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ABSTRACT. Z(nl; r) is the contribution to Z(r) from an electron in the (nl) wave function.
The Z(nl; r) vary systematically with atomic number and, as N becomes large, tend to the
corresponding hydrogen-like functions, Za(nl; r). A two-parameter method of fitting the
Z(nl; r) to the Zs(nl; r) is described. This involves a 'screening constant' and a 'slope constant',
both of which are defined. From published data, the two parameters have been obtained as
functions of atomic number. The parameters for an unsolved atom can then be found by
interpolation and approximate Z(nl; r) derived by appropriate adjustment of the functions for
the nearest atom in the periodic table for which they are known. The method has been tested by
interpolating for the (3d) function between Cu+ and Rb+ and by preparing estimates of the
Z(nX; r) for the unknown structure Mo+. The results were good for all but Z(4d; r) for Mo+, where
the number of values of the screening and slope constants already known was insufficient for
reliable interpolation.

1. Introduction. In the preceding paper (3), Hartree has described a method of
interpolating atomic wave functions with respect to atomic number. This method is
suitable for obtaining a first approximation to a self-consistent field with exchange.
For heavy atoms, only calculations without exchange are at present feasible, and for
these it is better to make estimates of the contributions to Z(r) from electrons in the
various wave functions. In this paper, the problem of interpolating these contributions
with respect to atomic number, N, is considered.

2. The variation of Z(r) contributions with atomic number. A derivation of the self-
consistent field equations, a description of the methods used to solve them, and a
survey of most of the calculations so far carried out has been given by Hartree (2). The
same notation will be used here.

The contribution to Z(r) from an electron in an (nl) wave function is given by

) = [l-Z0(nl,nl;r)]. (1)

Then the total Z(r) is Z(r) = T,nTq(nT) Z(n'V ;r) + i, (2)

where i is the degree of ionization of the atom and q(n'V) is the number of occupied
wave functions in the (n'V) group. If the (n'V) group is complete,

q{n'V) = 2(21+1). (3)

Z0(nl, nl; r) is related to the normalized wave function, P(nl; r), by

ZQ(nl,nl;r)=rP2(nl;r1)dr1. (4)
Jo

Sketches of P(3s; r) and Z(3s; r) are given in Fig. 1. Z(3s; r) decreases from unity
at the origin to zero as r-^-oo and has a steeply sloping almost linear region in the
neighbourhood of the principal maximum of P(3s; r). This is the region of maximum
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probability for electrons in the (3s) group. The point of inflexion is near to Z{Zs; r) = £.
The subsidiary maxima of P(3s; r) produce in Z(3s; r) only small irregularities near
the origin. The Z(nl; r) curves for other wave functions show similar features.

For a hydrogen-like atom of atomic number N, Z(nl; r) is obtained from the corre-
sponding hydrogen function, Zn(nl; r), by a simple scaling process, for

Z(nl; r) = Zn{nl; Nr). (5)

P (3s; r)

Z (3s; r)
1

Fig. 1. Sketches of P(3s; r) and Z(3s; r)

Thus, if the Z(nl; r) for a series of hydrogen-like atoms are plotted against a log-
arithmic scale of r, the curves are similar to one another, but displaced relative to
Zn(nl; r) by a distance logj¥ in the direction of decreasing logr.

For a series of nearly neutral atoms, the situation is more complex. The electrons
screen the nucleus so that the effective atomic number varies from N, for small r, to i,
as 7-->oo. Consequently, each Z(nl; r) is shifted relative to Zs(nl; r) by an amount
less than logiV\ The curves are no longer similar and the gradient at the point of
inflexion varies with atomic number, increasing towards the hydrogen value as
N becomes large.
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3. Screening and slope constants. I t is important that estimates of Z(nl; r) should be

accurate in the region where an electron in the (nl) wave function is most likely to be.
A satisfactory method of interpolating Z(nl; r) with respect to N will therefore aim
at obtaining good results in the region in which Z(nl; r) is varying rapidly.

