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Packets of hairpin-shaped vortices and streamwise counter-rotating vortex pairs
(CVPs) appear to be key structures during the late stages of the transition process
as well as in low-Reynolds-number turbulence in wall-bounded flows. In this work
we propose a robust model consisting of minimal flow elements that can produce
packets of hairpins. Its three components are: simple shear, a CVP having finite
streamwise vorticity magnitude and a two-dimensional (2D) wavy (in the streamwise
direction) spanwise vortex sheet. This combination is inherently unstable: the CVP
modifies the base flow due to the induced velocity forming an inflection point in
the base-flow velocity profile. Consequently, the 2D wavy vortex sheet is amplified,
causing undulation of the CVP. The undulation is further enhanced as the wave
continues to be amplified and eventually the CVP breaks down into several segments.
The induced velocity generates highly localized patches of spanwise vorticity above
the regions connecting two consecutive streamwise elements of the CVP. These
patches widen with time and join with the streamwise vortical elements situated
beneath them forming a packet of hairpins. The results of the unbounded (having no
walls) model are compared with pipe and channel flow experiments and with a direct
numerical simulation of a transition process in Couette flow. The good agreement in
all cases demonstrates the universality and robustness of the model.
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1. Introduction
At sufficiently low speeds the motion of fluids is laminar but becomes highly

disordered and turbulent when the velocity is increased beyond a certain threshold.
Whereas in a laminar flow two adjacent ‘fluid particles’ move nearly parallel to each
other and do not cross the trajectories of each other, turbulent flows are characterized
by trajectories crossing. If the crossing of the trajectories is localized in space and
random in time, the flow seems chaotic, three-dimensional and has a wide and
continuous spectrum of scales. Theodorsen (1952) proposed a basic vortex structure
having the shape of a horseshoe (or hairpin) inclined at 45◦ to the main flow and
therefore can act as a pump transporting momentum in the cross-flow direction
(according to the Biot–Savart law). It is composed of a pair of inclined streamwise
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(downstream) vortices connected by a short spanwise ‘head’ segment. Its associated
velocity field consists of an upstream and outward induced velocity between the
hairpin ‘legs’ and vortex flow around its ‘head’, resulting in significant mixing which
is a major characteristic of turbulent shear flows.

In recent years it has become evident that the building blocks of low-Reynolds-
number wall-bounded turbulent shear layers are very similar to those observed during
the late stages of the transition process. In particular, packets of hairpin-shaped
vortices and streamwise counter-rotating vortex pairs (CVPs) seem to dominate
both kinds of flow. Striking similarities between the characteristics of CVPs, such
as their spanwise wavelength and streamwise extent, in transitional and turbulent
flat-plate boundary layers have been observed by Blackwelder (1983) and Swearingen
& Blackwelder (1987). Similarly, Skote, Haritonidis & Henningson (2002) have
observed similarities between the horseshoe vortices in turbulent and laminar boundary
layers. Therefore, studying the evolutionary dynamics of artificially generated
vortical disturbances in various subcritical wall-bounded shear flows provides insight
on their evolution in the turbulent field. Experimental examples of such studies
concerning CVPs breakdown and consequent formation of packets of hairpins have
been documented in a laminar boundary layer by Acarlar & Smith (1987) using a
hemisphere protuberance and by Haidari & Smith (1994) using pulsed injection from
a streamwise slot; in a rotating axisymmetric Couette flow (Levinski & Cohen 1995;
Malkiel, Levinski & Cohen 1999); in a subcritical channel flow (Philip, Svizher &
Cohen 2007); and in a pipe Poiseuille flow (Peixinho & Mullin 2007). Furthermore,
in the latter paper, the packet of hairpins is observed to be an integral part of the
transition process (cf. figure 5 therein).

