we have

Xn+1 ⊆ hset(P (Xn)) ⊆ hset(P (Rt))·

By induction, Rt =
⋃∞

n=0 Xn ⊆ hset(P (Rt)).

Conversely, let us consider a clause r ∈ P . If Rt �|= bd(r) then Rt |= r . Let us then

assume that Rt |= bd(r). Since r has finitely many F-atoms in the body, and since

each F-atom is of the form C (X), where X is finite, there is a non-negative integer

i such that Xi |= bd(r). By the definition of a P -computation, Xi+1 ∈ Tnd
P (Xi). Thus,

Xi+1 |= hd(r) and, since Xi+1 ⊆ Rt , Rt |= hd(r) (by the monotonicity of hd(r)). It

follows that Rt |= r in the case when Rt |= bd(r), as well. Thus, Rt is a model

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

178 V. W. Marek et al.

of P . Since Rt is a model of P and Rt ⊆ hset(P (Rt)), Rt is a supported model

of P . �

We will now show that having a model (being consistent) is a necessary and

sufficient condition for a Horn F-program to have a computation. To this end, we

will first introduce a certain class of computations.

Definition 5

Let M be a model of P . A canonical P -computation with respect to M is a sequence

tP ,M = (XP ,M
n)n=0,1,... defined as follows:

1. XP ,M
0 = ∅ and,

2. XP ,M
n+1 = hset(P (XP ,M

n)) ∩M , for every n � 0.

We observe that canonical computations involve no nondeterminism. At each

stage there is exactly one way in which we can continue. This continuation is

determined by the model M . Before we proceed further, we illustrate the concept of

a canonical computation with a simple example.

Example 3

Let us assume that At = {a , b, c, d} and let us consider a Horn program with

cardinality constraints, say P , consisting of the following clauses:

r1 = 1{a , d} ← 2{b, d}
r2 = 1{b, c} ←
r3 = 1{a} ← 2{b, c}

Let M = {a , b, c, d}. It is easy to check that M is a model of P (it also follows from

Proposition 2, as the constraint atoms in the heads of clauses in P are consistent).

We will now construct a canonical P -computation with respect to M . By the

definition XP ,M
0 = ∅. The only XP ,M

0 -applicable clause in P is r2. Since {b, c}∩M =

{b, c}, XP ,M
1 = {b, c}. The clauses r2 and r3 are XP ,M

1 -applicable and r1 is not.

Since {a} ∩ M = {a} and {b, c} ∩ M = {b, c}, XP ,M
2 = {a , b, c}. Since r2 and

r3 are the only XP ,M
2 -applicable clauses in P , it follows that XP ,M

k = XP ,M
2 , for

k = 3, 4,

By the definition, the union of all sets in the canonical computation is included

in M . Our example demonstrates that canonical computations with respect to M ,

in general, do not reconstruct all of M .

The use of the term P -computation in Definition 5 is justified. The following

theorem shows that the sequence tP ,M is indeed a P -computation.

Theorem 4

Let P be a Horn F-program and let M ⊆ At be a model of P . Then the sequence

tP ,M is a P -computation.

Proof

We need to show that the conditions (1) and (2) from the definition of a

P -computation hold for the sequence tP ,M . To prove (1), we proceed by induction

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

Logic programs with monotone abstract constraint atoms 179

on n . For n = 0, the condition (1) is, clearly, satisfied. Let us assume that for some

non-negative integer n , XP ,M
n ⊆ XP ,M

n+1 holds. Then

hset(P (XP ,M
n)) ⊆ hset(P (XP ,M

n+1))·

It follows that

XP ,M
n+1 = hset(P (XP ,M

n)) ∩M ⊆ hset(P (XP ,M
n+1)) ∩M = XP ,M

n+2 ·

To prove (2), let us consider a non-negative integer n . By the definition, XP ,M
n+1 ⊆

hset(P (XP ,M
n)). It remains to prove that XP ,M

n+1 |= P (XP ,M
n). Let r ∈ P (XP ,M

n). Then

XP ,M
n |= bd(r) and, since XP ,M

n ⊆ M , M |= bd(r). We recall that M is a model

of P . Thus, M |= hd(r). It follows that M ∩ hset(r) |= hd(r) and, consequently,

M ∩ hset(P (XP ,M
n)) |= hd(r). Since XP ,M

n+1 = M ∩ hset(P (XP ,M
n)), it follows that

XP ,M
n+1 |= P (XP ,M

n). �

We now have the following corollary to Theorems 3 and 4 that characterizes Horn

F-programs that have computations.

Corollary 1

Let P be a Horn F-program. Then, P has a model if and only if it has a

P -computation. In particular, every Horn F-program P without constraint clauses

possesses at least one P -computation.

Proof

If M is a model of P then the canonical computation tP ,M is a P -computation

(Theorem 4). Conversely, if P has a P -computation t , then Rt is a model of P

(Theorem 3). The second part of the assertion follows from the fact that Horn

F-programs without constraint clauses have models (Proposition 2). �

We use the concept of a computation to identify a certain class of models of Horn

F-programs.

Definition 6

Let P be a Horn F-program. We say that a set of atoms M is a derivable model of

P if there exists a P -computation t such that M = Rt .

Derivable models play in our theory a role analogous to that of the least model of

a normal Horn program. The basic analogy is that they are the results of bottom-up

computations, as is the case for the least model of a normal Horn program.

Theorems 3 and 4 entail several properties of Horn F-programs, their computa-

tions and models. We gather them in the following corollary. Properties (1) and (3)–

(6) generalize properties of the least model of a normal Horn logic program.

Corollary 2

Let P be a Horn F-program. Then:

1. If P is consistent then P has at least one derivable model.

2. For every model M of P there is a largest derivable model M ′ of P such that

M ′ ⊆ M .

3. A model M of P is derivable if and only if M = RtP ,M .

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

180 V. W. Marek et al.

4. If P contains no constraint clauses then P has a largest derivable model.

5. Every minimal model of P is derivable.

6. Every derivable model of P is a supported model of P .

Proof

1. Since P has a model, it has a P -computation (Theorem 4). The result of this

computation is a model of P (Theorem 3). By the definition, this model is

derivable.

2. Let M be a model of P and let t = (Xn)n=0,1,... be the canonical P -computation

for M . Then, Rt is a derivable model of P and Rt ⊆ M . Let s = (Yn)n=0,1,... be

a P -computation such that Rs ⊆ M . Clearly, we have Y0 ⊆ X0. Let us consider

an integer n > 0 and let us assume that the inclusion Yn−1 ⊆ Xn−1 holds. Since

Rs ⊆ M , Yn ⊆ M . Thus, by the definition of a P -computation,

Yn ⊆ hset(P (Yn−1)) ∩M ·

Since P is a Horn F-program and since we have Yn−1 ⊆ Xn−1, hset(P (Yn−1)) ⊆
hset(P (Xn−1)). Thus,

Yn ⊆ hset(P (Xn−1)) ∩M = Xn ·

It follows now by induction that Rs ⊆ Rt . Thus, Rt is the largest derivable model

contained in M .

3. Let M be a model of P . The argument we used in (2) shows that the result of the

canonical computation from P with respect to M is the greatest derivable model

contained in M . If M is derivable, then M = RtP ,M . The converse implication

follows by the definition.

