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Judicious partitioning problems on graphs and hypergraphs ask for partitions that optimize

several quantities simultaneously. Let k � 2 be an integer and let G be a hypergraph with

mi edges of size i for i = 1, 2. Bollobás and Scott conjectured that G has a partition into k

classes, each of which contains at most m1/k + m2/k
2 + O(

√
m1 + m2) edges. In this paper,

we confirm the conjecture affirmatively by showing that G has a partition into k classes,

each of which contains at most

m1/k + m2/k
2 +

k − 1

2k2

√
2(km1 + m2) + O(1)

edges. This bound is tight up to O(1).

2010 Mathematics subject classification: Primary 05C35

Secondary 05C75

1. Introduction

Classical graph or hypergraph partitioning problems often consider partitioning the vertex

set of a graph or hypergraph into pairwise disjoint subsets that optimize a single quantity.

For example, the well-known Max-Cut problem asks for a maximum bipartite subgraph

of a graph, that is, a bipartition V1, V2 of a given graph maximizing the number of edges

between V1 and V2. It is NP-hard even when restricted to triangle-free cubic graphs [22]

and has been a very active research subject in both combinatorics and computer science.

It is easy to see that every graph with m edges contains a bipartite subgraph with at

least m/2 edges. Edwards [9, 10] proved the essentially best possible result: a bipartite

subgraph with at least m/2 + (
√

2m + 1/4 − 1/2)/4 edges. An extension of Edwards’

bound for partitions into more than two parts was proved in [6].

In practice, one often needs to find a partition of a given graph or hypergraph to

optimize several quantities simultaneously. Such problems are called judicious partitioning

problems by Bollobás and Scott [7]. In the Max-Cut setting, the canonical example is the
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beautiful result of Bollobás and Scott [4]: there is a cut (V1, V2) which not only achieves

Edwards’ bound, but also has few edges in each Vi for i = 1, 2.

In [4], Bollobás and Scott also considered the judicious k-partitions of graphs and

proved that every graph G with m edges has a partition into k classes, each of which

contains at most

1

k2
m +

k − 1

2k2

(√
2m +

1

4
− 1

2

)

edges. The bound is tight for complete graphs Kkn+1.

While there are reasonable bounds for many judicious partitioning problems for graphs

[1, 2, 8, 12, 16, 20, 21, 23], the analogous problems for hypergraphs seem to be much

more difficult [3, 5, 14, 15, 18, 19]. In this paper, we consider the judicious partitioning of

hypergraphs with edges of size at most 2.

Note that a hypergraph G = (V , E) consists of a finite set V := V (G) of vertices and

a set E := E(G) of edges, where each edge is a subset of V . For each edge e ∈ E, if e

contains at most two elements of V , then G is a hypergraph with edges of size at most 2.

For i = 1, 2, let Ei denote the set of edges of size i. For disjoint subsets X,Y of V , we use

f(X) (or e(X)) to denote the number of edges in E1 (or E2) that are contained in X, and

e(X,Y ) to denote the number of edges in E2 between X and Y . In particular, if X = {v},
we simply write e(v, Y ) for e({v}, Y ). In a slight abuse of notation, we denote v ∈ X

and {v} ∈ E1 (respectively, {v} /∈ E1) by v ∈ X ∩ E1 (respectively, v ∈ X \ E1). Similarly,

by X ⊆ E1, we mean {v} ∈ E1 for each v ∈ X. In addition, for each v ∈ V , we define the

indicator function

1v =

{
1 if {v} ∈ E1,

0 otherwise.

Let

μ(X) = e(X) + f(X).

Obviously, μ(X) is the number of edges of G contained in X.

Let G be a hypergraph with mi edges of size i, i = 1, 2. Although, in a random partition

of G into k classes V1, . . . , Vk , we expect each Vi to have m1/k + m2/k
2 edges, bounding all

k quantities simultaneously is much harder. Bollobás and Scott [7] posed the following

conjecture.

Conjecture 1.1. For fixed k � 2, every hypergraph with m = m1 + m2 edges, of which m1

have size 1 and m2 have size 2, has a partition into k classes, each of which contains at most

1

k
m1 +

1

k2
m2 + O(

√
m1 + m2)

edges, as m → ∞.

Ma, Yen and Yu [17] first confirmed the conjecture asymptotically by showing that if G

is a hypergraph with mi edges of size i, i = 1, 2, then G admits a partition V1, . . . , Vk such
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that each Vi contains at most m1/k + m2/k
2 + O(m

4/5
2 ) edges. In this paper, we confirm

the conjecture completely with the following result.

Theorem 1.2. For fixed k � 2, every hypergraph G = (V , E) with mi edges of size i, i = 1, 2,

has a partition into k classes, each of which contains at most

1

k
m1 +

1

k2
m2 +

k − 1

2k2

√
2(km1 + m2) + O(1)

edges.

