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Experimental results are presented for the influence of Reynolds number on
multifractal scale similarity in turbulent flows. These are obtained from single-point
measurements of a dynamically passive ScE 1 conserved scalar quantity ζ(t) in a
turbulent shear flow at outer-scale Reynolds numbers of 14000%Reδ % 110000.
Statistical criteria based on the maximum allowable scale-to-scale variation L

"
(ε) in

multiplier distributions P(Mε) from multifractal gauge sets allow accurate discrimi-
nation between multifractal and non-multifractal scaling. Results show that the
surrogate scalar energy dissipation rate χ

s
(t)3 (dζ}dt)# is found to display a scale-

invariant similarity consistent with a random multiplicative cascade characterized by
a bilinear multiplier distribution P(Mε) over a range of scales extending downward
from the outer scale Tδ. For a range of scales extending upward from the inner
(diffusive) scale T

D
, the dissipation rate displays a different scale-invariant similarity

characterized by a uniform multiplier distribution. The former scale-invariance
becomes evident in the present ScE 1 data only when Reδ is sufficiently large.
Comparisons with results from Scj 1 data indicate that this scale-invariant similarity
applies when the outer-to-inner scale ratio Tδ}T

D
E 0.09 Re$/%δ Sc"/# is greater than

about 400. In contrast to the scalar dissipation rate field, the scalar field is found to lack
any multifractal scale similarity.

1. Introduction

The wide range of length and time scales in high Reynolds number turbulent flows
has led to a variety of postulates to describe the highly intermittent nature of gradient
quantities such as vorticity and dissipation in these flows. Most of these invoke some
type of scale similarity assumption that allows features over a range of scales to be
treated within the same framework. This paper, the fourth in a series examining various
aspects of scale similarity in turbulent flows, evaluates the applicability of one such
postulate – the multifractal model (e.g. Hentschel & Procaccia 1983; Frish & Parisi
1985; Halsey et al. 1986) – to the dynamical signature produced by a turbulent shear
flow in gradients of a passive scalar mixed by the flow. In particular, we present
experimental results for the effects of Reynolds and Schmidt numbers on the
applicability of the multifractal model, and on the range of scales over which this type
of scale similarity is found.
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The major conclusions from three previous parts (Frederiksen, Dahm & Dowling
1996, 1997a, b ; hereinafter referred to respectively as Parts 1, 2 and 3) were concerned
with the applicability of fractal and multifractal scaling concepts to conserved scalar
fields ζ(x, t) and scalar energy dissipation rate fields χ(x, t)3¡ζ[¡ζ(x, t) in turbulent
flows. Those studies were based on fully resolved four-dimensional spatio-temporal
laser-induced fluorescence imaging data obtained at outer-scale Reynolds number Reδ

of several thousand and Schmidt numbers Sc near 2000, with the resulting Reδ Sc
product exceeding 10(. The measurement technique allowed examination of the scaling
properties in one-, two-, or three-dimensional spatial intersections through the data
volumes as well as in time. In Part 1 calibrations were introduced based on fractal and
non-fractal gauge sets that allowed objective assessment of scale similarity in one-
dimensional spatial and temporal intersections through the experimental data. Results
showed that the support set on which χ(x, t) is concentrated is ‘as fractal as known
stochastic fractal gauge sets ’ (fractional Brownian motion sets having the same record
length). Part 2 extended these assessments to two- and three-dimensional spatial
intersections with the four-dimensional data, and found that the χ(x, t) fields remain
fractal except in small inclusions within which diffusion dominates, thereby breaking
the scale similarity. Part 3 examined multifractal scale similarity and introduced a
rigorous assessment criterion based on the maximum allowable statistical variations in
the scale-to-scale multiplier distributions P(Mε). Other constructs were found to be
insufficiently sensitive to robustly discriminate between multifractal and non-
multifractal gauge sets. Calibrations based on known stochastic multifractal gauge sets
yielded a difference norm L

"
(ε) that could be compared to similar norms obtained from

the experimental data. Results showed that χ-fields reliably follow multifractal scaling
between the viscous scale λν and the diffusive scale λ

