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EQUIVALENT REPRESENTATIONS OF
MAX-STABLE PROCESSES VIA ���p-NORMS

MARCO OESTING,∗ Universität Siegen

Abstract

While max-stable processes are typically written as pointwise maxima over an infinite
number of stochastic processes, in this paper, we consider a family of representations
based on �p-norms. This family includes both the construction of the Reich–Shaby
model and the classical spectral representation by de Haan (1984) as special cases.
As the representation of a max-stable process is not unique, we present formulae to
switch between different equivalent representations. We further provide a necessary and
sufficient condition for the existence of an �p-norm-based representation in terms of
the stable tail dependence function of a max-stable process. Finally, we discuss several
properties of the represented processes such as ergodicity or mixing.
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1. Introduction

Arising as limits of rescaled maxima of stochastic processes, max-stable processes play an
important role in spatial and spatio-temporal extremes. A stochastic process X = {X(s), s ∈ S}
on a countable index set S is called max-stable if there exist sequences {an(·)}n∈N and {bn(·)}n∈N

of functions an : S → (0, ∞] and bn : S → R such that, for all n ∈ N,

L(X) = L

(
n

max
i=1

Xi − bn

an

)
,

where Xi, i ∈ N, are independent copies of X and the maximum is taken pointwise. From
univariate extreme value theory, it is well known that the marginal distributions of X, if
nondegenerate, are necessarily generalized extreme value distributions, i.e.

P(X(s) ≤ x) = exp

(
−

(
1 + ξ(s)

x − μ(s)

σ (s)

)−1/ξ(s))
, 1 + ξ(s)

x − μ(s)

σ (s)
> 0,

with ξ(s) ∈ R, μ(s) ∈ R, and σ(s) > 0 for s ∈ S. As max-stability is preserved by marginal
transformations, it is common practice in extreme value theory to consider only one type of
marginal distributions, e.g. the case that the shape parameter ξ is positive. In this case, the
marginal distributions are of α-Fréchet type, i.e. up to affine transformations, the marginal
distribution functions are of the form

�α(x) = exp(−x−α), x > 0,
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for some α > 0. Here, we will focus on the case of max-stable processes with unit Fréchet
margins, i.e. X(s) ∼ �1 for all s ∈ S. In this case, X is called a simple max-stable process.

From de Haan [3], the class of simple max-stable processes on S can be fully characterized:
a stochastic process {X(s), s ∈ S} is simple max-stable if and only if it possesses the spectral
representation

X(s) = max
i∈N

AiVi(s), s ∈ S, (1.1)

where
∑

i∈N
δAi

is a Poisson point process on (0, ∞) with intensity measure a−2 da and
Vi = {Vi(s), s ∈ S} are independent copies of a stochastic process V such that E(V (s)) = 1
for all s ∈ S (see also [10] and [20]). It is important to note that this representation is not
unique. As different representations of the same max-stable process might be convenient for
different purposes such as estimation (see, e.g. [6] and [7]) or simulation (see, e.g. [4], [18],
and [19]), finding novel representations is of interest.

Recently, Reich and Shaby [21] presented a class of max-stable processes written as a
product:

X(s) = U(p)(s) ·
[ L∑

l=1

Blwl(s)
p

]1/p

, s ∈ S, (1.2)

where {U(p)(s)}s∈S is a noise process with U(p)(s)
i.i.d.∼ �p, the functions wl : S → [0, ∞), l =

1, . . . , L, are deterministic weight functions such that
∑L

l=1 wl(s) = 1 for all s ∈ S, and,
independently from {U(p)(s)}s∈S , the independent random variables Bl, l = 1, . . . , L, follow
a stable law given by the Laplace transform

E{exp(−tBl)} = exp(−t−1/p), t > 0.

The parameter p ∈ (1, ∞) determines the strength of the effect of the noise process which
– analogously to the terminology in geostatistics – is also called a nugget effect. In [21],
the weight functions wl were chosen as shifted and appropriately rescaled Gaussian density
functions yielding an approximation of the well-known Gaussian extreme value process [29]
joined with a nugget effect. Similarly, Reich and Shaby [21] proposed analogues to popular
max-stable processes such as extremal Gaussian processes [25] and Brown–Resnick processes
[15] by choosing appropriately rescaled realizations of Gaussian and log-Gaussian processes,
respectively, as weight functions. Due to the flexibility in modelling the strength of the nugget
by the additional parameter p and the tractability of the likelihood which allows embedding the
model in a hierarchical Bayesian model, the Reich–Shaby model (1.2) has found its way into
several applications (see, e.g. [22], [27], [28], and [30]).

While a simple max-stable process in the spectral representation (1.1) is written as the
pointwise supremum of an infinite number of processes, i.e. the pointwise �∞-norm of the
random sequence {AiVi(s)}i∈N, the Reich–Shaby model (1.2) is represented as the pointwise
p-norm of the finite random vector (B

1/p
l wl(s))l=1,...,L. In this paper we will present a more

general class of representations of max-stable processes by writing them as pointwise �p-norms
of sequences of stochastic processes, including, for instance, both de Haan’s representation and
the Reich–Shaby model as special cases. The finite-dimensional distributions of the resulting
processes will turn out to be generalized logistic mixtures introduced in [8] and [9].