4. The set At is a model of P . Let R be the result of the canonical P -computation

for At. Clearly, R is a derivable model of P . We will show that every derivable

model of P is a subset of R. Let M be a derivable model of P . By (3), M

is the result of a canonical computation for M . Since M ⊆ At, it follows by

an induction argument that for every non-negative integer n , XP ,M
n ⊆ XP ,At

n

(we omit the details, as the argument is similar to that in the proof of (2)).

Consequently, M ⊆ R.

5. This assertion follows directly from (2).

6. This assertion follows directly from Theorem 3.

�

Despite analogies with the least model of a normal Horn program, derivable

models are not, in general, minimal. For instance, a program with cardinality

constraints consisting of a single clause

1{a , b} ←

has three derivable models: {a}, {b} and {a , b}, only two of which are minimal.

Horn F-programs generalize Horn normal logic programs (see Section 8 for

details.). For a Horn F-programs without constraint clauses, the canonical com-

putation with respect to the set of all atoms is a counterpart to the bottom-up

computation determined by a normal Horn program.

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

Logic programs with monotone abstract constraint atoms 181

7 Stable models of monotone F-programs

We will now use the results of the two previous sections to introduce and study the

class of stable models of monotone F-programs.

Definition 7

Let P be a monotone F-program and let M ⊆ At. The reduct of P with respect to

M , PM in symbols, is a Horn F-program obtained from P by (1) removing from

P every F-clause containing in the body a literal not(A) such that M |= A, and (2)

removing all literals of the form not(A) from all the remaining clauses in P . A set

of atoms M is a stable model of P if M is a derivable model of the reduct PM .

The following result is easy to show (and so we omit its proof) but useful.

Lemma 1

Let P be a monotone F-program. If M is a model of P , then M is a model of PM .

Example 4

We illustrate the concept of stable models of monotone F-programs with examples

underlining some aspects of their properties. The class F we use in this example

consists of all cardinality constraints which, we recall, are monotone (Section 2).

Let P be a program consisting of the following two clauses:

1{a , b}← 1{d}, not(1{b, c})
1{a , d}←

We will now investigate properties of some sets with respect to this program.

1. The set M1 = ∅ is not a model of our program P . As we will see soon (Proposition

4), stable models are supported models and, consequently, also models. Thus ∅
is not a stable model of P .

2. The set M2 = {a , b, c} is a model of P . But M2 is not a stable model of P .

Indeed, let us compute PM2 . It consists of just one clause: 1{a , d} ←. Since M2

is not a derivable model of PM2 (it contains an atom not occurring in any head

of the clause of PM2), M2 is not a stable model of P

3. The set M3 = {a , d} is a stable model of P . The reduct PM3 consists of two

clauses:

1{a , b}← 1{d}
1{a , d}←

The sequence ∅, {a , d}, {a , d}, . . . is a PM3 -computation. Thus, M3 is a derivable

model of PM3 and hence M3 is a stable model of P

4. The set M4 = {a} is a stable model of P . The reduct PM4 consists of two clauses:

1{a , b}← 1{d}
1{a , d}←

The sequence ∅, {a}, {a}, . . . is a PM4 -computation. Thus {a} is a stable model

of P .

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

182 V. W. Marek et al.

In our example M4 ⊂ M3. Thus, in contrast to normal logic programs (but

not to lparse programs), stable models of abstract constraint programs can nest.

That is, they do not satisfy the antichain (minimality with respect to inclusion)

property.

The program P that we considered above has stable models. It is easy to

construct examples of programs that have no stable models. For instance, a program

consisting of just one clause: 2{a , b, c} ← not(1{a , b}) has models but no stable

models.

Stable models of a monotone F-program P are indeed models of P . Thus, the

use of the term “model” in their name is justified. In fact, a stronger property holds:

stable models of monotone F-programs are supported. This again generalizes a

well-known property of normal logic programs3.

Proposition 4

Let P be a monotone F-program. If M ⊆ At is a stable model of P then M is a

supported model of P .

Proof

First, let us observe that it follows directly from the corresponding definitions

that Tnd
P (M) = Tnd

PM (M). Next, since the set M is a derivable model of PM ,

M is a supported model of PM (Corollary 2(6)). Thus, by Theorem 2, M ∈
Tnd

PM (M) and, consequently, M ∈ Tnd
P (M). It follows that M is a supported model

of P . �

With the notion of a stable model in hand, we can strengthen Theorem 3.

Theorem 5

Let P be a Horn F-program. A set of atoms M ⊆ At is a derivable model of P if

and only if M is a stable model of P .

Proof

The assertion is a direct consequence of the fact that for every Horn F-program P

and for every set of atoms M , P = PM . �

We will now prove yet another result that generalizes a property of stable models

of normal logic programs (cf. work on extending the semantics of stable models to

logic programs with integrity constraints (Lifschitz 1996)).

Proposition 5

Let P and Q be two monotone F-programs.

1. If M is a stable model of P and a model of Q then M is a stable model of

P ∪ Q .

2. If Q consists of constraint clauses and M is a stable model of P ∪ Q then M is

a stable model of P .

3 Incidentally, in the case of programs with weight constraints in the lparse syntax, no such property has
been established as supported models have not been defined for that formalism.

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

Logic programs with monotone abstract constraint atoms 183

Proof

1. Since M is a stable model of P , M is a derivable model of PM . By Corollary 2(3),

M is the result of the canonical PM -computation with respect to M . Since M is a

model of P ∪Q , by Lemma 1 M is a model of (P ∪Q)M = PM ∪QM . Therefore,

the canonical (PM ∪ QM)-computation with respect to M is well defined. Its

result is clearly contained in M . On the other hand, it contains the result of the

canonical PM -computation with respect to M , which is M . Therefore, the result

of the canonical (PM ∪QM)-computation with respect to M is M . Thus, M is a

derivable model of (P ∪ Q)M and a stable model of P ∪ Q .

2. Since M is a stable model of P ∪Q , M is the result of a (P ∪Q)M -computation,

say t . Since Q consists of constraint clauses, t is a PM -computation (constraint

clauses, having inconsistent heads, do not participate in computations). Thus, M

is also a result of a PM -computation, that is, M is a stable model of P .

�

8 Monotone F-programs and normal logic programming

The main goal of this paper is to propose a way to integrate abstract constraints

into normal logic programming. In this section, we show that our formalism of

F-programs contains normal logic programming (modulo a very simple encoding)

so that all major two-valued semantics are preserved.

To this end, let us consider an abstract constraint:

PB = {X ⊆ At: X �= ∅}·

We note that PB is identical with the pseudo-boolean constraint (we introduced

pseudo-boolean constraints in Section 2):

PB = PB (1,W ,�),

where W is a weight function on At such that W (a) = 1, for every a ∈ At. Clearly,

the constraint PB is monotone. We will show that normal logic programs can be

encoded as {PB}-programs or, more generally, as monotone F-programs, for every

class F of monotone abstract constraints such that PB ∈ F. In what follows, if

a ∈ At, we will write PB (a) for a {PB}-atom PB ({a}).
We note that for every a ∈ At and every interpretation M ⊆ At, M |= a if and

only if M |= PB (a). That is, a propositional atom a is logically equivalent to an

abstract constraint atom PB (a). This equivalence suggests an encoding of a normal

logic program P as {PB}-program Ppb . Namely, if r is a normal logic program

clause

a ← b1, . . . , bm , not(c1), . . . , not(cn)

we define rpb to be a {PB}-clause

PB (a)← PB (b1), . . . ,PB (bm), not(PB (c1)), . . . , not(PB (cn))·

For a normal logic program P , we define Ppb = {rpb: r ∈ P}. By our earlier

comments, Ppb is a monotone F-program, for every class of monotone constraint

atoms containing the constraint PB .