D
, while the corresponding ζ-fields

lacked any multifractal scale similarity over this range of scales.
Prior studies on the applicability of multifractal scale similarity in turbulent flows are

reviewed in Part 3. The earliest results indicating such scaling in turbulent shear flows
were presented by Meneveau & Sreenivasan (1987, 1991), Prasad, Meneveau &
Sreenivasan (1988), Sreenivasan & Prasad (1989) and Sreenivasan (1991a, b). Their
experiments involved a variety of shear flows at Reynolds numbers ranging from
typical laboratory-scale experiments to atmospheric-scale turbulence. Comparisons of
the results in Parts 1–3 with these earlier studies are discussed in each of these papers.
A key point is that Parts 1–3 were based on comparisons with fractal and non-fractal
gauge sets, which allow direct assessments of the applicability of these scale-similarity
hypotheses. Of particular relevance to the present study is the notion of scale-invariant
multiplier distributions P(M ), introduced by Sreenivasan (1991b), Chhabra &
Sreenivasan (1992), and Sreenivasan & Stolovitzky (1995). Note that the P(Mε)
distributions found in Part 3 for the scalar dissipation rate field in a comparatively low
Reynolds number turbulent shear flow were strikingly similar to those found by
Chhabra & Sreenivasan (1992) from velocity measurements in atmospheric turbulence
(e.g. see their figure 2).

Here the investigation of multifractal scale similarity from Part 3 is extended to
examine the effects of Reynolds number and, by comparison to the earlier work,
Schmidt number. The assessment criteria from Part 3 are applied to fully space- and
time-resolved, single-point, Rayleigh scattering measurements of a dynamically passive
ScE 1 conserved scalar field in a turbulent shear flow at outer-scale Reynolds numbers
in the range 14000%Reδ % 110000. The use of single-point scalar data ζ(t) precludes
construction of the true scalar energy dissipation rate χ(t)3D¡ζ[¡ζ(t), and for this
reason we instead examine the widely-used surrogate χ

s
(t)C (dζ}dt)# based on

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

98
00

30
5X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211209800305X


Fractal scale similarity in turbulent flows. Part 4 171

2.0

1.5

1.0

0.5

0 10 20 30 40 50

(a)

ú
©úª

t/Td

1.8

1.6

1.4

1.2

ú
©úª

1.0

0.8
2775 2780 2785 2790 2795

t/TD

(c) (d)

0 10 20 30 40 50

t/Td

30

60

90

120
(b)

øs
©øsª

80

60

40

20

0
2775

øs
©øsª

2780 2785 2790 2795

t/TD

F 1. Sample traces of ζ(t)}©ζª (a, c) and χ
s
(t)}©χ

s
ª (b, d ) from the present data

at Reδ ¯ 14000 shown on outer scales (a, b) and on inner scales (c, d ).

Case number Reδ x}d ∆x}λ
D
(x) ∆t}T

D
(x) τ}Tδ(x)

56–61 14000 40 0.17 0.01 40
95–102 14000 60 0.11 0.01 60

116–118 44000 30 0.59 0.10 180
126–129 44000 90 0.49 0.07 120
132–135 110000 60 0.59 0.09 80

T 1. Conditions for each of the cases considered, showing local outer-scale Reynolds number Reδ ,
axial location x}d, spatial resolution ∆x and temporal resolution ∆t relative to the local inner length
and time scales λ

D
(x) and T

D
(x), and the measurement duration τ relative to the local outer-scale time

Tδ(x). Effects of the Wiener filtering may increase ∆t by up to an order of magnitude.

Taylor’s hypothesis, which retains the salient characteristics of χ(t) (Dowling 1991;
Dahm & Southerland 1997). The corresponding surrogate Φ

s
C (du}dt)# has been used

in previous studies (e.g. Sreenivasan 1991a ; Meneveau & Sreenivasan 1991) of scale
similarity in the true kinetic energy dissipation rate Φ(t)3 2νε :ε(t), where ε(x, t) is the
full strain rate tensor. We examine the scaling properties of χ

s
at three different

Reynolds numbers.
The presentation is organized as follows. In §2 we summarize the experimental data

used in the present study, and in §3 we briefly review the multifractal scale-similarity
criteria that were developed in Part 3 and are employed here. Following this, §4
evaluates the applicability of scale-invariant similarity in the conserved scalar data ζ(t).
Section 5 examines multiplier distributions P(Mε) and scale-to-scale difference norms
L

"
(ε) for the surrogate dissipation field χ

s
(t), and identifies various scale ranges over
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F 2. Sample traces of ζ(t)}©ζª (a, c, e) and χ
s
(t)}©χ

s
ª (b, d, f ) shown on outer scales

at Reδ ¯ 14000 (a, b), 44000 (c, d ), and 110000 (e, f ).

which scale-invariance applies. The effects of outer-scale Reynolds number and
Schmidt number on these scaling ranges are examined in §6 by comparing with the
previous measurements at Scj 1. Conclusions as to the applicability of multifractal
scaling concepts for characterizing the scale-similarity properties of turbulent flows are
drawn in §7.

