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Abstract A polarized variety is K -stable if, for any test configuration, the Donaldson–Futaki invariant
is positive. In this paper, inspired by classical geometric invariant theory, we describe the space of
test configurations as a limit of a direct system of Tits buildings. We show that the Donaldson–Futaki
invariant, conveniently normalized, is a continuous function on this space. We also introduce a pseudo-
metric on the space of test configurations. Recall that K -stability can be enhanced by requiring that
the Donaldson–Futaki invariant is positive on any admissible filtration of the co-ordinate ring. We show
that admissible filtrations give rise to Cauchy sequences of test configurations with respect to the above
mentioned pseudo-metric.
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1. Introduction

The Yau–Tian–Donaldson conjecture predicts that the existence of a canonical metric on
a polarized variety (X, L) is equivalent to an appropriate algebraic notion of stability,
which should generalize the classical geometric invariant theory stability.

In classical geometric invariant theory, the Hilbert–Mumford criterion asserts that a
point is stable if and only if the Hilbert–Mumford weight is positive on every non-trivial
one-parameter subgroup (1PS).

The suggested generalization of geometric invariant theory is K -stability, which says
that a polarized variety (X, L) is K -stable if for every non-almost-trivial test configura-
tion the Donaldson–Futaki invariant is positive. In this theory, the part of 1PSs is played
by test configurations, the Donaldson–Futaki weight is a Hilbert–Mumford weight and
the Hilbert–Mumford criterion is turned into a definition.

Nowadays, it is widely accepted that the notion of K -stability should be enhanced.
In [26], a stronger notion is proposed: test configurations are identified with finitely
generated admissible filtrations, and (X, L) is called K̂-stable if the Donaldson–Futaki
invariant is positive on every admissible filtration, not just on the finitely generated ones.
The Donaldson–Futaki invariant of a non-finitely generated admissible filtration is defined
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800 G. Codogni

by approximating the filtration with honest test configurations and then taking the limit
along this approximation. We will recall the relevant definitions in § 5.

one-parameter In classical geometric invariant theory, non-zero 1PSs are parametrized
by the rational points Δ(Q) of a space Δ, which is usually called the Tits building or flag
complex. The Hilbert–Mumford weight, conveniently normalized, becomes a function on
Δ. This space can be endowed with various geometric structures, which can be used for
different goals; for example, they are used to show the existence and the uniqueness of a
maximally destabilizing 1PS for unstable points; see [15,22].

As observed by Odaka in [20], test configurations are parametrized by an appropriate
direct system of Tits buildings {Δr(Q)}r∈N, where Δr is the Tits building parametrizing
1PSs of SL(H0(X, rL)). We denote by Δ∞(Q) this direct limit, and we investigate two
different structures that one can put on this space.

A Tits building can be defined as an abstract simplicial complex; this point of view
gives a topology on Δr which we call the simplicial topology. The Hilbert–Mumford
weight is continuous with respect to this topology. In Theorem 3.5, we will show that
the morphisms appearing in the direct system {Δr(Q)}r∈N are continuous with respect
to the simplicial topology on Δr(Q). We call the simplicial topology the direct limit
topology induced on Δ∞(Q). The following result, proved in § 4, is a corollary of the
above mentioned continuity result.

Theorem 1.1. The normalized Donaldson–Futaki weight is continuous with respect
to the simplicial topology on the subset T of Δ∞(Q) of non-almost-trivial test
configurations.

Let us stress that the maps appearing in the direct system {Δr(Q)}r∈N do not preserve
the simplicial structures; hence Δ∞(Q) does not have a natural simplicial structure.

The second structure that we want to discuss is a metric structure. Each Tits building
Δr can be endowed with a metric dr; we call this metric the Tits metric, and the induced
topology the Tits topology. The Tits topology is coarser than the simplicial topology.
Using the direct system {Δr(Q)}r∈N, we are able to induce in Definition 3.6 a limit
pseudo-metric d∞ on Δ(Q). This metric is defined as a limsup, and in Proposition 3.7
we show that this limsup is actually a limit. Our next result shows that this metric gives
a convenient setup to study K̂-stability.

Theorem 1.2 (=Theorem 5.2). Let F be a non-finitely generated admissible fil-
tration with non-zero L2 norm; then the sequence of points in Δ∞ associated with
the sequence of test configurations approximating F is a Cauchy sequence for the
pseudo-metric d∞.

The notions of admissible filtrations and L2 norm will be recalled later on.
In § 7, we explain the relation between classical Tits buildings and symmetric spaces.

We suggest a relation between the Tits building Δ∞ and the space of Kähler metrics.
Taking this point of view, it is natural to ask about maximal flat subspaces of the space
of Kähler metrics.

The interplay between the simplicial and the Tits topology and the behaviour of the
Donaldson–Futaki invariant with respect to the Tits metric are topics which deserve
further investigations. Mimicking the arguments used in geometric invariant theory by
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[15,22], a convenient convexity result about the Donaldson–Futaki invariant would imply
the existence and unicity of a maximally destabilizing test configuration.