Note that complete graphs Kkn+1 (m1 = 0) show that the bound given in Theorem 1.2

is tight up to O(1). We believe that the following conjecture is true.

Conjecture 1.3. For fixed k � 2, every hypergraph with mi edges of size i, i = 1, 2, has a

partition into k classes, each of which contains at most

1

k
m1 +

1

k2
m2 +

k − 1

2k2

(√
2(km1 + m2) +

(
k − 1

2

)2

+ k − 1

2

)

edges.

If Conjecture 1.3 holds, the hypergraph consisting of all edges and vertices of Kkn+1

shows that the bound would be sharp. In this paper, we confirm the case when k = 2, as

follows.

Theorem 1.4. Every hypergraph G = (V , E) with mi edges of size i, i = 1, 2, admits a bi-

partition V1, V2 such that

μ(Vi) � m1

2
+

m2

4
+

1

8

(√
4m1 + 2m2 +

9

4
+

3

2

)
for i = 1, 2.

Remark. Let V1, V2 be a bipartition of a hypergraph G with mi edges of size i, i = 1, 2.

Let d(Vi) denote the number of edges of G meeting Vi (i.e., containing at least one vertex

of Vi). Bollobás and Scott [7] conjectured that G has a bipartition V1, V2 such that

d(Vi) � m1 − 1

2
+

2m2

3

for i = 1, 2. Note that the bound is sharp for the hypergraph consisting of all edges and

vertices of K3. Recently, the conjecture has been proved by Haslegrave [13].

It is easy to see that d(Vi) = m1 + m2 − μ(V3−i) for i = 1, 2. By Theorem 1.4, we know

that G admits a bipartition V1, V2 such that

d(Vi) � m1

2
+

3

4
m2 − 1

8

(√
4m1 + 2m2 +

9

4
+

3

2

)
for i = 1, 2, which gives a better bound of the above conjecture for G with m2 � 6.
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2. Bipartition of hypergraphs

In this section we prove Theorem 1.4. For convenience, let

α :=

√
m1

2
+

m2

4
+ 3c,

where c = 3/32. It suffices to show that G admits a bipartition V1, V2 such that, for i = 1, 2,

μ(Vi) � α2 +

√
2

4
α − c. (2.1)

Let V1, V2 be a partition of G maximizing e(V1, V2), and subject to this, we assume that

|f(V1) − f(V2)| is minimal. Without loss of generality, suppose μ(V1) � μ(V2). Subject to

these, we may assume that μ(V1) is minimal.

If

μ(V1) � α2 +

√
2

4
α − c,

then we are done. Otherwise,

μ(V1) > α2 +

√
2

4
α − c.

As mentioned in the Introduction, we have e(V1, V2) � m2/2. Thus,

μ(V2) = m1 + m2 − e(V1, V2) − μ(V1)

< m1 + m2 − m2

2
−

(
α2 +

√
2

4
α − c

)

< α2 +

√
2

4
α − c.

In the following, we show that we may move some vertices from V1 to V2 to get a

partition satisfying (2.1). Let W2 be the maximal subset of V that satisfies the following

conditions:

(i) W2 ⊇ V2, and

(ii) μ(W2) � α2 +

√
2

4
α − c.

Let W1 = V\W2. If |W1| �
√

2α − 1/4, then

e(W1) �
(

|W1|
2

)
� α2 − 3

√
2

4
α +

5

32
,

which together with f(W1) � |W1| and c = 3/32 yields

μ(W1) = e(W1) + f(W1) � α2 +

√
2

4
α − c.

This together with (ii) implies the required result.

Suppose that

|W1| >
√

2α − 1

4
. (2.2)
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In the following, we show that

μ(W1) � α2 +

√
2

4
α − c.

By contradiction, assume that

μ(W1) > α2 +

√
2

4
α − c. (2.3)

By the choice of W2, for each w ∈ W1, we have

μ(W2 ∪ {w}) > α2 +

√
2

4
α − c. (2.4)

Thus, by the fact that μ(W2 ∪ {w}) = μ(W2) + e(w,W2) + 1w, we conclude that

μ(W2) > α2 +

√
2

4
α − c − e(w,W2) − 1w. (2.5)

Claim 2.1. For each w ∈ W1,

e(w,W2) >
√

2α + 8c − 1w.

For convenience, let

Θ := e(W1, V1\W1) =
∑
w∈W1

e(w, V1\W1)

and

Λ :=
∑
w∈W1

(e(w, V2) − e(w, V1)).

Note that

e(w,W2) = e(w, V2) + e(w, V1\W1)

= e(w,W1) + 2e(w, V1\W1) + (e(w, V2) − e(w, V1)).

