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Let F be a family of r-uniform hypergraphs. The chromatic threshold of F is the infimum

of all non-negative reals c such that the subfamily of F comprising hypergraphs H with

minimum degree at least c
(|V (H)|
r−1

)
has bounded chromatic number. This parameter has

a long history for graphs (r = 2), and in this paper we begin its systematic study for

hypergraphs.

�Luczak and Thomassé recently proved that the chromatic threshold of the so-called near

bipartite graphs is zero, and our main contribution is to generalize this result to r-uniform

hypergraphs. For this class of hypergraphs, we also show that the exact Turán number is

achieved uniquely by the complete (r + 1)-partite hypergraph with nearly equal part sizes.

This is one of very few infinite families of non-degenerate hypergraphs whose Turán number

is determined exactly. In an attempt to generalize Thomassen’s result that the chromatic

threshold of triangle-free graphs is 1/3, we prove bounds for the chromatic threshold of the

family of 3-uniform hypergraphs not containing {abc, abd, cde}, the so-called generalized

triangle.

† This material is based on work partly done at University of California, San Diego, and at SZTE, Bolyai

Institute, Szeged, Hungary. Research supported by NSF CAREER grant DMS-0745185, UIUC Campus

Research Board Grant 11067, OTKA Grant K76099, and the Arnold O. Beckman Research Award (UIUC

Campus Research Board 13039) grant. Also supported by the European Union and co-funded by the

European Social Fund under the project ‘Telemedicine-focused research activities on the field of Mathematics,

Informatics and Medical sciences’ of project number ‘TÁMOP-4.2.2.A-11/1/KONV-2012-0073’.
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In order to prove upper bounds we introduce the concept of fibre bundles, which can

be thought of as a hypergraph analogue of directed graphs. This leads to the notion

of fibre bundle dimension, a structural property of fibre bundles that is based on the

idea of Vapnik–Chervonenkis dimension in hypergraphs. Our lower bounds follow from

explicit constructions, many of which use a hypergraph analogue of the Kneser graph.

Using methods from extremal set theory, we prove that these Kneser hypergraphs have

unbounded chromatic number. This generalizes a result of Szemerédi for graphs and might

be of independent interest. Many open problems remain.

2010 Mathematics subject classification: Primary 05C35

Secondary 05C65, 05C15, 05D40

1. Introduction

An r-uniform hypergraph on n vertices is a collection of r-subsets of V , where V is a set

of n elements. If r = 2 then we call it a graph. The r-sets in a hypergraph are called edges,

and the n elements of V are called vertices. For a hypergraph H , let V (H) denote the

set of vertices. We denote the set of edges by either E(H) or simply H . The chromatic

number of a hypergraph H , denoted χ(H), is the least integer k for which there exists a

map f : V (H) → [k] such that if E is an edge in the hypergraph then there exist v, u ∈ E

for which f(v) �= f(u). For a vertex v in a hypergraph H we let d(v) denote the number of

edges in H that contain v. We let δ(H) = min{d(v) : v ∈ V (H)}, called the minimum degree

of H .

Definition. Let F be a family of r-uniform hypergraphs. The chromatic threshold of F is

the infimum of the values c � 0 such that the subfamily of F consisting of hypergraphs

H with minimum degree at least c
(|V (H)|
r−1

)
has bounded chromatic number.

We say that F is a subhypergraph of H if there is an injection from V (F) to V (H)

such that every edge in F gets mapped to an edge of H . Notice that if H is r-uniform for

some r then this is only possible if F is also r-uniform. If F is an r-uniform hypergraph,

then the family of F-free hypergraphs is the family of r-uniform hypergraphs that do not

contain F as a (not necessarily induced) subhypergraph.

The study of the chromatic thresholds of graphs was motivated by a question of Erdős

and Simonovits [7]: ‘If G is non-bipartite, what bound on δ(G) forces G to contain a

triangle?’ This question was answered by Andrásfai, Erdős and Sós [3], who showed

that the answer is 2/5|V (G)|, and sharpness is shown by the graph obtained from C5 by

replacing each edge with a copy of Kn/5,n/5. Andrásfai, Erdős and Sós’s [3] idea, that is,

blowing up a small triangle-free graph to create a new graph with the same chromatic

number and large minimum degree, can be generalized to show that for every k and ε

there exists a triangle-free graph G with χ(G) � k and δ(G) � (1/3 − ε)|V (G)|. This led to

the following conjecture: if δ(G) > (1/3 + ε)|V (G)| and G is triangle-free, then χ(G) � kε,

where kε is a constant depending only on ε.

Note that the conjecture is equivalent to the statement that the family of triangle-free

graphs has chromatic threshold 1/3. The conjecture was proved by Thomassen [37].

Subsequently, there have been three more proofs of the conjecture: one by �Luczak [24]
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using the Regularity Lemma, a result of Brandt and Thomassé [5] proving that one

can take kε = 4, and a recent proof by �Luczak and Thomassé [25] using the concept of

Vapnik–Chervonenkis dimension (which is defined later in this paper).

For other graphs, Goddard and Lyle [15] proved that the chromatic threshold of

the family of Kr-free graphs is (2r − 5)/(2r − 3), while Thomassen [38] showed that the

chromatic threshold of the family of C2k+1-free graphs is zero for k � 2. Recently, �Luczak

and Thomassé [25] gave another proof that the class of C2k+1-free graphs has chromatic

threshold zero for k � 2, as well as several other results about related families, such as

Petersen graph-free graphs. The main result of Allen, Böttcher, Griffiths, Kohayakawa

and Morris [1] is to determine the chromatic threshold of the family of H-free graphs for

all H .

We finish this section with some definitions.

Definition. For an r-uniform hypergraph H and a set of vertices S ⊆ V (H), let H[S]

denote the r-uniform hypergraph consisting of exactly those edges of H that are completely

contained in S . We call this the hypergraph induced by S . A set of vertices S ⊆ V (H) is

called independent if H[S] contains no edges and strongly independent if there is no edge

of H containing at least two vertices of S . A hypergraph is s-partite if its vertex set can

be partitioned into s parts, each of which is strongly independent.

If H is a family of r-uniform hypergraphs, then the family of H-free hypergraphs is

the family of r-uniform hypergraphs that contain no member of H as a (not necessarily

induced) subgraph. For an r-uniform hypergraph H and an integer n, let ex(n,H) be the

maximum number of edges an r-uniform hypergraph on n vertices can have while being

H-free, and let

π(H) = lim
n→∞

ex(n,H)(
n
r

) .

We call π(H) the Turán density of H .

Let Tr,s(n) be the complete n-vertex, r-uniform, s-partite hypergraph with part sizes as

equal as possible. When s = r, we write Tr(n) for Tr,r(n). Let tr(n) be the number of edges

in Tr(n); notice that

tr(n) ≈ r!

rr

(
n

r

)
.

We say that an r-uniform hypergraph H is stable with respect to Tr(n) if π(H) = r!/rr

and for any ε > 0 there exists some positive δ depending only on ε such that if G is an

n-vertex, H-free, r-uniform hypergraph with at least (1 − δ)tr(n) edges, then there is a

partition of V (G) into U1, U2, . . . , Ur such that all but at most εnr edges of G have exactly

one vertex in each part.

Let TKr(s) be the r-uniform hypergraph obtained from the complete graph Ks by

enlarging each edge with r − 2 new vertices. The core vertices of TKr(s) are the s vertices

of degree larger than one. For s > r, let T Kr(s) be the family of r-uniform hypergraphs

such that there exists a set S of s vertices where each pair of vertices from S are contained

together in some edge. The set S is called the set of core vertices of the hypergraph.
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For s � r, let T Kr(s) be the family of r-uniform hypergraphs such that there exists a set

S of s vertices where, for each pair of vertices x �= y ∈ S , there exists an edge E with

E ∩ S = {x, y} (the definition is different when s � r so that a hypergraph consisting of a

single edge is not in T Kr(s)). It is obvious that TKr(s) ∈ T Kr(s).

2. Results

Motivated by the above results, we investigate the chromatic thresholds of the families of

A-free hypergraphs for some r-uniform hypergraphs A. One of our main results concerns

a generalization of cycles to hypergraphs. A partial matching is a hypergraph whose edges

are pairwise disjoint (note that it can contain vertices that lie in no edge).

Definition. Let H be an r-uniform hypergraph. We say that H is near r-partite if H is

not r-partite and there exists a partition V1 ∪ · · · ∪ Vr of V (H) such that all edges of H

either cross the partition (have one vertex in each Vi) or are contained entirely in V1, and

in addition H[V1] is a partial matching. We call such a partition a near r-partition if it

witnesses a smallest H[V1]. The edges in H[V1] of a near r-partition are called the special

edges. Say that H is mono near r-partite if in addition in a near r-partition H[V1] contains

exactly one edge.

A hypergraph H is connected if, for every x, y ∈ V (H), there exists a sequence of

hyperedges E1, . . . , Et such that x ∈ E1, y ∈ Et, and Ei ∩ Ei+1 �= ∅ for 1 � i � t− 1. Let H

be an r-uniform hypergraph and let X,Y be two disjoint sets of vertices of H .

Let C1, . . . , Ct be the components of H |Y , where H |Y is the (potentially non-uniform)

hypergraph {A ∩ Y : A ∈ E(H)} and the components of H |Y are the maximal connected

induced subhypergraphs of H |Y . The vertex set X is partite-extendible to Y if there exists

a partition of X into r strong independent sets X1, . . . , Xr so that, for every 1 � i � t,

there do not exist x1 ∈ Xj and x2 ∈ X� for j �= � and two edges E1, E2 ∈ E(Ci) such that

E1 ∪ {x1} ∈ E(H) and E2 ∪ {x2} ∈ E(H). Informally, each component extends to at most

one part of the partition of X.

Our main theorem claims that for an infinite family of hypergraphs H the chromatic

threshold of the family of H-free hypergraphs is zero. We will demonstrate that this family

of hypergraphs is infinite below, applying this Theorem 2.1 to a type of hypergraph cycle

(see Corollary 2.5).

Theorem 2.1. Let H be an r-uniform, near r-partite hypergraph for which there exists near

r-partition V1, . . . , Vr . If every component, which may be a single vertex, of H[V1] is partite-

extendible to V2 ∪ · · · ∪ Vr , then the chromatic threshold of the family of H-free hypergraphs

is zero.

One interesting aspect of the chromatic threshold of graphs, proved by �Luczak and

Thomassé [25], is that there exist graphs G for which the chromatic threshold of the family

of G-free graphs is zero while the Turán density of G is non-zero. We show that a similar

phenomenon occurs in hypergraphs; for a subfamily of the hypergraphs considered in
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Theorem 2.1 we in fact determine the exact extremal hypergraph (see Theorem 2.2). We

prove that if a mono near r-partite hypergraph H has Turán density r!/rr and is stable

with respect to Tr(n) (an example of such a graph is given in Theorem 2.4), then its

unique extremal hypergraph is the complete r-partite hypergraph. Similar results occur

for graphs; see Simonovits [35], where for critical graphs the Erdős–Stone theorem [9]

was sharpened.

Definition. Let H be an r-uniform hypergraph. We say that H is critical if:

• H is mono near r-partite,

• there exists a near r-partition of H whose special edge has at least r − 2 vertices of

degree one,

• H is stable with respect to Tr(n).

Recall that the stability of H implies that π(H) = r!/rr .

Theorem 2.2. Let H be an r-uniform critical hypergraph. Then there exists some n0 such

that for n > n0, Tr(n) is the unique H-free hypergraph with the most edges.