1.1. Relations with other works

It is possible to define a map from the space Δ∞ to an appropriate quotient of the
space of non-Archimedean metrics on the analytification of (X, L) introduced in [3,4].
This map should be continuous for the simplicial topology. We do not investigate this
topic in this note.

K -stability can also be defined in the non-projective setting; see [8,9,24]. In this setup,
a test configuration is a space X endowed with a Kähler form rather than a line bundle.
These configurations do not come naturally from the action of a 1PS, so Tits building are
not available in this setting. It would be interesting to find an alternative way to describe
the space Δ∞.

The automorphism group Aut(X, L) acts naturally on Δ∞, preserving the pseudo-
metric. When Aut(X, L) is not reductive, the pair (X, L) is expected to be not K -stable,
or at least not K̂-stable. In [6], a canonical admissible filtration is introduced, called
Loewy filtration, which should be destabilizing exactly when Aut(X, L) is not reductive.
An interpretation of the Loewy filtration as a Cauchy sequence in Δ∞ could be a useful
step towards the proof of this conjecture.

1.2. Notations

We work over an algebraically close field k of characteristic zero. We fix a normal
projective variety X of dimension n and a very ample and projectively normal line bundle
L over X. We use the additive notation for line bundles, so mL = L⊗L.

2. Tits buildings

In this section, following [19,23, § 2.2], we recall the definition of the Tits building Δ
associated with a finite-dimensional complex vector space V , and some of its properties.
In the literature, Tits buildings are sometime called spherical buildings or flag complexes.

Let m be the dimension of V , and assume that m ≥ 3. The first definition of Δ is as
an abstract simplicial complex. Simplexes correspond to parabolic subgroups of SL(V );
a simplex corresponding to a parabolic group P1 lies in the boundary of a simplex cor-
responding to a parabolic group P2 if and only P2 ⊂ P1. Vertexes are given by maximal
parabolic subgroups; maximal simplexes are m − 2-dimensional.

Recall that parabolic subgroups correspond to flags of V : to a flag we associated its
stabilizer. We thus have the following equivalent description of Δ: each vertex corresponds
to a proper vector subspace of V ; a group of vertexes form a simplex if and only if the
associated subspaces form a flag in V .

We can now start enhancing the structure of Δ. We identify each simplex with the
standard one, in particular we have co-ordinates xi; let Δ(Q) be the set of points with
rational co-ordinates. We introduce the following definition.

Definition 2.1 (weighted flag). A weighted flag is the data of a flag

{0} ⊂ F1 V ⊂ F2 V · · ·Fk−1V ⊂ FkV = V
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and weights w = (w1, . . . , wk) such that wi < wi+1 and
∑

wi = 0. The weights can be
either rational or real numbers. Two flags (F, w) and (G, w′) are equivalent if there exists
a constant c, called the scaling constant, such that FiV = GiV and wi = cw′

i for every i.
The weight of a vector v is the maximum wi such that v ∈ FiV .
We say that a basis {v1, . . . , vn} of V is adapted to a flag F if, for every i, there exists

a subset of {v1, . . . , vn} which forms a basis of FiV .

The Tits building Δ parametrize a weighted flag up to equivalence: the flag corresponds
to the simplex, and the weight to the co-ordinates of the point.

We now associate with each 1PS λ of SL(V ) a weighted flag; hence a point [λ] of Δ(Q).
Let w1, . . . , wk be the weights of λ, ordered in an increasing way, and let

Fi(V ) =
⊕
j≤i

Vwj

where Vwj
is the eigenspace of weight wj of λ. Assigning weight wi to FiV , we obtain the

flag associated with λ. As shown in [19, Proposition 2.6], the parabolic subgroup P (λ)
stabilizing this flag consists of all g in SL(V ) such that the limit limt→0 λ(t)gλ(t)−1 does
exist. This limit, when it exists, centralizes λ, so it preserves the eigenspaces of λ; see the
proof of [19, Proposition 2.6] for a more precise description of the limit.

Two 1PSs give the same point in Δ if and only if the associated flags are equivalent. In
other words, Δ(Q) is equal to a set of 1PSs of SL(V ) modulo the equivalence relations

λ ∼ γ if λ = pγp−1, p ∈ P (λ)

λ ∼ γ if λa = γb, a, b ∈ Z.

The next piece of structure is given by the apartment. Apartments correspond to
maximal tori of SL(V ): given a maximal torus T , the corresponding apparent AT is
the closure in Δ of the 1PSs of T . A flag F is in AT if and only if the eigenvectors
v1, . . . , vn of T form a basis adapted to F . The key remark is that an apartment is a
finite simplicial complex homeomorphic to a sphere, or a simplicial sphere for short. The
following standard lemma will be very important.

Lemma 2.2 (Mumford et al. [19, Lemma II.2.9]). Given two points p and q of
Δ, there exists at least an apartment containing both of them.

The previous lemma can also be interpreted in the following way: given two points p and
q in Δ(Q), there exists two commuting 1PSs λ and γ of SL(V ) such that p = [λ] and
q = [γ].