2. Experimental summary

The present study is based on long-record-length, single-point, fully-resolved
Rayleigh scattering measurements of a conserved scalar in the self-similar far field of
an axisymmetric turbulent jet of ethylene or propylene gas issuing into nitrogen or
argon. Detailed descriptions of the experimental facility and measurement technique,
as well as statistical validation of these data, are given by Dowling & Dimotakis (1990)
and Dowling (1993).

Briefly, a jet of purified gas issues through a smoothly contoured round nozzle with
exit diameter d at Reynolds numbers Reδ of 14000, 44000 and 110000 into a nominally
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quiescent 1.2 m¬1.2 m¬2.3 m ambient enclosure containing a second purified gas.
Here Reδ 3 (uδ}ν) is the local outer-scale Reynolds number based on the outer length
scale δ(x)E 0.44x and centreline velocity u(x)E 7.2 (J}ρ)"/#x−" which characterize the
mean shear driving the turbulence, where J and ρ denote the jet momentum flux and
the ambient fluid density, respectively. At the lowest Reynolds number, the jet fluid was
ethylene and issued at 4.0 m s−" through a 19.0 mm diameter nozzle into nitrogen,
giving a density ratio of 1.0015 and molecular Schmidt number Sc3 (ν}D) of 1.0. At
the two higher Reynolds numbers, the jet consisted of propylene issuing at 28.6 and
71.5 m s−", respectively, through a 7.62 mm diameter nozzle into argon, giving a
density ratio of 1.05 and ScE 1.2. In all cases, the jet exit turbulence level was less than
0.2%. A weak coflow prevented recirculation within the enclosure while still providing
jet-momentum-dominated flow, as verified by the outer-variable similarity scaling
reported in Dowling & Dimotakis (1990).

High-resolution, single-point Rayleigh scattering measurements of jet fluid con-
centration were made at up to 90 jet-exit diameters (see table 1) downstream from the
nozzle. The size ∆x of the focal volume from which Rayleigh scattered light was
collected was adjusted (see table 1) for each x and Reδ to remain constant relative to
the local scalar diffusion lengthscale λ

D
(x)E 11.2 δ(x)Sc−"/#Re−$.%δ (Southerland &

Dahm 1996; Dahm, Su & Tacina 1996; Buch & Dahm 1996, 1998) except at the lowest
Reδ, where the spatial resolution is roughly four times higher. Likewise the sampling
interval ∆t for each measurement, typically consisting of a record length of 2"* samples
spanning a duration τ of 60 to 180 local outer timescales Tδ(x)3 δ(x)}u(x), was also
adjusted (see table 1) to remain constant relative to the local inner lengthscale
advection time T

D
(x)3λ

D
(x)}u(x) except at the lowest Reδ. Spectral and statistical

quantities derived from these data (Dowling & Dimotakis 1990) verify that the
measurements were spatially and temporally resolved, as well as statistically converged.

To allow accurate differentiation in the present study, the measured jet fluid
concentrations ζ(t) were Wiener filtered (e.g. Press et al. 1986) and χ

s
(t) was computed

via central differencing of the filtered data. Figures 1 and 2 show representative time
traces of ζ(t)}©ζª and χ

s
(t)}©χ

s
ª, where ©[ª denotes the time average of the

corresponding trace. The data in figure 1 are for the lowest Reδ, and illustrate the
dynamic range and temporal resolution of the measurements.