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

184 V. W. Marek et al.

We note that due to the equivalence of a and PB (a), which we discussed above,

for every interpretation M ⊆ At we have

M |= bd(r) if and only if M |= bd(rpb)· (2)

(here and in other places we use symbols such as bd(r), hd(r) and hd(P) also in the

context of normal logic programs, and assume their standard meaning).

Our first result involves operators associated with programs. Let P be a normal

logic program. We recall that the one-step provability operator TP (van Emden and

Kowalski 1976) is defined as follows: for every M ⊆ At,

TP (M) = {hd(r): r ∈ P and M |= bd(r)}·

We have the following basic property of the translation P
→ Ppb .

Proposition 6

Let P be a normal logic program. Then for every M ⊆ At(P), Tnd
Ppb (M) = {TP (M)}.

Proof

We will write r and r ′ for a pair of corresponding clauses in P and Ppb . That is, if

r ∈ P then r ′ = rpb is the counterpart of r in Ppb . Conversely, if r ′ ∈ Ppb , r is the

clause in P such that rpb = r ′. Clearly, we have hset(r ′) = {hd(r)}.
By the equivalence (2), a clause r ∈ P is M -applicable if and only if r ′ is

M -applicable. Thus, we have

hset(Ppb(M)) = hd(P (M)) = TP (M)· (3)

Let r ′ ∈ Ppb(M) and let a = hd(r). It follows that r ∈ P (M) and a ∈ TP (M). Since

hd(r ′) = PB (a), TP (M) |= hd(r ′). Thus, TP (M) is one-step nondeterministically

provable from M and Ppb , that is, TP (M) ∈ Tnd
Ppb (M).

Next, let us consider M ′ ∈ Tnd
Ppb (M). By the definition, M ′ ⊆ hset(Ppb(M)). Thus,

by (3), we have M ′ ⊆ TP (M). Let us now consider a ∈ TP (M). It follows that

there is a clause r ∈ P (M) such that hd(r) = a . Consequently, r ′ ∈ Ppb(M) and

hd(r ′) = PB (a). Since M ′ ∈ Tnd
Ppb (M), M ′ |= hd(r ′). Thus, a ∈ M ′. It follows that

M ′ = TP (M) and, consequently, Tnd
Ppb (M) = {TP (M)}. �

This result entails a proposition concerning Horn programs.

Proposition 7

Let P be a normal Horn logic program. Then M is a least model of P if and only

if M is a derivable model of Ppb .

Proof

We first observe that the sequence {TP ↑ n(∅)}n=0,1,... is a Ppb-computation (one can

show this by an easy inductive argument, using the relationship between TP and Tnd
Ppb

established by Proposition 6). Since M is the limit of the sequence {TP ↑ n(∅)}n=0,1,...,

M is a derivable model of Ppb .

Conversely, if M is a derivable model of Ppb , then M is the result of a derivation

{Xn}n=0,1,... from Ppb . Thus, for every n = 0, 1, . . ., Xn+1 ∈ Tnd
Ppb (Xn). By Proposition 6,

Xn+1 = TP (Xn). Since X0 = ∅, it follows that for every n = 0, 1, . . ., Xn = TP ↑ n(∅).
Consequently, M =

⋃∞
n=0 TP ↑ n(∅) and so, M is the least model of P . �

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

Logic programs with monotone abstract constraint atoms 185

We can now prove the main result of this section demonstrating that the

embedding P
→ Ppb preserves all the semantics considered in the paper.

Theorem 6

Let P be a normal logic program and let M be a set of atoms. Then M is a model

(supported model, stable model) of P if and only if M is a model (supported model,

stable model) of Ppb .

Proof

It is well known that M is a model of P if and only if TP (M) ⊆ M Apt (1990).

By Proposition 6, the latter condition is equivalent to the condition that there is

M ′ ∈ Tnd
Ppb (M) such that M ′ ⊆ M . By Theorem 1, this last condition is equivalent

to M being a model of Ppb . Thus, M is a model of P if and only if M is a model

of Ppb .

The proof for the case of supported models is essentially the same. It relies on the

fact that M is a supported model of P if and only if M = TP (M) Apt (1990) and

uses Proposition 6 and Theorem 2.

Let us assume now that M is a stable model of P . It follows that M is the least

model of PM . By Proposition 7, M is a derivable model of [PM]pb . It follows from

the definitions of the reducts of normal logic programs and {PB}-programs that

[PM]pb = [Ppb]M . Thus, M is a stable model of Ppb . The converse implication can

be proved in the same way. �

There are other ways to establish a connection between normal logic programs

and programs with abstract constraints. We will now define a class of monotone

F-programs, which offers a most direct extension of normal logic programming.

Definition 8

An F-atom C (X) is definite if X is a minimal element in C . An F-clause r is

definite if hd(r) is a definite F-atom. An F-program is definite if every clause in P

is definite.

We use the term definite following the logic programming tradition (cf.

Van Emden and Kowalski (1976), for instance), where it is used for clauses whose

heads provide “definite” information (as opposed to being disjunctions and so listing

several possible alternatives).

Example 5

Let F consist of two monotone constraints, C1 and C2 where:

C1 = {X ⊆ At: {a , b} ⊆ X or {a , c} ⊆ X or |X | is infinite}

and

C2 = {X ⊆ At: {d , e} ⊆ X }·

The constraint C1 has two minimal elements: {a , b} and {a , c}. The constraint C2

has just one minimal element: {d , e}.
These two monotone constraints generate the following three definite atoms:

C1({a , b}), C1({a , c}), and C2({d , e}). An F-program consisting of the following

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

186 V. W. Marek et al.

clauses is definite:

C1({a , b})←
C1({a , c})←C1({a , b, c}), not(C2({a , b, d , e}))
C2({d , e})←

We note that some monotone constraints do not yield any definite constraint

atoms. It happens when they have no finite minimal elements. A constraint C

consisting of all infinite subsets of At offers a specific example.

Definite F-atoms have the following simple properties.

Proposition 8

Let X ⊆ At and let C (X) be a definite F-atom. Then C (X) is consistent and, for

every M ⊆ At, M |= C (X) if and only if X ⊆ M .

Proof

If M |= C (X) then M ∩X ∈ C . Since C (X) is a definite F-atom, X is a minimal

element in C . It follows that M ∩ X = X and so, X ⊆ M . Conversely, if X ⊆ M

then M ∩ X = X . Since X ∈ C , M ∩ X ∈ C . Thus, M |= C (X). This argument

proves the second part of the assertion. In particular, it follows that X |= C (X).