A particularly interesting critical family is one that generalizes cycles to hypergraphs.

Definition. Fix m � 4 and let

n =

⎧⎪⎪⎨
⎪⎪⎩
r

⌊
m

2

⌋
+ r − 1 if m is odd,

r
m

2
if m is even.

Then Cr
m is the r-uniform hypergraph with vertices v1, . . . , vn and edges E1, . . . , Em such

that:

(1) each edge contains r consecutively labelled vertices, modulo m, and in particular

E1 = {v1, . . . , vr},

(2) edges Ei and Ej intersect if and only if i and j are consecutive modulo m,

(3) if i is odd and 1 < i < m then |Ei−1 ∩ Ei| = r − 1 and |Ei ∩ Ei+1| = 1.

(4) if m is odd then |E1 ∩ Em| = 1; if m is even then |E1 ∩ Em| = r − 1.

We say that Cr
m is odd if m is odd, and even otherwise.

Lemma 2.3. If m = 2k + 1 � 5 is odd then Cr
m is not r-partite but is mono near-r-partite

with partition

V1 = E1 ∪ {vir : 1 � i � k} and Vj = {vir+j−1 : 1 � i � k + 1} for 2 � j � r.

Also, every component of Cr
m[V1] is partite-extendible to V2 ∪ · · · ∪ Vr .

Proof. Let m = 2k + 1 for some integer k. Notice that because m is odd, we have |E2k+1 ∩
E1| = 1. Because each edge contains consecutively indexed vertices (modulo m), it follows
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(a) C3
5 (b) C3

8

(c) C3
9

(d) C4
8

(e) C4
9

Figure 1. Hypergraph cycles; E1 is indicated in each.

that v1 is the common vertex. Then E2k+1 consists of the vertices vrk+1, vrk+2, . . . , vrk+r−1, v1.

Suppose f : V → {0, . . . , r − 1} is an r-colouring of the vertices of Cr
2k+1 such that each

colour class induces a strongly independent set. Now, |E1 ∩ E2| = 1 and |E2 ∩ E3| = r − 1

(see Figure 2). It therefore follows that vr is the only vertex in E2 \ E3 and that v2r is the

only vertex in E3 \ E2. Therefore, f(vr) = f(v2r). Similarly, vertices vr, v2r, v3r, . . . , vkr all have

the same colour. Finally, v1 = Em \ Em−1 and vkr = Em−1 \ Em, and so f(v1) = f(vkr). This

shows that Cr
m is not r-partite, because f(vkr) = f(vr) and v1, vr are in E1. The hypergraph

Cr
m − E1 is r-partite via the colouring f(vi) = i (mod r). Also, all vertices of E1 can be col-

oured by zero to obtain a colouring where the colour classes form a near r-partition of Cr
m.
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E1

v1

vr

E2E3

v2r

v3r

vkr

Figure 2. Odd cycles are not r-partite.

Let Vi be the vertices coloured i− 1 for 1 � i � r. The components of Cr
m[V1] are

the edge E1 plus the single vertex components {vir} for 2 � i � k. The components of

Cr
m|V2∪···∪Vr (which is a (r − 1)-uniform hypergraph) consists of a matching. One (r − 1)-

edge of this matching is E2 ∩ E3, one is E4 ∩ E5, and so forth (see Figure 2). First, E1 is

partite-extendible to V2 ∪ · · · ∪ Vr . Indeed, only E2 and E2k+1 use vertices of E1 and they

use vertices from different components of Cr
m|V2∪···∪Vr . Also, trivially each single vertex

component {vir} is partite-extendible to V2 ∪ · · · ∪ Vr , finishing the proof.

A theorem of Keevash and the last author [20], combined with a theorem of Pikhurko

[29], the supersaturation result of Erdős and Simonovits [8], and the hypergraph removal

lemma of Gowers, Nagle, Rödl and Skokan [17, 28, 31, 32, 36] prove that C3
2k+1 and C4

2k+1

are critical; see Theorem 2.4.

For r larger than four, however, Cr
2k+1 is not critical. A result of Frankl and Füredi

[11] can easily be extended to prove that if r � 5 then

π(Cr
2k+1) � 1(

r
2

)
e1+1/(r−1)

>
r!

rr
.

Using techniques similar to those in Section 6, it can in fact be shown that

π(C5
2k+1) =

6!

114
>

5!

55
and π(C6

2k+1) =
11 · 6!

125
>

6!

66
.

Theorem 2.4. The cycles C3
2k+1 and C4

2k+1 are critical for every k � 2.

Theorems 2.1, 2.2, and 2.4 together with Lemma 2.3 prove the following corollary,

which extends the results in [38] and [25] that the chromatic threshold of the family of

C2k+1-free graphs is zero.

Corollary 2.5. For r = 3 or r = 4 and every k � 2, there exists some n0 such that for n > n0,

the unique n-vertex, r-uniform, Cr
2k+1-free hypergraph with the largest number of edges is

Tr(n). For all r, k � 2, the chromatic threshold of the family of Cr
2k+1-free hypergraphs is

zero.
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Note that �Luczak and Thomassé [25] proved Theorem 2.1 for graphs, and they

conjectured that the family of H-free graphs has chromatic threshold zero if and only if H

is near acyclic and triangle free. (A graph G is near acyclic if there exists an independent

set S in G such that G− S is a forest and every odd cycle has at least two vertices in S .)

This conjecture was verified by Allen, Böttcher, Griffiths, Kohayakawa and Morris [1].

We pose a similar question for hypergraphs.

Problem 2.6. Characterize the r-uniform hypergraphs H for which the chromatic threshold

of the family of H-free hypergraphs is zero.

Note that two of the authors made some progress [4] toward solving Problem 2.6.

Another way to generalize the triangle to 3-uniform hypergraphs is the hypergraph F5,

which is the hypergraph with vertex set {a, b, c, d, e} and edges {a, b, c}, {a, b, d}, and

{c, d, e}. Frankl and Füredi [10] proved that ex(n, F5) is achieved by T3(n) for n > 3000

(recently Goldwasser [16] has determined ex(n, F5) for all n). We prove the following

bounds on the chromatic threshold of the family of F5-free 3-uniform hypergraphs.

Theorem 2.7. The chromatic threshold of the family of F5-free 3-uniform hypergraphs is

between 6/49 and (
√

41 − 5)/8 ≈ 7/40.

The rest of the paper is organized as follows. First, in Section 3 we define and motivate

fibre bundles and fibre bundle dimension, the main tools in the proofs of Theorem 2.1

and 2.7. Next, in Section 4 we show the power of fibre bundle dimension by giving a

relatively short proof of Theorem 2.1. We prove our key theorem about fibre bundle

dimension, Theorem 3.1, in Section 5. In Section 6, we prove that C3
2k+1 and C4

2k+1 are

critical (Theorem 2.4), and then prove Theorem 2.2. The proof of Theorem 2.7 is given

in Section 7. Section 9 gives lower bounds for several other families of hypergraphs,

along with conjectures and open problems. The lower bounds all follow from specific

constructions, some of which use a generalized Kneser hypergraph; this graph is defined

and discussed in Section 8. We also make a conjecture about the chromatic number of

generalized Kneser hypergraphs; see Conjecture 8.1.

Throughout this paper, we occasionally omit the floor and ceiling signs for the sake of

clarity.

3. Fibre bundles and fibre bundle dimension

The proofs of Theorems 2.1 and 2.7 are based on a method by �Luczak and Thomassé [25]

to colour graphs, which itself was based on the Vapnik–Chervonenkis dimension. Let H

be a hypergraph. A subset X of V (H) is shattered by H if, for every Y ⊆ X, there exists

an E ∈ H such that E ∩X = Y . Introduced in [34] and [39], the Vapnik–Chervonenkis

dimension of H (or VC-dimension) is the maximum size of a vertex subset shattered by H .

Definition. A fibre bundle is a tuple (B, γ, F) such that B is a hypergraph, F is a finite

set, and γ : V (B) → 22F . That is, γ maps vertices of B to collections of subsets of F , which
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we can think of as hypergraphs on vertex set F . The hypergraph B is called the base

hypergraph of the bundle and F is the fibre of the bundle. For a vertex b ∈ V (B), the

hypergraph γ(b) is called the fibre over b.

We should think about a fibre bundle as taking a base hypergraph and putting a

hypergraph ‘on top’ of each base vertex. There is one canonical example of a fibre bundle.

Given a hypergraph B, define the neighbourhood bundle of B to be the bundle (B, γ, F),

where F = V (B) and γ maps b ∈ V (B) to {A ⊆ F : A ∪ {b} ∈ E(B)}.

Why define and use the language of fibre bundles? We can consider that in some sense

fibre bundles are a generalization of directed graphs to hypergraphs, where we think

of γ(x) as the ‘out-neighbourhood’ of x. In the neighbourhood bundle, γ(x) is related

to the neighbours of x, so we can consider the neighbourhood bundle as some sort of

directed analogue of the undirected hypergraph B, where each edge is directed ‘both ways’.

By thinking of the ‘out-neighbourhood’ of x as γ(x) and not requiring any dependency

between γ(x) and γ(y) for x �= y, we have no dependency between the neighbourhood of

x and the neighbourhood of y, which is one of the defining differences between directed

and undirected graphs. Note that the definition of a fibre bundle differs from the usual

definition of directed hypergraph used in the literature, which is the reason we use the

term ‘fibre bundle’ instead of ‘directed hypergraph.’

A fibre bundle (B, γ, F) is (rB, rγ)-uniform if B is an rB-uniform hypergraph and γ(b)

is an rγ-uniform hypergraph for each b ∈ V (B). Given X ⊆ V (B), the section of X is the

hypergraph with vertex set F and edges ∩x∈Xγ(x). In other words, the section of X is the

collection of subsets of F that appear in the fibre over x for every x ∈ X. Motivated by

a definition of �Luczak and Thomassé [25], we define the H-dimension of a fibre bundle.

Let H be a hypergraph and define dimH (B, γ, F) to be the maximum integer d such

that there exist d disjoint edges E1, . . . , Ed of B (i.e., a matching) such that, for every

x1 ∈ E1, . . . , xd ∈ Ed, the section of {x1, . . . , xd} contains a copy of H . Our definition of

dimension coincides with the definition of paired VC-dimension in [25] when (B, γ, F) is

(2, 1)-uniform and H = {{x}}, the complete 1-uniform, 1-vertex hypergraph.

Let A be an r-uniform hypergraph. Our method for proving an upper bound on the

chromatic threshold of the family of A-free hypergraphs, used in Theorems 2.1 and 2.7,

is the following. Let G be an A-free r-uniform hypergraph with minimum degree at least

c
(|V (G)|
r−1

)
. We now need to show that G has bounded chromatic number, which we do

in two steps. Let (G, γ, F) be the neighbourhood bundle of G. First, we show that the

dimension of (G, γ, F) is bounded, by showing that if the dimension is large then we

can find A as a subhypergraph. Then, given that dimH (G, γ, F) is bounded, we use the

following theorem to bound the chromatic number of G. In most applications, we will let

H be an (r − 1)-uniform, (r − 1)-partite hypergraph.

Theorem 3.1. Let rB � 2, rγ � 1, d ∈ Z+, 0 < ε < 1, and H be an rγ-uniform hypergraph

with zero Turán density. Then there exist constants

K1 = K1(rB, rγ, d, ε, H), K2 = K2(rB, rγ, d, ε, H)
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such that the following holds. Let (B, γ, F) be any (rB, rγ)-uniform fibre bundle where

dimH (B, γ, F) < d

and, for all b ∈ V (B),

|γ(b)| � ε

(
|F |
rγ

)
.