The building, so far, is an abstract simplicial complex. Looking at its geometric real-
ization, we can endow it with a topology, which we call the simplicial topology. The
simplicial complex Δ is not locally of finite type, so we need some care in the description
of this structure. Apartments are finite simplicial complexes homeomorphic to a sphere.
On the entire space Δ, the topology is defined as the direct limit of the topology of finite
subcomplexes. Since any finite subcomplex is contained in a finite number of apartments,
a subset U of Δ is open if and only if its intersection with any apartment is open. Simi-
larly, a function on Δ is continuous with respect the simplicial topology if and only if its
restriction to each apartment is continuous.
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We are now in a position to introduce the Tits metric on Δ(Q).

Definition 2.3 (Tits metric). Let p and q be two points of Δ(Q); pick two commut-
ing 1PSs λ and γ such that p = [λ] and q = [γ], and write λ = exp tA and γ = exp tB;
then we let

d(p, q) = arccos
(

Tr(AB)√
Tr(A2)Tr(B2)

)
.

One can show that this definition is independent of the chosen 1PSs; see for instance [19,
§ 2.2]. Moreover, this metric can be extended by continuity to Δ.

Let us describe an interpretation of the Tits metric as angular distance. Take a maximal
torus T containing both λ and γ; this gives an apartment AT containing both p and q. Let
Γ(T ) be the lattice of 1PSs of T . The Killing metric on Γ(T ) is a quadratic form which is
equivariant for the action by conjugation of the normalizer of T in G; it is unique up to a
scalar. Denote by E the space Γ(T ) ⊗ R equipped with the Killing metric. Then, AT can
be identified with the unit sphere in E, and the Tits metric is nothing but the angular
distance. Since the Killing metric is unique up to a scalar, the angular distance on AT is
uniquely defined.

Since any two points are contained in an apartment, and the apartment is isometric to a
sphere endowed with the angular distance, we have that any two points can be connected
by a geodesic and diam(Δ) = π. The geodesic is not unique because, for instance, two
points can be contained in many different apartments, and the geodesic constructed above
depends on the apartment.

The topology induced by the Tits metric on each apartment is equal to the simplicial
topology. However, on Δ, the topology induced by the Tits metric is coarser than the
simplicial topology.

3. Tits building and test configurations

Let X be a projective variety over an algebraically closed field of characteristic zero, and
L a very ample and projectively normal line bundle on X. We also fix a generator t of
the space of 1PSs of Gm, and faithful action of Gm on A1; let 0 be the fixed point of the
action and 1 another point of A1. We recall the definition of test configuration, which is
due to S. Donaldson [12, Definition 2.1.1].

Definition 3.1 (test configuration). Let r be a positive integer. An exponent r test
configuration (X , L) for (X, L) consists of the following data:

(1) a scheme X together with a flat map π : X → A1;

(2) a Gm action on X such that the morphism π is equivariant;

(3) a relatively ample line bundle L on X together with a linearization of the Gm

action.

Moreover, we require that the fibre over 1 is isomorphic to (X, rL).
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A test configuration is very (respectively semi-) ample if L is very (semi-) ample. A
test configuration is trivial if (X , L) is isomorphic to (X × A1, rL � OA1) and the Gm

action is trivial on X. A test configuration is normal if X is normal.
Let ν : X̂ → X be the normalization. Then (X̂ , ν∗L) has a natural structure of the test

configuration; we call it the normalization of (X , L). A test configuration is almost trivial
if its normalization is trivial.

A non-polarized test configuration is the datum of an X with a Gm action as above,
without the choice of a line bundle L.

Basic properties of test configurations are described in [2, § 2]. There are three main
operations one can perform on test configurations.

Definition 3.2. Base change: Let bp : A1 → A1 be the map defined by z �→ zp. We can
make a base change (X , L) via bp, obtaining a new test configuration.

Scaling: Consider the trivial action of Gm on X, and fix a faithful lifting of this action
to L, so that the induced action on H0(X0, L0) is a homothety. We can scale the
action of Gm on L by adding c times this action, where c is in Z.

Raising the line bundle: We can replace L with mL, for any positive integer m.

We now recall the definition of the L2 norm of a test configuration. For every k, the
test configuration gives rise to a Gm action on H0(X0, kL0); let Tk be an infinitesimal
generator of this action. We denote by T k the traceless part of Tk, in symbols

T k = Tk − Tr(Tk)
h0(X0, kL0)

Id.

Then Tr(T 2
k) is, for k big enough, a degree n + 2 polynomial in k, where n is the dimension

of X; see for instance [25, Equation 4] or [2, Theorem 3.1]. We let

||(X ,L)||2L2 = lim
k→∞

(kr)−n−2 Tr(T 2
k).

Note that ||(X , L)||L2 = ||(X , mL)||L2 for every m.
Now let Vr = H0(X, rL)∨. Given a 1PS λ of SL(Vr), we can construct a test config-

uration by taking the flat closure of the λ-orbit of X in PVr. Any very ample exponent
r test configuration arises as an orbit of a 1PS of GL(Vr); see [21, Proposition 3.7]. By
performing a base change and scaling the linearization, we can always assume that this
1PS lies in SL(Vr). We have now the following key observation of Odaka [20].