This paper is structured as follows. In Section 2 we will introduce the spectral representation
based on �p-norms. As a single max-stable process might allow for equivalent �p-norm-based
representations for different p ∈ (1, ∞], we give formulae to switch between them in Section 3.
Section 4 provides a full characterization of the resulting class of processes whose properties
are finally discussed in Section 5.
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2. Generalization of the spectral representation

Denoting by

‖A ◦ V (s)‖p =

⎧⎪⎪⎨
⎪⎪⎩

[∑
i∈N

(AiVi(s))
p

]1/p

, p ∈ (1, ∞),

max
i∈N

AiVi(s), p = ∞,

the �p-norm of the Hadamard product of the sequences A = {Ai}i∈N and V (s) = {Vi(s)}i∈N,
s ∈ S, the spectral representation (1.1) can be expressed as

X(s) = ‖A ◦ V (s)‖∞, s ∈ S.

We present a more general representation replacing the �∞-norm by a general �p-norm, p ∈
(1, ∞], and multiplication by an independent noise process with �p marginal distributions.
Here, we use the convention that �∞ denotes the weak limit of �p as p → ∞, i.e. �∞(x) =
1[1,∞)(x) is a degenerate distribution function.

Theorem 2.1. Let p ∈ (1, ∞] and {U(p)(s)}s∈S be a collection of independent �p ran-
dom variables. Further, let

∑
i∈N

δAi
be a Poisson process on (0, ∞) with intensity a−2 da

and W
(p)
i , i ∈ N, be independent copies of a stochastic process {W(p)(s), s ∈ S} with

E{W(p)(s)} = 1 for all s ∈ S. Then the process X defined by

X(s) = U(p)(s)

�(1 − p−1)
‖A ◦ W (p)(s)‖p, s ∈ S, (2.1)

is simple max-stable.

Proof. For p = ∞, we have U(p)(s) = 1 almost surely (a.s.) and, thus, (2.1) is of the same
form as (1.1). Consequently, max-stability follows from [3].

For p ∈ (1, ∞), we first show that ‖A ◦ W (p)(s)‖p < ∞ a.s. According to Campbell’s
theorem (see [16, p. 28]), this holds if and only if

E

(∫ ∞

0
min{|aW(p)(s)|p, 1}a−2 da

)
< ∞. (2.2)

Substituting v = aW(s), we can easily see that the left-hand side of (2.2) is equal to

E(W(p)(s))

∫ ∞

0
min{|v|p, 1}v−2 dv = 1 + 1

p − 1
.

Thus, ‖A ◦ W (p)(s)‖p < ∞ a.s. Then, for s1, . . . , sn ∈ S, x1, . . . , xn > 0, n ∈ N, we obtain

P(X(si) ≤ xi, i = 1, . . . , n)

= E

(
P

(
U(si) ≤ �(1 − p−1)xi

‖A ◦ W (p)(si)‖p

, i = 1, . . . , n

∣∣∣∣ A, W (p)

))

= E

(
exp

(
−

n∑
i=1

(
�(1 − p−1)xi

‖A ◦ W (p)(si)‖p

)−p))
.
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Using well-known results on the Laplace functional of Poisson point processes, this yields

P(X(si) ≤ xi, i = 1, . . . , n)

= exp

(
E

(∫ ∞

0

{
exp

(
−

n∑
i=1

(
aW(p)(si)

�(1 − p−1)xi

)p)
− 1

}
a−2 da

))

= exp

(
E

(∥∥∥∥
(

W(p)(si)

xi

)n

i=1

∥∥∥∥
p

)
1

p�(1 − p−1)

∫ ∞

0
(e−a − 1)a−1−p−1

da

)

= exp

(
−E

(∥∥∥∥
(

W(p)(si)

xi

)n

i=1

∥∥∥∥
p

))
, (2.3)

where we used Equation (3.478.2) of [11]. Thus, for m independent copies X1, . . . , Xm of
X, m ∈ N, the homogeneity of the �p-norm yields

P

(
1

m

m
max
j=1

Xj(si) ≤ xi, i = 1, . . . , n

)
= P(X(si) ≤ xi, i = 1, . . . , n),

i.e. X is simple max-stable. �
Remark 2.1. Theorem 2.1 could alternatively be verified by observing that the process T (s) =
‖A ◦ W (p)(s)‖p

p, s ∈ S, is α-stable with α = 1/p (see also the proof of Theorem 4.1). Thus,
all the finite-dimensional distributions of X are generalized logistic mixtures (see [8] and [9])
and, consequently, are max-stable distributions.

Noting that the finite-dimensional distributions of the Reich–Shaby model (1.2) are given
by

P(X(si) ≤ xi, i = 1, . . . , n) = exp

(
−

L∑
j=1

∥∥∥∥
(

wj(si)

xi

)n

i=1

∥∥∥∥
p

)
,

it can be easily seen that (1.2) is a special case of (2.1), where W follows the discrete distribution
P(W = Lwi) = 1/L, i = 1, . . . , L. Further, the classical spectral representation (1.1) by de
Haan [3] can be recovered from (2.1) with p = ∞.