Fig. 2 shows the form of the graphs of Z(nl; r) against logr for an atom of atomic
number N, and the corresponding function ZH(nl; r) for hydrogen. The two curves can
be brought into coincidence in the most important region by

(a) a shift of the hydrogen curve along the log r axis to bring the points Z(nl; r) = \
a,ndZn(nl; r) = \ into coincidence (this is a simple scaling process and cannot superpose
the curves over a wide range, as the tangents at their points of inflexion are not
parallel); and

log r

Fig. 2. Z(nl; r) and ZB(nl; r) plotted against log r

(6) a uniform expansion of the log r scale for the hydrogen function to make the
gradients at the points of inflexion equal, thus compensating for the chief deficiency
ef simple scaling.

Analytically this can be expressed

log r0 = log t0 - log [N - <r(nl)], (6)

(7)

where r0, t0 and t are defined by

Z(nl; r0) = Zu(nl; t0) = | , (8)

Z(nl; r) = Zu(nl; t). (9)

Here (6) describes simple scaling corresponding to an effective atomic number
[N — o~(nl)]. Thus, or(nl) is a type of screening constant. a(nl) will be referred to as the
'slope' constant.

Published results of self-consistent field calculations give tables of q(n'l') Z(n'l'; r).
From these, values of r0 can be obtained by inverse interpolation. Analytical expressions
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for hydrogen wave functions are available (see, for example, Condon and Shortley (l)).
From these Zs(nl; t) can be obtained by numerical quadrature and t0 by inverse
interpolation. cr(nl) can then be calculated from (6).

A value for a(nl) was obtained by finding ra, ta, rb and tb such that

Z(nl; ra) = ZM(nl; ta) = 0-4 (10)

and Z(nl; rb) = Zn(nl; tb) = 0-6, (11)

and taking a(nl) = pog(r0/r6)]/[log(«A)]. (12)

18

17

Cu + '

Cr

16
0012 0020

1/N
0030 0040

Fig. 3. Plot of tr(3rf) against 1/N.

Since the two points used for obtaining the slope constant lie near the point of
inflexion, the procedure gives a value of a which brings the important part of the
curves into coincidence. ra, rb, ta and tb may be obtained by inverse interpolation.

Values of the <r{nl) and a(nl) have been calculated for those atoms heavier
than Ca for which results of self-consistent field calculations without exchange are
readily available (Hartree (2), Henry (4), Ridley (5), and a private communication from
Hartree, 'Improved self-consistent field for Ag+>). These are given in Table 1. The
ranges of uncertainty, ACT in cr and Aa in a, have been estimated from the accuracy of
the published tables.

cr(nl) and cc(nl) were plotted against 1/N. For (Is), (2s), (2p) and (3s), continuous
curves could be drawn to lie within the estimated ranges of uncertainty of cr or a. The
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plot obtained for <r(3d) is given in Fig. 3 and shows several interesting features. There
is a hint of a break in the curve between Br and Rb+. This would be reasonable, since
it is here that the 4p group is completed and the new shell begun. However, the
accuracy does not enable the nature of the discontinuity to be determined with any
confidence, and a continuous curve has been drawn from Cu+ to Hg2+. The points for
Cr and Fe he well below this curve, as might be expected, since the (3d) group is
incomplete and the 'self-screening' of the (3d) electrons is well below its maximum
value. The plots for (3p), (4s), (4p) and (4d) show similar physically accountable
irregularities. A similarity in the general shape of the curves for 3s and 4s, 3p and 4p,

175

Cu+

150

1-25

10

.Fe

Br

001 002
1/N

003 0-04

Fig. 4. Plot of a(3d) against 1/JV.

3d and 4d, enables curves for 4s, 4p and 4d to be drawn with greater confidence than is
at first sight justified by the sparsity of points. A plot of a(3d) is given in Fig. 4. As
1/N-+0, oc-> 1, since the wave function becomes hydrogen-like. This gives an extra
point for the curve.

From the curves <r{nl) and a(nl) for any atom between Cu+ and Hg may be obtained.
Graphical interpolation is adequate. For (nl) up to (3d), this gives cr to 0-05 and a to
about 0-01. The interpolation is less satisfactory for the outer electrons, since the
points available are few at present.