3. Multifractal scale-similarity criterion

A rigorous assessment criterion capable of reliably discriminating between
multifractal and non-multifractal sets was developed in Part 3 and is adopted here. The
method is based on the maximum allowable statistical variation at scale ε in the
distribution P(Mε) of multipliers Mε obtained from analyses of a set of measures µ(t)
derived from the original sets ζ(t)}©ζª or χ

s
(t)}©χ

s
ª. Criteria based on other classical

multifractal constructs, such as partition functions X
q
or dimensions f(α), were clearly

shown in Part 3 to be insufficiently sensitive to discriminate non-multifractal from
multifractal gauge sets. For this reason, results for such constructs are not presented
here. Instead, objective assessment of multifractal scaling is obtained by comparing the
L

"
(ε) difference norm between successive P(Mε) with the corresponding curve derived

from a known stochastic multifractal gauge set. A data set can thereby be rigorously
declared either to be or not to be ‘as multifractal as the multifractal gauge set ’.

The measures µ(t
i
) at each scale ε are simply the average value of the original data

set ζ(t)}©ζª or χ
s
(t)}©χ

s
ª, multiplied by the relative interval size ε}L, within

contiguous time intervals of scale ε centred at times t
i
covering the entire record length
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F 3. Scale-to-scale variations L
"
(ε) in multiplier distributions P(Mε) for a pure stochastic

multifractal gauge set and a multifractal gauge set with an inner cut-off.

L (see (6) of Part 3). In practice, the ε are incremented in factors of 2, with the largest
ε corresponding to L and the smallest containing just two data points. For records
consisting of 2n equally spaced points, scale similarity can be examined at n®1
different scales. From the resulting set of measures µ(t

i
) at each scale ε, a set of

multipliers Mε(ti
) is constructed via (8) of Part 3, which are simply the ratio of

the measures at successive scales for each point in the set, and are thus bounded by
0%Mε % 1.

The multipliers Mε at each scale ε produce the multiplier distribution P(Mε), which
will show statistical variations if the record length is finite. If there are many data sets
at identical conditions, as in Part 3, then their individual multiplier distributions can
be ensemble averaged to give ©P(Mε)ª with higher statistical convergence. A further
increase in statistical convergence is obtained by effectively generating the average
multiplier distribution in both directions of time by symmetrizing P(Mε).

If the resulting distributions P(Mε) are scale-invariant over a range of ε, then the data
set displays multifractal scale similarity. The assessment of scale-invariance is based on
the L

"
difference norm

L
"
(ε)3&

M

rP(Mε)®P(Mε/#
)rdM (1)

characterizing the scale-to-scale variation in P(Mε). The maximum allowable statistical
variation between any two successive scales is set by the corresponding results for a
known stochastic multifractal gauge set. Based on the findings in Part 3, a scale-similar
random multiplicative cascade with bilinear P(M ) is used to generate L

"
(ε) in figure 3,

against which all results obtained here will be compared. The error bars shown are the
result of 10000 individual realizations of this multifractal gauge set. The figure shows
the results obtained when this scale similarity is taken to apply over the entire range
of scales. Also shown is the effect of a diffusive cutoff scale, below which P(M )3 0.5
is used to generate the gauge sets.

For later reference, note that if P(Mε) is strongly peaked near M¯ "

#
, then the

measures in adjacent intervals at that scale are nearly equal. This will occur for very
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F 4. Multiplier distributions P(Mε) obtained from the scalar field data ζ(t)}©ζª
at Reδ ¯ 44000. Note the lack of any scale-invariant distribution.
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F 5. Comparison of scale-to-scale variations L
"
(ε) in multiplier distributions P(Mε) from

scalar field data at Reδ ¯ 44000 with multifractal gauge sets.
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F 6. Multiplier distributions P(Mε) obtained from dissipation
rate data χ

s
(t)}©χ

s
ª at Reδ ¯ 44000.
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F 7. Comparison of scale-to-scale variation L
"
(ε) is multiplier distributions P(Mε) from

figure 6 at Reδ ¯ 44000 with multifractal gauge sets.
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F 8. Multiplier distributions P(Mε) obtained from dissipation
rate data χ

s
(t)}©χ

s
ª at Reδ ¯ 14000.

large scales, at which the measure in any interval must approach the average value of
the set being examined, as well as at exceedingly small scales, on which the set shows
essentially no structure and thus the measures in adjacent intervals will again be nearly
equal. On the other hand, if P(Mε) is nearly uniform then all possible multipliers are
equally likely, indicating that there is no correlation between the measures µ(t

i
) in

adjacent intervals at that scale.