Analogously to the law of the spectral processes {Vi(s), s ∈ S}i∈N in (1.1), the law of
the processes {W(p)

i (s), s ∈ S}i∈N in the �p-norm-based representation of a given process
{X(s), i ∈ S} is not unique. Let Yi, i ∈ N, be independent and identically distributed
random variables with E(Yi) = 1 which are independent from

∑
i∈N

δAi
and {W(p)(s), s ∈

S}. Then the processes {U(p)(s)/�(1 − p−1)‖A ◦ W (p)(s)‖p, s ∈ S} and {U(p)(s)/�(1 −
p−1)‖A ◦ Y ◦ W (p)(s)‖p, s ∈ S} are equal in distribution.

Consequently, even for some fixed p ∈ (1, ∞], representation (2.1) for a simple max-stable
process X is not unique. Furthermore, there might be representations of type (2.1) with different
p for the same processX. Such equivalent representations are discussed in the following section.

3. Equivalent representations

From [3], the class of simple max-stable processes is fully covered by the class of processes
which allow for the spectral representation (1.1), i.e. (2.1) with p = ∞. Thus, any �p-norm-
based representation (2.1) with p < ∞ of a simple max-stable process can be transformed to
an equivalent representation of type (1.1). This transformation is presented in the following
proposition. Even more generally, it is shown how an �q -norm-based representation can be
derived from a �p-norm-based representation with p < q < ∞.
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Proposition 3.1. Let X be a simple max-stable process with representation (2.1) for some
p ∈ (1, ∞). Then the following hold.

(i) The process X allows for the spectral representation (1.1) with

V (·) d= U(p)(·)
�(1 − p−1)

W(p)(·). (3.1)

(ii) For q ∈ (p, ∞), the process X satisfies

X(·) d= U(q)(·)
�(1 − q−1)

‖A ◦ W (q)(·)‖q, (3.2)

where {U(q)(s)}s∈S is a collection of independent �q random variables and W
(q)
i , i ∈ N,

are independent copies of a stochastic process {W(q)(s), s ∈ S} given by

W(q)(s) = �(1 − q−1)

�(1 − p−1)
(T(p/q)(s))

p/qW(p)(s), s ∈ S.

Here, independently from the process W(p), the collection {T(p/q)(s)}s∈S consists of
independent stable random variables whose law is given by the Laplace transform

E(e−tT(p/q)(s)) = e−tp/q

, t ≥ 0.

Proof. (i) By comparing the finite-dimensional distributions of the processes defined via
(1.1) and (2.1), it suffices to show that

1

�(1 − p−1)
E

(∥∥∥∥
(

U(p)(si)W
(p)(si)

xi

)n

i=1

∥∥∥∥∞

)
= E

(∥∥∥∥
(

W(p)(si)

xi

)n

i=1

∥∥∥∥
p

)
(3.3)

for all s1, . . . , sn ∈ S, x1, . . . , xn > 0, n ∈ N. To this end, we first note that, for y > 0,

P

(∥∥∥∥
(

U(p)(si)W
(p)(si)

xi

)n

i=1

∥∥∥∥∞
≤ y

∣∣∣∣ W (p)

)
= exp

(
− 1

yp

n∑
i=1

(
W(p)(si)

xi

)p)
,

i.e. conditionally on W (p), the norm ‖(U(p)(si)W
(p)(si)/xi)

n
i=1‖∞ follows a p-Fréchet distri-

bution with scale parameter ‖(W(p)(si)/xi)
n
i=1‖p. Thus,

E

(∥∥∥∥
(

U(p)(si)W
(p)(si)

xi

)n

i=1

∥∥∥∥∞

)
= EW

{
E

(∥∥∥∥
(

U(p)(si)W
(p)(si)

xi

)n

i=1

∥∥∥∥∞

∣∣∣∣ W (p)

)}

= EW

{
�(1 − p−1)

∥∥∥∥
(

W(p)(si)

xi

)n

i=1

∥∥∥∥
p

}
,

i.e. (3.3).

(ii) From the first part of the proposition, it follows that the right-hand side of (3.2) allows
for a spectral representation (1.1) where the spectral functions are independent copies of the
process Ṽ given by

Ṽ (·) = U(q)(·)(Tp/q(·))1/q

�(1 − p−1)
W(p)(·),
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while the spectral functions of the process X on the left-hand side of (3.2) are independent
copies of the process V given in (3.1). Conditioning on the value of the stable random variable
T(p/q)(s), it can be shown that the product U(q)(s) · T(p/q)(s) has the distribution function �p

for all s ∈ S (see [9]) and, thus, Ṽ (·) d= V (·). �
Remark 3.1. Even though the transformation in the second part of the proposition requires
p < q < ∞, the two cases p = q and q = ∞ can be regarded as limiting cases.

As q ↘ p, it follows that U(q)(·) d−→ U(p)(·) and {T(p/q)(s)}s∈S converges in distribution
to a collection of random variables which equal 1 a.s. Thus, in the limit p = q, there is no
transformation.

