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Judicious partitioning problems on graphs and hypergraphs ask for partitions that optimize
several quantities simultaneously. Let k > 2 be an integer and let G be a hypergraph with
m; edges of size i for i = 1,2. Bollobas and Scott conjectured that G has a partition into k
classes, each of which contains at most my /k + my/k* + O( /m; + my) edges. In this paper,
we confirm the conjecture affirmatively by showing that G has a partition into k classes,
each of which contains at most

k—1
2k2

my Jk 4+ ma k> + \/Z(km1 + my) + O(1)

edges. This bound is tight up to O(1).
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1. Introduction

Classical graph or hypergraph partitioning problems often consider partitioning the vertex
set of a graph or hypergraph into pairwise disjoint subsets that optimize a single quantity.
For example, the well-known Max-Cut problem asks for a maximum bipartite subgraph
of a graph, that is, a bipartition Vi, V;, of a given graph maximizing the number of edges
between V; and V. It is NP-hard even when restricted to triangle-free cubic graphs [22]
and has been a very active research subject in both combinatorics and computer science.

It is easy to see that every graph with m edges contains a bipartite subgraph with at
least m/2 edges. Edwards [9, 10] proved the essentially best possible result: a bipartite
subgraph with at least m/2 4+ (y/2m+ 1/4 —1/2)/4 edges. An extension of Edwards’
bound for partitions into more than two parts was proved in [6].

In practice, one often needs to find a partition of a given graph or hypergraph to
optimize several quantities simultaneously. Such problems are called judicious partitioning
problems by Bollobas and Scott [7]. In the Max-Cut setting, the canonical example is the
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beautiful result of Bollobas and Scott [4]: there is a cut (V7, V2) which not only achieves
Edwards’ bound, but also has few edges in each V; fori = 1,2.

In [4], Bollobas and Scott also considered the judicious k-partitions of graphs and
proved that every graph G with m edges has a partition into k classes, each of which

contains at most
i + k;l 2 + 1 _ 1
kT \V T2

edges. The bound is tight for complete graphs Ky, 1.

While there are reasonable bounds for many judicious partitioning problems for graphs
[1, 2, 8, 12, 16, 20, 21, 23], the analogous problems for hypergraphs seem to be much
more difficult [3, 5, 14, 15, 18, 19]. In this paper, we consider the judicious partitioning of
hypergraphs with edges of size at most 2.

Note that a hypergraph G = (V,E) consists of a finite set V' := V(G) of vertices and
a set E := E(G) of edges, where each edge is a subset of V. For each edge e € E, if e
contains at most two elements of V, then G is a hypergraph with edges of size at most 2.
For i = 1,2, let E; denote the set of edges of size i. For disjoint subsets X, Y of V, we use
f(X) (or e(X)) to denote the number of edges in E; (or E;) that are contained in X, and
e(X,Y) to denote the number of edges in E, between X and Y. In particular, if X = {v},
we simply write e(v,Y) for e({v},Y). In a slight abuse of notation, we denote v € X
and {v} € E; (respectively, {v} ¢ E;) by v € X N E; (respectively, v € X \ E;). Similarly,
by X < E;, we mean {v} € E; for each v € X. In addition, for each v € V, we define the
indicator function

0 otherwise.

{1 if (v} € Ey,
1, =

Let

u(X) = e(X) + f(X).

Obviously, p(X) is the number of edges of G contained in X.

Let G be a hypergraph with m; edges of size i, i = 1,2. Although, in a random partition
of G into k classes V1,..., Vi, we expect each V; to have m; /k + m,/k* edges, bounding all
k quantities simultaneously is much harder. Bollobas and Scott [7] posed the following
conjecture.

Conjecture 1.1. For fixed k > 2, every hypergraph with m = my + my edges, of which my
have size 1 and my have size 2, has a partition into k classes, each of which contains at most

1 1
o + am + O(y/my + my)

edges, as m — 0.