Recently, using a direct numerical simulation (DNS), a forest of hairpins was
found to dominate the late transition stages of a laminar boundary layer over a flat
plate (Wu & Moin 2009) and in particular local regions of turbulent spots (Strand &
Goldstein 2011). Although a number of investigators have deduced from their own
measurements or postulated the existence of such structures in turbulent shear flows
(e.g. Robinson 1991; Adrian, Meinhart & Tomkins 2000; Hutchins, Hambleton &
Marusic 2005), such direct evidence for their dominance has not been reported in the
past since the flow visualization experiments in turbulent boundary layers by Head &
Bandyopadhyay (1981). More recently, similar forests of hairpins have been observed
by other investigators, e.g. Chu & Goldstein (2012) and Rist (2012).

A recent series of studies by Cherubini et al. (2010a,b, 2011b) has concentrated
on finding the minimal seed, i.e. the smallest structure by which the maximum
energy growth is achieved over short times, triggering transition in a boundary layer.
Using an optimization process combined with DNS, it was found that the optimal
initial perturbation is characterized by a pair of streamwise-modulated counter-rotating
vortices, tilted upstream. The resulting transition process was characterized by the
appearance of hairpin vortices and streamwise streaks. Moreover, these structures
have been found as localized flow structures living on the edge of chaos (Cherubini
et al. 2011a; Duguet et al. 2012).

A mechanism for the generation of a packet of hairpins in a fully developed
turbulent channel flow was proposed by Zhou, Adrian & Balachandar (1996), Zhou
et al. (1999) using DNS, where the key element is a single strong hairpin vortex.
When the magnitude of the initial vortex exceeds a certain threshold relative to the
mean flow, new offspring hairpin vortices are generated upstream and downstream
of the primary vortex, forming a coherent packet of hairpins. A similar offspring
auto-generation process was observed experimentally by Adrian et al. (2000) in a
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turbulent boundary layer. In these cases, the resulting packet consists of several
hairpins with different strength, the envelope shape of which resembles a wedge.
Such packets in turbulence are also in part supported by the attached eddy model
calculation (Marusic 2001).

A different mechanism for the generation of a train of hairpin vortices in turbulent
boundary layers is related to a normal inflectional instability of the streaks (Skote
et al. 2002), associated with a varicose mode. In this DNS study laminar and turbulent
boundary layers have been subjected to continuous blowing through a streamwise slot.
The occurrence of hairpin vortices under varicose streak instability was also found
experimentally in a laminar boundary layer by Asai, Minagawa & Nishioka (2002).

In summary, two main mechanisms for the formation of packets of hairpins
have been proposed. Both models have been demonstrated via DNS or experiments
in turbulent (and laminar) wall-bounded shear flows. The offspring mechanism
relies on a certain hierarchy of the hairpins within the packet, whereas the
instability-based mechanism suggests that a varicose secondary perturbation of a
streak leads to a train of hairpins. The offspring mechanism is not supported by
a certain mathematical model and explains the physics of the generation process
qualitatively. The instability-based mechanism demonstrates that for turbulent (and
laminar) boundary layers subjected to jet injection (or a bump) the origin of the train
of hairpins is due to inflectional instability. However, it is hard to isolate the key
elements governing the process as it contains the entire complex flow field.

The purpose of the current study is to propose a simple (synthetic) universal model,
related to the instability-based mechanism, for the formation of a packet of hairpin
vortices. In particular, the model highlights the minimal key elements required for
the generation of such a packet and explains the associated physical process. The
minimal number of key elements assures the robustness of the model as it does not
include walls (or any other boundary conditions) as well as a particular base-flow
velocity profile (besides simple shear). As such, the model is universal and can be
tested in different geometries such as pipe, channel and boundary-layer flows. The
model results are compared with experiments in pipe and channel flows as well as
DNS of transitional Couette flow.

2. The model for generating a packet of hairpins
Following ideas first presented at the Global Flow Instability and Control IV

symposia (Cohen, Karp & Shukhman 2009), we propose the present model which is
independent of a specific geometry or flow conditions. The model does not seek for
the minimal disturbance energy required for transition; instead it offers the minimal
(three) basic flow elements (introduced synthetically) required for the formation of
a packet of hairpins. Here we concentrate on parallel base flows having a velocity
field V = (U(y), 0, 0), which is also a good approximation for high-Reynolds-number
boundary layers. The coordinate system has the x-, y- and z-axes aligned in the
streamwise, cross-stream and spanwise directions, respectively.