4. ζ(t) versus χ
s
(t) scalings

The applicability of multifractal scale similarity to the conserved scalar field data ζ(t)
will be examined first. Note that there are reasons to question such a hypothesis on
fundamental grounds; however, multifractal scale similarity in the scalar field has been
postulated by Chechetkin, Lutovinov & Turygin (1990) and Shivamoggi (1992), as
noted in Part 3. Figure 4 shows the multiplier distributions P(Mε) obtained from the
conserved scalar set ζ(t) for Case 128 in table 1. The results are typical of those
obtained for ζ(t) at all values of Reδ. No scale similarity whatsoever is seen in the
results, as is evident by the lack of any collapse of the P(Mε) onto a scale-independent
distribution. This can be readily seen in figure 5, where the resulting scale-to-scale
difference norm L

"
(ε) is compared with the corresponding result from known

multifractal gauge sets as discussed above. Also shown are the results obtained from
a number of other cases in table 1. In all cases, the L

"
(ε) are far too high to meet the

requirements for scale similarity.
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F 9. Multiplier distributions P(Mε) obtained from dissipation
rate data χ

s
(t)}©χ

s
ª at Reδ ¯ 44000.

Figure 6 shows the multiplier distributions P(Mε) obtained from the surrogate scalar
dissipation rate field χ

s
(t) for the case examined in figure 4. Unlike the scalar field

results, the dissipation field shows indications of possible scale-invariance over several
ranges of scales. To test this we examine the corresponding L

"
(ε) shown in figure 7,

where it can be seen that, over certain scale ranges, the results are much closer to those
obtained from multifractal gauge sets. This will be examined in more detail in §5;
however, at this point we can already conclude that the measured conserved scalar sets
ζ(t) clearly do not show any scale similarity of the type examined here, at any Reynolds
number or axial location in the flow. Dissipation sets χ

s
(t) from precisely the same

data, on the other hand, do show possible multifractal scale similarity, and for this
reason the remainder of this study will deal only with these fields.

5. Scale-similarity ranges in P(Mε) and L
"
(ε)

5.1. Multiplier distributions P (Mε)

Figure 8 shows the multiplier distributions P(Mε) obtained for Case 95 in table 1,
corresponding to the measurement at the lowest Reδ (highest resolution), for scales ε
from ®0.5%®log

#
(ε}Tδ)% 13.5. The distributions are shown in separate groups

covering various scale ranges. Multiplier distributions obtained at Reδ ¯ 44000 and
110000 are shown in figures 9 and 10. Note that the range of scales shown in each
panel is normalized with outer variables. The results in figure 9 should be compared
with those in figure 6, which were obtained at the same Reδ. Note that these two sets
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P(Mε)

F 10. Multiplier distributions P(Mε) obtained from dissipation
rate data χ

s
(t)}©χ

s
ª at Reδ ¯ 110000.

of multiplier distributions are very nearly identical, indicating that P(Mε)’s obtained
from a single data set in these measurements appear to be representative of the true
scaling properties of the flow at that Reδ.

There are several distinguishing features of these distributions that become apparent
in such comparisons. Note that panel (a) in each figure, corresponding to the scaling
at very large scales, shows P(Mε) increasingly accumulating at M¯ "

#
as the scale size

ε increases. Similarly panel (d ) in each figure, giving the scaling at very small scales,
shows P(Mε) accumulating at M¯ "

#
as the scale size ε decreases. This is expected from

the discussion at the end of §3, since in both these scale limits the measures in adjacent
intervals must become asymptotically equal. These regimes will be denoted I and V.

Putting these trivial scaling regimes aside, we next examine the apparently uniform
P(Mε) seen at Reδ ¯ 14000 in figure 8(c), and in figure 9(c) at Reδ ¯ 44000 and figure
10(d ) at Reδ ¯ 110000. This regime will be denoted IV. Objective assessment of
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Case 056
Case 095

Gauge set w/cutoff
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ε =TD
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0
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(a)
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0
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L1(ε)
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(b)
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(c)

V

IV

III

I

I

II III IV

V

ε =TD

Case 126
Case 128

Gauge set w/cutoff

Case 132
Case 133

Gauge set w/cutoff

F 11. Comparison of scale-to-scale variation L
"
(ε) in multiplier distributions P(Mε) from figures

8–10 with multifractal gauge sets, showing results obtained at Reδ ¯ 14000 (a), 44000 (b),
and 110000 (c).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