Ma, Yen and Yu [17] first confirmed the conjecture asymptotically by showing that if G
is a hypergraph with m; edges of size i, i = 1,2, then G admits a partition V1,..., V) such
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that each V; contains at most my /k + m/k> + O(mg/s) edges. In this paper, we confirm

the conjecture completely with the following result.

Theorem 1.2. For fixed k > 2, every hypergraph G = (V, E) with m; edges of size i,i = 1,2,
has a partition into k classes, each of which contains at most

1 1 k—1
M + 2m + Sz Vv 2(kmy +my) + O(1)
edges.

Note that complete graphs Ky, 1 (m; = 0) show that the bound given in Theorem 1.2
is tight up to O(1). We believe that the following conjecture is true.

Conjecture 1.3. For fixed k > 2, every hypergraph with m; edges of size i, i = 1,2, has a
partition into k classes, each of which contains at most

1 1 k—1 1\? 1
kml—l-kzmz—i-k2<\/2(km1+mz)+<k—2> +k—2)

edges.

If Conjecture 1.3 holds, the hypergraph consisting of all edges and vertices of Ky,
shows that the bound would be sharp. In this paper, we confirm the case when k = 2, as
follows.

Theorem 1.4. Every hypergraph G = (V,E) with m; edges of size i, i = 1,2, admits a bi-
partition V1,V such that

m mp 1 9 3
V< - Ly Z 4z
wV) < 3 + 1 +8<\/4m1+2m2+4+2>

Remark. Let Vi, V, be a bipartition of a hypergraph G with m; edges of size i, i = 1,2.
Let d(V;) denote the number of edges of G meeting V; (i.e., containing at least one vertex
of V;). Bollobas and Scott [7] conjectured that G has a bipartition V7, ¥, such that

fori=1,2.

my — 1 2m2

2 3
for i = 1,2. Note that the bound is sharp for the hypergraph consisting of all edges and
vertices of K3. Recently, the conjecture has been proved by Haslegrave [13].

d(vi) =

It is easy to see that d(V;) = my + my — u(V3—;) for i = 1,2. By Theorem 1.4, we know
that G admits a bipartition Vi, V), such that

m 3 1 9 3
) > — — — — — —
a\wvi) = 3 +4mz 8(\/4m1+2m2+4+2

for i = 1,2, which gives a better bound of the above conjecture for G with m; > 6.
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2. Bipartition of hypergraphs

In this section we prove Theorem 1.4. For convenience, let

M M
o= 2+4+30,

where ¢ = 3/32. It suffices to show that G admits a bipartition V7, V, such that, fori = 1,2,

2
wW(Vi) < o® + %a—c (2.1)
Let Vi, V5 be a partition of G maximizing e(Vy, V>), and subject to this, we assume that
[f (V1) — f(V>)] is minimal. Without loss of generality, suppose u(V7) > u(V3). Subject to
these, we may assume that u(1/;) is minimal.

If

2
u(vy) < o + %fx—c,

then we are done. Otherwise,

NG

w(Vy) > o? + TOC —C.
As mentioned in the Introduction, we have e(Vy, V>) > my/2. Thus,

w(Va) = my +my —e(Vy, Vo) — u(Vy)

2
<m1+m2—rr212—<012+\4[oc—c>
J2

2
o o C

In the following, we show that we may move some vertices from V; to V, to get a
partition satisfying (2.1). Let W, be the maximal subset of V' that satisfies the following
conditions:

(i) Wy 2 V), and

NG

(ii) p(Wr) < o + qec
Let W) = V\W,. If |W;| < \/2e — 1/4, then

(W) < <|W1> <ot 3\f +7

2 32’
which together with f(W;) < |W;| and ¢ = 3/32 yields

NG

W(Wi) = e(Wy) + f(W)) < o + s

This together with (ii) implies the required result.
Suppose that

1
Wil > 20 — 7 (2.2)
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In the following, we show that

NG

,u(Wl) < 062 + TOC— C.