A key element of the proposed model is the interaction between a localized vortical
disturbance and its surrounding base flow. Such an interaction has been described by
Suponitsky, Cohen & Bar-Yoseph (2005) and serves as a building block of the current
model. Owing to its localization the surrounding velocity field can be approximated
by Taylor series. Thus, in a coordinate system attached to its centre, the vortical
disturbance mainly ‘sees’ a simple shear as illustrated in figure 1(a) (i.e. the cross-
stream gradient dU/dy=−Ω , is assumed constant, where Ω is the spanwise vorticity,
Ω = curl(V)= (0, 0, Ω)).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

14
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.140


Minimal flow-elements model for generation of packets of hairpin vortices 33

(a)

(b)

(c)

(d)
(h)

(g)

(f )

(e)

1
0

0
5

5 –10
–5

0

0

10

15

15

15

15

15

10

10

10

10

5

5

5

5

0

0

0

0

–5

–5
–10

–10

–15

–15

2

2

–2

–2

0

0

2

2

0

0

–5

–5

–5

–5

5

5

5

5

0

0

0

0

10
5

–52–2 0
0

5

0

Nonlinear

Linear

–1
–2

–2

2

0

0.5
–0.5

X

X

Z

Z

Z

X

X

X
X

X

Z Z

Z

Z

Y

Y

Y

Y

Y

Y

Y

FIGURE 1. The interaction between pure shear (a) and a localized disturbance having a
single length scale (b) and two length scales (c,d). When the magnitude of the localized
vortex (b) is small a CVP is evolved (e) whereas when it is finite a hairpin is formed (f ).
When the magnitude of the elongated vortex (c,d) is high and the aspect ratio between
the streamwise and spanwise length scales exceeds a certain threshold, two hairpins are
formed at both streamwise ends (g,h). The aspect ratio is 5 and 10 for (c) and (d),
respectively. (Figure reproduced from Suponitsky et al. (2005).)

In the following we first summarize briefly previous results describing the
interaction between a localized vortical disturbance and its surrounding base flow
(Suponitsky et al. 2005). Then, we devise the present model for the generation of a
packet of hairpins, based on the observed mechanisms associated with the localized
disturbance.

The interaction between simple shear (figure 1a) and a localized vortex having
a single length scale (figure 1b) can lead to the formation of a single CVP if the
initial magnitude is relatively small (figure 1e) or a hairpin vortex (figure 1f ) if it
is sufficiently high (Suponitsky et al. 2005). In figure 1(c,d) the case of an initial
elongated vortex having two length scales in the streamwise and spanwise directions
is introduced. For sufficiently strong initial vortices and beyond a certain threshold
of the aspect ratio between the streamwise and spanwise lengths of the vortex (≈5),
the interaction with the shear of the base flow leads to the evolution of two hairpins
at both ends of the elongated structure (figure 1g,h, Suponitsky et al. 2005). As
the aspect ratio is further increased, the length of the central CVP segment is also
increased and similar results are obtained (not shown here).
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FIGURE 2. (Colour online) Illustration of the three elements of the model: (a) simple
shear; (b) CVP; (c) 2D wavy vortex sheet.

The above results indicate that the formation of hairpins occurs where the
streamwise vorticity of the CVP segment has sharp gradients in the streamwise
direction. Therefore, a localized vortical disturbance cannot produce more than two
hairpin vortices. Consequently, in order to generate a packet consisting of three or
more hairpins, streamwise variation of the CVP is required.

The above findings imply that a long CVP undergoing streamwise variation will
evolve into a packet of hairpins. This suggests a three-elements model consisting of a
straight CVP having finite streamwise vorticity magnitude, embedded in simple shear
and subjected to a 2D wavy (in the streamwise direction) disturbance (a vortex sheet
having only spanwise vorticity). The three elements are schematically illustrated in
figure 2. This combination is inherently unstable: the CVP modifies the base flow due
to the induced velocity (via the Biot–Savart law), causing an inflection point in the
base-flow velocity profile. This leads to the well-known inviscid instability mechanism
(Rayleigh 1880). Consequently, the two-dimensional (2D) wave is amplified, causing
undulation of the CVP. The undulation is further enhanced as the wave continues to
be amplified. Eventually, the strong variation in the streamwise vorticity of the CVP
results in its breakdown into several segments and leads to the formation of a packet
of hairpins (as detailed below).