As q → ∞, it follows that �(1 − q−1) → 1 and each U(q)(s), s ∈ S, converges to 1 a.s.
Further, by Theorem 1.4.5 of [24], for each s ∈ S, the random variable T(p/q)(s) can be
represented as (1/�(1 − p/q))

∑
i∈N

(ÃiYi)
q/p, where {Ãi}i∈N are the points of a Poisson

point process on (0, ∞) with intensity ã−2 dã and Yi, i ∈ N, are independent and identically
distributed nonnegative random variables with expectation 1. Thus, as q → ∞,

(T(p/q)(s))
1/q d=

(
1

�(1 − p/q)

∑
i∈N

(ÃiYi)
q/p

)1/q
d−→ max

i∈N

(ÃiYi)
1/p,

which has the distribution function �p. Consequently, (T(p/q)(·))1/q d−→ U(p)(·).
Denoting by MS the class of all simple max-stable processes and by MSp the class of

simple max-stable processes allowing for a �p-norm-based spectral representation (2.1), Propo-
sition 3.1 yields

MSp ⊂ MSq ⊂ MS∞ = MS, 1 < p < q < ∞.

A full characterization of the class MSp is given in the following section.

4. Existence of �p-norm-based representations

In the following, we will present a necessary and sufficient criterion for the existence of
an �p-norm-based representation of a simple max-stable process X in terms of the stable
tail dependence functions of its finite-dimensional distributions. For a simple max-stable
distribution (X(s1), . . . , X(sn))


, its stable tail dependence function ls1,...,sn is defined via

ls1,...,sn : [0, ∞)n → [0, ∞),

(x1, . . . , xn) �→ − log

{
P

(
X(s1) ≤ 1

x1
, . . . , X(sn) ≤ 1

xn

)}
.

From the spectral representation (1.1), we obtain the form

ls1,...,sn(x) = E
(

max
i=1,...,n

xiW(si)
)
, x ∈ [0, ∞)n. (4.1)

The stable tail dependence function is homogeneous and convex (see, e.g. [1]). Further, from
(4.1) together with dominated convergence, we can deduce that the stable tail dependence
function is continuous.

Theorem 4.1. Let {X(s), s ∈ S} be a simple max-stable process and p ∈ (1, ∞). Then the
following statements are equivalent.

(i) Process X possesses an �p-norm-based representation (2.1).
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(ii) For all pairwise distinct s1, . . . , sn ∈ S and n ∈ N, the function f
(p)
s1,...,sn , defined by

f
(p)
s1,...,sn(x) = ls1,...,sn(x

1/p
1 , . . . , x

1/p
n ), x = (x1, . . . , xn) ∈ [0, ∞)n,

is conditionally negative definite on the additive semigroup [0, ∞)n, i.e. for all x(1), . . . ,

x(m) ∈ [0, ∞)n and a1, . . . , am ∈ R such that
∑m

i=1 ai = 0, we have

m∑
i=1

m∑
j=1

aiajf
(p)
s1,...,sn(x

(i) + x(j)) ≤ 0. (4.2)

Proof. First, we show that (i) implies (ii). To this end, let X be a simple max-stable process
with representation (2.1). Then, from (2.3), we obtain

f
(p)
s1,...,sn(x) = − log

{
P

(
X(s1) ≤ 1

x
1/p
1

, . . . , X(sn) ≤ 1

x
1/p
n

)}

= E

{( n∑
i=1

xiW
(p)(si)

p

)1/p}
, x = (x1, . . . , xn) ∈ [0, ∞)n.

Now let w(s1), . . . , w(sn) ≥ 0 be fixed. Then, by a straightforward computation, it can be
seen that the function x �→ ∑n

k=1 xkw(sk)
p is conditionally negative definite on [0, ∞)n. As

the function y �→ y1/p is a Bernstein function, and the composition of a conditionally negative
function and a Bernstein function yields a conditionally negative definite function [2, Theorem
3.2.9], the function x �→ (

∑n
k=1 xkw(sk)

p)1/p is conditionally negative definite as well. Being
a mixture, the same holds for f

(p)
s1,...,sn .

Second, we show that (ii) implies (i). From the conditionally negative definiteness of f
(p)
s1,...,sn ,

it follows that exp(−f
(p)
s1,...,sn) is positive definite on [0, ∞)n [2, Theorem 3.2.2]. As ls1,...,sn

is nonnegative and continuous, exp(−f
(p)
s1,...,sn) is further bounded by 1 and continuous. Thus,

by Theorem 4.4.7 of [2], there exists a unique finite measure μs1,...,sn on [0, ∞)n with Laplace
transform

Lμs1,...,sn(x) =
∫

[0,∞)n
exp(−〈x, a〉)μ(da) = exp(−fs1,...,sn(x)), x ∈ [0, ∞)n. (4.3)

Due to μs1,...,sn([0, ∞)n) = exp(−ls1,...,sn(0, . . . , 0)) = 1, μs1,...,sn is a probability measure.
Further,

ls1,...,sn(x1, . . . , xi−1, 0, xi+1, . . . , xn)

= ls1,...,si−1,si+1,...,sn(x1, . . . , xi−1, xi+1, . . . , xn) (4.4)

for all x = (x1, . . . , xn) ∈ [0, ∞)n and i ∈ {1, . . . , n} implies that

μs1,...,sn(A1 × · · · × Ai−1 × [0, ∞) × Ai+1 × · · · × An)

= μs1,...,si−1,si+1,...,sn(A1 × · · · × Ai−1 × Ai+1 × · · · × An)

for all Borel sets A1, . . . , An ⊂ [0, ∞) and i ∈ {1, . . . , n}, i.e. the family {μs1,...,sn : s1, . . . ,

sn ∈ S, n ∈ N} of probability measures satisfies the consistency conditions from Kolmogorov’s
existence theorem. Thus, there exists a stochastic process {T (s), s ∈ S} with finite-dimensional
distributions μ·.
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Now let {U(p)(s)}s∈S be a collection of independent �p random variables and

X̃(s) = U(p)(s)T (s)1/p, s ∈ S.