By contradiction, assume that

w(Wh) > o + g(x —c. (2.3)

By the choice of W, for each w € Wy, we have
2
W(Wr U {w}) > o* + %Oﬁ —c. (2.4)

Thus, by the fact that u(W, U {w}) = u(W>) + e(w, W) + 1,,, we conclude that

wW(Ws) > o® + ?u—c—e(w, W) — 1,,. (2.5)

Claim 2.1. For each w € Wy,
e(w, W) > ﬁoc +8c—1,.

For convenience, let

@ = e(Wy, Vi\W1) = > elw,Vi\W))

weW;

and

A=) (e(w, V) — e(w, ).

weW;

Note that

e(Wa W2) = e(W7 V2) + e(W, Vl\Wl)
= e(w, W1) + 2e(w, VI\W1) + (e(w, V3) — e(w, V7)).

Summing over all w € W; yields that
e(Wy, Wy) = 2e(W1) + 20 + A. (2.6)

Note that my = f(W1) + f(W3) and my = e(Wq) + e(Wy1, W)) + e(W>,). Adding e(W7) +
3f (W) to both sides of (2.6), we have

1
wWy) = g(mz + 3f(W)) — e(W,) — 20 — A)
1
= 3(403 — 12¢ + f(W1) — f(W2) — w(W>2) — 20 — A),
which, together with the fact that

NG

ﬂ(Wl) > 052 + TOC —C,
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establishes

w(W2) <acz—%ﬁa+f(W1)—f(W2)—9c—2®—A. (2.7)
Combining (2.5) and (2.7), we obtain

e(w, Wa) > 20+ 8¢ — 1, + f(Wa) — (W) + 20 + A. (2.8)

Case 1. f(Vi) — f(V2) < 0. Since ® and A are non-negative integers, it follows from the
fact f(W3) — f(W1) > f(V2) — f(V1) > 0 that e(w, W3) > \/Ea—k 8¢ —1,, as desired.

Case 2. f(V1) — f(V2) > 2. For each v € Vi, we have e(v, V1) < e(v, V2) by the maximality
of e(Vy, V,). We show that if {v} € E;, then
e(v, V1) + 1 < e(v, V). (2.9)
Otherwise, we have e(v, V1) = e(v, V2). Let V{ = Vi\{v} and V] = V> U {v}. Note that
e(Vi,V3) =e(Vi,V2), f(V])—f(V3) = f(V1) — f(V2) = 2.
This together with the fact that f(V;) — f(V,) > 2 yields
If(VD) = f(7) < 1f (V1) — f(Va)l,

a contradiction to the minimality of [f(V7) — f(V>)|.
By the definition of A and inequality (2.9), we derive

Az Y (ev, V) —e(v, 1) = f(W).

veWNE;

This together with (2.8) yields that
e(w, Wa) > 20+ 8¢ — 1,, + f(W) + 20,
which implies the desired result.

Case 3. f(V1) — f(V») = 1. Noting that f(Vy) + f(V2) = my, we have f(Vq) = (m; +1)/2.
For convenience, let

Q = e(V1, V2) — 2e(Vy).
This implies
e(V1,Va) =2u(Vy) —m; — 1+ Q.
Since u(Vy1) + u(V2) + e(Vy, Va) = my + my, we know that

3u(Vy) + u(Vy) =2my +my +1—Q. (2.10)
Write
H(V1)=a2+§a—c+n, (2.11)
where n > 0.
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Note that f(W>) — f(Wy) = f(V2) — f(V1) = —1. By (2.8), we have
e(w, W) > 20+ 8 —1,, — 1. (2.12)

Furthermore, we may assume f(W,) — f(W;) = —1 and ® = A = 0, since otherwise we
are done by (2.8). Let

D ={uew :ﬁa+8c—1u—1<e(u,W2)<\/§o¢+8c—1u}.

It suffices to show that © = (. Otherwise, for each u€®, let V| =V,U{u} and

Vy=Vi\{u}. If we want to specify u explicitly, we will write V, instead of V] for

i = 1,2. However, we drop the indices when they are not necessary.