To demonstrate the generation of a packet of hairpins in accordance with the above
model, we employ a recently developed analytical-based numerical method (Cohen
et al. 2010). It is capable of following the evolution of finite-amplitude localized
vortical disturbances embedded in unbounded viscous shear flows. In other words,
the method is a fully nonlinear, three-dimensional and viscous DNS code, specifically
designed to follow the evolution of localized disturbances embedded in base flows
having constant shear. The solution is carried out using Lagrangian variables in Fourier
space which enables efficient and much faster computations than other DNS software.
The method, implemented in Matlab, was successfully validated by comparing its
results with those obtained by the commercial software Fluent (Suponitsky et al.
2005, presented in figure 1) and with additional results (Cohen et al. 2010).

The use of Fourier space in the model allows us also to follow the evolution of
periodic (in space) disturbances. In particular, the method enables us to follow the
evolution of the disturbance associated with the three-element model proposed above.
Thus, the method is used to follow the evolution of a CVP and a wavy 2D vortex
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sheet embedded in simple shear. Accordingly, the initial disturbance (at time t= 0) is
composed of a synthetic CVP having streamwise vorticity (ωx) and a wavy spanwise
vortex-sheet disturbance (ωz). Their respective mathematical expressions are

ωx = εΩ exp
(
−y2

δ2

){
− exp

(
−(z− d0)

2

δ2

)
+ exp

(
−(z+ d0)

2

δ2

)}
, (2.1)

ωz = a0Ω exp
{
−(y− h0 cos(2πx/λ))2

δ2

}
, (2.2)

where ε = max{ωx(t = 0)}/|Ω| is the normalized vorticity magnitude of the CVP,
2d0 is the separation distance between the vortices and δ represents the thickness
of each vortex. In the expression for the spanwise vortex sheet (2.2), a0 is its
magnitude (normalized by |Ω|), h0 is the height of the modulation and λ is its
streamwise wavelength. All variables are made non-dimensional using |Ω| and δ.
In the following, the non-dimensional coordinates and time are indicated by capital
letters (X, Y, Z and T , respectively).

An example demonstrating the temporal evolution of the initial disturbance is
presented in figure 3. To identify the vortical structure, Q, the second invariant of
the velocity gradient tensor, is used (Q = −0.5∂ui/∂xj · ∂uj/∂xi; see Hunt, Wray
& Moin 1988). The parameters used here are: Ω = −40 (s−1), ν = 10−6 (m2 s−1),
δ = 1 mm, ε = 7.5, d0 = δ, λ = 10δ, a0 = 0.5 and h0 = 0.5δ. The CVP is initially
straight (figure 3a). The inflection point formed by the CVP induced velocity causes
an inviscid instability, leading to its undulation. At T = 2 (figure 3b) the waviness is
further enhanced and the CVP is about to be separated into six periodical patches
of vortex elements. Consequently, at T = 2.5 (figure 3c) a spanwise vortex segment
is formed above the regions connecting two consecutive streamwise elements of the
CVP, where a relatively strong variation of the induced velocity along the streamwise
direction exists (∂v/∂X). With time the top spanwise vortical segments widen and
join with the streamwise vortical elements situated beneath them forming a packet of
hairpins (see T = 3.5, 4 in figure 3d,e, respectively).

The induced velocity and its streamwise derivative are shown in figure 4 for time
T = 2.5. The relatively strong streamwise variation of the induced velocity at the
wall-normal location of the spanwise vortical segments (Y = 3.4, Z = 0) can be seen
in figure 4(a). The maximal spanwise vorticity (associated with the negative peaks of
∂v/∂X) is periodically positioned at the streamwise locations of X=−16.9,−7.0, 2.8
and 13.1 (figure 4b), corresponding to the streamwise locations of the spanwise
vortical segments shown in figure 3(f ) for T = 2.5. The wall-normal distribution of
∂v/∂X at X = 2.8 is shown in figure 4(c). As can be seen, the maximal spanwise
vorticity is indeed at Y = 3.4, where the spanwise vortical segments are located. (It
should be noted that Y = 0 corresponds to the initial location of the vortices.)