98
00

30
5X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211209800305X


Fractal scale similarity in turbulent flows. Part 4 181

possible scale similarity in this range of scales from the difference norms L
"
(ε) will be

given below. For now we note that the presence of such a uniform multiplier
distribution indicates that, over this range of scales, the measures obtained from
adjacent intervals in the dissipation field are essentially uncorrelated, as was noted in
§3. This result in terms of the multiplier distributions P(Mε) is, in effect, equivalent to
the observation by Sreenivasan & Prasad (1989) that the generalized dimensions D

q

(see Part 3) over this range of scales are essentially independent of the order of the
moment. Note that this regime is seen to extend over a range of 2% to 2& in the scales
at the two lower Reδ. At the highest Reδ, the narrower range of scales may be due to
the Wiener filtering applied.

A second regime showing possible scale similarity is found at larger scales for
Reδ ¯ 110000, as seen in figure 10(b), and will be denoted regime II. Objective
examination of this apparent similarity will also be given below, but here we observe
that the shape of the multiplier distributions P(Mε) over this range of scales is very
different from that found above. Note in particular that P(Mε) is roughly bilinear, and
that this form is only seen at the highest Reδ. A bilinear multiplier distribution was also
found by Chhabra & Sreenivasan (1992) at much higher Reynolds numbers in analyses
of the surrogate kinetic energy dissipation rate field from velocity measurements in
atmospheric turbulence.

Recall also from Part 3 that a bilinear multiplier distribution similar to that seen
in figure 10(b) was found in that study at comparable scales for Reδ ¯ 5200 but
with Sc¯ 2075, giving the Pecle! t number Reδ ScE 10(. In the present case
Reδ Sc¯ 10&, suggesting the possibility that this shape may be a characteristic of high-
Pecle! t-number conserved scalar mixing. Here this similarity appears to extend over a
range of 2% in scales, whereas in Part 3 it was found over a range of 2( in scales, again
consistent with some type of Pecle! t number scaling. The bilinear shape of P(Mε)
at these scales indicates a significant correlation among measures derived from the
dissipation in adjacent intervals, which appears to be a characteristic of high-Reynolds-
number (possibly high-Pecle! t-number) scalar dissipation rate fields. The possibility of a
Pecle! t number scaling is examined in §6.

The only remaining scales are between II and IV, and can be seen in figures 8(b),
9(b), and 10(c). This range will be denoted III. Over these scales, the multiplier
distributions P(Mε) undergo a transition from the bilinear form that appears in II at
sufficiently high Reδ and Sc to the uniform distribution found in IV at all Reδ. In figure
10(c) this transition regime spans a range of 2$ in scales.

5.2. Scale-to-scale difference norms L
"
(ε)

Figure 11 shows the L
"
(ε) difference norms between the multiplier distributions P(Mε)

obtained at Reδ ¯ 14000, 44000 and 110000. Also shown are the results from gauge
sets based on a random multiplicative cascade having the bilinear multiplier
distribution noted above, and the small-scale cutoff described in §3. The five scale
ranges identified in §5.1 are shown in each panel, with the boundaries obtained by
inspection of the P(Mε) distributions in figures 6, 8, 9 and 10. Figure 12 schematically
indicates the scaling phenomena that lead to the five scale ranges identified above.

The scale ε}Tδ E "

%
at which Region I ends can be seen in figure 11(a–c) to be nearly

independent of Reδ, as might be expected if this is set by the outer (inviscid) scales of
the flow. It seems reasonable that the scaling of measures on intervals larger than this
will be dominated by the required approach to the average value, as indicated in
figure 12, with the attendant trivial limit MU "

#
in P(Mε), and that on intervals smaller

than this the scaling of measures will be dominated by the structure of χ
s
(t).
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P(Mε)

(a) (b)
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P(Mε)

Mε

P(Mε)

Mε

P(Mε)

Mε

0 1

0 1

0 1

P(Mε)

Mε
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0 1

I

II
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V

Mε ≈1
2
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©øsªi ©øsªi+1
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F 12. Schematic showing dissipation sets on various scales (a) and multiplier distributions in
each scaling range (b).
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At the other extreme, the scale at which Region V begins can be seen in figure
11(a–c) to be set by the inner (diffusive) scales of the flow. This limit lies near ε}T

D
E "

%
,

and is otherwise independent of Reδ. This limiting value also appears reasonable since,
as indicated in figure 12, the scaling on intervals smaller than this will be dominated
by the required approach of measures on adjacent intervals to the same value, again
with the resulting trivial limit MU "

#
in P(Mε). Consistent with the resolution evident

in figure 1(d ), Region V thus reflects scales much smaller than the dissipation layer
thickness at which no scale similarity is present.

