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In an accompanying paper (van den Bremer & Hunt, J. Fluid Mech., vol. 750, 2014,
pp. 210–244) closed-form solutions, describing the behaviour of two-dimensional
planar turbulent rising plumes from horizontal planar area and line sources in
unconfined quiescent environments of uniform density, that are universally applicable
to Boussinesq and non-Boussinesq plumes, are proposed. This universality relies
on an entrainment velocity unmodified by non-Boussinesq effects, an assumption
that is derived in the literature based on similarity arguments and is, in fact, in
contradiction with the axisymmetric case, in which entrainment is modified by
non-Boussinesq effects. Exploring these solutions, we show that a non-Boussinesq
plume model predicts exactly the same behaviour with height for a pure plume
as would a Boussinesq model, whereas the effects on forced and lazy plumes are
opposing. Non-intuitively, the non-Boussinesq model predicts larger fluxes of volume
and mass for lazy plumes, but smaller fluxes for forced plumes at any given height
compared to the Boussinesq model. This raises significant questions regarding the
validity of the unmodified entrainment model for planar non-Boussinesq plumes based
on similarity arguments and calls for detailed experiments to resolve this debate.

Key words: convection, double diffusive convection

1. Introduction
The Boussinesq approximation, which ignores density variation except where it is

responsible for the existence of the buoyancy force itself, has been ubiquitously and
successfully applied throughout the buoyancy-driven-flow literature, and within the
literature on plumes and fountains in particular. Relaxing this assumption and thus
considering so-called non-Boussinesq plumes changes the way variations in density
affect variations in the fluxes of mass and momentum and alters the form of their
respective conservation equations. The significant density variations between plumes
and ambient that drive the non-Boussinesq modelling approach may also affect
the entrainment process and necessitate a different form of parametric turbulence
closure. For axisymmetric plumes, several authors including Rooney & Linden
(1996), Fanneløp & Webber (2003) and Carlotti & Hunt (2005) have examined how
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the Boussinesq assumption can be relaxed. In addition to including a variation of
the density in the conservation equations, where it was ignored under the Boussinesq
approximation, the radial entrainment velocity ue is reduced by a factor proportional
to the square root of the local density contrast with the ambient (ue = αw

√
ρ/ρa),

where α is the (constant) entrainment coefficient, ρ and ρa are the densities of the
plume (locally) and ambient fluids, and w the local vertical (time-averaged) velocity
in the plume. These authors have relied largely on limited experimental evidence
by Ricou & Spalding (1961) to support this modified entrainment hypothesis. The
main rationale behind the modification is consistency of the modified entrainment
assumption with similarity solutions, as shown by Rooney & Linden (1996). A
physical motivation is that turbulent entrainment is driven by the Reynolds stresses,
which are proportional to ρu2 and, hence, naturally provide a velocity scale for
entrainment proportional to

√
ρu2; van den Bremer & Hunt (2010) have then shown

that, when scaled appropriately, the solutions for non-Boussinesq and Boussinesq
(axisymmetric) plumes take the same mathematical form.

Although non-Boussinesq planar plumes have received considerably less attention,
Rooney (1997) and Delichatsios (1988) showed that an entrainment hypothesis in
which the entrainment rate is not modified by non-Boussinesq effects (ue = αw) is
consistent with similarity solutions. As recognized by Delichatsios (1988), there is
no experimental evidence to either support or contradict this claim and little has
changed since then. In an analogous fashion to van den Bremer & Hunt (2010),
we show in an accompanying paper, van den Bremer & Hunt (2014), hereinafter
referred to as vdB&H (2014), that universal solutions also exist for planar plumes
encompassing both the Boussinesq and the non-Boussinesq cases. This universality
quintessentially relies on the assumption that the entrainment velocity is unmodified
by non-Boussinesq effects.

By comparing the predictions of equivalent physical quantities by a non-Boussinesq
model and a Boussinesq model, this paper explores the implications of this assumption
for non-Boussinesq effects. It is worthy of note that ‘non-Boussinesq effects’ can be
interpreted in two ways: the change in prediction for a given model as a lower value
of the source density contrast η0 = ρ0/ρa is chosen or the difference in prediction
between a non-Boussinesq model and a Boussinesq model for a given value of η0.
Herein, our intention is a focus solely on the latter.