It follows from the fact ® = A = 0 that e(w, W;) = e(w, W) for each w € W;. Thus, for
each u € ® < Wy, e(V],V;) = e(V1,V>2). Additionally, since f(V1) — f(V2) = 1, it follows
that [£(V]) — f(V3)| = [f("1) — f(V2)|. Note that u(V]) > u(V3); otherwisc,

uvy) < (V) = p(Vi\{u}) < u(h),
which contradicts the minimality of u(V7). Thus, for some 4 > 0, we may assume that

w(vi) = p(Vi) + 2. (2.13)

Proposition 22. Q=/)=0and 0 <n < 1/4.

Otherwise, by the integrality of Q and /, we have Q + /4 + 45 > 1. It follows from (2.13)
that

w(vy) = p(Va) + e(u, Va) + 1, = u(V1) + 4,
which implies
e(u, W) = e(u, V2) = w(Vy) — (Vo) + 4 — 1,
This together with (2.10) and (2.11) yields
e(u, Wo) = 4u(Vy) —2my —my — 1+ Q+ 1 —1,

2
=4<a2+{a—c—l—n)—Zml—mz—l—i—Q—l—)L—lu

= 20048 —1,+Q+1+45—1
>ﬁzx+8c—1u.

This contradicts the choice of u, completing the proof of Proposition 2.2.

The fact 2 =0 by Proposition 2.2 implies u(V]) = u(V1) for each u € ®. Thus, we can
move some vertices from V| to V, to get a partition Wy, W, of G such that W} is the
maximal subset of V satisfying

(i) W} 2 V4, and

(i) w(W}) < o + go& —c.
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Similarly, we let

O = e(WL,V\W))= > e(w,V\W])

wew|
and

N =" (e(w, V) —e(w', V))).

wew|

Substituting V|, v}, W{, W} for Vi, Va, Wi, Wa, respectively, with a similar calculation as
(2.8), for each w' € W/{, we deduce

(W, W3) > 20+ 8¢ — Ly + (W) — F(W]) + 20 + A.. (2.14)
Let
0 = e(u, VI\W/).

Note that u € W/{ by the choice of W}. Thus, we have 0" = e(u, W,) — e(u, V7). This together
with (2.14) implies

e(u, V1) > 20+ 8¢ — 1 + f(W)) — f(W]) + (20" — 0') + A'. (2.15)

Proposition 2.3. V; =W, =9 < E;.

First, we show V; = Wy, for otherwise, let vy € Vi\W;. It follows from the fact Q =0
by Proposition 2.2 that e(v, V1) = e(v, V>) for each v € V;. Clearly, Vi\{vo}, V2 U {vo} is a
partition of G with

e(Vi\{vo}, V2 U {vo}) = e(V1,V2) and [f(Vi\{vo}) — f(V2U {vo})| = [f (V1) — fF(V2)I.
By the definition of W; and W», we know that u(V1\{vo}) > w(V2 U {vp}). Clearly,
u(Vi\{vo}) < u(Vy),

which contradicts the minimality of u(Vy).
Then, we prove © < E;. Otherwise, there exists u € D\ E;. Thus,

fV) = fv) =f(V)—f(") =L
It follows that
fW) —fW)) = f(Va) = f(V]) = L.
Note that @ > 0 and e(u, W,) = e(u, W;) = e(u, V1). By (2.15), we deduce
e(u, Wr) > 20+ 8¢ — 1,

a contradiction to the choice of u.
Finally, we show W; = ©. Suppose that there exists wy € W; such that

e(wo, W) > ﬁcx + 8¢ — 1.
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It follows from e(wg, W) = e(wy, W;) that
[Wi| > e(wo, Wi) + 1> 204 8¢ — 1, + 1. (2.16)
Since e(x, W3) > \/Zx + 8¢ — 2 for each x € Wy by (2.12) and V| = Wy, we have
1
u) =5 elx. W)+ f(W1)

xeWy

> 3 (V24 8e = (Wi = 1)+ 2o+ 8e = L) + (W)
> 231t 8e = 1)(\3a+ 8 — 1) + (W)