4. The estimation of Z(nl; r). Given values of o~(nl) and <x(nl) for an atom of which
the structure is unknown, estimates of the Z(nl; r) may be obtained by adjusting the
functions for the nearest atom in the periodic table for which they are known.

https://doi.org/10.1017/S0305004100030760 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004100030760


700 E. CICELY RIDLEY

Thus, suppose that o-(nl)A and a(nl)A for an atom of atomic number NA have been
determined by interpolation and that the functions ZB(nl; r) for a neighbouring atom
of atomic number NB are known. Then, from (6), (7) and (9),

log rB ^ [cc{nl)Bjoc{nl)j] log rA + {log t0 - log [NB - o-(nl)B]}

- [a(rcZ)BM^) J {log t0 - log [NA - cr(nl)A]} (13)

and ZA(nl; rA) = ZB(nl; rB), (14)

Table 2. Values oft0, ta and tb

nl

Is
2s
2p
3s
Sp
3d
4s
4p
4d

¥
5s
5p
5d

5 /
5g

ta(Zs = 0-4)

1-556
6-372
5-2375

14-66
13-60
H-Olg
26-49
25-46
2319
18-87
41-93
40-915

38-75
35-07
28-80

to(Za = 0-5)

1-339
5-8005

4-673
13-625

12-57
10-006

24-90
23-87
21-60
17-34
39-69
38-67
36-505

32-85
26-68

t»(ZB = 0-6)

1143
5-268
4-1485

12-63
11-58
90596

23-33
22-30
20-05
15-89
37-40
36-38
34-23
30-62
24-66

Table 3. Maximum discrepancy between estimated and known values of 10Z(3d; r)
for elements of the second long period

Atom

Zn
Ga
Ge
As

Atomic
no.

30
31
32
33

Discrepancy for 10Z(3d; r)

Estimate using
or and a.

0-035
0-08
0-095
011

Estimate using
<T only

0-17

0-49

from which ZA(nl; rA) can be obtained approximately as a function of rA by inter-
polation in the table of ZB(nl; rB). Values of t0 are needed and are given in Table 2,
where values of ta and tb are also quoted.

This method of obtaining estimates of Z(nl; r) has been tested in two ways:
(a) Estimates of Z(Sd; r) were derived for Zn, Ga, Ge and As from the function for

Cu+, using the correct values of o-(3d) and a(3d). The estimates obtained were com-
pared with the known values of Z(3d; r). In Table 3, the maximum discrepancy
between the estimated and known values of 10Z(3d; r) is given. The agreement
becomes less good as the difference between the atomic numbers increases. For com-
parison, estimates of \0Z(3d; r) for Zn and As were obtained by using only the
screening constant, o-(3d), and taking a(3d) = 1. The maximum discrepancies for these
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are also give in Table 3, and are about 4£ times tbose obtained when both parameters
are used. This shows that the proposed adjustment using both a(nl) and a(nl) is a con-
siderable improvement upon any process of simple scaling.

Table 4. Discrepancies between estimated and final values of Z(nl; r)for Mo+.
Estimated and final values of a(nl) and a(nl)

nl

Is
2s
2p
3s
Zp
3d
4s
4y>
4d

Maximum
discrepancy
per electron

0001
0-002
0-001
0-005
0-005
0-003
0-017
0-028
0-2

<r {nl)

Initial

0-50
3-97
4-99

10-93
12-82
16-47
20-14
23-25
29-00

Final

0-48
3-98
501

10-90
12-81
16-42
19-98
22-76
31-26

<x(nl)

Initial

1-00
104
l-035

113
1135

1175

l-276

l-325

1-50

Final

100
104
104
113
113
118
1-26
1-30
1-67

(6) Estimates of the Z(nl; r) were made for an unknown structure, Mo+. Rb+ and
Ag+ are the nearest known structures. For the inner wave functions up to and
including (4p), the estimates were derived from the Z(nl; r) for Rb+ by the use of
formulae (13) and (14), with interpolated values of ar and a for each {nl). The estimate
of Z(4:d; r) was obtained from the function for Ag+. The estimates were then used to
start a self-consistent field calculation, the results of which are given in a subsequent
paper (4). Here, the maximum discrepancies between the estimated and final values
of the Z{nl\ r) are given in Table 4. The values of cr(nl) and a(nl) obtained initially by
interpolation are also compared with the final ones. This agreement, obtained for
adjustment over five units of atomic number, indicates that the method should prove
useful. Now that the structure of Mo+ has been calculated, interpolation in this region
of the periodic table should be straightforward.

The author is indebted to Prof. D. R. Hartree for continual advice and encourage-
ment at all stages of the work, which was carried out during the tenure of a grant from
the Department of Scientific and Industrial Research.
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