This paper is laid out as follows. Starting from the governing equations and their
solutions written in universal notation from vdB&H (2014), we return to physical
quantities with invariant definitions across Boussinesq and non-Boussinesq plumes in
§ 2. The predictions of Boussinesq and non-Boussinesq models are compared in §§ 3
and 4. Pure plumes are examined first (§ 3), followed by the contrasting behaviour of
forced plumes and lazy plumes (§ 4). Finally, conclusions are drawn in § 5 regarding
the a priori validity of the model for planar non-Boussinesq plumes.

2. Plume equations and universal solutions
2.1. Universal solutions

As shown in vdB&H (2014), for top-hat profiles of density and vertical velocity
variation across horizontal sections, conservation of the fluxes of mass, volume and
vertical momentum can be rewritten in terms of conservation of three quantities that
are universally valid for Boussinesq and non-Boussinesq plumes:

dG

dz
= 2ue,

dM

dz
= BG

M
,

dB
dz
= 0, (2.1a–c)
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where the vertical coordinate z is measured from the source upwards and ue = αw
denotes the horizontal entrainment velocity measured at the edge of the plume, which
is unmodified by non-Boussinesq effects. We define the plume width as 2b. In the
Boussinesq case, G =Q= 2bw and M =MB = 2bw2 denote the volume flux and the
Boussinesq approximation to the momentum flux, respectively. In the non-Boussinesq
case, G = G= 2ηbw and M =M = 2ηbw2 denote the mass flux and the momentum
flux, respectively. The density deficit flux B= 2g(1− η)bw denotes the same quantity
in both Boussinesq and non-Boussinesq cases and B is equal to the buoyancy flux
in the Boussinesq case only. All fluxes are per unit length. As for all the relevant
quantities in this paper, the horizontal entrainment velocity and the fluxes are averaged
in time and in the direction along the axis of symmetry of the plume and have been
normalized by the (uniform) ambient density ρa, where appropriate.

The conservation equations for dG /dz and dB/dz in (2.1) imply that the fluxes of
volume and mass are conserved in both Boussinesq and non-Boussinesq plumes. In
the Boussinesq case conservation of volume is directly implied by conservation of
mass. In the non-Boussinesq case, on the other hand, conservation of volume relies
on the assumption that the plume fluid behaves as an ideal gas, there is no external
heat input into the plume, the pressure variation in the ambient is hydrostatic and
by restricting attention to length scales much smaller than the length scale associated
with the hydrostatic pressure distribution of the ambient (LH = pa/gρa, where pa is
the ambient pressure). The derivation originally made by Rooney & Linden (1996) is
reproduced in the review by Hunt & van den Bremer (2011) in its simplest form for
the axisymmetric case.

In universal notation (β = b and ∆= 1− η in the Boussinesq case and β = bη and
∆= (1− η)/η in the non-Boussinesq case), the flux balance parameter or Richardson
number is given by (see vdB&H 2014):

Γ = BG 3

2αM 3
= gβ∆
αw2

. (2.2)

From the definition of Γ (2.2), we note that the value of Γ is equivalent under
the Boussinesq and the non-Boussinesq definition of G and M (see also § 4.3); the
additional density contrast factors in the non-Boussinesq case cancel each other out
so that G /M = 1/w in both the Boussinesq and the non-Boussinesq cases. In other
words, the Richardson number Γ for a plume with known fluxes at its source (or
at a given height above its source) takes an identical value as an input parameter
in either Boussinesq or non-Boussinesq models. This allows a direct assessment of
non-Boussinesq effects in planar plumes with the same source Richardson number Γ0
(in contrast to the axisymmetric case, see van den Bremer & Hunt 2010).

Using a hat to denote variables scaled on their source values, the system of
conservation equation (2.1) can be expressed in terms of Γ , the non-dimensional
effective half-width β̂ = β/β0, the non-dimensional velocity ŵ = w/w0 and a
non-dimensional height ζ = αz/β0:

dΓ
dζ
= 3Γ (1− Γ )

β̂
,

dβ̂
dζ
= 2− Γ, dŵ

dζ
= ŵ

β̂
(Γ − 1). (2.3a–c)

2.2. Non-Boussinesq versus Boussinesq model for planar plumes
Assuming the entrainment model is unmodified by non-Boussinesq effects, the only
difference between a Boussinesq and a non-Boussinesq model is that the density
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variation in the equation for momentum flux conservation, which is neglected under
the Boussinesq approximation, is properly taken into account, i.e. MB = 2w2b is
replaced by M= 2ηw2b=MBη. Decomposition of the variation of the momentum flux
M with height z, thus reveals the only effect of making the Boussinesq approximation:

dM/dz
M
= dMB/dz

MB
+ dη/dz

η
. (2.4)