If |F | � K1, then χ(B) � K2.

The above theorem is sufficient for our purposes, but our proof of Theorem 3.1 proves

something slightly stronger. The conclusion of the above theorem can be reworded to

say that either F is small, the chromatic number of B is bounded, or dimH (B, γ, F) is

large, which means that we can find d hyperedges E1, . . . , Ed such that every section of

x1 ∈ E1, . . . , xd ∈ Ed contains a copy of H . In fact, the proof shows that if F is large and

the chromatic number of B is large, we can guarantee not only one copy of H but at least

Ω(|F |h) copies of H in each section, where h is the number of vertices in H .

We conjecture a similar statement for all rγ-uniform hypergraphs H , instead of just

those hypergraphs with a Turán density of zero.

Conjecture 3.2. Let rB � 2, rγ � 1, d ∈ Z+, 0 < ε < 1, and H be an rγ-uniform hypergraph.

Then there exist constants K1 = K1(rB, rγ, d, ε, H) and K2 = K2(rB, rγ, d, ε, H) such that the

following holds. Let (B, γ, F) be any (rB, rγ)-uniform fibre bundle where dimH (B, γ, F) < d

and, for all b ∈ V (B),

|γ(b)| � (π(H) + ε)

(
|F |
rγ

)
.

If |F | � K1, then χ(B) � K2.

The motivation behind defining and using the language of fibre bundles rather than

using the language of hypergraphs is that in the course of the proof of Theorem 3.1 we will

modify B and γ and apply induction. As mentioned above, fibre bundles can be thought

of as a directed version of a hypergraph. When applying Theorem 3.1 in Sections 4 and 7,

we start with the neighbourhood bundle, which carries no ‘extra’ information beyond just

the hypergraph B. But if we tried to prove Theorem 3.1 in the language of hypergraphs,

we would run into trouble when we needed to modify γ. In the neighbourhood bundle, γ is

related to the neighbourhood of a vertex, and if we restricted ourselves to neighbourhood

bundles or just used the language of hypergraphs, modifying γ(x) would imply that some

γ(y) would change at the same time. The notion of a fibre bundle allows us to change the

‘out-neighbourhood’ of x independently of changing the ‘out-neighbourhood’ of y �= x,

and this power is critical in the proof of Theorem 3.1.

4. Chromatic threshold for near r-partite hypergraphs

In this section we show an application of Theorem 3.1 by proving Theorem 2.1. Recall

that H is an r-uniform, near r-partite hypergraph with near r-partition V1, . . . , Vr such
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that every component of H[V1] is partite-extendible to V2 ∪ · · · ∪ Vr . Fix ε > 0 and let G

be an n-vertex, r-uniform, H-free hypergraph with δ(G) � ε
(
n
r−1

)
. We would like to use

Theorem 3.1 to bound the chromatic number of G, so we need to choose an appropriate

bundle. We will not use the neighbourhood bundle of G, but a closely related bundle.

Once we have defined this bundle, we show it has bounded dimension by proving that if

the dimension is large then we can find a copy of H in G.

Proof of Theorem 2.1. Let H be an r-uniform, near r-partite, h-vertex hypergraph and

let ε > 0 be fixed. Let V1, . . . , Vr be a near r-partition of H and assume every component

of H[V1] is partite-extendible to V2 ∪ · · · ∪ Vr . Let

d = |V1|.

Let G be an n-vertex, H-free hypergraph with δ(G) � ε
(
n
r−1

)
. We need to show that the

chromatic number of G is bounded by a constant depending only on ε and H .

First, choose a partition X1, . . . , Xr of V (G) such that the sizes of X1, . . . , Xr are as

equal as possible, and for every x ∈ V (G) the number of edges containing x and one

vertex from each Xi is at least (1/2rr)ε
(
n
r−1

)
. (Almost every nearly equitable partition

has this property.) We will show how to bound the chromatic number of G[X1]; the

same argument can be used to bound the chromatic number of each G[Xi] and thus the

chromatic number of G.

Define the (r, r − 1)-uniform fibre bundle (B, γ, F) as follows. Let B = G[X1], let F =

X2 ∪ · · · ∪Xr , and for x ∈ X1 define

γ(x) = {{x2, . . . , xr} ⊆ F : x2 ∈ X2, . . . , xr ∈ Xr, {x, x2, . . . , xr} ∈ G}.

Then γ(x) has size at least (1/2rr)ε
(
n
r−1

)
. Let L be the complete (r − 1)-uniform, (r − 1)-

partite hypergraph on (rh(r − 1))h(r−1) vertices with colour classes of (nearly) equal sizes.

Using that the Turán density of L is zero, we apply Theorem 3.1 to show that there

exist constants K1 = K1(r, ε, H) and K2 = K2(r, ε, H) such that one of the following holds:

either |F | � K1, χ(B) � K2, or dimL(B, γ, F) � d. Since |F | = (1 − 1/r)|V (G)|, if |F | � K1

then

|V (G)| < K1

(
r

r − 1

)
.

Therefore, if either of the first two possibilities occur then the chromatic number of G[X1]

is bounded. We may therefore assume that dimL(B, γ, F) � d.

We now show that if dimL(B, γ, F) � d then G contains a copy of H , which follows from

the definition of near r-partite and partite-extendible. Since dimL(B, γ, F) � d, there are d

edges E1, . . . , Ed such that, for each x1 ∈ E1, . . . , xd ∈ Ed, we have that γ(x1) ∩ · · · ∩ γ(xd)
contains a copy of L; see Figure 3. Since h = |V (H)|, from each γ(x1) ∩ · · · ∩ γ(xd) we

can pick a copy of the complete (r − 1)-uniform, (r − 1)-partite hypergraph on h vertices

in each part, whose colour classes are of nearly equal size so that all these copies are

vertex-disjoint. Assume V1 = A1 ∪ · · · ∪ A� ∪ {a�+1} ∪ · · · ∪ {a�′ }, where A1, . . . , A� are the

special edges of H . Because � � �′ � d, we can embed a copy of H in G by mapping Ai
to Ei for 1 � i � �, mapping ai to any vertex in Ei for �+ 1 � i � �′, and mapping the
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. . .

E1 E2 E3

. . .

Ed

Figure 3. The structure guaranteed by dimension d.

components of H |V2∪···∪Vr to the complete (r − 1)-uniform, (r − 1)-partite hypergraphs as

follows.

Consider some component C in H |V2∪···∪Vr . Any such C is an (r − 1)-uniform, (r − 1)-

partite hypergraph on at most h vertices. Let D1, . . . , D�′ be the components of H[V1];

Di is either one of the special edges A1, . . . , A� or Di consists only of the vertex ai
for some �+ 1 � i � �′. Since V (Di) is partite-extendible to V2 ∪ · · · ∪ Vr , edges in C ,

extend to at most one vertex zi ∈ Di. Since vertices in V1 are embedded to vertices in

E1, . . . , Ed, this means that C must be embedded in γ(x1) ∩ · · · ∩ γ(xd) for some xi ∈ Ei.

It is crucial that C does not need to be embedded in γ(x) ∩ γ(y) for x �= y ∈ Ei; this

is what is guaranteed by the definition of partite-extendible. Embedding C is possible

since γ(x1) ∩ · · · ∩ γ(xd) contains a complete (r − 1)-uniform, (r − 1)-partite hypergraph h

vertices in each part, and h = |V (H)| (so even if more than one component is embedded

in the same γ(x1) ∩ · · · ∩ γ(xd), there is enough room for both of them.)

5. Colouring hypergraphs with bounded dimension

In this section we will prove Theorem 3.1. To prove Theorem 3.1, given a fibre bundle

(B, γ, F) satisfying the conditions of the theorem, we must show how to produce a proper

colouring of B with a bounded number of colours. We do this via a partition refinement

strategy. Below, we give an algorithm to refine a partition of (B, γ, F) (a partition is

formally defined below). The algorithm will increase a density measure (also defined

below) by a constant amount and add a constant number of new parts, so the refinement

will halt after a constant number of iterations. Each part of the resulting partition will

either correspond to an independent set in B or to a vertex set X where B[X] has a

maximal matching of bounded size (so B[X] has bounded chromatic number), therefore

producing a proper colouring of B with a bounded number of colours.

Throughout this section, fix rB � 2, rγ � 1, d ∈ Z+, 0 < ε < 1
4
r−d
B , and H an rγ-uniform

hypergraph with zero Turán density.
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Condition 5.1. Let (B, γ, F) be an (rB, rγ)-uniform fibre bundle for which dimH (B, γ, F) < d,

and if b ∈ V (B), then |γ(b)| � ε
(|F |
rγ

)
.

Define the following constants:

α =
1

1000

(
ε

4r
d
B+1

)d+1

, η =
1

4
ε2α, β = α1/η, K2 = �rBd(rdB + 2)1/η�.

Next, pick K1 sufficiently large that if |F | � K1 and S ⊆
(
F
rγ

)
with |S | � αβε

(|F |
rγ

)
, then S

contains a copy of H .

If (B, γ, F) is a fibre bundle, a partition P of (B, γ, F) is a family

P = {(X1, S1), . . . , (Xp, Sp)}

such that X1, . . . , Xp is a partition of V (B) and S1, . . . , Sp is a partition of
(
F
rγ

)
, where we

allow Xi = ∅ or Si = ∅. A partition Q is a refinement of a partition P if, for each (X, S) ∈ P ,

there exist (Y1, T1), . . . , (Yq, Tq) ∈ Q such that X = ∪Yi and S = ∪Ti. For X ⊆ V (B) and

S ⊆ 2F , the density of (X, S) is

d(X, S) =

⎧⎪⎪⎨
⎪⎪⎩

1 S = ∅ or X = ∅,

min

{
|γ(x) ∩ S |

|S | : x ∈ X

}
otherwise,

and define

d(P ) = min{d(X, S) : (X, S) ∈ P }.

A partition P is a partial colouring if, for every (X, ∅) ∈ P , we have that B[X] is

independent. The rank of a partition P is the minimum of |S | over all (X, S) ∈ P with

S �= ∅.

The key lemma in this section is the following.

Lemma 5.2. Let (B, γ, F) be a fibre bundle satisfying Condition 5.1 and |F | � K1. Let X ⊆
V (B) and S ⊆

(
F
rγ

)
with X �= ∅, d(X, S) � ε, and |S | � β

(|F |
rγ

)
. Then there exists a partition

Y1, . . . , Yq, Z of X and a partition T1, . . . , Tq of S such that q � rdB + 1 and

• |Ti| � α|S |,
• d(Yi, Ti) � min{1, η + d(X, S)},
• B[Z] is independent.

This lemma has an easy corollary.

Corollary 5.3. Let (B, γ, F) be a fibre bundle satisfying Condition 5.1 and |F | � K1. Let P

be a partial colouring of (B, γ, F) where P has rank at least αk
(|F |
rγ

)
with k � 1/η. Then there

exists a refinement Q of P such that

• |Q| � (rdB + 2)|P |,
• Q is also a partial colouring,
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• the rank of Q is at least αk+1
(|F |
rγ

)
,

• d(Q) � min{1, η + d(P )}.

Proof. For each pair (X, S) ∈ P with X �= ∅ and S �= ∅, apply Lemma 5.2. Since k � 1/η,

|S | � αk
(

|F |
rγ

)
� α1/η

(
|F |
rγ

)
� β

(
|F |
rγ

)
.