Summing over all w ∈ W1 yields that

e(W1,W2) = 2e(W1) + 2Θ + Λ. (2.6)

Note that m1 = f(W1) + f(W2) and m2 = e(W1) + e(W1,W2) + e(W2). Adding e(W1) +

3f(W1) to both sides of (2.6), we have

μ(W1) =
1

3
(m2 + 3f(W1) − e(W2) − 2Θ − Λ)

=
1

3
(4α2 − 12c + f(W1) − f(W2) − μ(W2) − 2Θ − Λ),

which, together with the fact that

μ(W1) > α2 +

√
2

4
α − c,
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establishes

μ(W2) < α2 − 3
√

2

4
α + f(W1) − f(W2) − 9c − 2Θ − Λ. (2.7)

Combining (2.5) and (2.7), we obtain

e(w,W2) >
√

2α + 8c − 1w + f(W2) − f(W1) + 2Θ + Λ. (2.8)

Case 1. f(V1) − f(V2) � 0. Since Θ and Λ are non-negative integers, it follows from the

fact f(W2) − f(W1) � f(V2) − f(V1) � 0 that e(w,W2) >
√

2α + 8c − 1w, as desired.

Case 2. f(V1) − f(V2) � 2. For each v ∈ V1, we have e(v, V1) � e(v, V2) by the maximality

of e(V1, V2). We show that if {v} ∈ E1, then

e(v, V1) + 1 � e(v, V2). (2.9)

Otherwise, we have e(v, V1) = e(v, V2). Let V ′
1 = V1\{v} and V ′

2 = V2 ∪ {v}. Note that

e(V ′
1, V

′
2) = e(V1, V2), f(V ′

1) − f(V ′
2) = f(V1) − f(V2) − 2.

This together with the fact that f(V1) − f(V2) � 2 yields

|f(V ′
1) − f(V ′

2)| < |f(V1) − f(V2)|,

a contradiction to the minimality of |f(V1) − f(V2)|.
By the definition of Λ and inequality (2.9), we derive

Λ �
∑

v∈W1∩E1

(e(v, V2) − e(v, V1)) � f(W1).

This together with (2.8) yields that

e(w,W2) >
√

2α + 8c − 1w + f(W2) + 2Θ,

which implies the desired result.

Case 3. f(V1) − f(V2) = 1. Noting that f(V1) + f(V2) = m1, we have f(V1) = (m1 + 1)/2.

For convenience, let

Ω := e(V1, V2) − 2e(V1).

This implies

e(V1, V2) = 2μ(V1) − m1 − 1 + Ω.

Since μ(V1) + μ(V2) + e(V1, V2) = m1 + m2, we know that

3μ(V1) + μ(V2) = 2m1 + m2 + 1 − Ω. (2.10)

Write

μ(V1) = α2 +

√
2

4
α − c + η, (2.11)

where η > 0.
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Note that f(W2) − f(W1) � f(V2) − f(V1) = −1. By (2.8), we have

e(w,W2) >
√

2α + 8c − 1w − 1. (2.12)

Furthermore, we may assume f(W2) − f(W1) = −1 and Θ = Λ = 0, since otherwise we

are done by (2.8). Let

D := {u ∈ W1 :
√

2α + 8c − 1u − 1 < e(u,W2) �
√

2α + 8c − 1u}.

It suffices to show that D = ∅. Otherwise, for each u ∈ D, let V ′
1 = V2 ∪ {u} and

V ′
2 = V1\{u}. If we want to specify u explicitly, we will write V ′

i,u instead of V ′
i for

i = 1, 2. However, we drop the indices when they are not necessary.

It follows from the fact Θ = Λ = 0 that e(w,W1) = e(w,W2) for each w ∈ W1. Thus, for

each u ∈ D ⊂ W1, e(V
′
1, V

′
2) = e(V1, V2). Additionally, since f(V1) − f(V2) = 1, it follows

that |f(V ′
1) − f(V ′

2)| = |f(V1) − f(V2)|. Note that μ(V ′
1) � μ(V ′

2); otherwise,

μ(V ′
1) < μ(V ′

2) = μ(V1\{u}) < μ(V1),

which contradicts the minimality of μ(V1). Thus, for some λ � 0, we may assume that

μ(V ′
1) = μ(V1) + λ. (2.13)

Proposition 2.2. Ω = λ = 0 and 0 < η � 1/4.

Otherwise, by the integrality of Ω and λ, we have Ω + λ + 4η > 1. It follows from (2.13)

that

μ(V ′
1) = μ(V2) + e(u, V2) + 1u = μ(V1) + λ,

which implies

e(u,W2) � e(u, V2) = μ(V1) − μ(V2) + λ − 1u.