Then, for all pairwise distinct s1, . . . , sn ∈ S and x1, . . . , xn > 0, we have

P(X̃(s1) ≤ x1, . . . , X̃(sn) ≤ xn)

= E

{
P

(
U(p)(s1) ≤ x1

T 1/p(s1)
, . . . , U(p)(sn) ≤ x1

T 1/p(sn)

∣∣∣∣ T (s1), . . . , T (sn)

)}

= E

{
exp

(
−

n∑
i=1

T (si)

x
p
i

)}
.

From (4.3), we obtain

P(X̃(s1) ≤ x1, . . . , X̃(sn) ≤ xn) = exp(−f
(p)
s1,...,sn(x

−p
1 , . . . , x

−p
n ))

= P(X(s1) ≤ x1, . . . , X(sn) ≤ xn).

Thus, X allows for the spectral representation

X(s) = U(s)T 1/p(s), s ∈ S. (4.5)

Now let T (1), . . . , T (m) be m independent copies of T for m ∈ N. Then, for all s1, . . . , sn ∈ S

and x = (x1, . . . , xn) ∈ [0, ∞)n, we have

E

{
exp

(
−

〈
x,

( m∑
k=1

T (k)(si)

)n

i=1

〉)}
= [E{exp(−〈x, (T (si))

n
i=1〉)}]m

= exp(−mls1,...,sm(x
1/p
1 , . . . , x

1/p
n ))

= exp(−ls1,...,sm((mpx1)
1/p, . . . , (mpxn)

1/p))

= E{exp(〈x, mp(T (si))
n
i=1〉)},

where we used the homogeneity of the stable tail dependence function. Hence, for all s1, . . . ,

sn ∈ S, the vectors (
∑m

k=1 T (k)(si))
n
i=1 and mp(T (si))

n
i=1 have the same distribution, i.e.

{T (s), s ∈ S} is an α-stable process with α = 1/p. Thus, from Theorem 13.1.2 and
Theorem 3.10.1 of [24], we can deduce that {T (s), s ∈ S} allows for the representation

T (s) = 1

�(1 − p−1)p

∑
i∈N

A
p
i W̃i(s), s ∈ S, (4.6)

where {Ai}i∈N are the points of a Poisson point process on [0, ∞) with intensity a−2 da

and {W̃i(s), s ∈ S} are independent and identically distributed stochastic processes which
are independent from {Ai}i∈N and satisfy E(W̃i(s)

1/p) = ls(1) = 1 for all s ∈ S. Defining
W

(p)
i (s) = W̃i(s)

1/p, s ∈ S, i ∈ N, and substituting (4.6) into (4.5), we obtain (2.1). �
Remark 4.1. Note that in Theorem 4.1 we assume that, for each s1, . . . , sn ∈ S, �s1,...,sn is
the stable tail dependence function of the simple max-stable vector (X(s1), . . . , X(sn))


. The
conditional negative definiteness of the function f

(p)
s1,...,sn is an additional condition. In particular,

it is always satisfied for p = ∞ – i.e. any simple max-stable process allows for de Haan’s [3]
spectral representation (1.1) – as f

(∞)
s1,...,sn ≡ ls1,...,sn(1, . . . , 1) is always conditionally negative

definite.
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In order to check whether a function ls1,...,sn is the stable tail dependence function of some
process X with an �p-norm-based representation, we first need to ensure that ls1,...,sn is a valid
stable tail dependence function. This can be done by checking the necessary and sufficient
conditions given in [17] and [23], for instance.

Using an integral representation of continuous conditionally negative definite functions on
[0, ∞)n (see [2, Section 4.4.6]), Theorem 4.1(ii) can be reformulated yielding the following
corollary.

Corollary 4.1. For a simple max-stable process {X(s), s ∈ S} and p ∈ (1, ∞), the following
statements are equivalent.

(i) Process X possesses an �p-norm-based representation (2.1).

(ii) For all pairwise distinct s1, . . . , sn ∈ S and n ∈ N, there exists a vector

c(s1, . . . , sn) = (c1(s1, . . . , sn), . . . , cn(s1, . . . , sn))

 ∈ [0, ∞)n

and a Radon measure μs1,...,sn on [0, ∞)n such that the stable tail dependence function
ls1,...,sn satisfies

ls1,...,sn(x) =
n∑

i=1

ci(s1, . . . , sn)x
p
i +

∫
[0,∞)n

{
1 − exp

(
−

n∑
i=1

aix
p
i

)}
μs1,...,sn(da)

for all x = (x1, . . . , xn)

 ∈ [0, ∞)n.