Lemma 5.2 produces Y1, . . . , Yq, Z and T1, . . . , Tq with q � rdB + 1. We replace the pair

(X, S) with the pairs (Y1, T1), . . . , (Yq, Tq), (Z, ∅). The resulting partition satisfies all the

required properties.

We can now easily prove Theorem 3.1.

Proof of Theorem 3.1. By assumption, (B, γ, F) satisfies Condition 5.1. Start with the

partition

P =

{(
V (B),

(
F

rγ

))}

and apply Corollary 5.3 repeatedly until the partition satisfies d(P ) = 1. Since the value

of d(P ) increases by η at each step, the partition is refined at most 1/η times, and so the

resulting partition P has at most (rdB + 2)1/η parts. Consider a part (X, S) ∈ P . If S = ∅,

then since P is a partial colouring B[X] must be independent, so χ(B[X]) = 1. If S �= ∅,

then because the partition was refined at most 1/η times we know that |S | � β
(|F |
rγ

)
, which

by the choice of β and K1 forces a copy of H in S . Since d(X, S) = 1 we must have S ⊆ γ(x)

for every x ∈ X, so that a matching of size d in B[X] witnesses that dimH (B, γ, F) � d.

Therefore, the maximum size of a matching in B[X] is d− 1. Since the size of a maximal

matching in B[X] is d− 1, it follows that χ(B[X]) � rB(d− 1) + 1. This implies that the

chromatic number of B is at most rBd(r
d
B + 2)1/η .

All that remains is to prove Lemma 5.2. Before proving this lemma, we make some

definitions. If E1, . . . , Et ∈ B and S ⊆
(
F
rγ

)
, then the minimum section density of E1, . . . , Et

with respect to S is

δ(E1, . . . , Et, S) = min

{
|γ(x1) ∩ · · · ∩ γ(xt) ∩ S |

|S | : x1 ∈ E1, . . . , xt ∈ Et

}
.

Notice that if E1, . . . , Ed are disjoint, δ(E1, . . . , Ed, S) > 0, S contains a constant fraction

of
(
F
rγ

)
, and F is large, then E1, . . . , Ed witness that dimH (B, γ, F) � d. Define constants

ψ1, . . . , ψd recursively by ψ1 = 1 and ψi+1 = 1
2
4−rdB εψi for 1 � i � d− 1.

Proof of Lemma 5.2. Start by greedily selecting disjoint edges E1, . . . , Ei of B[X] such

that δ(E1, . . . , Ei, S) � εψi. Since for every x ∈ X

|γ(x) ∩ S |
|S | � d(X, S) � εψ1,
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the greedy algorithm can start with any edge E1 in B[X]. Assume the greedy algorithm

has selected E1, . . . , Em with δ(E1, . . . , Em, S) � εψm but for every other edge E in B[X]

disjoint from E1, . . . , Em, we have δ(E1, . . . , Em, E, S) < εψm+1.

First, we prove that dimH (B, γ, F) � m. Let m′ = min{m, d}. Since δ(E1, . . . , Em′ , S) �
εψm′ � εψd, we have that every section of x1 ∈ E1, . . . , xm′ ∈ Em′ has size at least εψd|S | �
εα|S | � αεβ

(|F |
rγ

)
. By the choice of K1, the section of x1, . . . , xm′ contains a copy of H , and

so m′ < d and m′ = m. Then E1, . . . , Em witness that dimH (B, γ, F) � m.

We make the following definitions.

• Let R1, . . . , Rt be all rmB sections of v1 ∈ E1, . . . , vm ∈ Em intersected with S .

• Now remove elements from each Ri to form Ti via the following steps.

– Start with Ti = Ri for all 1 � i � t.

– If there exists some i �= j with Ti ∩ Tj �= ∅, divide Ti ∩ Tj into two sets A and B

with size as equal as possible and remove A from Ti and B from Tj . Repeat until

T1, . . . , Tt are pairwise disjoint.

– Remove elements of Ti arbitrarily until |Ti| < 2ε|S |. (If Ti is already smaller than

2ε|S |, nothing needs to be removed.)

• Let Tt+1 = S \ T1 \ · · · \ Tt.
• For 1 � i � t+ 1, define

Yi =

{
x ∈ X :

|γ(x) ∩ Ti|
|Ti|

� min{1, η + d(X, S)}
}
.

If some x appears in more than one Yi, remove it from all but the least-indexed Yi.

• Let Z = X \ Y1 \ · · · \ Yt+1.

By the definition of Yi, d(Yi, Ti) � min{1, η + d(X, S)}. Therefore, to finish the proof we

need to check that |Ti| � α|S | and B[Z] is independent.

Claim 1. |Ti| � 2ψm+1|S | � α|S | for all 1 � i � t+ 1.

Proof. Since δ(E1, . . . , Em, S) � εψm, each Ri has size at least εψm|S |, so initially each Ti
has size at least εψm|S |. Now consider how many elements are removed from Ti for some

fixed i. For each j �= i, half of Ti ∩ Tj will be removed from Ti, so even if Ti is contained

inside Tj , at most half of Ti will be removed. To deal with the case when Ti ∩ Tj is odd,

certainly the size of Ti is cut down to at most one-fourth. There are t− 1 = rmB − 1 � rdB
of these potential removals, so after making T1, . . . , Tt disjoint,

|Ti| � 1

4r
d
B

|Ri| � εψm

4r
d
B

|S | = 2ψm+1|S |.

Finally, since ψ1 = 1 and m � 1, ψm+1 < ε/4, we have that 2ψm+1|S | < 2ε|S |, so if after

making T1, . . . , Tt disjoint, Ti is still larger than 2ε|S |, cutting Ti down to size 2ε|S | still

preserves that |Ti| � 2ψm+1|S |. By the choice of constants, 2ψm+1 � α so |Ti| � α|S |.
Now consider the size of Tt+1. Since each Ti with i � t has size at most 2ε|S | and we

assumed that ε < 1
4
t−1, the set Tt+1 has at least 1

2
|S | � 2ψm+1|S | � α|S | elements.
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Claim 2. B[Z] is independent.

Proof. Assume E is an edge in B[Z]. We would like to show that there exists some

x ∈ E and some Tj such that

|γ(x) ∩ Tj |
|Tj |

� min{1, η + d(X, S)}, (5.1)

since this would show that x ∈ Yj , contradicting that x ∈ Z . Assume E intersects some Ei
for some 1 � i � m, with x ∈ E ∩ Ei. Since x ∈ Ei there is a section Rj that selects x, by

which we mean that Rj was formed by choosing x from Ei. Fix some such section Rj that

selects x, in which case Rj ⊆ γ(x). Then Tj ⊆ Rj ⊆ γ(x) and |γ(x) ∩ Tj |/|Tj | = 1, so (5.1)

is satisfied.

Now assume E is disjoint from E1, . . . , Em. Since the greedy algorithm could not continue,

δ(E1, . . . , Em, E, S) < εψm+1, which implies that there exists some v1 ∈ E1, . . . , vm ∈ Em, x ∈
E such that

|γ(v1) ∩ · · · ∩ γ(vm) ∩ γ(x) ∩ S | < εψm+1|S |.

By the definition of Ti, there exists some Ti such that Ti ⊆ γ(v1) ∩ · · · ∩ γ(vm) ∩ S .

Therefore,

|γ(x) ∩ Ti| < εψm+1|S | � ε

2
|Ti|,

where the last inequality uses

|S | � 1

2ψm+1
|Ti|

from Claim 1. Assume that for every j �= i, (5.1) fails. Then

|γ(x) ∩ S | = |γ(x) ∩ Ti| +
∑
j �=i

|γ(x) ∩ Tj | � ε

2
|Ti| +

∑
j �=i

(η + d(X, S))|Tj |.

Dividing through by |γ(x) ∩ S |, we obtain

1 � ε

2

|Ti|
|S |

|S |
|γ(x) ∩ S | + (η + d(X, S))

(
1 − |Ti|

|S |

)
|S |

|γ(x) ∩ S | .

Because

|S |/|γ(x) ∩ S | � 1

d(X, S)
� 1

ε
,

we have

1 � 1

2

|Ti|
|S | +

(
η

ε
+ 1

)(
1 − |Ti|

|S |

)
. (5.2)

Let w = |Ti|/|S |. The right-hand side of the above inequality is a weighted average of 1/2

and (1 + η/ε):

1

2
w +

(
1 +

η

ε

)
(1 − w).
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Since 1/2 < 1 + η/ε, this will be maximized when w is as small as possible. By Claim 1,

w � α, and we have

1

2
α+

(
1 +

η

ε

)
(1 − α) <

1

2
α+ 1 +

η

ε
− α � 1 +

η

ε
− 1

2
α < 1.

This implies that for any w � α the inequality in (5.2) is false. This contradiction shows

that there must be some j �= i such that |γ(x) ∩ Tj |/|Tj | is at least η + d(X, S), which

contradicts that E is contained in B[Z].

Thus B[Z] is independent and the proof is complete.

6. Extremal results for critical hypergraphs

In this section we prove Theorems 2.2 and 2.4. First, by Lemma 2.3, Cr
2k+1 is mono near

r-partite. Thus to complete the proof of Theorem 2.4 we need only prove that C3
2k+1 and

C4
2k+1 are stable with respect to T3(n) and T4(n). One tool we will use is the hypergraph

removal lemma of Gowers, Nagle, Rödl and Skokan [17, 28, 31, 32, 36].

Theorem 6.1. For every integer r � 2, ε > 0, and r-uniform hypergraph H , there exists a

δ > 0 such that any r-uniform hypergraph with at most δn|V (H)| copies of H can be made

H-free by removing at most εnr edges.

The second tool we will use is supersaturation, proved by Erdős and Simonovits [8].

There are several equivalent formulations of supersaturation; the one we will use is the

following.

Theorem 6.2 (Corollary 2 of [8]). Let Kr
t1 ,...,tr

be the complete r-uniform, r-partite hyper-

graph with part sizes t1, . . . , tr . Let t =
∑
ti. For every ε > 0, there exists a δ = δ(r, t, ε)

such that any r-uniform hypergraph with at least εnr edges contains at least δnt copies

of Kr
t1 ,...,tr

.

For any hypergraph H , let H(t) denote the hypergraph obtained from H by blowing

up each vertex into an independent set of size t. An easy extension of supersaturation is

the following (see Theorem 2.2 in the survey by Keevash [19]).

Corollary 6.3. For every r, t � 2, ε > 0, and r-uniform hypergraph H , there exists an n0

such that if n � n0 and G is an n-vertex, r-uniform hypergraph that contains at least εn|V (H)|

copies of H , then G contains a copy of H(t).

Next, we will need stability results for F5 and the book B4,2, proved by Keevash

and the last author [20] and Pikhurko [29] respectively. Let the book Br,m be the r-

uniform hypergraph with vertices x1, . . . , xr−1, y1, . . . , yr and hyperedges {x1, . . . , xr−1, yi}
for 1 � i � m and {y1, . . . , yr}. Note that F5 = B3,2.
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Theorem 6.4 ([20]). F5 is stable with respect to T3(n).

Theorem 6.5 ([29]). B4,2 is stable with respect to T4(n).

The last piece of the proof of Theorem 2.4 is the following lemma.

Lemma 6.6. If H is an r-uniform hypergraph that is stable with respect to Tr(n) and F is

a non-r-partite subhypergraph of H(t) for some t, then F is also stable with respect to Tr(n).

Proof. First, π(F) � r!/rr . Indeed, since F is non-r-partite, Tr(n) is an F-free hypergraph.