Thus, C (X) is consistent. �

The intuition behind the notion of a definiteF-atom is now clear. Given a definite

F-program and an interpretation M , there is always a way to satisfy the heads of

all M -applicable clauses (due to consistency of definite F-atoms). Moreover, there

is only one way to do so if we want only to use atoms appearing in the headsets

of M -applicable clauses (due the the second property from Proposition 8). Thus,

computing with definite F-programs does not involve nondeterminism. Indeed, we

have the following result.

Proposition 9

Let P be a definite F-program. Then, for every set of atoms M , |Tnd
P (M)| = 1.

Proof

Let r ∈ P (M). Since hd(r) is a definite F-atom, then hset(r) |= hd(r). We now

observe that hset(r) ⊆ hset(P (M)). Thus, for every r ∈ P (M), hset(P (M)) |= hd(r).

By the definition of the one-step nondeterministic provability, hset(P (M)) ∈ Tnd
P (M).

Thus, |Tnd
P (M)| � 1.

Next, let us consider M ′ ∈ Tnd
P (M). From the definition of Tnd

P (M), it follows

that M ′ ⊆ hset(P (M)). To prove the converse inclusion, let r ∈ P (M). Again by the

definition of Tnd
P (M), we have that M ′ |= hd(r). Since hd(r) is a definite F-atom,

Proposition 8 implies that hset(r) ⊆ M ′. Thus, hset(P (M)) ⊆ M ′.

It follows that hset(P (M)) = M ′ and so, |Tnd
P (M)| = 1. �

Thus, for a definite F-program P , the operator Tnd
P is deterministic and, so, can

be regarded as an operator with both the domain and codomain P(At). We will write

Td
P , to denote it. Models, supported models and stable models of a definite monotone

F-program (for supported models we do not need the monotonicity assumption) can

be introduced in terms of the operator Td
P in exactly the same way the corresponding

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

Logic programs with monotone abstract constraint atoms 187

concepts are defined in normal logic programming. In particular, the algebraic

treatment of logic programming developed in Fitting (2002), Przymusinski (1990)

and Denecker et al. (2000) applies to definite F-programs and results in a natural

and direct extension of normal logic programming. We note that this comment

extends to 3- and 4-valued semantics of partial models, supported models and stable

models (including the Kripke-Kleene semantics and the well-founded semantics)4.

We will explicitly mention just one result on definite monotone F-programs (in

fact, definite Horn programs) here, as it will be used later in the paper.

Proposition 10

Let P be a definite Horn F-program. Then P has exactly one derivable model and

this model is the least model of P .

Proof

Since P is definite, it contains no constraint clauses and so, it has a model

(Proposition 2). Thus, it has at least one P -computation. Let (Xn)n=0,1,... and

(Yn)n=0,1,... be two P -computations. By the definition, X0 = ∅ = Y0. Let us assume

that for some n � 0, Xn = Yn . By the definition of P -computations,

Xn+1 ∈ Tnd
P (Xn) and Yn+1 ∈ Tnd

P (Yn)·

By the induction hypothesis, Xn = Yn . Thus, Tnd
P (Xn) = Tnd

P (Yn). Since P is definite,

|Tnd
P (Xn)| = |Tnd

P (Yn)| = 1 and so, Xn+1 = Yn+1. Thus, both computations coincide

and P has exactly one P -computation and so, exactly one derivable model. Since

every model of P contains a derivable model, it follows that the unique derivable

model of P is also a least model of P . �

9 Encoding lparse programs as monotone F-programs

We will now investigate the relation between lparse programs (Niemelä et al. 1999;

Simons et al. 2002) and programs with monotone abstract constraints. We start by

reviewing the syntax and the semantics of lparse programs.

A weighted set of literals is a function W : X → {. . . ,−1, 0, 1, . . .}, where X ⊆
At ∪ {not(a): a ∈ At} is finite. We call X the literal set of W and denote it by

lset(W). The set of atoms that appear in literals in lset(W) is the atom set of W .

We denote it by aset(W). Sometimes it will be convenient to write W explicitly. To

this end, we will write W as

{a1 = w1, . . . , am = wm , not(b1) = w ′1, . . . , not(bn) = w ′n}, (4)

where the domain of the function W is {a1, . . . , am , not(b1), . . . , not(bn)}, and w1 =

W (a1), . . . ,w ′n = W (not(bn)), loosely following the lparse notation. Thus, when the

domain of W is {a , b, c} and W (a) = 1,W (b) = 2, and W (c) = 1, then we write W

as {a = 1, b = 2, c = 1}.

4 Results in Denecker et al. (2001), Pelov et al. (2004) and Pelov. (2004) are related to this observation.
They concern programs with aggregates, whose clauses have heads consisting of single atoms and so,
are definite.

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

188 V. W. Marek et al.

An lparse atom (l-atom, for short) is an expression of the form kWl , where W is

a weighted set of literals, and k and l are integers such that k � l . By the literal

set of an l-atom A = kWl we mean lset(W) and write lset(A) to denote it (in a

similar way, we extend the definition and the notation of the atoms set to the case

of l-atoms).

We say that a set of atoms (interpretation) M satisfies an l-atom kWl if

k �
∑

p ∈ lset(W)
p ∈ M

W (p) +
∑

not(p) ∈ lset(W)
p �∈ M

W (p) � l

(M |= kWl , in symbols). We note that it is easy to give an example of an inconsistent

l-atom. For instance, 2{a = 1}2 is inconsistent. We will use I to denote any

inconsistent constraint (it does not matter which, as all are equivalent to each

other).

An lparse clause (l-clause, for short) is an expression r of the form

A← B1, . . . ,Bn ,

where A and Bi , 1 � i � n , are l-atoms. We call A the head of r and {B1, . . . ,Bn}
the body of r . We denote them by hd(r) and bd(r), respectively. An lparse program

is a finite set of l-clauses.

We say that a set M ⊆ At satisfies an l-clause r if M satisfies hd(r) whenever it

satisfies each l-atom in the body of r . We say that M satisfies an lparse program

P if M satisfies each l-clause in P . We write M |= r and M |= P in these cases,

respectively.

We note that lparse programs allow both negative literals and negative weights in

l-atoms. However, in Simons et al. (2002) it is argued that negative weights can be

expressed using negative literals and vice versa and, hence, one is inessential when

the other is available. In fact, in (Simons et al. 2002) an l-atom with negative weights

is treated simply as a shorthand for the corresponding constraint with non-negative

weights. We follow this approach here and from now on consider only l-atoms kWl ,

where W assigns non-negative weights to literals.

Before we continue, let us define PB to be a set of all pseudo-boolean constraints

of the form PB (k ,W ,�), where k is a non-negative integer and W a weight function

assigning to elements of At non-negative integers (cf. Section 2). Directly from the

definition it follows that every constraint in PB is monotone.

Let us consider an l-atom lW which contains no negative literals (and, as it is

evident from the notation, no upper bound). In particular, lset(W) = aset(W). Let

W ′ be an extension of W , which assigns 0 to every atom p ∈ At \ aset(W). We

observe that a set M ⊆ At is a model of lW if and only if M is a model of

the PB-atom A(X), where A = PB (l ,W ′,�) and X = aset(W). Therefore, we will

regard such an l-atom lW as a PB-atom or, speaking more formally (but with some

abuse of notation) we will denote by lW the PB-atom A(X).

If W = {a = 1} and l = 2, then the corresponding PB-atom is inconsistent (it is

one of many inconsistent PB-atoms). As in the case of l-atoms, we will write I to

denote (any) inconsistent PB-atom.