2 1
=a2+%o¢—c—§(ﬁa+86—l)-lwo+f(W1). (2.17)
The last equality holds since ¢ = 3/32. If {wo} ¢ E;, then we have
2 :
u(Vi) > o® + %“ —c+ f(W),
which contradicts # < 1/4 by Proposition 2.2. This means that W;\® < E;, which together
with ® < E; implies f(W;) = |W;|. Combining (2.16) and (2.17), we derive

ﬁoc— 20+ 8¢ +1

w(vy) > o + 4 5 ,

also a contradiction. Thus, we complete the proof of Proposition 2.3.
The fact ©® < E; implies

fW) —fW)) = f(V3) = f(V]) = —1.
Note that 20" — 0" > @' and e(u, W) = e(u, W1) = e(u, V7). By (2.15), we may assume

c+

fW) —f(W))=—1 and @' =0 =A =0.
Otherwise, for each u € W; =9, we have
e(u, W) > \/Eoc +8¢c—1,,

a contradiction. Thus, by (2.14), we have e(w’, Wj) > ﬁoc + 8¢ —1,, — 1 foreach w' € W/.
Let

D = e W] Lo+8—1, —1<e(, W)) < 2u+8¢—1,).

An argument similar to that used in Proposition 2.3 gives the following proposition,
whose proof details are omitted.

Proposition 24. V] =W| =29 < E;.

Now, we establish the next proposition by characterizing the hypergraph G according
to Propositions 2.3 and 2.4.

Proposition 2.5. G is the hypergraph consisting of all edges and vertices of K, .
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First, we show that e(v, V3) = (m; — 1)/2 for each v € V. It follows from Propositions 2.3
and 2.4 that V; < E; for i = 1,2. Suppose that there exists v, € V, such that v, ¢ N(v),
where N(v) is the set of the neighbours of v in G. Clearly, there exists v; € V7 such
that v; € N(vy), since the cut (V1,V;) is maximal and G is connected. Note that, for
each v' € V|, we have e(v',V]) = e(v,V;). Recall that V{=V|, =VoU{u} and V; =
V3. = Vi\{u} for each u € © = V;. Substituting v for u, and noting that v, € V|, we
have e(va, V{,) = e(v2, V), that is, e(va, V2) = e(vz, V1). Similarly, substituting vy for u, we
obtain e(vy, V3) + 1 = e(vy, V1) — 1, a contradiction.

Due to the above arguments, we know that each vertex in V; has m; — 1 neighbours
in G and e(vy, V) + 1 = e(v2, V1) — 1 for each v, € V5. Since v, is adjacent to each vertex
in Vi, we have e(vy, V1) = (m; + 1)/2. With the help of the preceding two equalities, we
conclude e(v,, V3) = (my — 3)/2. This implies that each vertex of G has m; — 1 neighbours,
completing the proof of Proposition 2.5.

By Proposition 2.5, we have m, = (")). This implies

my+1 1
(W] =|Vi| = ‘2 = V2.

Recall that |W;| > ﬁcx — 1/4 by (2.2); this leads to a contradiction. Thus, we conclude
that © = (), completing the proof of Claim 2.1.
By Claim 2.1, for wy € W;, summing over all w € W;\{wy} gives that

e(Wi\{wo}, W) = Z e(w, W)

WEW]\{WU}
> (V20 4 8e)([Wi| = 1) = f(W1) + 1,
This together with (2.3) and (2.4) yields

my = e(W1) + e(W2 U {wo}) + e(Wi\{wo}, W2)
= pw(Wh) + u(Wr U {wo}) —my — 1y, + e(Wi\{wo}, W)

> 20% + ga —2¢ 4+ (20 + 8¢) (Wi | — 1) —my — f(Wy).

Recall that |W;| > 2« — 1/4, f(W;) < m; and ¢ = 3/32. We have

my > 207 + foc—zc+(ﬁa+8c)(ﬁa— j) —2m,

=40 —2m; — 12¢
= my,
a contradiction. This completes the proof of Theorem 1.4. ]

3. Partitioning hypergraphs into k sets

In this section we aim to prove Theorem 1.2. Before proving the result, we should make
a few definitions and lemmas.
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Let G be a hypergraph with m; edges of size i for i = 1,2, and let P := {V},..., Vi} be
a k-partition of G. For each i € [k] and v € V;, we define

Sp(v) = {j € KI\{i} : e, Vi) = e, V)).v € Vi),
and
Sk = U S5(v).
veVinEy

Let s5(v) == |Sh(v)| and s :=|S,|. Clearly, for each v € V;NE;, we have 0 < sh(v) <
s <k —1.