To complete the proof that F is stable with respect to Tr(n), it is therefore enough to

prove that, given ε > 0, there exists a δ > 0 such that if G is an F-free hypergraph with

at least tr(n) − δnr edges, then G differs from Tr(n) in at most εnr edges. This is enough

since this implies that π(F) � r!/rr so π(F) = r!/rr .

Let h denote the number of vertices in H and let ε > 0 be fixed. We now show how to

define δ. Since H is stable with respect to Tr(n), there exists an α � ε/2 such that if G′

has at least tr(n) − 2αnr edges and contains no copy of H , then G′ differs from Tr(n) in

at most εnr/2 edges. By Theorem 6.1, there exists β = β(α) such that if there are at most

βnh copies of H in G, then by deleting at most αnr edges of G we can remove all copies

of H . Lastly, choose δ � β.

Now, fix some G that contains no copy of F and has at least tr(n) − δnr edges. Because

G contains no copy of F it contains no copy of H(t). Therefore, by Corollary 6.3 there

are at most βnh copies of H in G. By Theorem 6.1, we may therefore delete αnr edges in

order to find a subhypergraph G′ of G that contains no copy of H . Notice that G′ has at

least tr(n) − (δ + α)nr edges, and (δ + α) < 2α, so G′ differs from Tr(n) in at most εnr/2

edges. Therefore, G differs from Tr(n) in at most (α+ ε/2)nr edges, and α+ ε/2 < ε.

It is easy to see that Cr
2k+1 is a non-r-partite subhypergraph of Br,2(k). Thus Theorem 6.4

combined with Lemma 6.6 shows that C3
2k+1 is stable with respect to T3(n), and similarly

Theorem 6.5 combined with Lemma 6.6 shows that C4
2k+1 is stable with respect to T4(n),

which completes the proof of Theorem 2.4.

For r � 5, a result of Frankl and Füredi [11] can be used to show that Cr
2k+1 is not

critical.

Lemma 6.7. For r � 5 and every k � 1,

π(Cr
2k+1) >

r!

rr
.

Proof. Let Hn be the family of r-uniform hypergraphs H on n vertices that satisfy

|E1 ∩ E2| � r − 2 whenever E1 and E2 are distinct edges of H . It is easy to check that for

any t > 0 the blow-up H(t) of H is Cr
2k+1-free. Therefore, ex(n, Cr

2k+1) � maxH∈Hn/t
{|H(t)|}.

Frankl and Füredi [11] showed that, for r � 7,

max
H∈Hn/t

{|H(t)|} > nr

r!

1(
r
2

)
e1+1/(r−1)

.
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Thus, for r � 7,

π(Cr
2k+1) >

r!

rr
.

All that remains is the case r = 5 or 6. Let F be an n-vertex, r-uniform hypergraph

where no three edges E1, E2, E3 satisfy |E1 ∩ E2| = r − 1 and E1ΔE2 ⊆ E3. Frankl and

Füredi [11] proved that if r = 5 then, for all such F , we have that |E(F)| � 6
114 n

5. In

addition, if 11 divides n there exists a hypergraph F achieving equality. They also proved

that if r = 6 then for all such F we have that |E(F)| � 11
125 n

6; again, if 12 divides n then

there exists a hypergraph F achieving equality.

Notice that if H is the r-uniform hypergraph consisting of three hyperedges E1, E2,

and E3 such that |E1 ∩ E2| = r − 1 and E1ΔE2 ⊆ E3, then Cr
2k+1 is a subhypergraph of a

blow-up of H . Using supersaturation and an argument similar to that used in the proof

of Lemma 6.6, it follows that

π(C5
2k+1) =

6!

114
>

5!

55
and π(C6

2k+1) =
11 · 6!

125
>

6!

66
,

as claimed.

Proof of Theorem 2.2. Let H be a critical n-vertex, r-uniform hypergraph. Suppose H

has h vertices and assume that E is the special edge of a near r-partition that exhibits

the fact that H is critical, that is, E has at least r − 2 vertices of degree one. Suppose G

is an H-free, r-uniform, n-vertex hypergraph with |G| � tr(n). We would like to show that

G = Tr(n). Partition the vertices of G into parts X1, . . . , Xr such that the number of edges

with one vertex in each Xi is maximized. Let ε1 = (2r)−h, let ε2 = ε1/8r
3, let δ = δ(r, h, ε2)

from Theorem 6.2, and let ε < 2−2rε1ε2δ. Organize r-sets of vertices into the following

sets.

• Let M be the set of r-sets with one vertex in each of X1, . . . , Xr that are not edges of

G (the missing cross-edges).

• Let B be the collection of edges of G that have at least two vertices in some Xi (the

bad edges).

• Let G′ = G− B +M, so that G′ is a complete r-partite hypergraph.

• Let Bi = {W ∈ B : |W ∩Xi| � 2}.

Since B = ∪iBi, there is some Bi that has size at least 1
r
|B|. Assume without loss of

generality that |B1| � 1
r
|B|. For a ∈ X1, make the following definitions.

• Ba = {W ∈ B1 : a ∈ W }.

• Let Ca,i be the edges in Ba that have exactly two vertices in X1 and exactly one vertex

in each Xj with j � 2 and j �= i.

• Let Da = Ba \ Ca,2 \ · · · \ Ca,r .
First, |B| < εnr because G is stable with respect to Tr(n). Also, since |G| � tr(n), the

number of r-sets in M is at most the number of edges in B, so |M| � |B| < εnr .

In the rest of the proof, we will assume that B is non-empty and then count the r-sets in

M in several different ways. Our counting will imply that |M| � εnr , and this contradiction

will force B = ∅ and so G = Tr(n). We will count r-sets in M by counting embeddings of
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H − E into G′ that also map E to some element of B. Since G is H-free, each embedding

must use at least one edge in M. Let Φ be the collection of embeddings φ : V (H) → V (G′)

of H − E into G′, by which we mean that φ is an injection and, for all F ∈ H \ E,

φ(F) = {φ(x) : x ∈ F} ∈ G′.

We say that φ ∈ Φ is W -special if φ(E) = W and a-avoiding if a ∈ V (G) and some degree

one vertex in E is mapped to a. If W ∈ B and φ is W -special, then φ must use at least

one edge of M. Call one of these edges the missing edge of φ.

Claim 1. For φ ∈ Φ and v ∈ V (H), there are at least 1
2r
n embeddings φ′ ∈ Φ, where

φ(x) = φ′(x) for x �= v and φ(v) �= φ′(v).

Proof. This follows easily because G′ is a complete r-partite hypergraph for which each

class has size about n/r, and φ(v) can be replaced by any unused vertex in the Xi that

contains φ(v).

Fix some W ∈ B, and consider when there exists a W -special embedding of H − E.

Since W ∈ Bi for some i, let w1 �= w2 ∈ W ∩Xi. Then there exists an embedding of H − E

where w1 and w2 are used for the non-degree one vertices in the special edge of H . Since

the other vertices in the special edge have degree zero in H − E, the vertices in the special

edge can then be embedded to W . Thus for any W ∈ B, by Claim 1 there are at least

ε1n
h−r W -special embeddings of H − E, since we can vary any vertex of H not in W .

The situation with a-avoiding is more complicated. If W ∈ Ca,i, then the only choice of

w1 and w2 that we are guaranteed to have are the two vertices in W ∩X1, one of which

is a. Thus in a W -special embedding, the only way we can guarantee an embedding is

by mapping a vertex whose degree is not one to a. Therefore, only when W ∈ Da can we

guarantee that there exists at least ε1n
h−r W -special, a-avoiding embeddings of H − E.

Claim 2. For every a ∈ X1, |Da| � ε2n
r−1.

Proof. Assume there exists a ∈ X1 with |Da| � ε2n
r−1. We count a-avoiding, W -special

embeddings of H − E into G′ where W ∈ Da. For each W ∈ Da, we argued above that

there are at least ε1n
h−r embeddings. Since |Da| � ε2n

r−1, the number of a-avoiding

embeddings that are W -special for some W ∈ Da is at least ε1ε2n
r−1 · nh−r = ε1ε2n

h−1.

Fix some L ∈ M. We want to count the number of a-avoiding embeddings that are

W -special for some W ∈ Da and have missing edge L. An upper bound on the number

of such embeddings will be the number of choices for W times the number of choices

for the h− |W ∪ L| vertices of H mapped outside W ∪ L. Since all these embeddings are

a-avoiding, L cannot contain a. For each 0 � � � r, there exists at most
(
r
�

)
choices for

the intersection between L and W , at most nr−�−1 choices of W ∈ Da with |W ∩ L| = �

(here it is crucial that a ∈ W and a /∈ L), and at most nh−2r+� choices for the vertices of

H not in W ∪ L. Thus each L ∈ M is in at most 2rnh−r−1 potential embeddings. Since

there are at least ε1ε2n
h−1 embeddings, M must have size at least 2−rε1ε2n

r , contradicting

the choice of ε.
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Claim 3. For every a ∈ X1 and every 2 � i � r, |Ca,i| � ε2n
r−1.

Proof. Assume there exist some a and i with |Ca,i| � ε2n
r−1. The proof is similar to the

proof of Claim 2, except now we cannot count a-avoiding embeddings. In the previous

claim, we used the a-avoiding property to imply that the missing edge does not contain

a. In this proof, we will instead guarantee that the missing edge cannot contain a by only

counting embeddings that map all edges incident to φ−1(a) into G.

Let v be one of the non-degree one vertices in the special edge of H , and define

Hv = {F ∈ H : v ∈ F, F �= E}, that is, all edges of H containing v that are not the special

edge. Let Za = {F ∈ G \ B : a ∈ F}, that is, all cross-edges of G that contain a. We now

count embeddings φ ∈ Φ that are W -special for some W ∈ Ca,i, map v to a, and all edges

of Hv are mapped to edges in Za. For these embeddings, since edges in Hv are mapped to

edges in Za ⊆ G, the missing edge cannot contain a.

First, |Za| � |Ca,i|, because otherwise we could move a to Xi and increase the number of

edges across the partition, and we chose the partition X1, . . . , Xr to maximize the number

of cross-edges. Let H ′ = {F − v : F ∈ Hv} and Z ′ = {F − a : F ∈ Za}. Then H ′ and Z ′ are

(r − 1)-uniform, (r − 1)-partite hypergraphs, and Z ′ has at least |Ca,i| � ε2n
r−1 edges. Let

t = |V (H ′)|. Then Theorem 6.2 shows that Z ′ contains at least δnt copies of H ′, so there

are at least ε2n
r−1 · δnt · ε1n

h−r−t = ε1ε2δn
h−1 embeddings of H − E that are W -special

for some W ∈ Ca,i, map v to a, and the edges in Hv are embedded into Za.

Now fix L ∈ M, and consider how many of these embeddings have L as their missing

edge. The computation is almost the same as in the previous claim. For each �1, �2,

there are
(
r
�1

)
choices for L ∩W , there are

(
r
�2

)
choices for L ∩ φ(Hv), there are nr−1−�1

choices for W (here we use that L does not contain a), nt−�2 choices for φ(Hv), and

nh−2r−t+�1+�2 choices for the other vertices of H . Thus each L is in at most 22rnh−r−1

potential embeddings. Since there are at least ε1ε2δn
h−1 embeddings, M must have size at

least 2−2rε1ε2δn
r , contradicting the choice of ε.

Claims 2 and 3 imply that |Ba| < 2rε2n
r−1 for each a. Define

A = {a ∈ X1 : dM(a) � 2r2ε2n
r−1}.