The above-described scenario may explain observations of packets of hairpins in
transitional wall-bounded shear flows (and perhaps low-Reynolds-number turbulent
boundary layers as well). In fact, if we follow the inclination angle of the evolved
packet, i.e. the side views of the ‘bridges’ connecting the top spanwise vortical
‘heads’ with the bottom streamwise ‘legs’, it can be seen that by T = 5 (figure 3f )
the inclination angle is ∼45◦, which agrees with previous observations of hairpins in
turbulent boundary layers (e.g. Head & Bandyopadhyay 1981).

A key element in the above mechanism is the existence of inflection points in
the velocity profile. In this regard, a simple control mechanism was demonstrated
by Hof et al. (2010), where turbulence in intermittent pipe flow was eliminated by
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FIGURE 3. (Colour online) The temporal evolution of a packet of hairpins from a
wavy spanwise vortex sheet imposed on a CVP embedded in simple shear: (a) T = 0,
Q/Qmax = 0.6; (b) T = 2, Q/Qmax = 0.6; (c) T = 2.5, Q/Qmax = 0.3; (d) T = 3.5,
Q/Qmax = 0.3; (e) T = 4, Q/Qmax = 0.3; (f ) side views, Q/Qmax = 0.1 from top to
bottom T = 2.5, T = 3.5 and T = 5. The parameters are: Ω = −40 (s−1), ν = 10−6

(m2 s−1), δ = 1 mm, ε = 7.5, d0 = δ, λ = 10δ, a0 = 0.5 and h0 = 0.5δ. The structures
are shown by isosurfaces of the Q definition.

reducing inflection points in the velocity profile. Another key element of the model
is the coexistence of large-scale structures (e.g. the elongated CVP) and localized
disturbances. This resembles the separation of scales by Marusic, Mathis & Hutchins
(2010) which enabled them to formulate a predictive model for turbulent flows.
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FIGURE 4. (Colour online) Streamwise distribution at T = 2.5 of the induced velocity v
(a) and its streamwise derivative ∂v/∂X (b) at Y = 3.4, Z= 0; (c) wall-normal distribution
of ∂v/∂X at X = 2.8, Z = 0.

3. Comparison with flow experiments

To demonstrate the universality of the mechanism the model results are compared
with current flow visualization in a pipe and with previous visualization obtained in
a channel.

3.1. Pipe flow experiments
The water pipe facility is detailed in Philip & Cohen (2010). The flow rate can
be controlled to maintain a laminar flow for Re (Re = UclR/ν) within the range of
250–3000± 1 %. Here Ucl and R= 9.8 mm are the centreline velocity and pipe radius
and ν is the kinematic viscosity. Water-soluble dye (having water density) is injected
perpendicularly to the pipe wall through a 0.8 mm diameter hole at a downstream
distance of 114R, where the flow is close to fully developed having a parabolic profile.
The average injection velocity normalized by Ucl is v0. The ratio between volume
fluxes of disturbance to base flow is between 0.17 and 0.66 %. Two perpendicular
views are simultaneously captured by a camera and an inclined mirror installed close
to the pipe. The upstream end of the picture is two diameters downstream from the
point of injection.