Theorem 3.3. Let Δr be the Tits building of Vr. Then, points of Δr(Q) are in bijective
correspondence with very ample exponent r test configurations, modulo base change and
scaling.

Proof. The only thing we have to check is that if the weighted flags associated with
two 1PSs are equivalent, then the corresponding test configurations are also equivalent.
This is done in [20, Theorem 2.3]. �

Almost triviality of a test configuration can be characterized in term of the associated
filtration of Vr; see [2, Proposition 2.12]. The following lemma, which is contained in the
proof of [21, Proposition 3.7], is also very important.
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Lemma 3.4. There exists a Gm-equivariant trivialization of π∗L; this gives a Gm-
equivariant isomorphism between H0(X, rL)∨ and H0(X0, L0), where the Gm action on
the first vector space is given by the 1PS inducing the test configuration.

From the point of view of K -stability, it is quite natural to identify the test configura-
tions (X , L) and (X , mL). Because of this, we look at the direct systems formed by the
buildings Δr and the morphisms

ιr,k : Δr(Q) → Δrk(Q)
(X ,L) �→ (X , kL).

Theorem 3.5 (=Theorem 6.1). For every i and k, the map ιr,k is continuous for
the simplicial topology.

We postpone the proof to § 6; let us point out that there we also describe explicitly the
morphisms ιr,k, which do not preserve the simplicial structure of Δr. In other words, if
one sees Δr as a direct limit of simplicial spheres, the maps ιr,k are well defined on the
resulting topological space Δr, but do not preserve the direct system structure of Δr,
and it does not make sense to ask whether the two limits commute. We are now going to
define the central object of study of this paper.

Definition 3.6 (space of test configurations). The space of test configurations is
the space Δ∞(Q) defined as the direct limit

Δ∞(Q) := lim
r

Δr(Q).

The simplicial topology on Δ∞(Q) is the direct limit of the simplicial topology on Δr(Q).
The pseudo-metric on d∞ is the pseudo-metric given by

d∞(p, q) = lim sup
r

dr(p, q)

where dr is the Tits metric on Δr(Q). The Tits topology on Δ∞(Q) is the topology
induced by d∞.

Note that p and q can be seen as points of Δr for every r divisible enough, so the
previous expression for d∞ makes sense. Moreover, since diam(Δr) = π for every r, d∞
is finite and diam(Δ∞) ≤ π.

The space Δ∞(Q) parametrizes all test configurations, modulo the three operations
introduced in 3.2, namely, modulo scaling, base change and raising the line bundle.

Proposition 3.7. The limsup appearing in Definition 3.6 is actually a limit; in other
words,

d∞(p, q) = lim
r

dr(p, q).

Proof. Let (X1, L1) and (X2, L2) be very ample test configurations associated with p
and q. By raising L1 and L2 to suitable powers, we can assume that they have the same
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exponent. When r is divisible by the exponent, we have the Tits metric

dr(p, q) = arccos
(

Tr(ArBr)√
Tr(A2

r)Tr(B2
r )

)
,

where Ar and Br are generators of two commuting 1PSs of SL(H0(X, rL)∨) inducing,
respectively, (X1, rL1) and (X2, rL2). The denominator of dr(p, q) is well known to be,
for r divisible enough, a polynomial of degree n + 2; see for instance [25, Equation 4] or
[2, Theorem 3.1]. We are going to show that the numerator is also a polynomial of degree
n + 2.

Choose a non-polarized test configuration X dominating equivariantly both X1 and
X2; this can be constructed by resolving simultaneously the indeterminacy of the maps
X × P1 ��� Xi; cf. [2, § 6.6]. Let α be the Gm action on X . Denote by Mi the pull-back
of Li to X . The restriction of M1 + M2 on Xt, for t 
= 0, is isomorphic to 2rL; hence
H0(X0, M1 + M2|X0)

∨ can be identified in a Gm-equivariant way with H0(X, 2rL)∨,
and the infinitesimal generator of the action of α is exactly Ar + Br. By applying [2,
Theorem 3.1] we show that Tr(Ar + Br)2 is a polynomial of degree n + 2. Since Tr A2

r

and TrB2
r are also polynomials of degree n + 2, we conclude that the same is true for

Tr AkBk. �

It is also natural to consider the space

Δ∞ := lim
r

Δr

endowed with its simplicial topology. We have a natural inclusion Δ∞(Q) ⊂ Δ∞, and we
can extend d∞ to a metric on Δ∞. We do not know about relations between Δ∞ and
the completion of Δ∞(Q) with respect to d∞.

4. Donaldson–Futaki invariant and the simplicial topology

We first briefly recall some facts about the Hilbert–Mumford weight, following [19, Chap-
ter 2]. Let the group SL(V ) act on a projective variety Z, and linearize the action to a
line bundle H. Pick a closed point z in Z. For any 1PS λ of SL(V ) we can consider the
Hilbert–Mumford weight μ(λ) with respect to z and H.