As in the proofs of the previous two claims, we would like to count embeddings of H − E

to obtain a lower bound on |M|. Once again, the main difficulty is controlling how the

missing edge can intersect W . If there were some W with W ∩ A = ∅, then there would

be few missing edges intersecting this W , which is how we will overcome this difficulty in

this part of the proof.

Claim 4. There exists some W ∈ B1 with W ∩ A = ∅.

Proof. Assume that every W ∈ B1 contains an element of A. Then
∑

a∈A |Ba| � |B1|.
Since |Ba| < 2rε2n

r−1 for every a, we have the following contradiction:

2rε2n
r−1|A| >

∑
a∈A

|Ba| � |B1| � 1

r
|B| � 1

r
|M| � 1

r

∑
a∈A

dM(a) � 2r2ε2

r
nr−1|A|.
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We now complete the proof by counting the W -special embeddings whose missing edge

does not intersect W . There are at least ε1n
h−r embeddings that are W -special by Claim 1.

If at least half of these have missing edge intersecting W , then W would contain a vertex

in A. Thus there are at least (ε1/2)nh−r W -special embeddings where the missing edge

does not intersect W . Each L ∈ M is in at most nh−2r such potential embeddings, so M

has at least (ε1/2)nr elements, contradicting the choice of ε.

7. Chromatic threshold of F5-free hypergraphs

7.1. An upper bound on the chromatic threshold of F5-free graphs

In this section we prove the upper bound in Theorem 2.7. As in Section 4, we will give

an upper bound on the chromatic threshold by first proving that large dimension forces

a copy of F5, and then by applying Theorem 3.1. Let (B, γ, F) be an (rB, rγ)-uniform

fibre bundle, and make the following definition. A cut in (B, γ, F) is a pair (X, S) such

that X ⊆ V (B), S ⊆
(
F
rγ

)
, and if γ(x) ∩ S �= ∅, then x ∈ X. In other words, the fibres that

intersect S come exclusively from X. A k-cut is a cut (X, S) with |X| � k. The size of a

k-cut is the size of |S |.
We now sketch the proof of the upper bound in Theorem 2.7. Let G be an n-vertex,

3-uniform, F5-free hypergraph with minimum degree at least c
(
n
2

)
. Let (G, γ, F) be the

neighbourhood bundle of G, let H = Kq,q for some large constant q (see the definition

of q in the first line of the proof of Lemma 7.2), and assume dimH (G, γ, F) is large. We

would like to find a copy of F5 in G. We first use the fact that dimH (G, γ, F) is large to

find a set U of vertices of G such that G[U] has small strong independence number. We

then argue that because the minimum degree is large, there must be some vertices x, y

such that N(x, y) = {z : xyz ∈ G} has large intersection with U. Next, we show that since

N(x, y) has large intersection with U and G[U] has small strong independence number,

there must be an edge E with at least two vertices in N(x, y) ∩U, which gives a copy of

F5.

The best upper bound on the chromatic threshold will come from the lowest required

minimum degree needed in the above proof. The minimum degree is used above to prove

that there exists some x, y with N(x, y) ∩U large. If we can find a large cut (X, S) in

(G, γ, F) and we make U large enough, we could remove X from U while still maintaining

all the useful properties of U. Then for all {x, y} ∈ S , we know that N(x, y) ∩ (U −X) = ∅.

Since there are now fewer pairs {x, y} in
(
F
2

)
with N(x, y) ∩ (U −X) �= ∅, we can require

a weaker lower bound on the minimum degree of G to find {x, y} with N(x, y) ∩U large.

In other words, the larger the cut of (G, γ, S) we can find, the better upper bound on

the chromatic threshold we can prove. This is encoded in the following theorem, which

computes the relationship between the minimum degree and the maximum size of a k-cut.

Theorem 7.1. Let 0 � c � 1/5, and fix an integer k and a constant c′ > c. Then there

exists a constant L = L(c, c′, k) such that the following holds. Let G be an n-vertex, F5-free

hypergraph with δ(G) � c′(n
2

)
and let (G, γ, F) be the neighbourhood bundle of G. Assume

(G, γ, F) contains a k-cut of size at least (1 − 5c)
(
n
2

)
. Then χ(G) � L.
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Note that if c = 1/5, then 1 − 5c = 0 and so this theorem directly proves an upper

bound of 1/5 on the chromatic threshold of F5-free hypergraphs. The first part of the

proof of Theorem 7.1 is to find a set U with small strong independence number.

Lemma 7.2. Let ε > 0 be fixed. Then there exists constants d = d(ε) and q = q(ε) such

that the following holds. Let G be an n-vertex, 3-uniform hypergraph and let (G, γ, F) be the

neighbourhood bundle of G. Let H = Kq,q and assume dimH (G, γ, F) � d. Then there exists

a vertex set U ⊆ V (G) such that |U| = 5d and any W ⊆ U of size at least (1 + ε)d+ 100

has the following property. There exist three vertices a1, a2, a3 in U such that ai forms an

edge of G[U] with two vertices of W \ {a1, a2, a3}.

Proof. Let d = 100 + 100/ε2 and q = 3d+ 2 · 3d. Since dimH (G, γ, F) � d, there exists a

matching E1, . . . , Ed such that for each w1 ∈ E1, . . . , wd ∈ Ed the section of {w1, . . . , wd}
contains a copy of Kq,q . (See Figure 3 in Section 4 for a picture of this structure.) Since

q = 3d+ 2 · 3d, from each of these 3d copies of Kq,q we can pick a copy of K2 such that

each K2 is vertex-disjoint from E1 ∪ · · · ∪ Ed and all these 3d copies of K2 are vertex-

disjoint. Now for 1 � i � d, let yizi be a randomly chosen copy of K2 (with replacement),

where each of the 3d copies of K2 are equally likely. Let Z = {y1, . . . , yd, z1, . . . , zd} and

U = Z ∪ E1 ∪ · · · ∪ Ed. With probability at most(
d

2

)
1

3d
<

1

4
,

some copy of K2 is selected more than once. To finish the proof, we just need to show

that with probability at most 1/4, for any sufficiently large subset W of U there are three

edges that each contain at least two vertices of W and each have at least one vertex that

is not shared by either of the other two. Indeed, in this case the union bound shows that

with probability at least 1/2, |U| = 5d and any subset of size at least (1 + ε)d+ 100 has

this property.

Let us call a set with the above property a ‘good’ set, and any set not having this

property a ‘bad’ set. Notice that any bad subset W of U contains at most d+ 5 vertices

from E1 ∪ · · · ∪ Ed. Otherwise, there are at least three edges, say without loss of generality

E1, E2, and E3, from the matching that contain at least two vertices of the subset. In

this case, let ai ∈ Ei \W (or, if Ei \W = ∅, let ai be any vertex in Ei) to see that W is

a good set. Similarly, any bad subset W of U contains at most d+ 2 vertices from Z .

Therefore, any bad subset of U with at least (1 + ε)d+ 100 vertices must have at least

εd+ 90 vertices in E1 ∪ · · · ∪ Ed and at least εd+ 90 vertices in Z . We need to prove that

this occurs with small probability.

Let x ∈ E1 ∪ · · · ∪ Ed and 1 � i � d. We say that {yi, zi} is built from x if {yi, zi} is the

copy of K2 assigned to a section of W where x ∈ W . That is, say x ∈ Ej . Each section

picks one of the three vertices of Ej and if the section picks x and {yi, zi} is the edge

chosen from the copy of Kq,q chosen from this section, then we say that {yi, zi} is built

from x. For x ∈ E1 ∪ · · · ∪ Ed and 1 � i � d, let Ax,i be the following event:

Ax,i : {yi, zi} is built from x.
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First, P[Ax,i] = 1/3. Indeed, say x ∈ Ej and note that there are 3d copies of K2 in total

(there are three choices from each of E1, . . . , Ed for the section) and there are 3d−1 copies

of K2 built from x. Therefore, when randomly picking copies of K2, the probability that

{yi, zi} is built from x is exactly 1/3.

Let

S = {S ⊆ E1 ∪ · · · ∪ Ed : |S | = εd and S has at most one vertex in each Ei}

We claim that the events Ax,i for x ∈ S are mutually independent for every S ∈ S . Indeed,

fix some Q ⊆ S . Then

P

[∧
x∈Q

Ax,i

]
=

3d−|Q|

3d
=

(
1

3

)|Q|

since there are 3d−|Q| of the copies of K2 built from x for x ∈ Q and built on any of three

vertices in the edges Ej that do not contain a vertex of Q (recall that S has at most one

vertex in each Ej). Thus

P[∧x∈QAx,i] =
∏
x∈Q

P[Ax,i],

so that for every S ∈ S the events Ax,i for x ∈ S are mutually independent. Therefore,

P

[∧
x∈S

Ax,i

]
=

(
2

3

)|S |
.

Let BS,i be the event

BS,i : no edge of G contains a vertex of S and both yi and zi.

If BS,i holds, then for every x ∈ S it is the case that the event Ax,i fails since if Ax,i holds

then {yi, zi, x} ∈ E(G). Thus

P[BS,i] � P

[∧
x∈S

Ax,i

]
=

(
2

3

)|S |
.

Let XS,i be the indicator random variable for the event BS,i. For each T ⊆ [d] with

|T | = εd, let BS,T be the event
∑

i∈T XS,i � 2. The events BS,i are mutually independent

for i ∈ T since the copies of K2 were selected with replacement, so that

P[BS,T ] �
(

2

3

)|S |(|T |−2)(|T |
2

)
.

Let XS,T be the indicator random variable for the event BS,T and let X be the sum of all

indicator random variables over all S ∈ S and all T ⊆ [d] with |T | = εd. We now have(
d
εd

)
choices for T and 3εd

(
d
εd

)
choices for S so that

E[X] =
∑

XS,T � 3εd
(
d

εd

)2(
2

3

)εd(εd−2)(
εd

2

)
�

(
3

(
e

ε

)2(
2

3

)εd−2)εd
ε2d2

2
<

1

4
.

By Markov’s inequality, the probability that X � 1 is at most 1/4, so with probability at

most 1/4, some BS,T holds. If W is a bad subset of U with |W | � (1 + ε)d+ 100, then
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|W ∩ Z | � εd+ 90 and |W ∩ (E1 ∪ · · · ∪ Ed)| � εd+ 90. Also, W uses at most one vertex

from all but at most two pairs in Z , so there exists T ⊆ [d] of size εn such that for i ∈ T

exactly one of yi and zi is in W . Since W uses at most one vertex from all but at most

two edges Ei, there exists S ⊆ W ∩ (E1 ∪ · · · ∪ Ed) with |S | = εd and S ∈ S . For such S

and T , the event BS,T holds since if not, then without loss of generality assume 1, 2, 3 ∈ T

and XS,1, XS,2, XS,3 = 1. Then let ai ∈ {yi, zi} \W to see that W is a good set.

Therefore, the probability that some BS,T holds is an upper bound for the probability

that no subset of U of size at least (1 + ε)d+ 100 is bad. Since the probability that some

BS,T holds is at most 1/4, the proof is complete.

We can now prove Theorem 7.1.

Proof of Theorem 7.1. Pick ε so that c′ = (1 + 2ε)c and let d = d(ε) and q = q(ε) be

given by Lemma 7.2, and also assume that d is large enough that 5dε > k(1 + 2ε).