This together with (2.10) and (2.11) yields

e(u,W2) � 4μ(V1) − 2m1 − m2 − 1 + Ω + λ − 1u

= 4

(
α2 +

√
2

4
α − c + η

)
− 2m1 − m2 − 1 + Ω + λ − 1u

=
√

2α + 8c − 1u + Ω + λ + 4η − 1

>
√

2α + 8c − 1u.

This contradicts the choice of u, completing the proof of Proposition 2.2.

The fact λ = 0 by Proposition 2.2 implies μ(V ′
1) = μ(V1) for each u ∈ D. Thus, we can

move some vertices from V ′
1 to V ′

2 to get a partition W ′
1,W

′
2 of G such that W ′

2 is the

maximal subset of V satisfying

(i) W ′
2 ⊇ V ′

2, and

(ii) μ(W ′
2) � α2 +

√
2

4
α − c.
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Similarly, we let

Θ′ := e(W ′
1, V

′
1\W ′

1) =
∑
w′∈W ′

1

e(w′, V ′
1\W ′

1)

and

Λ′ :=
∑
w′∈W ′

1

(e(w′, V ′
2) − e(w′, V ′

1)).

Substituting V ′
1, V

′
2, W

′
1, W

′
2 for V1, V2, W1, W2, respectively, with a similar calculation as

(2.8), for each w′ ∈ W ′
1, we deduce

e(w′,W ′
2) >

√
2α + 8c − 1w′ + f(W ′

2) − f(W ′
1) + 2Θ′ + Λ′. (2.14)

Let

θ′ := e(u, V ′
1\W ′

1).

Note that u ∈ W ′
1 by the choice of W ′

2. Thus, we have θ′ = e(u,W ′
2) − e(u, V1). This together

with (2.14) implies

e(u, V1) >
√

2α + 8c − 1u + f(W ′
2) − f(W ′

1) + (2Θ′ − θ′) + Λ′. (2.15)

Proposition 2.3. V1 = W1 = D ⊆ E1.

First, we show V1 = W1, for otherwise, let v0 ∈ V1\W1. It follows from the fact Ω = 0

by Proposition 2.2 that e(v, V1) = e(v, V2) for each v ∈ V1. Clearly, V1\{v0}, V2 ∪ {v0} is a

partition of G with

e(V1\{v0}, V2 ∪ {v0}) = e(V1, V2) and |f(V1\{v0}) − f(V2 ∪ {v0})| = |f(V1) − f(V2)|.

By the definition of W1 and W2, we know that μ(V1\{v0}) > μ(V2 ∪ {v0}). Clearly,

μ(V1\{v0}) < μ(V1),

which contradicts the minimality of μ(V1).

Then, we prove D ⊆ E1. Otherwise, there exists u ∈ D\E1. Thus,

f(V ′
2) − f(V ′

1) = f(V1) − f(V2) = 1.

It follows that

f(W ′
2) − f(W ′

1) � f(V ′
2) − f(V ′

1) = 1.

Note that Θ′ � θ′ and e(u,W2) = e(u,W1) = e(u, V1). By (2.15), we deduce

e(u,W2) >
√

2α + 8c − 1u,

a contradiction to the choice of u.

Finally, we show W1 = D. Suppose that there exists w0 ∈ W1 such that

e(w0,W2) >
√

2α + 8c − 1w0
.
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It follows from e(w0,W1) = e(w0,W2) that

|W1| � e(w0,W1) + 1 >
√

2α + 8c − 1w0
+ 1. (2.16)

Since e(x,W2) >
√

2α + 8c − 2 for each x ∈ W1 by (2.12) and V1 = W1, we have

μ(V1) =
1

2

∑
x∈W1

e(x,W1) + f(W1)

>
1

2

(
(
√

2α + 8c − 2)(|W1| − 1) +
√

2α + 8c − 1w0

)
+ f(W1)

>
1

2
(
√

2α + 8c − 1)(
√

2α + 8c − 1w0
) + f(W1)

= α2 +

√
2

4
α − c − 1

2
(
√

2α + 8c − 1) · 1w0
+ f(W1). (2.17)

The last equality holds since c = 3/32. If {w0} /∈ E1, then we have

μ(V1) > α2 +

√
2

4
α − c + f(W1),

which contradicts η � 1/4 by Proposition 2.2. This means that W1\D ⊆ E1, which together

with D ⊆ E1 implies f(W1) = |W1|. Combining (2.16) and (2.17), we derive

μ(V1) > α2 +

√
2

4
α − c +

√
2α + 8c + 1

2
,

also a contradiction. Thus, we complete the proof of Proposition 2.3.

The fact D ⊆ E1 implies

f(W ′
2) − f(W ′

1) � f(V ′
2) − f(V ′

1) = −1.