From the characterization given in Theorem 4.1, we can deduce necessary conditions on the
dependence structure of a max-stable process with an �p-norm-based representation (2.1) in
terms of its extremal coefficients: For a general simple max-stable process {X(s), s ∈ S} and
a finite set S̃ = {s1, . . . , sn} ⊂ S, let the extremal coefficient θ(S̃) be defined via

P
(

max
s∈S

X(s) ≤ x
)

= exp

(
−θ(S̃)

x

)
, x > 0.

Then we necessarily have θ(S̃) ∈ [1, n], where θ(S̃) = n if and only if X(s1), . . . , X(sn) are
independent and θ(S̃) = 1 if and only if X(s1) = X(s2) = · · · = X(sn) a.s. The extremal
coefficient is closely connected to the stable tail dependence function via the relation

θ({s1, . . . , sn}) = ls1,...,sn(1, . . . , 1).

If X further allows for an �p-norm-based representation (2.1), we obtain the following condition.

Proposition 4.1. Let {X(s), s ∈ S} be a simple max-stable process with representation (2.1)
and S1, S2 ⊂ S be finite and disjoint. Then we have

θ(S1 ∪ S2) ≥ 21/p θ(S1) + θ(S2)

2
.

Proof. Let S1 = {s1, s2, . . . , sk1} and S2 = {sk1+1, . . . , sk1+k2} and let further {e1, . . . ,

ek1+k2} denote the standard basis in Rk1+k2 . As the function

(x1, . . . , xk1+k2) �→ ls1,...,sk1+k2
(x

1/p
1 , . . . , x

1/p
k1+k2

)
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is conditionally negative definite by Theorem 4.1, then (4.2) particularly holds for n = 2, a1 =
1, a2 = −1, x(1) = ∑k1

i=1 ei , and x(2) = ∑k1+k2
i=k1+1 ei , i.e.

ls1,...,sk1+k2

(
21/p

k1∑
i=1

ei

)
+ ls1,...,sk1+k2

(
21/p

k1+k2∑
i=k1+1

ei

)
− 2ls1,...,sk1+k2

(k1+k2∑
i=1

ei

)
≤ 0.

Using the homogeneity and property (4.4) of the stable tail dependence function, we obtain

21/pls1,...,sk1
(1, . . . , 1) + 21/plsk1+1,...,sk1+k2

(1, . . . , 1) − 2ls1,...,sk1+k2
(1, . . . , 1) ≤ 0.

As θ(S̃) = l
S̃
(1, . . . , 1) for any finite S̃ ⊂ S, this yields the assertion. �

Of particular interest in extreme value analysis is the case of the pairwise extremal coefficient
function (see [26] and [29]) where S̃ = {s1, s2}. Then Proposition 4.1 provides the lower bound

θ({s1, s2}) ≥ 21/p for all s1 �= s2 ∈ S. (4.7)

For the particular case of model (1.2), this bound has already been found by Reich and Shaby [21]
motivating their interpretation of model (1.2) as a max-stable process with nugget effect in
analogy to the Gaussian case.

The bound (4.7) and the characterization of simple max-stable processes with an �p-norm-
based representation given in Theorem 4.1 can be used to show the existence of a minimal
�p-norm-based representation of a simple max-stable process X, i.e. the existence of some
pmin(X) such that X ∈ MSp if and only if p ≥ pmin(X).

Corollary 4.2. Let {X(s), s ∈ S} be a simple max-stable process such that not all random
variables {X(s)}s∈S are independent. Then, there exists a number pmin(X) ∈ (1, ∞] such that
X ∈ MSp if and only if p ≥ pmin(X).

Proof. From [3], any simple max-stable process X satisfies X ∈ MS∞. Thus, the assertion
follows directly if

pmin(X) = inf{p > 1 : X ∈ MSp} = ∞.

Thus, we restrict ourselves to the case that pmin(X) < ∞. As not all the random variables
{X(s)}s∈S are independent, there exist s1, s2 ∈ S and ε > 0 such that θ({s1, s2}) < 21/(1+ε).
Hence, from (4.7), we obtain pmin(X) ≥ 1 + ε. Using the fact that MSp ⊂ MSq for p < q, it
remains to show that X ∈ MSpmin(X). From Theorem 4.1, for all pairwise distinct s1, . . . , sn ∈
S, n ∈ N, a1, . . . , am ∈ R such that

∑m
i=1 ai = 0, x(1), . . . , x(m) ∈ [0, ∞)n and m ∈ N, we

have

m∑
i=1

n∑
j=1

aiaj ls1,...,sn((x
(i)
1 + x

(j)
1 )1/p, . . . , (x(i)

n + x
(j)
n )1/p) ≤ 0 for all p > pmin(X).