Suppose that if H = Kq,q then dimH (G, γ, F) � d. Then by Theorem 3.1, there exist

constants K1 = K1(ε, d, H) and K2 = K2(ε, d, H) (note that K1 and K2 depend only on

c, c′, k) such that either |F | < K1 or χ(G) < K2. Since |F | = |V (G)|, this implies that

χ(G) < max{K1, K2}.

We can therefore assume that dimH (G, γ, F) � d. Let U be the set given by Lemma 7.2.

Let (X, S) be a k-cut of size at least (1 − 5c)
(
n
2

)
. Let G′ be the bipartite graph with

partite sets A = U \X and B =
(
V (G)

2

)
\ S , where {u, {v, w}} is an edge in G′ if and only

if {u, v, w} is an edge in G. |A| � 5d− |X|, so G′ contains at least (5d− |X|)δ(G) edges.

|B| =
(
n
2

)
− |S |, so there is some x �= y such that dG′ ({x, y}) is at least

(5d− |X|)δ(G)(
n
2

)
− |S |

�
(5d− k)(1 + 2ε)c

(
n
2

)
5c

(
n
2

) =
(5d− k)(1 + 2ε)

5
> (1 + ε)d+ 100.

This implies that there is some x, y with |N(x, y) ∩U| > (1 + ε)d+ 100. Then by

Lemma 7.2, there exist three distinct vertices a1, a2, a3 in U such that ai forms an edge Ei of

G[U] with two vertices of (N(x, y) ∩U) \ {a1, a2, a3}. There exists i ∈ {1, 2, 3} such that ai �=
x, y. Then x, y together with Ei form a copy of F5 in G. This contradiction completes the

proof.

7.2. Finding a large cut in an F5-free hypergraph

In order to use Theorem 7.1 to prove the upper bound in Theorem 2.7, we now need to

show the existence of a large cut. Note that in Theorem 7.1 the bound on the chromatic

number depends on k but there are no other restrictions on k. Thus to prove an upper

bound on the chromatic threshold of a F5-free graph G, one can pick any fixed integer

k and ask what is the size of the largest k-cut. In the following lemma, we set k = 5 and

prove that if δ(G) � c′(n
2

)
with c′ > c, then there exist a 5-cut of G of size approximately

4c2
(
n
2

)
. Solving 4c2 = 1 − 5c gives c = (

√
41 − 5)/8, the bound in Theorem 2.7.

We suspect that the bound on the chromatic threshold of F5-free hypergraphs can be

improved by finding a larger cut, perhaps by increasing k. In order to achieve a bound of

c = 6/49, we would need to find a cut of size s
(
n
2

)
with s = 1 − 5c = 539/36c2 ≈ 15c2.
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Lemma 7.3. Let 0 < c < c′ be fixed. There exists a constant n0 = n0(c, c′) such that for

all n > n0 the following holds. Let G be an n-vertex, 3-uniform, F5-free hypergraph with

δ(G) � c′(n
2

)
. Let (G, γ, F) be the neighbourhood bundle of G. Then (G, γ, F) has a 5-cut of

size at least 4
(
c(n−1)

2

)
.

Combining Theorem 7.1 with Lemma 7.3, we can prove Theorem 2.7.

Proof of Theorem 2.7. Let c = (
√

41 − 5)/8, let c′ > c be fixed, and let G be any n-

vertex, 3-uniform, F5-free graph with minimum degree at least c′(n
2

)
. Let (G, γ, F) be the

neighbourhood bundle of G. Let b = (c′ + c)/2 so that c′ > b > c. Then by Lemma 7.3,

either |V (G)| is bounded or (G, γ, F) contains a 5-cut of size at least 4
(
b(n−1)

2

)
. Since b > c,

if n is large enough this is at least 4c2
(
n
2

)
. Notice that 4c2 = 1 − 5c, so Theorem 7.1 implies

that the chromatic number of G is bounded.

The first step in the proof of Lemma 7.3 is the following lemma.

Lemma 7.4. In a graph G, we call a non-edge uv /∈ E(G) good if N(u) ∩N(v) �= ∅. If G is a

triangle-free graph with n vertices and m edges, then G has at least m− n/2 good non-edges.

Proof. We prove this by induction on n. It is obviously true for n = 1 and n = 2. Now

assume n > 2. If some component of G is not regular, then there exist vertices u, v in

that component such that u ∈ N(v) and d(u) < d(v). Then G− u has n− 1 vertices and

m− d(u) edges. By induction, G− u has at least m− d(u) − (n− 1)/2 good non-edges.

For any vertex w ∈ N(v) − u, uw is a good non-edge, so G has at least m− d(u) −
(n− 1)/2 + d(v) − 1 � m− n/2 good non-edges. If all components of G are regular, then

pick one component K . Assume K is r-regular, choose a vertex v in K , and let N2(v) =

{u : there exists a P3 connecting u and v}. If |N2(v)| � r, then by the induction hypothesis

G− v has at least m− r − (n− 1)/2 good non-edges, and since for any vertex u ∈ N2(v) it

is the case that uv is a good non-edge, G has at least m− r − (n− 1)/2 + |N2(v)| � m− n/2

good non-edges. If |N2(v)| < r, then since K is triangle-free and r-regular, K is the complete

bipartite graph Kr,r , which has r2 edges and r2 − r good non-edges. Now G−K has n− 2r

vertices and m− r2 edges, so by induction it has m− r2 − (n− 2r)/2 good non-edges. Then

G has m− r2 − (n− 2r)/2 + r2 − r = m− n/2 good non-edges.

Proof of Lemma 7.3. We examine the copies of F4 in G, where F4 is the hypergraph

with vertex set {1, 2, 3, 4} and edges {1, 2, 3}, {1, 2, 4}, and {2, 3, 4}.

Case 1. There exists a vertex v of G such that v is not contained in any copy of F4.

Consider L = γ(v)[V (G) − v], which is a triangle-free graph with n− 1 vertices and at least

c
(
n
2

)
edges. By Lemma 7.4, L has at least c

(
n
2

)
− (n− 1)/2 good non-edges. Let X = ∅ and

S be the set of these good non-edges. We claim that (X, S) is a cut in (G, γ, F). Suppose

for contradiction that there exists some x ∈ V (G) and {u, w} ∈ S such that {u, w, x} ∈ G.

Pick a vertex y from NL(u) ∩NL(w). Then u, v, w, x, y form a copy of F5 in G, which is a

contradiction.
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Case 2. Every vertex of G is contained in some copy of F4. Pick some U ⊆ V (G) such

that G[U] = F4, let U = {u1, u2, u3, u4}, and let G′ =
⋃4
i=1 γ(ui). Consider γ(ui) ∩ γ(uj) for

i �= j. If γ(ui) ∩ γ(uj) contains a matching of size two, then G contains a copy of F5.

Say ab, cd ∈ γ(ui) ∩ γ(uj) with a, b, c, d distinct. Then since G[U] = F4, there is an edge

E = {ui, uj , w} ∈ G. If w �= a and w �= b, then a, b, ui, uj , w form a copy of F5 and if w = a

or w = b, then c, d, ui, uj , w form a copy of F5. Thus γ(ui) ∩ γ(uj) is a star so has at most n

elements. Since each γ(x) has size at least c′(n
2

)
, G′ has at least

4c′
(
n

2

)
−

(
4

2

)
n > 4c

(
n

2

)

edges if n is large enough.

Then G′ has n vertices and at least 4c
(
n
2

)
edges, so there exists a vertex v whose degree

in G′ is at least 4c(n− 1). Let N denote the neighbourhood of v in G′ and let N1, . . . , N4

be a partition of N such that for every 1 � i � 4 and every vertex w ∈ Ni, vw ∈ γ(ui). Let

X = U ∪ {v} and S =
⋃4
i=1

(
Ni
2

)
, so that |X| = 5 and

|S | � 4

(
|N|/4

2

)
= 4

(
c(n− 1)

2

)
.

We claim that (X, S) is a cut in (G, γ, F). Suppose for contradiction that there exists some

z /∈ X such that γ(z) ∩ S �= ∅. Pick {x, y} ∈ γ(z) ∩ S , then {x, y} ⊆ Ni for some 1 � i � 4.

Now v, ui, x, y, z form a copy of F5, which is a contradiction.

From these two cases we can see that (G, γ, F) has a 5-cut of size at least

min

{
c

(
n

2

)
− n− 1

2
, 4

(
c(n− 1)

2

)}
.

Because G is F5-free, it follows that c � 2/9 and therefore

min

{
c

(
n

2

)
− n− 1

2
, 4

(
c(n− 1)

2

)}
= 4

(
c(n− 1)

2

)
.

7.3. A construction for the lower bound

To prove a lower bound on the chromatic threshold of the family of F5-free hypergraphs,

we need to construct an infinite sequence of F5-free hypergraphs with large chromatic

number and large minimum degree. Our construction is inspired by a construction by

Hajnal [7] of a dense triangle-free graph with high chromatic number. Hajnal’s key idea

was to use the Kneser graph to obtain large chromatic number. The Kneser graph KN(n, k)

has vertex set
(

[n]
k

)
, and two vertices F1, F2 form an edge if and only if F1 ∩ F2 = ∅. We use

an extension of Kneser graphs to hypergraphs. Alon, Frankl and Lovász [2] considered

the Kneser hypergraph KNr(n, k), which is the r-uniform hypergraph with vertex set
(

[n]
k

)
,

and r vertices F1, . . . , Fr form an edge if and only if Fi ∩ Fj = ∅ for i �= j. They gave a

lower bound on the chromatic number of KNr(n, k) as follows.

Theorem 7.5. If n � (t− 1)(r − 1) + rk, then χ(KNr(n, k)) � t.
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We first show that KNr(n, k) is F5-free for n < 4k.

Lemma 7.6. If n < 4k, then KN3(n, k) is F5-free.

Proof. Say {a, b, c}, {a, b, d} and {c, d, e} are edges in KN3(n, k). Then by definition a, b,

c, and d are four disjoint k-sets in [n], which is impossible because n < 4k.

Proof of the lower bound in Theorem 2.7. Fix t � 2 and ε > 0. Pick k � 2t and n =

3k + 2(t− 1) and note that n < 4k. By Theorem 7.5, KN3(n, k) has chromatic number

at least t and by Lemma 7.6 is F5-free. For integers u, v, and w where n divides u, let

U, V and W be disjoint vertex sets of size u, v, and w respectively. Partition U into

U1, . . . , Un such that |Ui| = u/n for each i. Let H be the hypergraph with vertex set

V (KN3(n, k)) ∪U ∪ V ∪W and the following edges.

• For {S1, S2, S3} ∈ KN3(n, k), make {S1, S2, S3} an edge of H .

• For S ∈ V (KN3(n, k)), x ∈ Ui with 1 � i � n, and y ∈ V , make {S, x, y} an edge of H

if i ∈ S .

• For x ∈ U, y ∈ V , and z ∈ W , make {x, y, z} an edge of H .

Notice that H has chromatic number at least t because KN3(n, k) is a subhypergraph.

Claim 1. H contains no subgraph isomorphic to F5.

Proof. Suppose {a, b, c}, {a, b, d} and {c, d, e} are the hyperedges of a copy of F5 in H .

Notice that the hypergraph induced by U,V , V (KN3(n, k)) ∪W is 3-partite, apart from

those edges within KN3(n, k). Note that a 3-uniform, 3-partite hypergraph is F5-free,

therefore any copy of F5 must contain an edge from KN3(n, k). If that edge is {a, b, c}
then d must also be contained in V (KN3(n, k)). But then c and d are both in V (KN3(n, k)),

which means e must be as well. Because KN3(n, k) is F5-free, this is a contradiction.