Region IV should then reflect scales comparable to the dissipation layer thickness,
and indeed in all cases in figure 11(a–c) the diffusion-scale advection time ε}T

D
E 1 lies

within the observed Region IV. Measures on adjacent intervals in this range of scales
will be largely uncorrelated, leading to the uniform P(Mε). In many instances only one
of these intervals may contain most of the dissipation, as indicated in figure 12. Related
to this, it must be noted that the similarity found over this range of scales may be an
artifact of χ

s
(t) that will not be present in the true dissipation field χ(t). The surrogate

dissipation contains a wider range of apparent ‘ thicknesses ’ T
D

produced as dissipation
layers with a relatively narrow range of true thicknesses λ

D
advect at various

orientations and speeds through the measurement volume. Indeed, no scale-similarity
regime with a uniform P(Mε) was found for the true dissipation field χ(t) in Part 3.
Finally, the range of scales over which Region IV extends might then be expected to
be insensitive to Reδ, and this is largely the case in figure 11, though the range appears
somewhat narrower at the highest Reynolds number. This may simply be an artifact
of the Wiener filtering at this Reynolds number.

6. Effects of Reδ and Sc

Regions II and III represent the range of scales that are of primary interest, since
they reflect the signature of the small- and fine-scale structure of the underlying
turbulent flow on the scalar mixing process. Region II in particular is of interest, since
the P(Mε) in figure 10 indicate a possible multifractal scale similarity with a simple
bilinear multiplier distribution, reminiscent of the results found in Part 3 and in
Chhabra & Sreenivasan (1992). Both these regions must lie between Region I, the lower
end of which scales with outer variables u and δ, and Region IV, the upper end of which
apparently scales with inner (diffusive) variables λ

D
and D, the scalar diffusivity. As a

consequence, the extent of Regions II and III will depend on the outer-to-inner scale
ratio

Tδ

T
D

E
1

11.2
Re$/%δ Sc"/#. (2)

For the present ScE 1 data, the results in figure 11 indicate that, at the lowest value
of Reδ (figure 11a), the scale ratio Tδ}T

D
is so small that Region II is not even present

and Region III is relatively narrow. At the intermediate Reδ (figure 11b), for which
Tδ}T

D
E 250, Region II is still not present but Region III is now much wider. It is only

at the highest Reδ (figure 11c) that the outer-to-inner scale ratio Tδ}T
D

E 500 in these
data is large enough to accommodate a Region II spanning a significant range of scales,
while the previous Region III appears simply to have been shifted to smaller scales.

The resulting Region II displays multifractal scale similarity with a bilinear P(Mε),
as was also found in Part 3. Relevant to this, note that for the results in Part 3, where
ScE 2000, the resulting outer-to-inner scale ratio was Tδ}T

D
E 1000 even though in

that case Reδ was only about 4000. Similarly, for the atmospheric data of Chhabra &
Sreenivasan (1992), which also found a bilinear multiplier distribution, this scale ratio
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is also expected to be very large. Based on that and the results obtained here, we
conclude that multifractal scale similarity with a bilinear P(Mε) over the range of scales
in Region II appears to be the natural equilibrium scaling relevant to scalar dissipation
rate fields in turbulent flows whenever the scale ratio Tδ}T

D
is sufficiently large, namely

whenever Reδ and Sc together satisfy the requirement that 0.09Re$/%δ Sc"/# is greater
than about 400. This can be achieved at surprisingly low Reδ if Sc is very large, as in
Part 3.

These scale ranges and their variation with Reδ are summarized in figure 13. At all
three values of Reδ indicated, the extent of I is the same, since this regime is set by outer-
scale processes, which are inherently inviscid and thus unaffected by Reynolds number
changes. In the same way, IV and V are set entirely by the diffusive processes occurring
at the inner scale, and consequently the widths of these scaling ranges are independent
of Reδ and their location is set by Re$/%δ Sc"/#. The width of III is presumed to be
independent of Reδ and Sc since it results simply from the transition between II and IV.
The width of II is set by Re$/%δ Sc"/#.