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

Logic programs with monotone abstract constraint atoms 189

This discussion suggests that lparse programs built of l-atoms without negative

literals and upper bounds can be viewed as Horn PB-programs. We will exploit

that relationship below in the definition of the reduct, and will subsequently extend

it to all lparse programs.

Let P be an lparse program and let M ⊆ At. An lparse-reduct of P with respect

to M is a PB-program obtained by:

1. eliminating from P every clause r such that M �|= B , for at least one l-atom

B ∈ bd(r).

2. replacing each remaining l-clause r = kWl ← k1W1l1, . . . , knWnln with PB-

clauses of the form

1{a = 1} ← k ′1W
′
1 , . . . , k

′
nW

′
n ,

where a ∈ lset(W) ∩M , W ′
i is Wi restricted to lset(Wi) ∩ At, and

k ′i = ki −
∑

not(p) ∈ lset(Wi)
p �∈ M

Wi (not(p))

(by our comments above, expressions of the form l ′W ′ denote PB-atoms). With

some abuse of notation, we denote the reduct of P with respect to M by PM (the

type of the program, an lparse program or a PB-program, determines which reduct

we have in mind). By our comments above, PM can be regarded as a definite Horn

PB-program. Thus, PM has a least model, lm(PM) (Proposition 10). This model is

the result of the canonical computation from PM with respect to M .

Definition 9

Let P be an lparse program. A set M ⊆ At is an lparse-stable model of P if

M = lm(PM) and M |= P .

We will now show that all lparse programs can be viewed as PB-programs. This

task involves two steps. First, we show how to translate lparse programs to not-free

lparse programs so that lparse-stable models are preserved. Second, we show that

for not-free lparse programs the two definitions of stable models presented in the

paper (Definitions 7 and 9) are equivalent.

An lparse program P can be translated to a not-free lparse program P ′, as follows.

We recall that by our earlier comments, we need to consider only lparse programs

with no negative weights. For each negated literal not(b) appearing in P , introduce

a new propositional atom b̄ and an l-clause b̄ ← 0{b = 1}0. Then we replace each

l-atom kWl where the weighted set of literals W is of the form (4) with an l-atom

k{a1 = w1, . . . , am = wm , b̄1 = w ′1, . . . , b̄n = w ′n}l ·

It is straightforward to show that this transformation preserves lparse-stable

models in the following sense.

Proposition 11

Let P be an lparse program, P ′ a not-free lparse program obtained by the translation

above, and B the set of new atoms introduced in the translation. Then,

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

190 V. W. Marek et al.

• if M is an lparse-stable model of P then M ∪{b̄: b ∈ B \M } is a lparse-stable

model of P ′ and

• if M ′ is a lparse-stable model of P ′ then M = M ′ \B is an lparse-stable model

of P .

Now we show that not-free lparse programs can be translated to PB-programs.

To simplify the description of the encoding and make it uniform, we assume that

all bounds are present. Let r be an l-clause

kWl ← k1W1l1, . . . , kmWmlm ·

We represent this l-clause by a pair of PB-clauses, e1(r) and e2(r) that we define as

kW ← k1W1, . . . , kmWm , not((l1 + 1)W1), . . . , not((lm + 1)Wm),

and

I ← (l + 1)W , k1W1, . . . , kmWm , not((l1 + 1)W1), . . . , not((lm + 1)Wm),

respectively. We recall that the symbol I , appearing in the clause e2(r), stands for

the inconsistent PB-atom introduced above.

Now, given a not-free lparse program P , we translate it into a PB-program

e(P) =
⋃

r∈P

{e1(r), e2(r)}·

Theorem 7

Let P be a not-free lparse program. A set M is an lparse-stable model of P if and

only if M is a stable model of e(P), as defined for PB-programs.

Proof

In the proof we will use the notation:

P1 =
⋃
{e1(r): r ∈ P} and P2 =

⋃
{e2(r): r ∈ P}·

Let us assume first that M is an lparse-stable model of a not-free lparse program

P . We will show that M is a stable model of the PB-program e(P), which in our

terminology is equal to P1 ∪ P2.

Since M is an lparse-stable model of P , it is a model of P (Definition 9).

Consequently, M is a model of P2. By Proposition 5 to complete this part of the

proof, it suffices to show that M is a stable model of the program P1. To this end,

we note that the definitions of the respective reducts imply that a clause

1{a = 1} ← k1W1, . . . kmWm

belongs to the lparse-reduct PM if and only if the reduct PM
1 contains a clause

kW ← k1W1, . . . kmWm

such that a ∈ aset(W) and M |= kiWi for all 1 � i � m .

From this relationship it follows that the results of the canonical computations

from PM and PM
1 with respect to M coincide (we recall that both reducts are Horn

PB-programs). Since M is the least model of PM , it is the result of the canonical

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

Logic programs with monotone abstract constraint atoms 191

computation from PM with respect to M . Thus, M is also the result of the canonical

computation from PM
1 with respect to M . In other words, M is a derivable model

of P1 and, consequently, a stable model of P1.

Conversely, let us assume that M is a stable model of P1 ∪ P2. It follows that

M is a model of P1 ∪ P2 and, consequently, a model of P . Next, we note that

since M is a stable model of P1 ∪ P2, it is a stable model of P1 (by Proposition 5).

Thus, it is a derivable model of its reduct PM
1 and, therefore, it is also the result of

the canonical computation from PM
1 with respect to M . Our observation about the

relationship between the reducts PM
1 of and PM holds now, as well. Consequently,

M is the result of the canonical computation from PM with respect to M . Thus, M

is a derivable model of PM . Since PM is a definite Horn PB-program, it has only

one derivable model – its least model. It follows that M is the least model of PM

and, consequently, an lparse-stable model of P . �

Theorem 7 shows that PB-programs can express arbitrary not-free lparse pro-

grams with only linear growth in the size of the program. The converse relationship

holds, too: not-free lparse programs can represent arbitrary PB-programs without

increasing the size of the representation. Let r be a PB-clause

kW ← k1W1, . . . , kmWm , not(l1V1), . . . , not(lnVn)·
We define f (r) as follows. If there is i , 1 � i � n , such that li = 0, we set

f (r) = kW ← kW (in fact any tautology would do). Otherwise, we set

f (r) = kW ← k1W1, . . . , kmWm , 0V1(l1 − 1), . . . , 0Vn (ln − 1)·
Given a PB-program P , we define f (P) = {f (r): r ∈ P}.
Theorem 8

Let P be a PB-program. A set of atoms M is a stable model of P (as defined for

PB-programs) if and only if M is an lparse-stable model of f (P).

Proof

First, we observe that P and f (P) have the same models. Next, similarly as before,

we have that the lparse-reduct [f (P)]M contains a clause

1{a = 1} ← k1W1, . . . kmWm , 0V1, . . . , 0Vn

if and only if PM contains a clause of the form

kW ← k1W1, . . . kmWm

such that a ∈ aset(W) and M |= kiWi for all 1 � i � m . Since in the clauses

of the first type l-atoms Vi are always true, as before, the results of the canonical

computations from PM and [f (P)]M with respect to M of P coincide (we recall that

both reducts are Horn PB-programs). Using this observation one can complete the

proof by reasoning as in the previous proof. �

Theorems 7 and 8 establish the equivalence of not-free lparse programs and

PB-programs with respect to the stable model semantics. The translations e and f

also preserve models. The equivalence between not-free lparse programs and PB-

programs extends to supported models under the following concept of supportedness

for lparse-programs.