Fix now an SL(V ) invariant norm || − || on the 1PSs of SL(V ). The ratio ν(λ) =
μ(λ)/||λ|| is a well-defined function on the Tits building Δ(V ); moreover, ν is continuous
for the simplicial topology.

Following [21, § 3] and [25], we introduce the Chow weights and the Donaldson–Futaki
weight. Fix an exponent r, and let Vr = H0(X, rL). We choose as an SL(Vr)-invariant
norm on the space of 1PSs of SL(Vr) the norm || exp(tA)|| = r−n−2 TrVr

A2. Note that λ
is already taken in the special linear group, so A is traceless. In particular, || exp(tA)|| is
equal to r−n−2 Tr(T 2

1), where T 1 is the operator introduced in § 3.
The group SL(Vr) acts on the appropriate Hilbert scheme Zr, and the variety X gives

a point [X] in Zr. Choosing the correct line bundle on Zr, the associated normalized
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Hilbert–Mumford weight is the normalized Chow weight:

chowr : Δr → R.

This line bundle is the pull-back of the Chow line bundle from the Chow scheme, via
the cycle-class map from the Hilbert scheme to the Chow scheme. The normalization of
the Chow line bundle is such that the rth normalized Chow weight of an exponent r test
configuration is

chowr(X ,L) = ||λ||−1 ra0

b0

where h(k) = a0k
n + O(kn−1) is the Hilbert polynomial of (X, rL), and w(k) = b0k

n+1 +
O(kn) is the trace of the operator Tk introduced in § 3. Note that w(r) = 0, because we
started off with a λ in the special linear group; however, w(k) is a non-trivial polynomial
of degree n + 1 for k big enough.

Pulling back via the maps ιr,k, we have the higher Chow weights

chowrk : Δr → R,

so that

chowkr(X ,L) = ||λ||−1

(
kra0

b0
− w(k)

h(kr)

)
.

Let T ⊂ Δ∞(Q) be the subset of test configurations with non-zero L2 norm, and Tr

its intersection with Δr. Fix a point in Tr; the value of the Chow weight at that point is,
for k big enough, equal to a Laurent polynomial

chowkr = df +�(k)

where df is the constant term and �(k) is the principal part of the Laurent polynomial;
in particular, �(k) converges to zero when k goes to infinity. This gives an invariant

df : T → R

defined as df(p) = limk chowkr(p), where r is such that p lies in Δr.
The invariant df is by definition the Donaldson–Futaki invariant of a test configuration

divided by its L2 norm.

Lemma 4.1. Fix r; then there exists a positive integer K such that chowkr is a Laurent
polynomial for all exponent r test configurations and all k divisible by K.

Proof. Fixing a test configuration (X , L), the Chow invariant chowkr is a polynomial
as soon as Hi(X0, kL0) vanishes for all i > 0; see [2, Theorem 3.1 and Corollary 3.2].
Fixing the exponent, central fibres are parametrized by a Hilbert scheme, so the result
follows from a general statement of the form: if T is a Noetherian scheme, and Y → T is
a projective morphism with a relatively ample line bundle L, then there exists a K such
that Hi(Yt, kLt) = 0 for all t in T , all i > 0 and all k divisible by K. This is well known;
see for instance [17, Theorem 1.2.13 and its proof]. �

We have now the following proposition.
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Proposition 4.2. The normalized Donaldson–Futaki invariant df is continuous with
respect to the simplicial topology on T ⊂ Δ∞(Q).

Proof. Since the topology on Δ∞(Q) is the direct limit topology, it is enough to
show that df is continuous when restricted to Tr, for every r. We know that chowkr is
continuous on Tkr for every k and r; since, by Theorem 3.5, the maps ιk,r are continuous,
chowkr is continuous on Tr. By Lemma 4.1, for k divisible enough, chowkr is a Laurent
polynomial in k, so all its coefficients have to be continuous as functions on Tr. This
proves the claim. �

Remark 4.3. At least for smooth varieties over the complex numbers, because of
Donaldson’s work [13], we know that df is bounded below on T . The lower bound can
be described in term of the curvature of Kähler metrics in the class c1(L).

When X is a normal variety, a test configuration has zero L2 norm if and only if it is
almost trivial; see [7, Theorem 1.3] and [2, Corollary B]. Let us now give the definition
of K -stability.

Definition 4.4 (K -stability). A normal polarized variety (X, L) is K -semistable if
df(X , L) ≥ 0 for every test configuration (X , L). It is K -stable if it is K -semistable and
df(X , L) = 0 if and only if (X , L) is almost trivial.

5. Filtrations and the completion with respect to the Tits metric

In this section we study filtrations of the co-ordinate ring R of (X, L). Recall that the
K -stability of (X, L) is equivalent to the K -stability of (X, kL) for every k, so we can
assume without loss of generality that L is projectively normal.