Note that 2Θ′ − θ′ � Θ′ and e(u,W2) = e(u,W1) = e(u, V1). By (2.15), we may assume

f(W ′
2) − f(W ′

1) = −1 and Θ′ = θ′ = Λ′ = 0.

Otherwise, for each u ∈ W1 = D, we have

e(u,W2) >
√

2α + 8c − 1u,

a contradiction. Thus, by (2.14), we have e(w′,W ′
2) >

√
2α + 8c − 1w′ − 1 for each w′ ∈ W ′

1.

Let

D′ := {u′ ∈ W ′
1 :

√
2α + 8c − 1u′ − 1 < e(u′,W ′

2) �
√

2α + 8c − 1u′ }.

An argument similar to that used in Proposition 2.3 gives the following proposition,

whose proof details are omitted.

Proposition 2.4. V ′
1 = W ′

1 = D′ ⊆ E1.

Now, we establish the next proposition by characterizing the hypergraph G according

to Propositions 2.3 and 2.4.

Proposition 2.5. G is the hypergraph consisting of all edges and vertices of Km1
.
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First, we show that e(v, V2) = (m1 − 1)/2 for each v ∈ V1. It follows from Propositions 2.3

and 2.4 that Vi ⊂ E1 for i = 1, 2. Suppose that there exists v2 ∈ V2 such that v2 /∈ N(v),

where N(v) is the set of the neighbours of v in G. Clearly, there exists v1 ∈ V1 such

that v1 ∈ N(v2), since the cut (V1, V2) is maximal and G is connected. Note that, for

each v′ ∈ V ′
1, we have e(v′, V ′

1) = e(v′, V ′
2). Recall that V ′

1 = V ′
1,u = V2 ∪ {u} and V ′

2 =

V ′
2,u = V1\{u} for each u ∈ D = V1. Substituting v for u, and noting that v2 ∈ V ′

1,v , we

have e(v2, V
′
1,v) = e(v2, V

′
2,v), that is, e(v2, V2) = e(v2, V1). Similarly, substituting v1 for u, we

obtain e(v2, V2) + 1 = e(v2, V1) − 1, a contradiction.

Due to the above arguments, we know that each vertex in V1 has m1 − 1 neighbours

in G and e(v2, V2) + 1 = e(v2, V1) − 1 for each v2 ∈ V2. Since v2 is adjacent to each vertex

in V1, we have e(v2, V1) = (m1 + 1)/2. With the help of the preceding two equalities, we

conclude e(v2, V2) = (m1 − 3)/2. This implies that each vertex of G has m1 − 1 neighbours,

completing the proof of Proposition 2.5.

By Proposition 2.5, we have m2 =
(
m1

2

)
. This implies

|W1| = |V1| =
m1 + 1

2
=

√
2α − 1

4
.

Recall that |W1| >
√

2α − 1/4 by (2.2); this leads to a contradiction. Thus, we conclude

that D = ∅, completing the proof of Claim 2.1.

By Claim 2.1, for w0 ∈ W1, summing over all w ∈ W1\{w0} gives that

e(W1\{w0},W2) =
∑

w∈W1\{w0}

e(w,W2)

> (
√

2α + 8c)(|W1| − 1) − f(W1) + 1w0
.

This together with (2.3) and (2.4) yields

m2 = e(W1) + e(W2 ∪ {w0}) + e(W1\{w0},W2)

= μ(W1) + μ(W2 ∪ {w0}) − m1 − 1w0
+ e(W1\{w0},W2)

> 2α2 +

√
2

2
α − 2c + (

√
2α + 8c)(|W1| − 1) − m1 − f(W1).

Recall that |W1| >
√

2α − 1/4, f(W1) � m1 and c = 3/32. We have

m2 > 2α2 +

√
2

2
α − 2c + (

√
2α + 8c)

(√
2α − 5

4

)
− 2m1

= 4α2 − 2m1 − 12c

= m2,

a contradiction. This completes the proof of Theorem 1.4.

3. Partitioning hypergraphs into k sets

In this section we aim to prove Theorem 1.2. Before proving the result, we should make

a few definitions and lemmas.
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Let G be a hypergraph with mi edges of size i for i = 1, 2, and let P := {V1, . . . , Vk} be

a k-partition of G. For each i ∈ [k] and v ∈ Vi, we define

Si
P (v) := {j ∈ [k]\{i} : e(v, Vi) = e(v, Vj), v ∈ Vi},

and

Si
P :=

⋃
v∈Vi∩E1

Si
P (v).

Let siP (v) := |Si
P (v)| and siP := |Si

P |. Clearly, for each v ∈ Vi ∩ E1, we have 0 � siP (v) �
siP � k − 1.

Furthermore, if P is a partition maximizing e(V1, . . . , Vk), then for each j ∈ [k]\{i} and

v ∈ Vi, we have e(v, Vi) + 1j � e(v, Vj), where 1j = 1 if and only if j /∈ Si
P (v). Note that∑

j∈[k]\{i}

1j = k − 1 − siP (v).