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

192 V. W. Marek et al.

Definition 10

Let P be a not-free lparse program. A set of atoms M is a supported model of P if

M is a model of P and if for every atom a ∈ M there is an l-clause A← B1, . . . ,Bn

in P such that a ∈ aset(A) and M |= Bi , 1 � i � n .

Indeed, we have the following two theorems (we only sketch a proof of one of

them; the proof of the other one is similar).

Theorem 9

Let P be a not-free lparse program. A set M is an lparse-supported model of P if

and only if M is a supported model of e(P), as defined for PB-programs.

Proof

Let us denote Q = e(P). Let M be an lparse-supported model of P . We will show

that M is a supported model of Q . By our earlier observations, P and Q have the

same models. Thus, M is a model of Q . To complete the argument, we need to show

that M ⊆ hset(Q(M)). Let a ∈ M . Since M is an lparse-supported model of P ,

there is an l-clause r ∈ P such that r = A← B1, . . . ,Bn , a ∈ aset(A) and M |= Bi for

every i , 1 � i � n . It follows that a ∈ aset(hd(e1(r))) and that M |= bd(e1(r)). Since

e1(r) ∈ Q , e1(r) ∈ Q(M). Thus, a ∈ hset(Q(M)). It follows that M ⊆ hset(Q(M))

and so M is a supported model of Q .

Conversely, let us assume that M is a supported model of Q . Then M is a model

of Q and so M is a model of P , as well. Let a ∈ M . It follows that a ∈ hset(Q(M)).

Since each clause of the form e2(r) (r ∈ P) is a constraint, there is an l-clause r ∈ P

such that clause e1(r) ∈ Q such that M |= bd(e1(r)) and a ∈ hset(hd(e1(r))). Let

r = A ← B1, . . . ,Bn . It follows that a ∈ aset(A) and that M |= Bi , 1 � i � n . Thus,

M is an lparse-supported model of P . �

Theorem 10

Let P be a PB-program. A set of atoms M is a stable model of P (as defined for

PB-programs) if and only if M is an lparse-stable model of f (P).

It follows from the results in this section that the translations e and f uniformly

preserve basic semantics of not-free lparse and PB-programs, and allow us to view

not-free lparse programs as PB-programs and vice versa.

We also note that this equivalence demonstrates that lparse programs with the

semantics of stable models as defined in (Niemelä et al. 1999) can be viewed as

a generalization of normal logic programming. It follows from Theorems 6 and

8 that the encoding of normal logic programs as lparse programs, defined as the

composition of the translation P
→ Ppb described in Section 8 (we note that

the constraint PB belongs to the class PB) and the translation f , preserves the

semantics of models, supported models and stable models (an alternative proof of

this fact, restricted to the case of stable models was first given in Simons et al. (2002)

and served as a motivation for the class of lparse programs and its stable-model

semantics). This result is important, as it is not at all evident that the reduct used in

Simons et al. (2002), leads to fixpoints that generalize the semantics of stable models

as defined in Gelfond and Lifschitz (1988).

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

Logic programs with monotone abstract constraint atoms 193

Given that the formalisms of not-free lparse and PB-programs are equivalent, it is

important to stress what differentiates them. The advantage of the formalism of not-

free lparse programs is that it does not require the negation operator in the language.

The strength of the formalism of PB-programs lies in the fact that its syntax so

closely resembles that of normal logic programs, and that the development of the

theory of PB-programs so closely follows that of the normal logic programming.

10 Monotone F-programs and disjunctive logic programs

Sakama and Inoue (1994) introduced and investigated a semantics of possible mod-

els of disjunctive logic programs. It turns out that this semantics is different

from the semantics proposed by Minker (Minker 1982) and from that of

Gelfond and Lifschitz (1991) and Przymusinski (1991). In this section, we will show

that the formalism of monotone F-programs generalizes the semantics of possible

models. For the purpose of our discussion, we will extend the use of the terms

head, body, M -applicability, and notation PM , hd(r), bd(r) to the case of disjunctive

programs.

Definition 11

(Sakama and Inoue 1994) Let P be a disjunctive logic program. A split program

for P is any normal logic program that can be obtained by the following procedure.

First, we select for each clause r in P , a set Sr ⊆ hd(r). Next, we replace r with

clauses of the form A ← body, where A ∈ Sr , if Sr �= ∅, and with the (constraint)

clause ← bd(r), if Sr = ∅.
A set M of atoms is a possible model of P if M is a stable model (in the sense

of Gelfond and Lifschitz (1988)) of a split program for P .

We point out that we allow for disjunctive clauses to have empty heads (that is,

we allow constraint clauses). We also allow that sets Sr be empty. Consequently,

split programs may contain constraints even if the original program does not.

Example 6

Let P be the disjunctive program:

P = {a ∨ b ∨ c ←, a ∨ c ← not(b), b ← not(c), c ← not(a)}·

Then, the program Q:

Q = {a ←, a ← not(b), c ← not(b), b ← not(c), ← not(a)}·

is an example of a split program for P (given by the following subsets of the sets

of atoms in the heads of the clauses: {a}, {a , c}, {b} and ∅, respectively). Moreover,

since {a , b} is a stable model of Q , {a , b} is a possible model of P .

If M is a model of a disjunctive program P , by s(P ,M) we denote the split

program of P determined by sets Sr = M ∩ hd(r). We have the following simple

characterization of possible models.

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

194 V. W. Marek et al.

Proposition 12

Let P be a disjunctive program. A set of atoms M is a possible model of P if and

only if M is a stable model of the split program s(P ,M).

Proof

If M is a possible model of P , then M is a stable model of a split program of P ,

say Q . Let us assume that Q is determined by sets Sr ⊆ hd(r), where r ∈ P .

For every clause r ∈ P , if r is M -applicable then all clauses it contributes to Q

are M -applicable, too, as they have the same body as r . Since M is a model of Q

(being a stable model of Q), we obtain that Sr ⊆ M . Thus, Q(M) ⊆ s(P ,M).

Directly from the definition of s(P ,M) we obtain that M is a model of s(P ,M).

Thus, M is a model of [s(P ,M)]M and, consequently, lm([s(P ,M)]M) exists.

Moreover, it follows that lm([s(P ,M)]M) ⊆ M (indeed, all non-constraint clauses in

s(P ,M) have heads from M).

Since M is a stable model of Q , M = lm(QM). Thus, it follows that M =

lm([Q(M)]M) and so, we obtain:

M = lm([Q(M)]M) ⊆ lm([s(P ,M)]M) ⊆ M ·

Thus, lm([s(P ,M)]M) = M or, in other words, M is a stable model of s(P ,M). The

converse implication follows by the definition. �

Let r be a disjunctive logic program clause of the form:

c1 ∨ . . . ∨ ck ← a1, . . . , am , not(b1), . . . , not(bn),

where all ai , bi and ci are atoms. We encode this clause as a program clause with

cardinality atoms:

rca = 1{c1, . . . , ck} ← 1{a1}, . . . , 1{am}, not(1{b1}), . . . , not(1{bn})·

(If all ai and bi are distinct, the following translation could be used instead:

1{c1, . . . , ck} ← m{a1, . . . , am}, not(1{b1, . . . , bn}).) We note that if k = 0, that is, the

head of r is empty, the rule rca has the constraint 1∅ in the head, which is inconsistent.