From flow visualization, the thickness (δ) of the CVP, the separation distance
between the vortices (2d0) and the streamwise wavelength (λ) are deduced to be 0.59,
1.1 and 5.9 mm, respectively. The shear of the base flow is taken as the average
shear in the cross-section of the pipe (Ω ≈−Ucl/R=−25 (s−1), Re= 2500) and the
magnitude of the initial streamwise vorticity is estimated as the ratio between the
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FIGURE 5. Comparison between the model and pipe flow experiments: (a,b) views of
water pipe flow experiments following the evolution of a packet of hairpins from a laminar
flow subjected to a cross-stream jet injection; (c,d ) corresponding results with Q/Qmax =
0.115 and T = 5.75, following the temporal evolution of a packet of hairpins from a wavy
spanwise vortex sheet imposed on a CVP embedded in simple shear. The flow parameters
used in the simulation are obtained from the experiment: Re = 2500, Ω = −25 (s−1),
ε = 11.8, δ = 0.59 mm, d0 = 0.55 mm, λ = 5.9 mm, a0 = 0.5 and h0 = 0.5δ. (e) An
isometric view of the packet. Dimensions in the figure are in millimetres. Flow from right
to left.

injection velocity v0= 0.7 and the CVP thickness, i.e. ε≈ (v0Ucl/δ)/Ω ≈ v0R/δ= 11.8.
It should be noted that the role of h0 and a0 is secondary: as their values are
decreased/increased, the entire process is delayed/preceded.

Comparison between the pipe flow experiment and the model results is shown in
figure 5. The packet of hairpins obtained experimentally is shown in figure 5(a,b). The
corresponding model results are shown in figure 5(c,d), respectively. A very good
agreement with respect to the characteristics of the packet is observed, indicating
that the model is capable in capturing the main mechanisms involved in the packet
evolution. An isometric view of the model-obtained packet is shown for completeness
in figure 5(e). The encouraging agreement between our unbounded (having no walls)
Cartesian model and the pipe flow results emphasizes its universality.
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FIGURE 6. (Colour online) Comparison between the model and channel flow experiments.
(a) Top-view visualization of a laminar air channel flow subjected to a cross-stream jet
injection (reproduced from figure 2.12b, Philip 2009). (b) The corresponding model results
illustrated by isocontours of Q at T = 5 and Y = 1 to Y = 3. The flow parameters are:
Re = 1660, Ω = −40 (s−1), ε = 7.5, δ = 1 mm, d0 = 10 mm, λ = 25 mm, a0 = 1 and
h0 = 5 mm. (c) The experimental visualization superimposed on the model results. All
dimensions are normalized by δ. Flow from right to left.

3.2. Channel flow experiments
The air channel flow facility having a cross-section of 600 mm× 50 mm is detailed
by Philip (2009). The Reynolds number is based on the centreline velocity (Ucl) and
the half-channel height h = 25 mm. Disturbances were introduced into the laminar
Poiseuille flow by continuous air injection through a streamwise slot (57 mm×1 mm),
drilled in the bottom wall. The disturbances were visualized by adding tracer particles
to the secondary flow and illuminating them in the X–Z plane by a laser sheet. Flow
visualization covers a distance of 1.5–4 h downstream of the injection location.

Similarly to the pipe flow experiments, the thickness (δ) of the CVP, the separation
distance between the vortices (2d0) and the streamwise wavelength (λ) are deduced
from flow visualization to be 1, 10 and 25 mm, respectively, for the case in which
Re= 1660 (corresponding to Ucl = 1 m s−1) and the normalized injection velocity is
v0 ≈ 0.3 (based on Philip (2009, figure 2.12b)). The shear of the base flow and the
magnitude of the initial streamwise vorticity are estimated to be Ω ≈Ucl/h=−40 s−1

and ε≈ v0h/δ = 7.5, respectively.
Comparison between the channel flow experiments and the model results is shown

in figure 6. The experimental top view visualization are taken from figure 2.12 in
Philip (2009) and shown in figure 6(a). The corresponding model results are shown
in figure 6(b) and are also superimposed on the experimental results in figure 6(c).
A very good agreement is observed between the previously obtained channel flow
experiments and the results of our unbounded Cartesian model, further supporting its
universality.