Thus, for each v ∈ Vi, we have

(k − 1)e(v, Vi) + k − 1 − siP (v) � e(v, Vi). (3.1)

The following lemmas play important roles in our proof of Theorem 1.2.

Lemma 3.1. Let G be a hypergraph with mi edges of size i for i = 1, 2, and P = {V1, . . . , Vk}
be a partition of G maximizing e(V1, . . . , Vk). Suppose Q = {W1, . . . ,Wk} is another partition

of G with Wi ⊆ Vi and Wj ⊇ Vj for j ∈ [k]\{i}. Then, for each w ∈ Wi,

(k − 1)e(w,Wi) + k − 1 − siQ(w) � e(w,Wi).

Proof. Note that, for each w ∈ Wi ⊆ Vi, inequality (3.1) holds by substituting w for v.

Thus, we have

e(w,Wi) � e(w, Vi) � (k − 1)e(w, Vi) + k − 1 − siP (w).

It suffices to show that

(k − 1)(e(w,Wi) − e(w, Vi)) � siQ(w) − siP (w). (3.2)

Let N(w) be the set of the neighbours of w in G. If N(w) ∩ (Vi\Wi) = ∅, then we have

e(w,Wi) = e(w, Vi) and siQ(w) = siP (w). Otherwise, e(w,Wi) � e(w, Vi) − 1 and siQ(w) = 0.

Note that 0 � siP (w) � k − 1. In either case, inequality (3.2) holds, as desired.

For each partition P = {V1, . . . , Vk} of G, let fP = (f(V1), . . . , f(Vk)) be a vector with k

coordinates. Write the Euclidean norm

‖fP‖ =

√√√√ k∑
i=1

f(Vi)2.

The following lemma shows that f(Vi) can be bounded by m1 and siP for each i ∈ [k]

under certain assumptions.
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Lemma 3.2. Let G be a hypergraph with mi edges of size i for i = 1, 2. Let P = {V1, . . . , Vk}
be a partition of G maximizing e(V1, . . . , Vk), and subject to this, assume that ‖fP‖ is minimal.

Then, for each i ∈ [k], we have

f(Vi) � m1 + siP
1 + siP

.

Proof. It is trivial if Si
P = ∅. Assume that Si

P �= ∅. Suppose that there exists j ∈ Si
P such

that f(Vj) < f(Vi) − 1. Let v ∈ Vi ∩ E1 be a vertex satisfying e(v, Vi) = e(v, Vj). Moving v

from Vi to Vj gives another partition P ′ = {V ′
1, . . . , V

′
k} with

e(V ′
1, . . . , V

′
k) = e(V1, . . . , Vk) − e(v, Vj) + e(v, Vi) = e(V1, . . . , Vk).

Meanwhile,

‖fP ′ ‖2 − ‖fP‖2 = f(V ′
i )

2 + f(V ′
j )

2 − f(Vi)
2 − f(Vj)

2

= (f(Vi) − 1)2 + (f(Vj) + 1)2 − f(Vi)
2 − f(Vj)

2

= 2(f(Vj) − f(Vi) + 1)

< 0,

which contradicts the minimality of ‖fP‖. Thus, f(Vj) � f(Vi) − 1 for each j ∈ Si
P .

Note that f(Vi) �
∑

j∈Si
P
f(Vj). We have

m1 = f(Vi) + f(Vi) � f(Vi) + siP (f(Vi) − 1),

which implies the desired result.

Now, we are ready to prove Theorem 1.2 by showing the following result.

Theorem 3.3. Every hypergraph G with mi edges of size i, i = 1, 2, admits a k-partition

V1, . . . , Vk such that

μ(Vi) � m1

k
+

m2

k2
+

k − 1

2k2

(√
2(km1 + m2) +

(
k − 1

2

)2

− k + 2k − 1

2

)

for i = 1, . . . , k.

Proof. For convenience, let

αk :=

√
m1

k
+

m2

k2
+ βk,

where

βk :=
(2k − 1)2

8k2
− 1

2k
.

It suffices to show that G has a partition V1, . . . , Vk such that

μ(Vi) � α2
k +

k − 1

2k

√
2αk + ck
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for i = 1, . . . , k, where

ck :=
1

2
− 2k − 1

8k2
.

Simple calculations show that

α2
k−1 =

k2

(k − 1)2
α2
k − m1

(k − 1)2
− 2k − 3

2(k − 1)2

� k2

(k − 1)2
α2
k − m1

(k − 1)2
− 1

k − 1
+

2k − 1

(k − 1)2
ck. (3.3)

The proof proceeds by induction on k. The result holds when k = 2 by Theorem 1.4.