For plumes, η always increases monotonically from its source value η0(= ρ0/ρa < 1)
and reaches η = 1 asymptotically with height (as ρ → ρa). Therefore, dη/dz > 0
and the rate of growth of M, (dM/dz)/M, always exceeds the rate of growth of MB,
(dMB/dz)/MB. Differences between the predictions of a non-Boussinesq model and a
Boussinesq model can therefore be explained by noting that the growth rate of the
‘effective’ momentum flux is larger in a non-Boussinesq model.

To aid the discussions that follow, we introduce a scaled height ξ , the definition
of which does not depend on whether a Boussinesq or a non-Boussinesq model is
considered:

ξ = αz
b0

for Boussinesq and non-Boussinesq plumes. (2.5)

3. Non-Boussinesq effects on pure plumes (Γ0 = 1)

By combining the solutions for β and ∆ in § 3.2 of vdB&H (2014) it can be shown
that the half-width, the vertical velocity and the density contrast of pure planar plumes
(Γ0) are unaffected by non-Boussinesq effects. In both the Boussinesq and the non-
Boussinesq cases, these are given by:

b
b0
= 1+ ξ, w

w0
= 1,

1− η
1− η0

= 1
1+ ξ (Boussinesq and non-Boussinesq).

(3.1a–c)

From (3.1), the fluxes of volume, mass and momentum can be evaluated:

Q
Q0
= 1+ ξ, G

G0
= 1+ ξ

η0
,

M
M0
= 1+ ξ

η0
(Boussinesq and non-Boussinesq).

(3.2a–c)

The rationale for the equivalence for pure plumes is straightforward. Since the
velocity does not change with height (dŵ/dξ = 0, ŵ = 1 giving ue/w0 = α),
an unmodified entrainment model leads to equivalent conservation equations for
the fluxes of volume and mass: (dQ̂/dξ)BM = (dQ̂/dξ)NBM(= ue/αw0 = 1) and
(dĜ/dξ)BM = (dĜ/dξ)NBM(= ue/αw0η0 = 1/η0). The subscripts BM and NBM denote
the predictions of a Boussinesq model and a non-Boussinesq model, respectively.
Noting that M̂= ŵĜ, where ŵ(z) is constant, this also implies equivalent conservation
equations for the momentum flux: (dM̂/dξ)BM= (dM̂/dξ)NBM(=1/η0). The equivalence
is noteworthy and would imply, if non-Boussinesq entrainment is unmodified, that no
differences between a pure Boussinesq and a pure non-Boussinesq plume could be
observed experimentally.
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FIGURE 1. Contours of (a,b) constant M̂ and (c,d) constant M̂ ′= dM̂ /dξ for plumes as
predicted by a Boussinesq model (black lines) and a non-Boussinesq model (grey lines)
with η0 = 0.75. Similar trends are predicted for other values of η0. At the source (ξ = 0),
we have dM̂B/dξ = Γ0 in the Boussinesq case and dM̂/dξ = Γ0/η0 in the non-Boussinesq
case.

4. Non-Boussinesq effects on forced (0<Γ0 < 1) and lazy (Γ0 > 1) plumes

Contrary to pure plumes, forced and lazy plumes are affected by non-Boussinesq
effects. To disentangle the effects on the different variables that are coupled in a
system of simultaneous differential equations, we distinguish between direct and
indirect effects. Direct effects are the direct result of modification to the conservation
equations, whereas indirect effects are only the result of changes in the values of
the variables induced by the former. As explained in § 2.2, the only direct effect is
the modification of the conservation equation for momentum flux. We now examine
direct and indirect effects on the relevant quantities in turn (§§ 4.1–4.5). The source
values of the rates of change with height of the different quantities and their values
in the far-field limit (ξ→∞) are summarized in table 1 to further aid the discussion
and complement figures 1–6 that follow, which depict how the quantities of primary
interest vary with height (and with Γ0). Whilst not all aspects of the trends shown
in these detailed figures are discussed in the accompanying text, they are retained as
they provide a useful reference.
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4.1. Momentum flux

Figure 1(a,b) confirms that the flux M̂ , which denotes the approximation to the
momentum flux in the Boussinesq case and the momentum flux in the non-Boussinesq
case, increases more rapidly when predicted by a non-Boussinesq model. This is a
direct implication of the Boussinesq approximation (cf. (2.4)). It is also instructive to
consider the form for the rates of change of M̂ (from (3.12c) in vdB&H 2014):

dM̂

dξ
=


Γ
(Γ0

Γ

)2/3
(Boussinesq),

1
η0
Γ
(Γ0

Γ

)2/3
(non-Boussinesq).