In this case, rca is a constraint clause.

For a disjunctive logic program P , we define Pca = {rca : r ∈ P} (ca in the subscript

stands for “cardinality atoms”). Since cardinality constraints are monotone, the

concept of a stable model of the program Pca is well defined. We have the following

theorem.

Theorem 11

Let P be a disjunctive logic program. A set of atoms M is a possible model of P if

and only if M is a stable model of the program Pca (in the sense, we defined in this

paper).

Proof

We first note that [s(P ,M)]M = s(PM ,M). Thus, by Proposition 12, it follows that

M is a possible model of P if and only if M is a least model of s(PM ,M). We also

note that [Pca]M = [PM]ca . Thus, M is a stable model of Pca if and only if M is a

derivable model of [PM]ca .

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

Logic programs with monotone abstract constraint atoms 195

It follows that in order to prove the assertion it suffices to show that for every

positive (no negation in the bodies of clauses) disjunctive program P , M is a least

model of s(P ,M) if and only if M is a derivable model of Pca . We will now prove

this claim. To simplify notation, we will write Q instead of Pca .

First, we note P and Q have the same models. Thus, each side of the equivalence

implies that M is a model of Q . In particular, it follows (no matter which implication

we are proving) that Q has a canonical computation tQ ,M = (XQ ,M
n)n=0,1,.... Next, we

observe that for every X ⊆ M , the definitions of Q and s(P ,M) imply that

hset(Q(X)) ∩M = hd(s(P ,M)(X)) = Ts(P ,M)(X)·

In particular, since XQ ,M
n+1 = hset(Q(XQ ,M

n)) ∩M , for every n = 0, 1, . . . , we have

XQ ,M
n+1 = Ts(P ,M)(X

Q ,M
n)·

These identities imply that the result of the canonical Q-computation for M and

the least model of s(P ,M) coincide. Consequently, M is a derivable model of Q if

and only if M is a least model of s(P ,M) as claimed. �

11 Discussion

In the paper, we introduced and studied the formalism of F-programs. When all

constraints in F are monotone, this formalism offers an abstract framework for

integrating constraints into logic programming. It exploits and builds on analogies

with normal logic programming. Most concepts and techniques for monotone

F-programs are closely patterned after their counterparts developed there and so,

normal logic programming can be viewed as a fragment of the theory of monotone

F-programs. Importantly, the same is the case for other nonmonotonic systems

namely, the disjunctive logic programming with the possible-model semantics of

Sakama and Inoue (1994), and for the formalism of logic programs with weight

constraints (Simons et al. 2002). For these two formalisms, monotone F-programs

help to explain the nature of their relationship with normal logic programming,

hidden by their original definitions.

In this paper, we developed a sound foundation for the theory of monotone

F-programs. Recently, the theory of monotone F-programs was developed further.

Liu and Truszczyński (2005b) demonstrated that Fages lemma (Fages 1994), and

the concepts of the program completion and a loop formula extend to the setting of

monotone F-programs. The latter two properties allow one to reduce stable-model

computation for programs with weight constraints to the problem of computing

models of propositional theories extended with weight atoms (referred to as pseudo-

boolean constraints in the satisfiability community). Liu and Truszczyński (2005a)

exploited this reduction and developed an algorithm to compute stable models of

programs with weight constraints by using off-the-shelf solvers of pseudo-boolean

constraints such as those described by several others (Barth 1995; Walser 1997;

Aloul et al. 2002; Liu and Truszczyński 2003; East and Truszczyński 2004).

There are strong analogies between the approach we propose and develop here

and some of the techniques discussed in Sakama and Inoue (1994) in the context

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

196 V. W. Marek et al.

of disjunctive programs with the semantics of possible models. One way to look

at the results of our paper is that it extends the way Sakama and Inoue (1994)

handles nondeterminism, inherent in disjunctive logic programs, to the abstract

setting of monotone F-programs. In particular, Sakama and Inoue (1994) presents

a computational procedure for disjunctive programs without negation, which can

be shown to be closely related to our notion of a P -computation. That paper also

introduces a nondeterministic provability operator, defined for positive disjunctive

programs. Three aspects differentiate our work from Sakama and Inoue (1994).

Most importantly, we study here a much broader class of programs than disjunctive

ones. Secondly, we define a provability operator on the class of all monotone

F-programs and not just positive ones. Finally, we consistently exploit properties of

this operator, and align our approach with the standard operator-based development

of normal logic programming (Apt 1990; Fitting 2002).

The emergence of a nondeterministic one-step provability operator warrants addi-

tional comments. Nondeterministic provability operators were considered before in

the context of logic programming. We already noted that Sakama and Inoue (1994)

proposed a provability operator similar to the one we introduced here (although only

for the class of positive disjunctive programs). Sakama and Inoue (1995) proposed

another operator designed to capture a different computational process arising in the

context of paraconsistent systems. Finally, Pelov and Truszczynski. (2004) presented

a characterization of answer sets of disjunctive logic programs in terms of yet

another nondeterministic provability operator. However, the operator we proposed

here exhibits the closest parallels with the van Emden-Kowalski operator and opens

up a possibility of generalizing the approximation theory proposed in (Denecker

et al. 2000) to the case of monotone F-programs. However, for that to happen,

one will need techniques for handling nondeterministic operators on lattices, similar

to those presented for the deterministic operators in Denecker et al. (2000) and

Denecker et al. (2004). Developing such techniques is an open problem.

Acknowledgments

The authors wish to thank the anonymous reviewers for their detailed comments

and suggestions, which helped improve the paper. The second author was supported

by the Academy of Finland grant 211025. The other two authors were supported

by the NSF grants IIS-0097278 and IIS-0325063.

References

Aloul, F., Ramani, A., Markov, I. and Sakallah, K. 2002. PBS: a backtrack-search pseudo-

boolean solver and optimizer. In Proceedings of the 5th International Symposium on

Theory and Applications of Satisfiability, (SAT-02), pp. 346–353.

Apt, K. 1990. Logic programming. In Handbook of theoretical computer science, J. van

Leeuven, Ed. Elsevier, pp. 493–574.

Babovich, Y. and Lifschitz, V. 2002. Cmodels package. http://www.cs.utexas.edu/

users/tag/cmodels.html.

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

Logic programs with monotone abstract constraint atoms 197

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press.

Barth, P. 1995. A Davis-Putnam based elimination algorithm for linear pseudo-boolean

optimization. Tech. Rep., Max-Planck-Institut für Informatik. MPI-I-95-2-003.

Calimeri, F., Faber, W., Leone, N. and Perri, S. Declarative and Computational Properties of

Logic Programs with Aggregates. In Proceedings of the 19th International Joint Conference

on Artificial Intelligence (IJCAI-05), pp. 406–411.

Clark, K. 1978. Negation as failure. In Logic and data bases, H. Gallaire and J. Minker,

Eds. Plenum Press, pp. 293–322.