Assume that k � 3. Let P = {V1, . . . , Vk} be a partition of G maximizing e(V1, . . . , Vk).

Subject to this, we assume that ‖fP‖ is minimal. Without loss of generality, we may

suppose that μ(V1) = max1�i�k μ(Vi).

If

μ(V1) � α2
k +

k − 1

2k

√
2αk + ck,

we are done. Otherwise,

μ(V1) > α2
k +

k − 1

2k

√
2αk + ck. (3.4)

Since there is no danger of confusion, the reference to 1 in the superscript of s1P (v) and

s1P will be dropped in the following proof.

Claim 3.4. The hypergraph G′ induced by V1 admits a partition into k − 1 classes, each of

which contains at most

α2
k +

k − 1

2k

√
2αk + ck

edges.

By induction hypothesis, G′ admits a partition X2, . . . , Xk such that, for i = 2, . . . , k,

μ(Xi) � Λ1 +
k − 2

2(k − 1)

√
2Λ1 + ck−1,

where

Λ1 :=
f(V1)

k − 1
+

e(V1)

(k − 1)2
+ βk−1.

Thus, it suffices to prove that Λ1 < α2
k.

Note that

(k − 1)e(v, V1) + (k − 1 − sP (v)) · 1v � e(v, V1)

for each v ∈ V1 by (3.1). Summing over all v ∈ V1 yields

(k − 1)(2e(V1) + f(V1)) −
∑

v∈V1∩E1

sP (v) � e(V1, V1).
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Noting that ∑
v∈V1∩E1

sP (v) � sPf(V1),

we deduce

2(k − 1)e(V1) + (k − 1 − sP )f(V1) � e(V1, V1).

This implies

e(V1) = m2 − e(V1, V1) − e(V1) � m2 − (2k − 1)e(V1) − (k − 1 − sP )f(V1).

Therefore,

Λ1 =
f(V1)

k − 1
+

e(V1)

(k − 1)2
+ βk−1

� m1 − f(V1)

k − 1
+

m2 − (2k − 1)e(V1) − (k − 1 − sP )f(V1)

(k − 1)2
+ βk−1

=
m1

k − 1
+

m2

(k − 1)2
+ βk−1 − 2k − 1

(k − 1)2
μ(V1) +

1 + sP
(k − 1)2

f(V1)

< α2
k−1 − 2k − 1

(k − 1)2
(α2

k + ck) +
1 + sP
(k − 1)2

f(V1) (by (3.4))

� α2
k − 1

(k − 1)2
(
m1 + sP − (1 + sP )f(V1)

)
− k − 1 − sP

(k − 1)2
(by (3.3))

� α2
k.

The last inequality holds because m1 + sP − (1 + sP )f(V1) � 0 by Lemma 3.2 and 0 �
sP � k − 1. This completes the proof of Claim 3.4.

In the following, we simply write α for αk for convenience. By Claim 3.4, we can take

W1 ⊇ V1 maximal such that there exists a (k − 1)-partition W2, . . . ,Wk of W1 satisfying

μ(Wi) � α2 +
k − 1

2k

√
2α + ck

for i = 2, . . . , k. Let W1 = V\W1. If

|W1| �
√

2α − 1

2k
,

then

e(W1) �
(

|W1|
2

)
� α2 − k + 1

2k

√
2α +

2k + 1

8k2
,

which together with the fact f(W1) � |W1| implies

μ(W1) = e(W1) + f(W1) � α2 +
k − 1

2k

√
2α − 2k − 1

8k2
.

Thus we are done unless (3.5).

Suppose that

|W1| >
√

2α − 1

2k
. (3.5)
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By the choice of W1, it suffices to prove that

μ(W1) � α2 +
k − 1

2k

√
2α + ck.

By contradiction, assume that

μ(W1) > α2 +
k − 1

2k

√
2α + ck.

Claim 3.5. For each w ∈ W1,

e(W1 ∪ {w}) > (k − 1)2(α2 − βk) +
k − 1

2k

√
2α + γk − (k − 1)(f(W1) + 1w),

where γk = βk + ck .

Suppose that there exists w ∈ W1 such that

e(W1 ∪ {w}) � (k − 1)2(α2 − βk) +
k − 1

2k

√
2α + γk − (k − 1)(f(W1) + 1w). (3.6)

Consider the hypergraph G′′ induced by W1 ∪ {w}. Assume that G′′ has m′
i edges of size i

for i = 1, 2. We have m′
1 = f(W1) + 1w and m′

2 = e(W1 ∪ {w}).
By induction hypothesis, there is a (k − 1)-partition U2, . . . , Uk of G′′ such that

μ(Ui) � Λ2 +
k − 2

2(k − 1)

√
2Λ2 + ck−1

for i = 2, . . . , k, where

Λ2 :=
m′

1

k − 1
+

m′
2

(k − 1)2
+ βk−1.