(4.1)

At a given height the non-Boussinesq model predicts a larger momentum flux
(figure 1a,b) and a larger gradient (figure 1c,d). At the source (Γ =Γ0), the contours
of constant dM̂ /dξ are scaled by a constant factor 1/η0(= ρa/ρ0 > 1); for given
values of dM̂ /dξ the contours in figure 1(c,d) for the non-Boussinesq model are
shifted to the left. The effect of this shift is felt particularly strongly by highly forced
plumes (Γ0� 1) as the discrepancy between M̂ and M̂B grows as Γ0 decreases. We
return in § 4.3 to this ‘enhanced jet effect’.

4.2. Volume and mass fluxes
The inclusion of non-Boussinesq effects, on the other hand, does not have a direct
effect on the rate of change of the fluxes of mass Ĝ and volume Q̂ in the absence of
modifications to the entrainment model (from (3.12b) in vdB&H 2014):

dĜ
dξ
=


1
η0

(Γ0

Γ

)1/3
(Boussinesq),

1
η0

(Γ0

Γ

)1/3
(non-Boussinesq),

dQ̂
dξ
=


(Γ0

Γ

)1/3
(Boussinesq),(Γ0

Γ

)1/3
(non-Boussinesq).

(4.2a,b)

After all, the fluxes of mass and volume are conserved in both the Boussinesq and
the non-Boussinesq cases and entrainment is unmodified. Direct effects can therefore
not explain the trends in figure 2(a,b) (showing contours of constant volume flux) and
3(a,b) (showing contours of constant mass flux), namely, at any given height a non-
Boussinesq model predicts the fluxes of volume and mass to be larger for lazy plumes
(Γ0>1) and smaller for forced plumes (Γ0<1). This result may not have been entirely
expected.

To begin to explain this non-intuitive result, consider the rate of increase with height
of the volume (mass) flux, which takes a value dQ̂/dξ |ξ=0 = 1 (dĜ/dξ |ξ=0 = 1/η0) at
the source and approaches a value of dQ̂/dξ =Γ 1/3

0 (dĜ/dξ =Γ 1/3
0 /η0) asymptotically

with height (cf. table 1). For forced plumes this amounts to a monotonic decrease:
rapid mixing and consequent volume increases take place near the source and decay
as the plume rises and becomes more pure. For lazy plumes, on the other hand, the
rate of volume increase becomes larger with height: mixing only becomes rapid as
the plume rises and becomes more pure.
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FIGURE 2. Contours of (a,b) constant Q̂ and (c,d) constant Q̂′ = dQ̂/dξ for plumes as
predicted by a Boussinesq model (black lines) and a non-Boussinesq model (grey lines)
with η0 = 0.75. For pure plumes (Γ0 = 1) model predictions are identical (§ 3). At the
source (ξ = 0), we have dQ̂/dξ = 1 in the Boussinesq and the non-Boussinesq cases.

It is evident from figure 2(a,b) (and figure 3a,b for the mass flux) that in unconfined
environments the change in volume flux experienced by forced plumes is less than
for a pure plume, which, in turn, is less than for lazy plumes. These differences
are accentuated in the non-Boussinesq model. Crucial to these differences between
Boussinesq and non-Boussinesq approaches is the rate at which the plume becomes
pure. To understand this behaviour, we turn to the flux balance parameter Γ .

4.3. Richardson number Γ
The implications of a non-Boussinesq model for the flux balance Γ can be noted from
observing that the definition of Γ (2.2) is equivalent in both models:

Γ̂ = Γ

Γ0
=
( Ĝ

M̂

)3 =


( Q̂

M̂B

)3 =
( Ĝ

M̂

)3
(Boussinesq),( Ĝ

M̂

)3 =
( Q̂

M̂B

)3
(non-Boussinesq).