7. Conclusions

This study has examined the (surrogate) scalar energy dissipation rate field χ
s
(t) for

stochastic multiplicative scale similarity at temporal scales ranging from more than an
order of magnitude larger than the local outer timescale Tδ down to tenths or
hundredths of the local inner (diffusive) advection timescale T

D
. Existing high-

resolution single-point temporal data were interrogated with an objective assessment
criterion developed in Part 3, based on scale-to-scale difference norms L

"
(ε) between

multiplier distributions P(Mε) at successive scales, to determine whether or not each
set displays scale similarity that is ‘as multifractal as a stochastic multifractal gauge set
having the same record length and similar multiplier distribution’.

The present results, obtained at ScE 1, combined with those obtained at Scj 1 in
Part 3, indicate that the scalar energy dissipation rate field χ(x, t) in turbulent shear
flows displays a scale-invariant similarity consistent with multifractal theory. In the
present data, scale similarity was found over two ranges of scales, here identified as
Regions II and IV. Region II is non-trivial, and occurs at scales traditionally associated
with a turbulent scale-similar ‘cascade’. This region, characterized by a bilinear
multiplier distribution, exists at ScE 1 only when the outer-scale Reynolds number Reδ

is large enough to accommodate a sufficiently large outer-to-inner scale ratio Tδ}T
D
.

However for Scj 1 this condition can be met at surprisingly low values of Reδ, even
though the resulting outer-to-viscous scale ratio Tδ}Tν is presumably not large enough
to accommodate a scale-invariant range in the underlying velocity field. The bilinear
multiplier distributions found in this range are strikingly similar to those obtained by
Chhabra & Sreenivasan (1992) from velocity measurements at much higher Reynolds
numbers in atmospheric turbulence, suggesting that this form is a fundamental
characteristic of all turbulent flows having a sufficiently wide outer-to-inner scale ratio.

The scaling found here in Region IV is characterized by a uniform multiplier
distribution P(Mε) and was always present, independent of Reδ. This scaling appears
to be a consequence of the inner-scale structure of the flow, where over a range of
temporal scales somewhat larger than the local inner-lengthscale advection time T

D

(and presumably a range of spatial scales near λ
D
), there is essentially no correlation

between the measures in adjacent intervals. The fact that no Region IV scaling has
previously been found may be due in part to the higher resolution, relative to T

D
, of the

present ScE 1 data than of the Scj 1 data in Part 3.
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(a)

(b)

I III IV V

xd xD

log Ef

log (x/xd)

I III IV VII

log Ef

xd xD
log (x/xd)

(c)

I III IV VII

log Ef

xd xD
log (x/xd)

F 13. Schematic representation of Reδ and Sc effects on scaling ranges discussed in §6.

Additionally, it must be kept in mind that the results in Part 3 were obtained for the
true scalar dissipation rate field χ(t), while those reported here are for the widely used
surrogate dissipation χ

s
(t). The apparent differences between χ

s
(t) and the true scalar

dissipation rate (see Dahm & Southerland 1997) occur primarily at the smallest scales.
As a consequence, the Region IV scale similarity noted above may be influenced by
these differences. However, at the larger scales in Region II, the differences between
χ
s
(t) and χ(t) should be small. The present results thus strongly indicate that χ(x, t)

displays multifractal scale similarity over this range of scales. Indeed, for the kinetic
energy dissipation, numerical studies (e.g. Wang et al. 1996; §5) have indicated largely
similar scaling of the true dissipation and its surrogate based on (du}dt)# as noted in
§1, though there are subtle differences.

The present ScE 1 scalar fields were clearly found to lack any multifractal scale
similarity over any range of scales, consistent with the conclusion reached in Part 3 for
Scj 1 scalar fields. The applicability of fractal scale similarity to isoscalar surfaces,
and to scalar level crossing sets, was addressed in Part 1 for Scj 1 scalar fields. The
level crossing sets were found there to be clearly non-fractal, and the Schmidt number
is unlikely to alter this conclusion.

This work was supported by the Air Force Office of Scientific Research (AFOSR)
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under AFOSR Grant No. F49620-95-1-0115 and with discretionary funds from The
University of Michigan. The measurements were made by D.R.D. at GALCIT during
1987–88 under separate support from the Gas Research Institute (GRI) and AFOSR.
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