By the continuity of ls1,...,sm , the same holds for p = pmin(X), and, thus, by Theorem 4.1,
X ∈ MSpmin(X). �

For any p ∈ (1, ∞], we now give an example for a simple max-stable process X(p) such
that pmin(X

(p)) = p. Thus, we will also see that

MSp � MSq � MS∞ = MS, 1 < p < q < ∞.
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We consider the process X
(p)
log ∈ MSp which possesses an �p-norm-based representation (2.1)

with W(s) = 1 a.s. for all s ∈ S. From (2.3), for pairwise distinct s1, . . . , sn ∈ S, we obtain
the finite-dimensional distributions

P(X
(p)
log (si) ≤ xi, 1 ≤ i ≤ n) = exp

{
−

( n∑
i=1

x
−p
i

)1/p}
, x1, . . . , xn > 0,

i.e. all the multivariate distributions are multivariate logistic distributions [12]. Thus, the process
X

(p)
log has pairwise extremal coefficients θ(s, t) = 21/p for all s, t ∈ S, s �= t . From (4.7), it

follows that X
(p)
log /∈ MSp′ for p′ < p. Consequently, we have pmin(X

(p)
log ) = p.

While we have θ(s, t) = 21/pmin(X) for the process X = X
(p)
log , the connection between

pmin(X) and the pairwise extremal coefficients θ(s, t) is more involved in general. To see
this, we consider the S = {s1, s2} case. In this case, for a process X ∈ MSp, the condition
θ(s1, s2) = 21/p implies that W(p)(s1) = W(p)(s2) a.s., i.e. X necessarily follows a bivariate
logistic distribution. For any other bivariate simple max-stable distribution, we have θ(s1, s2) >

21/pmin(X).

5. Properties of processes with an �p-norm-based representation

In this section we will analyze several properties of simple max-stable processes with an �p-
norm-based representation in more detail. We will particularly focus on properties related to the
dependence structure of the process such as stationarity, ergodicity, and mixing. A characteristic
feature of a process X with an �p-norm-based representation (2.1) is the additional noise
introduced via the process {U(p)(s), s ∈ S}. Thus, we will compare the process X to a
‘denoised’ reference process

X∗(s) = max
i∈N

AiW
(p)
i (s), s ∈ S,

i.e. the simple max-stable process constructed via the same spectral functions used in the original
(�∞-norm-based) spectral representation (1.1). As the processes X and X∗ just differ by the
Fréchet noise process U(p), we will call X∗ the denoised max-stable process associated to X.

The following proposition relates the extremal coefficients θ({s1, s2}), s1, s2 ∈ S, of X to the
extremal coefficients θ∗({s1, s2}) = E(max{W(p)(s1), W

(p)(s2)}) of the associated denoised
process X∗. We find that the extremal dependence of the process X is always weaker than
dependence of the associated denoised process – as expected.

Proposition 5.1. Let {X(s), s ∈ S} be a simple max-stable process with an �p-norm-based
representation (2.1) with p ∈ (1, ∞]. Then, for the pairwise extremal coefficients θ({s1, s2}),
we obtain the bounds

θ∗({s1, s2}) ≤ θ({s1, s2}) ≤ 21/pθ∗({s1, s2})1−1/p,

where θ∗({s1, s2}) are the pairwise extremal coefficients of the associated denoised process X∗.

Proof. In the p = ∞ case, we have

θ({s1, s2}) = E(max{W(p)(s1), W
(p)(s2)}) = θ∗({s1, s2}),

which is equal to both the lower and the upper bound given in the assertion.
Now let p ∈ (1, ∞). Then we have the lower bound

θ({s1, s2}) = E{(W(p)(s1)
p +W(p)(s2)

p)1/p} ≥ E(max{W(p)(s1), W
(p)(s2)}) = θ∗({s1, s2}).
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Further, for any p < r < ∞ and w ∈ [0, ∞)2, we obtain

‖w‖p
p ≤ ‖w‖(r−p)/(r−1)

1 · ‖w‖r(p−1)/(r−1)
r

(see Theorem 18 of [13]) or, equivalently,

‖w‖p ≤ ‖w‖(r−p)/p(r−1)
1 ‖w‖(1−p−1)/(1−r−1)

r .

As r → ∞, this yields

‖w‖p ≤ ‖w‖1/p
1 ‖w‖1−p−1

∞ .

Taking the expectation of w with respect to the joint distribution of W(p)(s1) and W(p)(s2),
and applying Hölder’s inequality, we obtain the upper bound

θ({s1, s2}) = E{(W(p)(s1)
p + W(p)(s2)

p)1/p}
≤ E{(W(p)(s1) + W(p)(s2))

1/p max{W(p)(s1), W
(p)(s2)}1−p−1}

≤ [E{W(p)(s1) + W(p)(s2)}]1/p[E(max{W(p)(s1), W
(p)(s2)})]1−p−1

.