(4.3)
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FIGURE 3. Contours of (a,b) constant Ĝ and (c,d) constant Ĝ′ = dĜ/dξ for plumes as
predicted by a Boussinesq model (black lines) and a non-Boussinesq model (grey lines)
with η0 = 0.75. At the source (ξ = 0), we have dĜ/dξ = 1/η0 in the Boussinesq and the
non-Boussinesq cases.

In turn, (4.3) can be differentiated to give (from (3.6) in vdB&H 2014):

dΓ
dξ
=


3Γ (1− Γ )

(Γ0

Γ

)2/3( 1− Γ
1− Γ0

)1/3
(Boussinesq),

1
η0

3Γ (1− Γ )
(Γ0

Γ

)2/3( 1− Γ
1− Γ0

)1/3
(non-Boussinesq).

(4.4)

The transition to pure plume behaviour is thus more rapid (1/η0 > 1) in a
non-Boussinesq model for both forced and lazy plumes, as illustrated by figure 4(a,b).
This is explained by direct effects and the interpretation of Γ as a flux balance
parameter. Noting that dΓ̂ /dξ = 3Γ̂ ((1/Ĝ )dG /dξ − (1/M̂ )dM /dξ), larger dM̂ /dξ
(§ 4.1) or larger dĜ /dξ (§ 4.2) in the non-Boussinesq case leads to larger |dΓ/dξ |
and, thus, more rapid restoration to unity of the balance of fluxes either from above
(lazy plumes) or from below (forced plumes).

For forced plumes, the region of rapid mixing and volume (mass) flux increase near
the source is therefore confined to an even smaller height, resulting in a smaller value
of the volume (mass) flux being reached at any given height (figures 2a and 3a).
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FIGURE 4. Contours of (a,b) constant Γ and (c,d) constant Γ ′ = dΓ/dξ for plumes as
predicted by a Boussinesq model (black lines) and a non-Boussinesq model (grey lines)
with η0 = 0.75. At the source (ξ = 0), we have dΓ/dξ = 3Γ0(1− Γ0) in the Boussinesq
case and dΓ/dξ = 3Γ0(1− Γ0)/η0 in the non-Boussinesq case.

For lazy plumes, on the other hand, the region of slow mixing and slow increase
of volume (mass) flux near the source is passed through more rapidly. Thus, the
observation that a non-Boussinesq model without modified entrainment predicts the
fluxes of volume and mass to be larger for lazy plumes and smaller for forced plumes
is explained.

It is worth summarizing here that should one wish to model a particular plume
which has a source parameter value Γ0, a value that is identical as an input in both the
Boussinesq and the non-Boussinesq models, an immediate implication of the locally
greater momentum flux in the non-Boussinesq model is as follows: if Γ0 exceeds
unity, the momentum flux deficit of the Boussinesq model (relative to the pure plume)
exceeds that of the non-Boussinesq model; if Γ0 is less than unity, the momentum flux
excess of the non-Boussinesq model (an excess relative to the pure plume) exceeds
that of the Boussinesq model. In other words, in terms of their momentum flux, lazy
plumes may be regarded as ‘less lazy’ and forced plumes as ‘more forced’ (or, as
we refer to previously, as having an ‘enhanced jet effect’). Given that lazy plumes
adjust to being pure more rapidly with height than forced plumes, the implications of
a non-Boussinesq model are more strongly felt by forced plumes, the increased excess
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FIGURE 5. Contours of (a,b) constant η and (c,d) constant η′ = dη/dξ for plumes as
predicted by a Boussinesq model (black lines) and a non-Boussinesq model (grey lines)
with η0 = 0.75. At the source (ξ = 0), we have dη/dξ = 1 − η0 in both the Boussinesq
and the non-Boussinesq cases.

of momentum flux requiring a greater vertical extent to ‘correct’ by the action of the
buoyancy forces.