It follows from (3.6) that

Λ2 � α2 +
1

2k(k − 1)

√
2α − (βk − βk−1) +

γk

(k − 1)2

= α2 +
1

2k(k − 1)

√
2α +

1

8k2(k − 1)2

=

(
α +

√
2

4k(k − 1)

)2

.

Therefore,

μ(Ui) � α2 +
k − 1

2k

√
2α +

1

8k2(k − 1)2
+

k − 2

4k(k − 1)2
+ ck−1

= α2 +
k − 1

2k

√
2α + ck,

a contradiction to the choice of W1. This completes the proof of Claim 3.5.

Let P ′′ = {V ′′
1 , . . . , V

′′
k } be a partition of G with V ′′

1 = W1 ⊆ V1, V
′′
i ⊇ Vi for i = 2, . . . , k.

For each w ∈ V ′′
1 = W1, it is easy to see that 0 � sP ′′(w) � sP (w) � k − 1, which yields

0 � sP ′′ � sP � k − 1. (3.7)
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Moreover, by Lemma 3.1, we deduce

(k − 1)e(w,W1) + (k − 1 − sP ′′(w)) · 1w � e(w,W1). (3.8)

Noting that e(W1 ∪ {w}) = e(W1) + e(w,W1), we have

e(w,W1) = e(W1 ∪ {w}) + f(W1) − μ(W1). (3.9)

Claim 3.6. For each w ∈ W1,

e(w,W1) > (k − 1)(
√

2α − 1 − 1w) + 2kγk.

Summing over all w ∈ W1 in (3.8) yields

(k − 1)(2e(W1) + f(W1)) −
∑

w∈W1∩E1

sP ′′(w) � e(W1,W1).

In view of ∑
w∈W1∩E1

sP ′′(w) � sP ′′f(W1),

we deduce

(k − 1)(2e(W1) + f(W1)) − sP ′′f(W1) � e(W1,W1). (3.10)

Note that m1 = f(W1) + f(W1) and m2 = e(W1) + e(W1,W1) + e(W1). Adding e(W1) +

kf(W1) to both sides of (3.10) gives

μ(W1) � 1

2k − 1

(
k2(α2 − βk) − μ(W1) − (k − 1)f(W1) + sP ′′f(W1)

)
.

Since

μ(W1) > α2 +
k − 1

2k

√
2α + ck,

we have

μ(W1) < (k − 1)2(α2 − βk) − (2k − 1)

(
k − 1

2k

√
2α + γk

)
− (k − 1)f(W1) + sP ′′f(W1).

This, together with Claim 3.5 and (3.9), implies that

e(w,W1) > (k − 1)(
√

2α − 1w) + 2kγk + f(W1) − sP ′′f(W1).

Note that

f(W1) − sP ′′f(W1) = m1 − (1 + sP ′′)f(W1).

Since sP ′′ � sP by (3.7) and f(W1) � f(V1), we obtain

f(W1) − sP ′′f(W1) � m1 − (1 + sP )f(V1),

which together with Lemma 3.2 yields

f(W1) − sP ′′f(W1) � −sP � −(k − 1).
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Thus, we have

e(w,W1) > (k − 1)(
√

2α − 1 − 1w) + 2kγk,

as desired. This completes the proof of Claim 3.6.

By Claim 3.5, for w0 ∈ W1, we have

e(W1 ∪ {w0}) > (k − 1)2(α2 − βk) +
k − 1

2k

√
2α + γk − (k − 1)(f(W1) + 1w0

).

By Claim 3.6, for w0 ∈ W1, summing over all w ∈ W1\{w0} gives that

e(W1\{w0},W1) =
∑

w∈W1\{w0}

e(w,W1)

> ((k − 1)(
√

2α − 1) + 2kγk)(|W1| − 1) − (k − 1)(f(W1) − 1w0
).

Recall that

e(W1) = μ(W1) − f(W1) > α2 +
k − 1

2k

√
2α + ck − m1.

These, together with (3.5), establish that

m2 = e(W1) + e(W1 ∪ {w0}) + e(W1\{w0},W1)

> k2α2 − km1 − k2βk +

(
2kγk − 4k2 − 5k + 1

2k

)√
2α − δk +

2k2 − k − 1

2k
,

where δk := βk + (2k − 1)ck . The fact that

βk =
(2k − 1)2

8k2
− 1

2k
and ck =

1

2
− 2k − 1

8k2

shows that

2kγk =
4k2 − 5k + 1

2k
and δk =

2k2 − k − 1

2k
.

This implies that

m2 > k2α2 − km1 − k2βk = m2,

a contradiction. Thus, we complete the proof of Theorem 3.3.
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