Dell’Armi, T., Faber, W., Ielpa, G., Leone, N. and Pfeifer, G. 2003. Aggregate functions

in disjunctive logic programming: semantics, complexity, and implementation in DLV. In

Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI-

2003). Morgan Kaufmann, pp. 847–852.

Denecker, M., Marek, V. and Truszczyński, M. 2000. Approximations, stable

operators, well-founded fixpoints and applications in nonmonotonic reasoning. In Logic-

Based Artificial Intelligence, J. Minker, Ed. Kluwer Academic Publishers, pp. 127–

144.

Denecker, M., Marek, V. and Truszczyński, M. 2004. Ultimate approximation and

its application in nonmonotonic knowledge representation systems. Information and

Computation 192, 84–121.

Denecker, M., Pelov, N., and Bruynooghe, M. 2001. Ultimate well-founded and stable

semantics for logic programs with aggregates. In Logic Programming, Proceedings of the

2001 International Conference on Logic Programming (ICLP-01). LNCS 2237. Springer,

pp. 212–226.

East, D. and Truszczyński, M. 2006. Predicate-calculus based logics for modeling and

solving search problems. ACM Transactions on Computational Logic 7, 38–83.

Faber, W., Leone, N. and Pfeifer, G. 2004. Recursive aggregates in disjunctive logic

programs: Semantics and complexity. In Proceedings of the 9th European Conference

on Artificial Intelligence (JELIA-04). LNAI 3229. Springer, pp. 200–212.

Fages, F. 1994. Consistency of Clark’s completion and existence of stable models. Journal of

Methods of Logic in Computer Science 1, 51–60.

Fitting, M. C. 2002. Fixpoint semantics for logic programming – a survey. Theoretical

Computer Science 278, 25–51.

Gelfond, M. and Leone, N. 2002. Logic programming and knowledge representation – the

A-prolog perspective. Artificial Intelligence 138, 3–38.

Gelfond, M. and Lifschitz, V. 1988. The stable semantics for logic programs. In Proceedings

of the 5th International Conference on Logic Programming (ICLP-88). MIT Press,

pp. 1070–1080.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive

databases, New Generation Computing 9, 365–385.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S. and Scarcello, F.

2006. The dlv system for knowledge representation and reasoning. ACM Transactions

on Computational Logic. To appear, available at http://xxx.lanl.gov/abs/cs.AI/

0211004.

Lifschitz, V. 1996. Foundations of logic programming. In Principles of Knowledge

Representation, pp. 69–127. CSLI Publications.

Lin, F. and Zhao, Y. 2002. ASSAT: Computing answer sets of a logic program by SAT solvers.

In Proceedings of the 18th National Conference on Artificial Intelligence (AAAI-02). AAAI

Press, pp. 112–117.

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

198 V. W. Marek et al.

Liu, L. and Truszczyński, M. 2003. Local-search techniques in propositional logic extended

with cardinality atoms. In Proceedings of the 9th International Conference on Principles

and Practice of Constraint Programming (CP-2003). LNCS 2833. Springer, pp. 495–

509.

Liu, L. and Truszczyński, M. 2005a. Pbmodels – software to compute stable models by

pseudoboolean solvers. In Logic Programming and Nonmonotonic Reasoning, Proceedings

of the 8th International Conference (LPNMR-05). LNAI 3662. Springer, pp. 410–

415.

Liu, L. and Truszczyński, M. 2005b. Properties of programs with monotone and convex

constraints. In Proceedings of the 20th National Conference on Artificial Intelligence

(AAAI-05). AAAI Press, pp. 701–706.

Marek, V. W. 2005. Mathematics of Satisfiability http://www.cs.uky.edu/marek/book.pdf.

Marek, V., Niemelä and Truszczyński, M. 2004. Characterizing stable models of

logic programs with cardinality constraints. In Logic Programming and Nonmonotonic

Reasoning, Proceedings of the 7th International Conference (LPNMR-04), LNAI 2923.

Springer, pp. 154–166.

Marek, V. W. and Remmel, J. B. 2004. Set Constraints in Logic Programming. In

Logic Programming and Nonmonotonic Reasoning, Proceedings of the 7th International

Conference (LPNMR-04). LNAI 2923. Springer, pp. 154–167.

Marek, V. and Truszczyński, M. 2004. Logic programs with abstract constraint atoms. In

Proceedings of the 19th National Conference on Artificial Intelligence (AAAI-04). AAAI

Press, pp. 86–91.

Minker, J. 1982. On indefinite databases and the closed world assumption. In Proceedings of

the 6th conference on automated deduction. LNCS 138. Springer, pp. 292–308.

Niemelä, I. and Simons, P. 1997. Smodels – an implementation of the stable model and well-

founded semantics for normal logic programs. In Logic Programming and Nonmonotonic

Reasoning, Proceedings of the 4th International Conference (LPNMR-97). LNAI 1265.

Springer, pp. 420–429.

Niemelä, I., Simons, P. and Soininen, T. 1999. Stable model semantics of weight constraint

rules. In Logic Programming and Nonmonotonic Reasoning, Proceedings of the 5th

International Conference (LPNMR-99). LNAI 1730. Springer, pp. 317–331.

Pelov, N. 2004. Semantics of logic programs with aggregates. PhD Dissertation. Department

of Computer Science, K.U. Leuven, Leuven, Belgium.

Pelov, N., Denecker, M. and Bruynooghe, M. 2004. Partial stable models for logic programs

with aggregates. In Logic Programming and Nonmonotonic Reasoning, Proceedings of the

7th International Conference (LPNMR-04), LNAI 2923. Springer, pp. 207–219.

Pelov, N. and Truszczynski, M. 2004. Semantics of disjunctive programs with monotone

aggregates – an operator-based approach. In Proceedings of the 10th International

Workshop on Non-Monotonic Reasoning (NMR-04), pp. 327–334.

Przymusinski, T. 1990. The well-founded semantics coincides with the three-valued stable

semantics. Fundamenta Informaticae 13(4), 445–464.

Przymusinski, T. 1991. Stable semantics for disjunctive programs, New Generation

Computing 9, 401–424.

Sakama, C. and Inoue, K. 1994. An alternative approach to the semantics of disjunctive logic

programs and deductive databases. Journal of Automated Reasoning 13, 145–172.

Sakama, C. and Inoue, K. 1995. Paraconsistent Stable Semantics for Extended Disjunctive

Programs. Journal of Logic and Computation 5, 265–285.

Simons, P., Niemelä, I., and Soininen, T. 2002. Extending and implementing the stable model

semantics. Artificial Intelligence 138, 181–234.

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

Logic programs with monotone abstract constraint atoms 199

Son, C., Pontelli, E. and Tu, P. H. 2006. Answer sets for logic programs with arbitrary

abstract constraint atoms. In Proceedings of the 21st National Conference on Artificial

Intelligence (AAAI-06). AAAI Press, pp. 129–134.

van Emden, M. and Kowalski, R. 1976. The semantics of predicate logic as a programming

language. Journal of the ACM 23, 4, 733–742.

Walser, J. 1997. Solving linear pseudo-boolean constraints with local search. In Proceedings

of the 14th National Conference on Artificial Intelligence (AAAI-97). AAAI Press,

pp. 269–274.

https://doi.org/10.1017/S147106840700302X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700302X