4.4. Density contrast
We turn to the contours of the density contrast η. The behaviour of η, which simply
increases from its source value η0 to reach η= 1 asymptotically with height as mixing
takes place, can be easily explained once the behaviour of volume flux with height is
understood. Dilution predicted by a non-Boussinesq model is simply less rapid for
forced plumes and more rapid for lazy plumes (cf. § 4.3), corresponding to slower
convergence to η= 1 in the forced case and more rapid convergence in the lazy case
(figure 5a,b). From (3.11a) in vdB&H (2014):

η=


1− (1− η0)

(Γ0

Γ

)1/3(Γ0 − 1
Γ − 1

)1/3
(Boussinesq),

1

1+ 1− η0

η0

(Γ0

Γ

)1/3(Γ0 − 1
Γ − 1

)1/3 (non-Boussinesq). (4.5)
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From (3.12a) in vdB&H (2014):

dη
dξ
=



(1− η0)
(Γ0

Γ

)( Γ − 1
Γ0 − 1

)2/3
(Boussinesq),

(1− η0)
(Γ0

Γ

)( Γ − 1
Γ0 − 1

)2/3

(
η0 + (1− η0)

(Γ0

Γ

)1/3( Γ − 1
Γ0 − 1

)1/3)2 (non-Boussinesq).
(4.6)

Despite their contrasting forms (4.6), the heights at which particular gradients in
density contrast are attained (figure 5c,d) are similar and both gradients take identical
values of dη/dξ = (1− η0) at the source (cf. table 1). At a sufficiently large distance
above the source (cf. figure 5c,d), contours of constant dη/dξ corresponding to a
non-Boussinesq model lie below those corresponding to a Boussinesq model for
forced and lazy plumes, but not for pure plumes, for which they lie at the same
height. At a given height, a non-Boussinesq model thus predicts a lower value of the
dilution rate dη/dξ , explained by such plumes being effectively more pure-like due to
the more rapid convergence to pure plume behaviour predicted by a non-Boussinesq
model. Closer to the source and for larger values of Γ0, the difference in behaviour
is more subtle due to the maximum rate of dilution that is reached for sufficiently
lazy plumes (cf. the dashed lines denoted by ξη′max

in figure 5c,d).

4.5. Vertical velocity
Noting that ŵ=M /G , the different behaviour of ŵ is also entirely explained by the
differences in the behaviour of Γ (cf. § 4.3). From (3.8) in vdB&H (2014):

ŵ=


(Γ0

Γ

)1/3
(Boussinesq),(Γ0

Γ

)1/3
(non-Boussinesq).

(4.7)

However, we note the dependence of dΓ/dξ on η0 (4.4) in the non-Boussinesq case
and thus the velocities (4.7) differ with height:

dŵ
dξ
=


−(1− Γ )

(Γ0

Γ

)( 1− Γ
1− Γ0

)1/3
(Boussinesq),

− 1
η0
(1− Γ )

(Γ0

Γ

)( 1− Γ
1− Γ0

)1/3
(non-Boussinesq).

(4.8)

Indeed, figure 6(c,d) confirms that a non-Boussinesq model predicts a more rapid
increase in ŵ for lazy plumes and a more rapid decrease in ŵ for forced plumes. The
result of differences between the models on the vertical velocity is straightforward
with the non-Boussinesq model giving higher velocities at any given height for all
plumes (figure 6a,b).

For forced plumes, results for the gradient of velocity (plume deceleration) are
straightforward, the non-Boussinesq model yielding stronger deceleration. For lazy
plumes, on the other hand, the implications for plume acceleration are quite subtle;
near the source, accelerations are stronger in the non-Boussinesq model although they
are smaller compared to the accelerations of the Boussinesq model at greater heights.
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FIGURE 6. Contours of (a,b) constant ŵ and (c,d) constant ŵ′ = dŵ/dξ for plumes as
predicted by a Boussinesq model (black lines) and a non-Boussinesq model (grey lines)
with η0 = 0.75. At the source (ξ = 0), we have dŵ/dξ = (Γ0 − 1) in the Boussinesq case
and dŵ/dξ = (Γ0 − 1)/η0 in the non-Boussinesq case.

The former is explained by the direct effect illustrated by (4.8), whereas the latter
is due to the more rapid convergence to pure plume behaviour in a non-Boussinesq
model (dŵ/dξ→ 0 as ξ→∞). The accelerations at the source increase with plume
laziness as dŵ/dξ |ξ=0 = (Γ0 − 1)/η0 in the non-Boussinesq case (table 1) explaining
the crossing of the constant-dŵ/dξ contours in figure 6(d).