Furthermore, if P is a partition maximizing e(V1,..., Vi), then for each j € [k]\{i} and
v € Vi, we have e(v, V;) +1; < e(v,V;), where 1; = 1 if and only if j ¢ S,(v). Note that

> 1=k—1—=sp).

JelkI\{i}
Thus, for each v € V;, we have
(k — De(v, Vi) + k —1—sp(v) < e(v, V). (3.1)
The following lemmas play important roles in our proof of Theorem 1.2.
Lemma 3.1. Let G be a hypergraph with m; edges of size i for i = 1,2, and P = {V1,..., Vi}

be a partition of G maximizing e(Vy,...,Vi). Suppose Q = {W1,..., Wi} is another partition
of G with W; < Vi and W; 2 V; for j € [k]\{i}. Then, for each w € W;,

(k — De(w, Wi) +k — 1 —sg(w) < e(w, Wy).

Proof. Note that, for each w € W; = V,, inequality (3.1) holds by substituting w for v.
Thus, we have

e(w, W) = e(w,V;) = (k — De(w, Vi) + k — 1 — sl (w).
It suffices to show that
(k — 1)(e(w, W;) — e(w, V) < sg(w) — sip(w). (3.2)

Let N(w) be the set of the neighbours of w in G. If N(w) N (V;\W;) = 0, then we have
e(w, W;) = e(w, V;) and sg(w) = sip(w). Otherwise, e(w, W;) < e(w, Vi) — 1 and si5(w) = 0.
Note that 0 < si(w) < k — 1. In either case, inequality (3.2) holds, as desired. U]

For each partition P = {Vy,...,Vi} of G, let fp = (f(V1),...,f(Vi)) be a vector with k
coordinates. Write the Euclidean norm

el =

k
> Wi
i=1

The following lemma shows that f(V;) can be bounded by m; and si, for each i€ [k]
under certain assumptions.
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Lemma 3.2. Let G be a hypergraph with m; edges of size i for i = 1,2. Let P = {V1,..., Vi}
be a partition of G maximizing e(V1,..., V), and subject to this, assume that ||fp | is minimal.
Then, for each i € [k], we have

my + s
1455

fV) <

Proof. It is trivial if S, = . Assume that S, # (. Suppose that there exists j € S, such
that f(V;) < f(V;) — 1. Let v € V; N E; be a vertex satisfying e(v, V;) = e(v, V;). Moving v
from V; to V; gives another partition P’ = {V7,..., V] } with

e(Vi,....V) =e(Vi,....,Vi) —e(v,Vj) + e(v, V;) = e(V1,..., Vi).
Meanwhile,
o l? = Ifp > = f(V])? +f(V]{)2 — f(Vi) = f(V))?
= (V)= D>+ (V) + 17 = f(Vi)? — f(V))
=2(f(V)—f(r)+1)

<0,

which contradicts the minimality of |f|. Thus, f(V;) > f(V;) — 1 for each j € Sk.
Note that f(V;) > Zjes;, f(V;). We have

my = f(Vi)) + (Vi) = f(V)) + sp(f(Vi) — 1),
which implies the desired result. Ll

Now, we are ready to prove Theorem 1.2 by showing the following result.

Theorem 3.3. Every hypergraph G with m; edges of size i, i = 1,2, admits a k-partition
Vi,..., Vi such that

m om  k—1 1\* 1
wVi) < —+ — + 2(kmy + my) + k_i —k+2k—5

k k? 2k?
fori=1,... k.