4. Comparison with DNS transition in Couette flow
To further validate the universality of the proposed mechanism, we compare the

results of the model with DNS results simulating transition in Couette flow, treated as
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‘experimental’ results. We have used Gibson’s well-tested ‘Channelflow’ DNS software
(Gibson 2012). The simulation code is pseudospectral, using Nx = 256 and Nz = 64
Fourier modes in the x and z directions, respectively, and Ny = 81 Chebyshev modes
in the y direction with no slip and impermeability on the walls at y = ±1 (length
scales are normalized by the half-channel height, h). The streamwise and spanwise
dimensions of the computational domain are 10π and 2π, respectively. Since the 3/2
rule is applied to remove aliasing, the number of corresponding Fourier modes is
N ′x,z = 2/3Nx,z. The time step is chosen to obtain an initial Courant–Friedrichs–Lewy
(CFL) number of 0.17.

It is well known that Couette and pipe flows are linearly stable. However, with
a proper combination of linearly decaying modes, a significant transient growth can
be achieved (through a linear mechanism, e.g. Butler & Farrell 1992; Schmid &
Henningson 1994; Biau & Bottaro 2004; Ben-Dov & Cohen 2007; Eckhardt et al.
2007) and trigger nonlinear instabilities before ultimately decaying due to viscous
effects. Nevertheless, linear mechanisms alone are not sufficient to trigger transition
(e.g. Gustavsson 2009).

We have used an odd (antisymmetric with respect to the y-axis) initial disturbance
(e.g. Brandt & de Lange 2008), which includes streamwise independent modes having
a spanwise wavenumber of one. This combination of modes forms two pairs of CVPs
(a total of four streamwise vortices). In this example the Reynolds number is Re =
Uwh/ν=1000, where Uw is the velocity of the wall. The induced velocity of the CVPs
destabilizes the base flow by creating a wall-normal inflection point at the centre
(y = 0). To trigger instability, an infinitesimal 2D wavy disturbance having a
streamwise wavenumber of one has been added. Figure 7 shows results obtained
by the simulation. Only half of the domain is shown since the structures evolve
symmetrically with respect to the y-axis. Time is normalized by h/Uw. At T = 10
(figure 7a) the CVP experiences a streamwise wavy modulation, which is enhanced
by T = 14 (figure 7b). At T = 24 (figure 7c) streamwise-periodical spanwise vortical
segments are formed above the wavy CVP which later join with the streamwise
vortical elements situated beneath them. Consequently, a packet of hairpins is formed
(T = 35, figure 7d). The packet further intensifies and the hairpin ‘heads’ become
more localized having a shape of loops (T = 45, figure 7e). Shortly afterwards (not
shown here) the flow becomes turbulent.

Striking similarities of the CVP temporal evolution between the model (figure 3)
and the transition obtained by DNS (figure 7) are observed, despite the differences
in the initial conditions and the absence of walls in the former. The physical process
of the formation of a packet of hairpins during the transition scenario is explained
by our model, further demonstrating its universality and robustness. Moreover, the
synthetically evolved hairpins and modulated streamwise vortices are in agreement
with similar structures observed during transition scenarios obtained via DNS from
the minimal seed (e.g. Cherubini et al. 2011b) and with coherent structures found on
the edge states (e.g. Duguet et al. 2012).

5. Conclusions

It has been shown that the three flow elements are sufficient to explain the physical
mechanism of the formation of packets of hairpin vortices. Comparison between our
simple Cartesian unbounded (having no walls) model, which contains the three flow
elements, with experimental results for pipe and channel flows on the one hand and
DNS of transition in Couette flow on the other hand suggests that the model is
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FIGURE 7. Temporal evolution of a packet of hairpins obtained by the ‘Channelflow’
DNS for Couette flow: (a) T = 10, Q/Qmax = 0.6; (b) T = 14, Q/Qmax = 0.5; (c) T = 24,
Q/Qmax = 0.3; (d) T = 35, Q/Qmax = 0.3; (e) T = 45, Q/Qmax = 0.11. The structures
are shown by isosurfaces of the Q definition. Only half of the domain is shown since
the structures evolve symmetrically with respect to the y-axis (for each hairpin moving
downstream in the top-half domain there is a hairpin moving in the opposite direction in
the bottom-half domain).

universal and may explain the formation of packets of hairpins in various transitional
shear flows and shed light on the formation of similar structures in fully developed
turbulent shear flows.
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