5. Conclusions
In an accompanying paper, van den Bremer & Hunt (2014) (vdB&H 2014) we have

shown that if an (unmodified) entrainment model based on similarity is introduced for
non-Boussinesq planar plumes, the solutions to the system of conservation equations
for Boussinesq plumes and the solutions to the system of conservation equations for
non-Boussinesq plumes take the same mathematical form. These ‘universal solutions’
relied on the introduction of an effective half-width, β, which is equal to the actual
half-width, β = b, in the Boussinesq case and to the product of the half-width
and the local density contrast, β = bη, in the non-Boussinesq case. We first and
foremost emphasize the counter-intuitive nature, already noted by Rooney (1997),
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of the unmodified entrainment model suggested in the literature on the basis of
similarity arguments, on which the validity of the solution for non-Boussinesq plumes
and, thence, the universality demonstrated in vdB&H (2014) relies. Contrary to the
axisymmetric case, an entrainment model consistent with similarity is not modified
by non-Boussinesq effects: ue = αw in the planar case versus ue = αw

√
η in the

axisymmetric case.
In this paper we have explicitly examined the implications for the differences in

prediction between a Boussinesq and a non-Boussinesq model. We have done so by
comparing the predicted behaviour of both models for plumes with equivalent source
conditions. The solutions are evaluated for plumes that are moderately non-Boussinesq
(η0 6≈ 1, η0 6� 1), but generalize to very non-Boussinesq plumes (η0 � 1). We show
that, compared to a Boussinesq model, a non-Boussinesq model leads to equivalent
solutions for pure plumes and the prediction of larger fluxes of volume and mass for
lazy plumes, but smaller fluxes for forced plumes at any given height. In particular,
the equivalence of the solutions for pure plumes, which implies that varying η0 ceteris
paribus (notably Γ0= 1) would not result in any, let alone experimentally observable,
differences in behaviour, leads to significant doubts regarding the validity of this
unmodified entrainment model. Although similarity arguments are often a first port
of call in such cases, they must be dismissed here, and only detailed measurements
can resolve this debate. These measurements are unlikely to prove straightforward
as, based on a recent study of axisymmetric plumes (Ezzamel 2011), sophisticated
particle-image-velocimetry techniques alone may not be sufficient to establish the
precise form of the entrainment.

REFERENCES

VAN DEN BREMER, T. S. & HUNT, G. R. 2010 Universal solutions for Boussinesq and
non-Boussinesq plumes. J. Fluid Mech. 644, 165–192.

VAN DEN BREMER, T. S. & HUNT, G. R. 2014 Two-dimensional planar plumes and fountains.
J. Fluid Mech. 750, 210–244.

CARLOTTI, P. & HUNT, G. R. 2005 Analytical solutions for turbulent non-Boussinesq plumes. J. Fluid
Mech. 538, 343–359.

DELICHATSIOS, M. A. 1988 On the similarity of velocity and temperature profiles in strong (variable
density) turbulent buoyant plumes. Combust. Sci. Technol. 60, 253–266.

EZZAMEL, A. 2011 Free and confined buoyant flows. PhD Thesis, Imperial College London, UK.
FANNELøP, T. K. & WEBBER, D. M. 2003 On buoyant plumes rising from area sources in a calm

environment. J. Fluid Mech. 497, 319–334.
HUNT, G. R. & VAN DEN BREMER, T. S. 2011 Classical plume theory: 1937–2010 and beyond.

IMA J. Appl. Math. 76 (3), 424–448.
RICOU, F. P. & SPALDING, D. B. 1961 Measurements of entrainment by axisymmetrical turbulent

jets. J. Fluid Mech. 11, 21–32.
ROONEY, G. G. 1997 Buoyant flows from fires in enclosures. PhD Thesis, University of Cambridge,

UK.
ROONEY, G. G. & LINDEN, P. F. 1996 Similarity considerations for non-Boussinesq plumes in an

unstratified environment. J. Fluid Mech. 318, 237–250.
THOMAS, P. J. & DELICHATSIOS, M. A. 2007 Notes on the similarity of turbulent buoyant fire

plumes with large density variations. Fire Safety J. 42, 43–50.
WOODS, A. W. 1997 A note on non-Boussinesq plumes in an incompressible stratified environment.

J. Fluid Mech. 345, 347–356.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

25
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.252

	Two-dimensional planar plumes: non-Boussinesq effects
	Introduction
	Plume equations and universal solutions
	Universal solutions
	Non-Boussinesq versus Boussinesq model for planar plumes

	Non-Boussinesq effects on pure plumes (0=1)
	Non-Boussinesq effects on forced (0<0<1) and lazy (0>1) plumes
	Momentum flux
	Volume and mass fluxes
	Richardson number 
	Density contrast
	Vertical velocity

	Conclusions
	References