Definition 5.1 (admissible filtration). A filtration F of R is the datum of an
increasing flag on each graded piece H0(X, kL) = Vk, indexed by Z. We say that the
filtration is:

• Multiplicative: if

FiVa ⊗ FjVb → Fi+jVa+b ,

for every a, b, j and k;

• Pointwise right bounded: if for every fixed k we have that

FiVk = Vk

for i � 0 (this is also called exhaustive);

• Linearly left bounded: if there exists a negative constant C such that

FCkVk = {0}

for every k.
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A filtration is admissible if it satisfies the three properties listed above. We let FiR =
⊕kFiH

0(X, kL).

There are two operations that we can perform on filtrations. We can scale them, which
means replacing Fi with Fci for some fixed constant c, and we can shift them, which
means replacing FiH

0(X, kL) with Fi+ckFiH
0(X, kL), for a fixed constant c.

Given a multiplicative filtration F , we can construct its Rees algebra

Rees(F ) =
⊕

i

FiRti.

We say that a filtration is finitely generated if its Rees algebra is finitely generated.
As explained in [25,27], taking the Proj of the Rees algebra of an admissible finitely

generated filtration, one obtains a test configuration. More generally, there is a cor-
respondence between finitely generated admissible filtrations of the rings R and test
configurations; see [2, Proposition 2.15]. Under this correspondence, scaling the filtra-
tion corresponds to a base change, and shifting the filtration corresponds to scaling the
linearization; see Definition 3.2.

Following [25], we can approximate a non-finitely generated admissible filtra-
tion with finitely generated ones. Let F be an admissible filtration and denote by
χ(m) the k[t]-subalgebra of Rees(F ) generated by the finite-dimensional vector space
⊕iFiH

0(X, rmL)ti ⊕ Rit
N , for N big enough. We now let

F
(m)
i H0(X,mkL) = {s ∈ H0(X,mkL) s.t. sti ∈ χ(m)},

which defines a finitely generated admissible filtration of R. Let (X (m), L(m)) be the
corresponding test configuration. Then one defines

||F ||L2 = lim inf
m→∞ ||(X (m),L(m))||L2 .

In [25] it is shown that this liminf is actually a limit.
Given a flag F , for every m we can construct a weighted flag of H0(X, mL) up to

scaling, in the sense of Definition 2.1. This is done by first giving weight i to the piece
Fi, and then subtracting a common rational constant from all weights to normalize the
trace. The filtration obtained in this way has rational weights; we denote by pm the cor-
responding point in Δm(Q). As explained in [25, § 3.2], the test configuration associated
with this weighted filtration is equivalent to the Proj of the Rees algebra of F (m).

If the filtration is finitely generated, then F (m) = F for m big enough, and the sequence
{pm} is eventually constant as a sequence in Δ∞(Q). On the other hand, when the
filtration is not finitely generated, the test configurations associated with the points pm

are different, so a non-finitely generated filtration defines a non-constant sequence in Δ∞.

Theorem 5.2. Let pm be the sequence of points in Δ∞(Q) associated with an
admissible filtration F such that ||F ||L2 
= 0; then, this is a Cauchy sequence for the
pseudo-metric d∞.
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Proof. We need to show that, for every j, the distance d∞(pm, pjm) converges to zero
when m goes to infinity. More explicitly, we have to show that

lim
m

lim sup
k

Tr(A(m)
k A

(jm)
k )√

Tr((A(m)
k )2)Tr((A(jm)

k )2)
= 1

where, for each m, the limit is taken on all k divisible by both m and jm, and A
(m)
k

and A
(jm)
k are infinitesimal generators of commuting 1PSs representing pm and pjm in

Δk. Because of the hypothesis on the norm, the limit of the denominator normalized by
k−n−2 is not zero, so we can compute the limits of the numerator and the denominator
separately.

To start with, let us recall that lim supk

√
k−n−2 Tr((A(m)

k )2) converges to the L2 norm
of the test configuration associated with pm, and the limit limm ||pm||L2 is equal to the
L2 norm ||F ||L2 of the filtration F , as explained in [25]; see in particular Lemma 8. The
same is true for pjm.

We now have to deal with the numerator. Fix m and k. The multiplicativity of F
implies, for every j, the following inclusion relation

χ(m) ∩ R(jm)[t] ⊆ χ(jm) ,

where R(jm) is the Veronese ring ⊕�H
0(X, jm�L). This inclusion in turn implies that,

for every i and k, we have

F
(jm)
i H0(X,mkjL) ⊆ F

(m)
i H0(X,mkjL) .

Choosing a basis of H0(X, mkjL) adapted to both F (m) and F (jm), we can translate the
above inclusions in the following inequalities.

Tr((A(m)
k )2) ≤ Tr(A(m)

k A
(jm)
k ) ≤ Tr((A(jm)

k )2).

Taking the limit on k and then m, arguing as before, we conclude that

lim
m

lim sup
k

k−n−2 Tr(A(m)
k A

(jm)
k ) = ||F ||2L2 . �

6. Description of the morphisms between Tits buildings

In this section we describes explicitly the maps

ιr,k : Δr(Q) → Δrk(Q)
(X ,L) �→ (X ,L⊗k).