The assertion follows from E{W(p)(s1)} = E{W(p)(s2)} = 1. �
In the following, we will consider the S = Z case. In this case, properties such as stationarity,

ergodicity, or mixing are of interest. For a simple max-stable process {X(s), s ∈ Z} with
representation (1.1), necessary and sufficient conditions for these properties can be expressed
in terms of the distribution of the spectral function V . From [15], X is stationary if and only if

E{V (s1)
u1 · · · V (sn)

un} = E{V (s1 + s)u1 · · · V (sn + s)un} (5.1)

for all n ∈ N, s, s1, . . . , sn ∈ Z, and u1, . . . , un ∈ [0, 1] such that
∑n

i=1 ui = 1. For stationary
simple max-stable processes, Kabluchko and Schlather [14] gave conditions for ergodicity and
mixing in terms of the pairwise extremal coefficients θ({s1, s2}) = E(max{V (s1), V (s2)}),
stating that X is mixing if and only

lim
r→∞ θ({0, r}) = 2, (5.2)

and X is ergodic if and only if

lim
r→∞

1

r

∑r

k=1
θ({0, k}) = 2, (5.3)

respectively.
Now we transfer these results to a max-stable process X with an �p-norm-based repre-

sentation (2.1) giving necessary and sufficient conditions in terms of W(p). For the associated
denoised process X∗, (5.1)–(5.3) depend on the distribution W(p) = V only, while the structure
of the process X is more difficult as we have V (·) = [�(1 − p−1)]−1U(p)(·)W(p)(·) (see
Proposition 3.1). In the following result, however, we show that those conditions simplify to
the conditions for the associated denoised process X∗.

Proposition 5.2. Let {X(s), s ∈ Z} be a simple max-stable process with an �p-norm-based
representation (2.1) and let X∗ be the denoised process associated to X. Then the following
holds.

(i) Process X is stationary if and only if X∗ is stationary.

https://doi.org/10.1017/jpr.2018.5 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.5


66 M. OESTING

If X is stationary, we further have

(ii) X is mixing if and only if X∗ is mixing;

(iii) X is ergodic if and only if X∗ is ergodic.

Proof. (i) From [15] and Proposition 3.1, the process X is stationary if and only if (5.1) holds
for V (·) = [�(1 − p−1)]−1U(p)(·)W(p)(·). The left-hand side of (5.1) can be expressed as

E{V (s1)
u1 · · · V (sn)

un} = 1

�(1 − p−1)
E

{ n∏
i=1

U(p)(si)
ui W(p)(si)

ui

}

= 1

�(1 − p−1)
E

{ n∏
i=1

U(p)(si)
ui

}
E

{ n∏
i=1

W(p)(si)
ui

}

=
∏n

i=1 �(1 − uip
−1)

�(1 − p−1)
E

{ n∏
i=1

W(p)(si)
ui

}
,

where we used the fact that U(p)(si)
ui , i = 1, . . . , n, are independent �p/ui

random variables.
Thus, X is stationary if and only if (5.1) holds for V = W(p), i.e. if and only if X∗ is stationary.

(ii) From [14], the process X is mixing if and only if (5.2) holds where θ denotes the pairwise
extremal coefficient of X. Proposition 5.1 yields the bounds

lim
r→∞ θ∗({0, r})) ≤ lim

r→∞ θ({0, r}) ≤ 21/p lim
r→∞ θ∗({0, r})1−p−1 ≤ 2.

Thus, limr→∞ θ({0, r}) = 2 if and only if limr→∞ θ∗({0, r}) = 2 which is equivalent to X∗
being mixing.

(iii) The proof runs analogously to the proof of the second assertion. The process X is ergodic
if and only if (5.3) holds. From Proposition 5.1 and Jensen’s inequality, we obtain

lim
r→∞

1

r

r∑
k=1

θ∗({0, k}) ≤ lim
r→∞

1

r

r∑
k=1

θ({0, k})

≤ 21/p lim
r→∞

1

r

r∑
k=1

θ∗({0, k})1−p−1

≤ 21/p lim
r→∞

[
1

r

r∑
k=1

θ∗({0, k})
]1−p−1

≤ 2.

Consequently, it holds that limr→∞ r−1 ∑r
k=1 θ({0, k}) = 2 if and only if

lim
r→∞ r−1

r∑
k=1

θ∗({0, k}) = 2. �

Remark 5.1. The mixing properties of a stochastic process {X(s), s ∈ S} are described more
precisely by its mixing coefficients. For two subsets S1, S2 ⊂ S, the β-mixing coefficient
β(S1, S2) is defined by

β(S1, S2) = sup{|PS1∪S2(C) − PS1 ⊗ PS2(C)|, C ∈ CS1∪S2},
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where, for each S̃ ⊂ S, the probability measure P
S̃

denotes the distribution of the restricted
process {X(s), s ∈ S̃} on the space of nonnegative functions on S̃ endowed with the Borel
σ -algebra C

S̃
.

For the case of a max-stable process, Dombry and Eyi-Minko [5] provide the upper bound

β(S1, S2) ≤ 4
∑
s1∈S1

∑
s2∈S2

[2 − θ(s1, s2)].

Applying Proposition 5.1 , we obtain

β(S1, S2) ≤ 4
∑
s1∈S1

∑
s2∈S2

[2 − θ(s1, s2)] ≤ 4
∑
s1∈S1

∑
s2∈S2

[2 − θ∗(s1, s2)],

i.e. the upper bound for a process with an �p-norm-based representation (2.1) is lower than the
bound for the associated denoised process.

As Proposition 5.2 states, a max-stable process with �p-norm-based representation (2.1)
shares properties such as stationarity, ergodicity, and mixing with the associated denoised
process. In particular, the ‘noisy’ analogues of well-studied max-stable processes might be
used without changing any of these properties.
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