Proof. For convenience, let

o mp my
Ok '_“7+k72+ﬂk’

po Q1P 1
TRk 2%
It suffices to show that G has a partition V,..., V) such that

where

k—1
wVi) < OC/% + Tﬁka + ¢k
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fori=1,...,k, where
1 2k—1
%S5 T g
Simple calculations show that
“1%—1 _ k? O‘i oom 2k —3
(k—1)2 (k=12 2(k—1)2
k> my 1 2k —1

SE—D* —1p k1T G (33)

The proof proceeds by induction on k. The result holds when k =2 by Theorem 1.4.
Assume that k > 3. Let P = {V1,...,V}} be a partition of G maximizing e(Vy,..., V).
Subject to this, we assume that |fp| is minimal. Without loss of generality, we may
suppose that u(Vi) = max;gick u(V3).

If

k—1
w(vi) < of + T\/E“k + ¢k,

we are done. Otherwise,

k—1
,U(Vl) > d]% + Tﬁak + k. (34)

Since there is no danger of confusion, the reference to 1 in the superscript of s%,(v) and
s>, will be dropped in the following proof.

Claim 3.4. The hypergraph G' induced by V| admits a partition into k — 1 classes, each of
which contains at most

—1
2+7ﬁak+ck

edges.

By induction hypothesis, G’ admits a partition X5,..., X\ such that, fori=2,...,k,

X)) < K72 A ,
u(Xi) 2(k—1 1+ 1
where
() e(Vy)
A =
1 K —1 + k—1p + 1.
Thus, it suffices to prove that Ay < of.
Note that

(k — De(v, V1) + (k — 1 —sp(v)) - 1, < e(v, V1)
for each v € V; by (3.1). Summing over all v € V; yields
(k—=1DQRe(V)+ ()= Y sp(v) < eV, 7).

veViNE;
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Noting that
> sp) <spf(N),
veViNE;
we deduce
2k — De(Vi) + (k =1 —sp)f(V1) < e(V1, V).
This implies

e(Vi) =my—e(Vi, V1) —e(Vq) <my — 2k — De(Vy) — (k — 1 — sp)f(Vy).

Therefore,
_f7) | e(n)
A=7—+ 1)y + Pr—1
—f) | my— 2k —De(V1) — (k —1—sp)f (V1)

STh—1 T h—1y Pt
_om my 2k — 1 1+sp
—k_1+m+ﬁk71—m( 1)+( )2f(V1)

2k —1 1
<oy G )+ s by (4)

1 k—1—
S%—w_”ﬁm+m—ﬂ+wth—w:3¥'&H%D
<o

The last inequality holds because my 4+ sp — (1 4+ sp)f(V1) > 0 by Lemma 3.2 and 0 <
sp < k — 1. This completes the proof of Claim 3.4.
In the following, we simply write o for o for convenience. By Claim 3.4, we can take
Wi = V; maximal such that there exists a (k — 1)-partition W,..., Wy of W, satisfying
WW) < o +—foc+ck

fori=2,...,k. Let W, = V\W,. If

1
Wil < 20— =,
Wil < V2o = 5

then

Wi , k+1 2k +1
Wi) < < 2o+ =,
(W) (2 =2 =

which together with the fact f(W) < |W,| implies

k—1 2k — 1
= < 2 _ .
W) =e(Wy)+ f(Wy) <o + o NGY T

Thus we are done unless (3.5).
Suppose that

|Wn>Jk——f (3.5)
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By the choice of W7, it suffices to prove that

W) <o +7foc+c1<

By contradiction, assume that

k—1
,LL(W]) > 0(2 + 7\/50( + ¢k.

Claim 3.5. For each w € Wy,
AU (W) > (k= 1762 = )+ * Bt 3= (k= DY) + 1),

where y. = Pr + cx.