Our main result is the following.

Theorem 6.1. For every i and k, the map ιr,k is continuous for the simplicial topology.

We can assume without loss of generality that r = 1; moreover, we fix k, so, to simplify
the notation, we write ι for ιk,r, Δ for Δr and Δk for Δrk. Let ΔS be the Tits building
of the vector space Symk H0(X, L).
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In § 6.1, we will define a Segre map S : Δ(Q) → ΔS(Q) and prove that it is continuous.
In § 6.2, we will define a retraction map ρ : ΔS(Q) → Δk(Q) and prove that it is contin-
uous. In § 6.3, we will show that ι is actually the composition of S and ρ, concluding the
proof of Theorem 6.1.

6.1. Segre morphism of buildings

For an algebraic group G, let Γ(G) be the set of 1PSs of G. Let V = H0(X, L) and
VS = Symk H0(X, L). We have a Segre map

S : Γ(SL(V )) → Γ(SL(VS))
γ �→ γ⊗k .

The Segre map defined on 1PSs induces a morphism of buildings; we describe directly
this morphism on weighted flags. Denote by M the collection of multi-indexes I =
(i1, . . . , im) with

∑
ij = k. Let v be a basis of V adapted to a weighted flag (F, w) asso-

ciated with γ. We denote by S(v) the basis of VS formed by monomials in the element
of v; in particular, for I ∈ M and v ∈ v, we denote by vI the corresponding monomial
in S(v). Let T (w) =

∑
I∈M wI . To each monomial vI we assign weight wI − T (w): this

defines a weighted flag (S(F ), S(w)). The weighted flag associated with S(γ) is exactly
(S(F ), S(w)), so this gives a description of the map

S : Δ → ΔS .

The Segre map preserves apartments in the following sense. Let A be an apartment of Δ
associated with a basis v. Then, S(A) is contained in the apartment AS associated with
the basis S(v).

Let us show that S : A → AS is continuous for every apartment A. Co-ordinates of
points in an apartment are given just by the weights. In particular, for I ∈ M , the Ith
co-ordinate of (S(F ), S(w)) is wI − T (w); as the new co-ordinate is a polynomial in the
old one, the map S is continuous. Since the simplicial topology on Δ is the direct limit
of the topology on the apartments, we conclude that S is continuous on Δ.

6.2. Retraction of buildings

Let i : W ↪→ V be an inclusion of vector spaces. We can define the corresponding
retraction of buildings

ρ : Δ(V ) → Δ(W )

as follows. Let (F, w) be a weighted flag in Δ(V ). Choose a basis of V adapted both to
F and W . This amounts to choosing a representative γ of F which preserves W globally;
we denote by U the γ-invariant complement of W in V . We now let ρ((F, w)) be the
normalized weighted flag associated with the 1PS γ|W . Note that the action of γ on W
could be trivial; in this case, ρ is not defined at (F, w).

Remark 6.2 (the map ρ as a retraction). By choosing a complement U of W in
V , there is a natural inclusion of Γ(SL(W )) in Γ(SL(V )), which in turn gives an inclusion
of buildings i : Δ(W ) → Δ(V ); the map ρ is the right-inverse of this inclusion.
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We can give the following alternative description of ρ, which does not depend on the
choice of the representative γ. We let ρ(F ) be the flag defined by ρ(F )iW = FiV ∩ W
and assign weight wi to ρ(F )i. This definition is ill-posed, and we need to refine it. The
first pathology is that ρ(F )iW is not, in general, a proper subspace of W ; if this happens,
we skip this step of the flag and relabel the indexes. If all the subspaces ρ(F )iW are not
proper subspaces of W , then we do not define ρ at (F, w). We can also have repetitions;
in symbols, for some i, we can have that ρ(F )i = ρ(F )i+1. When this happens, we skip
the step i + 1 of the flag and relabel the indexes. To have a well-defined flag, we still have
to normalize the weight. With this description, we can prove the following lemma.

Lemma 6.3. The retraction ρ defined above is a continuous map for the simplicial
topology.

Proof. Since the simplicial topology on Δ is the direct limit of the topology on the
apartments, it is enough to show that ρ restricted to any apartment A is continuous.

Let A be an apartment in Δ(V ) and v the corresponding basis. Co-ordinates on A
are given by the weights w. Let B be an apartment in Δ(W ), and u the corresponding
basis. The map ρ : UA ∩ ρ−1B → B is given just by the projection onto some of the co-
ordinates, i.e. the weight of ui in (ρ(F ), ρ(w)) is just wj for an appropriate index j. This
shows that ρ restricted to A ∩ ρ−1B is continuous. Since this holds for all apartments B
of Δ(W ), we have proven that ρ restricted to A is continuous. �

Remark 6.4 (pathologies). Let us stress that ρ does not preserve many geometric
features of Δ(V ). To start with, ρ is not open: indeed, we can already see that locally on
an apartment A, ρ is like a linear projection followed by a linear inclusion, and the latter
is not open. This restriction preserves neither the simplicial structure nor the apartments.
Moreover, ρ does not preserve geodesics. To see this, one can take two flags F and G such
that there does not exist an apartment which contains F , G and W , where we see W as
a one-step flag, so a vertex of Δ(V ).

6.3. Proof of Theorem 6.1

Let us start by looking at the Segre morphism

S : PH0(X,L)∨ → P Symk H0(X,L)∨.

A test configuration X embedded in PH0(X, L)∨ can be re-embedded in a Gm-equivariant
way in P Symk H0(X, L)∨ via S. The test configuration (S(X ), O(1)) is isomorphic to
(X , Lk); in particular, (S(X ), O(1)) is trivial if and only if (X , Lk) is trivial. If λ is a
1Ps of SL(H0(X, L)∨) inducing X , then S(γ) induces (S(X ), Lk).

Let [γ] now be a point of ΔS , and assume it acts non-trivially on S(X), so that it induces
a non-trivial test configuration (we mean non-trivial in the sense of Definition 3.1). This
test configuration has exponent k, because the restriction of O(1) to X is Lk. We define
ρ([γ]) to be the point of Δk(Q) which represents the test configuration induced by γ (we
can think of Δk(Q) as the moduli space of exponent k test configurations, and ρ as a
classifying map).
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The composition of ρ and S makes sense because S(λ) acts non-trivially on X, and
it is equal to ι because of the above discussion. To prove Theorem 6.1, we have to show
that the map ρ defined above is the retraction of buildings introduced in § 6.2.

Take V = Symk H0(X, L)∨ and W = H0(X, kL)∨. There is a natural inclusion of W
in V given by the co-multiplication; let ρ be the associated retraction. The embedding of
X in PV factors through the embedding of X in PW . Let (F, w) be a weighted flag in
Δ(V ), and take a representative γ which preserves W . Note that ρ is defined at (F, w) if
and only if the action of γ on W is not trivial; this is equivalent to asking that the action
on X is not trivial, hence that γ induces a non-trivial test configuration.

The action of γ on X is equal to the action of γ|W on X, hence ρ((F, w)) represents
the test configuration obtained by letting γ act on X ⊂ PV , as requested. This concludes
the proof of Theorem 6.1.

7. Analogy with classical symmetric spaces

In this section, we work over the complex numbers. The Tits building Δ(V ) of a vector
space V can be introduced as the boundary of the symmetric space H := SL(V )/SU(V ),
which also gives an alternative point of view on apartments; see for example [1]. We
briefly recall this theory, and suggest an analogy for our Tits building Δ∞.

The Killing metric on the Lie algebra of SL(V ) defines a constant scalar curvature
metric with negative curvature on the homogeneous space H. Let o be the image of the
identity in H. A 1PS λ of SL(V ) defines a map from C∗/S1 ∼= R+ to H; the image is
a geodesic starting at o. One can equivalently define Δ(V ) as the set of all geodesics
starting at o. 1PSs are also, from this point of view, rational points of Δ(V ). It is then
possible to define a topology on H̄ := H ∪ Δ(V ), which turns H̄ into a compact space.

The image of a d-dimensional torus of SL(V ) in H is a flat subspace, which means
that it is isometric to a d-dimensional Euclidean space. Maximal tori give maximal flat
subspaces of H. One can introduce the notion of rank of H as the dimension of a maximal
flat subspace of H, and this turns out to be equal to the rank of SL(V ). Let T be a
maximal torus and ET its image in H. The boundary of ET , which can be defined by
intersecting the closure of ET in H̄ with Δ(V ), is the apartment AT defined in § 2. In
more colloquial language, we can say that apartments are boundaries of maximal flat
subspaces.

In view of the Yau–Tian–Donaldson conjecture, it is natural to think of Δ∞ as the
boundary of the space H of Kähler metrics on L. This space has a natural Riemannian
metric, as advocated in [11]. Since H is infinite dimensional, standard results of Rie-
mannian geometry do not apply. We can look at H as a metric space rather than an
infinite-dimensional manifold, and in this setup H, or rather its completion, is known to
be a CAT(0) space; see for instance [10, Theorem 4.11] and references therein. With the
formalism of CAT(0) spaces one can prove many basic results such as the uniqueness of
geodesics; see [5].

This point of view suggests that the notion of apartments for Δ∞ should be related to
maximally flat subspaces in the space of Kähler potentials. In this setup, the notion of
maximally flat subspaces is also troublesome; we might define them as spaces which are
isometric to a Hilbert space. Again, this is discussed in [11, § 6].
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In classical geometric invariant theory, one can define the normalized Hilbert–Mumford
weight on Δ(V ) as the slope of the Kempf–Ness functional on H; see for instance [3, § 5.1].
The Kempf–Ness functional is convex and Lipschitz, so one can use results from the theory
of CAT(0) spaces to prove the existence of maximally destabilizing 1PSs; see [14,16].
One could try a similar approach to study optimally destabilizing test configurations by
replacing the Kempf–Ness functional with the Mabuchi or the Ding functional. However,
none of these functionals seems to be Lipschitz, so we do not know how to generalize this
approach.
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