Suppose that there exists w € W; such that

e(Wi U {w}) < (k — (o —ﬁk)+ \fd-i-vk (k=D W) + 1,,). (3.6)

Consider the hypergraph G” induced by W; U {w}. Assume that G” has m/ edges of size i
for i = 1,2. We have m| = f(W) + 1,, and m) = e(W; U {w}).
By induction hypothesis, there is a (k — 1)-partiti0n U,,..., U of G” such that

wU) <A+ —— 2(k \/ 2A0 + ¢y

fori=2,...,k, where
/ /
m m
1 2
+

M=t - e

+ -1

It follows from (3.6) that

1 Pk
<P+ — — (Px — Pr—
Ay <o +2k(k—1)ﬁa (Br — Br 1)+(k—1)2
1 1
2
= = a4
eV sew =1
_ V2oV
_<°‘+4k(k—1) '
Therefore,
k—2
WUy <o +—\ﬂx+ + 5+ e

8k2(k 12 " 4k(k—1)

k—1
= 2
= o+ o 2o+ ¢,

a contradiction to the choice of Wi. This completes the proof of Claim 3.5.
Let P" = {V{,...,V]'} be a partition of G with V{' =W, =V, V/' 2 V;fori=2,... k.

i =

For each w € V| = W1, it is easy to see that 0 < spr(w) < sp(w) < k — 1, which ylelds
0<Sp/ < 'p k—l (37)
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Moreover, by Lemma 3.1, we deduce
(k — De(w, W1) + (k — 1 —spr(w)) - 1, < e(w, Wy). (38)
Noting that e(W; U {w}) = e(W}) + e(w, W;), we have
e(w, Wr) = e(Wy U {w}) + f(W1) — u(Wr). (39)

Claim 3.6. For each w € Wy,
e(w, W) > (k — 1)(y20— 1 — 1,,) + 2k

Summing over all w € W in (3.8) yields

(k—1)QRe(Wi)+f(W)— Y spr(w) < e(Wr, W),

weWiNE;
In view of
> spi(w) < spef (W),
weWiNE;
we deduce
(k — 1)(2e(W1) + f(W1)) — sprf(W1) < e(W1, W)). (3.10)

Note that my = f(Wy)+ f(W;) and my = e(W;) + e(W, Wi) + e(W;). Adding e(W;) +
kf(W;) to both sides of (3.10) gives

w(Wh) < (K*(o* = i) — u(Wh) — (k = Df (W) + spr f(W1)).

2k — 1
Since

wW(Wy) > o + kz;kl\/ix + ¢,
we have
pTR) < (k= 1002 = ) = k= 0“5 Vet ) = (k= D7)+ 5 W),
This, together with Claim 3.5 and (3.9), implies that
e(w, W) > (k — 1)(/20 = 1) + 2k + [ (W1) = spr f (W),
Note that

FW1) = sprf(W1) = my — (1 4 spr)f(W)).
Since spr < sp by (3.7) and f(W;) < f(V}), we obtain

fW1) = sprf(Wh) = mi — (1 + sp)f (V1)
which together with Lemma 3.2 yields

fOV) = spr f(W1) = —sp = —(k = 1).
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Thus, we have
e(w, Wy) > (k — 1)(y2e — 1 — 1,,) + 2k,

as desired. This completes the proof of Claim 3.6.
By Claim 3.5, for wy € Wy, we have

. k—1 .
e U o)) > (k= 126 — i) + " 2+ 31— (k= D) + L)
By Claim 3.6, for wy € W;, summing over all w € W;\{w,} gives that

e(Wi\{wol, W)= > elw, W)
weWi\{wo}
> ((k — 1)(v/20— 1) + 2kp) (W] — 1) — (k — D)(f (W) — L)
Recall that

e(Wy) = ,M(Wl) —f(Wl) > o? + kz;kl\/EOC + ¢ — my.

These, together with (3.5), establish that
my = e(W1) + e(Wy U {wo}) + e(Wi\{wo}, W)

4k> — Sk + 1 2> —k —1
> k*o? — kmy — kzﬁk + (2k))k - 2k+) \/E“ — 0k + BT

where 9 = S + (2k — 1)c,. The fact that

k=1 1 1 2k—1
fe="ge —x M =3 e
shows that
4k — Sk +1 2> —k—1
2k'))k = T dnd 5]( = T
This implies that
my > k*a® — kmy — k* B = ma,
a contradiction. Thus, we complete the proof of Theorem 3.3. |
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