Similarly, {a, b, d} � V (KN3(n, k)). Therefore, {c, d, e} ⊆ V (KN3(n, k)), and without loss of

generality b ∈ U and a ∈ V . Because {a, b, c} and {a, b, d} are edges, b must be in both c

and d, which contradicts the fact that {c, d, e} is an edge of KN3(n, k).

Claim 2. The minimum degree of H is at least

(1 − ε)
6

49

(
|V (H)|

2

)
.

if |V (H)| is large enough.

Proof. Vertices in KN3(n, k) have degree at least

k
u

n
v =

kuv

3k + 2(t− 1)
.

Since t is fixed, we can choose k large enough that vertices in KN3(n, k) have degree at

least (1 − ε/2)uv/3. Vertices in A have degree at least vw, vertices in B have degree at
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least uw, and vertices in C have degree at least uv. Thus the minimum degree of H is at

least

min

{
(1 − ε/2)

uv

3
, uw, vw

}
.

Choose u, v, and w so that (uv)/3 = uw = vw; we obtain that u = v and w = v/3 and the

minimum degree is at least (1 − ε/2)u2/3. The number of vertices is

u+ v + w +

(
n

k

)
=

7

3
u+

(
n

k

)
.

Since u2/3 ≈ 6/49
(

7u/3
2

)
, we can choose u sufficiently large that the minimum degree of H

is at least

(1 − ε)
6

49

(
|V (H)|

2

)
.

We have proved that for every fixed t � 2 and every ε > 0, there is a constant N0 such

that for N > N0 there exists an N-vertex, 3-uniform, F5-free hypergraph with chromatic

number at least t and minimum degree at least

(1 − ε)
6

49

(
|V (H)|

2

)
.

By the definition of chromatic threshold, this implies that the chromatic threshold of the

family of F5-free hypergraphs is at least 6
49

.

8. Generalized Kneser hypergraphs

In Section 7.3, we used a generalization of the Kneser graph to hypergraphs to give a lower

bound on the chromatic threshold of the family of F5-free hypergraphs. In Section 9,

we will use similar constructions to give lower bounds on the chromatic threshold of

the family of A-free hypergraphs, for several other hypergraphs A. For some of these

constructions we will need a more general variant of the Kneser hypergraph, which we

explore in this section.

Sarkaria [33] considered the generalized Kneser hypergraph KNr
s(n, k), that is, the

r-uniform hypergraph with vertex set
(

[n]
k

)
, in which r vertices F1, . . . , Fr form an edge

if and only if no element of [n] is contained in more than s of them. Note that the

Kneser hypergraph KNr(n, k) is KNr
1(n, k). Sarkaria [33] and Ziegler [40] gave lower

bounds on the chromatic number of KNr
s(n, k), but Lange and Ziegler [23] showed that

the lower bounds obtained by Sarkaria and Ziegler apply only if one allows the edges of

KNr
s(n, k) to have repeated vertices. We conjecture that for KNr

s(n, k), a statement similar

to Theorem 7.5 is true.

Conjecture 8.1. There exists T (r, s, t) such that if n � T (r, s, t) + rk/s, then

χ(KNr
s(n, k)) � t.
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The following much weaker statement is sufficient for our purposes. The proof is similar

to an argument of Szemerédi which appears in a paper of Erdős and Simonovits [7], and

the proof of Claim 1 is motivated by an argument of Kleitman [22].

Theorem 8.2. Let c > 0; then for any integers r, t, there exists K0 = K0(c, r, t) such that if

k � K0, s = r − 1, and n = (r/s+ c)k, then χ(KNr
s(n, k)) > t.

Before we prove this theorem, we need two definitions. A family F of subsets of [n] is

monotone decreasing if F ∈ F and F ′ ⊆ F imply F ′ ∈ F . Similarly, it is monotone increasing

if F ∈ F and F ⊆ F ′ imply F ′ ∈ F .

Proof Proof of Theorem 8.2. Fix an integer t. We would like to prove that if k is

large enough then it is impossible to t-colour KNr
s(n, k). So let k be some integer and

assume KNr
s(n, k) can be t-coloured. Then the k-subsets of [n] can be divided into t

families, F1, . . . ,Ft, such that F1 ∩ · · · ∩ Fr �= ∅ for all distinct F1, . . . , Fr ∈ Fi, 1 � i � t.

For 1 � i � t, let

F∗
i = {A : A ⊆ [n], ∃F ∈ Fi such that F ⊆ A}.

Then F∗
1 , . . . ,F∗

t are monotone increasing families of subsets of [n]. Let w = s/r; since

s = r − 1, w = 1 − 1/r. For a family F of subsets of [n], define the weighted size W [F]

of F by

W [F] =
∑
F∈F

w|F |(1 − w)n−|F |.

Claim 1. For 1 � � � t,

W

[ �⋃
i=1

F∗
i

]
� 1 − 1/r�.

Proof. We prove this by induction on �. For � = 1, Frankl and Tokushige [12] showed

that for a family F of subsets of [n], if F1 ∩ · · · ∩ Fr �= ∅ for all distinct F1, . . . , Fr ∈ F ,

then W [F] � w = 1 − 1/r. Now assume that the statement is true for �. Let U =
⋃�
i=1 F∗

i

and L = F∗
�+1. Then W [U] � 1 − 1/r�, U is a monotone increasing family of subsets of

[n], and L is a monotone decreasing family of subsets of [n]. By the FKG inequality,

W [U ∩ L] � W [U]W [L].

Then

W

[�+1⋃
i=1

F∗
i

]
= W [U ∩ L] +W [F∗

�+1] � W [U]W [L] +W [F∗
�+1]

� (1 − 1/r�)W [L] +W [F∗
�+1] = 1 − (1 −W [F∗

�+1])/r�.
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Since W [F∗
�+1] � w = 1 − 1/r, we have

1 − (1 −W [F∗
�+1])/r� � 1 − 1/r�+1,

so

W

[�+1⋃
i=1

F∗
i

]
� 1 − 1/r�+1.

Now we know that W [
⋃t
i=1 F∗

i ] � 1 − 1/rt, so

W

[ t⋃
i=1

F∗
i

]
� 1/rt.

We also know that
⋃t
i=1 F∗

i is the family of subsets of [n] whose size is less than

k = n/(r/s+ c), so

W

[ t⋃
i=1

F∗
i

]
=

∑
i<n/(r/s+c)

(
n

i

)
wi(1 − w)n−i.

Since

wn =
n

r/s
>

n

r/s+ c
,

by Chernoff’s inequality we have

∑
i<

n
r/s+c

(
n

i

)
wi(1 − w)n−i � e

−
(

c
r/s+c

)2 sn
2r = e

− c2s
2(r/s+c)r

k
.

Then if k is large and t is fixed,

W

[ t⋃
i=1

F∗
i

]
� e

− c2s
2(r/s+c)r

k
< 1/rt,

which contradicts Claim 1. This contradiction implies that for any fixed t, there is no

choice of K0 such that for all k > K0 it is possible to t-colour KNr
s(n, k). This completes

the proof.

For an r-uniform hypergraph A, we want to construct an infinite sequence of A-free

hypergraphs with KNr(n, k) or KNr
r−1(n, k) as a subhypergraph. This will imply that these

A-free hypergraphs have large chromatic number, but we must first show that for any

integer k and for some choice of n = n(k), one of KNr(n, k), KNr
r−1(n, k) is A-free. We now

show that KN3
2(n, k) is T5-free and S(7)-free under some conditions on n and k. Here T5

is a 3-uniform hypergraph with vertices v1, v2, v3, v4, v5 and edges

{v1, v2, v3}, {v1, v4, v5}, {v2, v4, v5}, {v3, v4, v5},

and S(7) denotes the Fano plane (the S stands for Steiner Triple System.)
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Lemma 8.3. If n < (3/2 + 1/4)k, then KN3
2(n, k) is T5-free.

Proof. If n < 3k/2, then KN3
2(n, k) has no edge and of course is T5-free. Assume n =

(3/2 + ε)k with 0 � ε < 1/4, and suppose T5 is a subhypergraph of KN3
2(n, k). Since

{v1, v4, v5}, {v2, v4, v5}, {v3, v4, v5} are edges of T5, the vertices v1, v2, and v3 all lie in v4 ∩ v5.

Because

|v4 ∩ v5| � 2n− 2k = (1 + 2ε)k < 3k/2,

by the pigeonhole principle, v1 ∩ v2 ∩ v3 �= ∅, which means {v1, v2, v3} is not an edge, a

contradiction.

Lemma 8.4. If n < (3/2 + 1/10)k, then KN3
2(n, k) is S(7)-free.

Proof. Just as in the proof of Lemma 8.3, assume n = (3/2 + ε)k with 0 � ε < 1/10 and

suppose S(7) is a subhypergraph of KN3
2(n, k). Let A be a vertex in a copy of S(7) in

KN3
2(n, k) and let {A,B, C}, {A,D, E}, {A, F, G} be its incident edges in the copy of S(7).

Then B ∩ C,D ∩ E, F ∩ G ⊆ A. Since |A| = (1/2 + ε)k,

|B ∩ C|, |D ∩ E|, |F ∩ G| � (1/2 − ε)k.

Then since 3(1/2 − ε) > 2(1/2 + ε), the pigeonhole principle implies that B ∩ C ∩ D ∩ E ∩
F ∩ G �= ∅. Now the copy of S(7) cannot have an edge not containing A, a contradiction.

We will use Lemma 8.4 in Section 9.2 to provide a lower bound on the chromatic

threshold of the family of S(7)-free hypergraphs. Similarly, we will use Lemma 8.3 in

Section 9.3 to provide a lower bound on the chromatic threshold of the family of T5-free

hypergraphs.

9. Open problems and partial results

Many open problems remain; for most 3-uniform hypergraphs A the chromatic threshold

for the family of A-free hypergraphs is unknown. Interesting hypergraphs to study are

those for which we know the extremal number, ex(n, A), and we will examine a few of

those here along with partial results and conjectures. We conjecture that most of the lower

bounds given by the constructions in this section are tight.

9.1. T Kr(s)-free hypergraphs

For s > r, recall that T Kr(s) is the family of r-uniform hypergraphs such that there exists

a set S of s vertices where each pair of vertices from S are contained together in some

edge. The set S is called the set of core vertices of the hypergraph. Recall also that

Tr,s(n) is the complete n-vertex, r-uniform, s-partite hypergraph with part sizes as equal

as possible.

The last author [27] showed that if s > r then

ex(n, T Kr(s)) = |Tr,s−1(n)| and ex(n,TKr(s)) = (1 + o(1))|Tr,s(n)|.
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(a) TK3(4) (b) S(7) (c) T5

Figure 4. Assorted hypergraphs.

Recently, Pikhurko [30] has shown that for large n and s > r, ex(n,TKr(s)) = |Tr,s−1(n)|
and that Tr,s−1(n) is the unique extremal example. Because F5 is a member of T K3(4) it

follows that the chromatic threshold of T K3(4)-free hypergraphs is at most (
√

41 − 5)/8.

The following simple variation on the construction from Section 7.3 provides a lower

bound of 18/361 for both TK3(4)-free and T K3(4)-free hypergraphs.

Proposition 9.1. The chromatic threshold of T K3(4)-free hypergraphs is at least 18/361.

Proof. The proof is very similar to the proof in Section 7.3, so we only sketch it

here. Choose k, n, u, v, w,U, V ,W as in the proof of the lower bound of Theorem 2.7 in

Section 7.3; that is, k, n, u, v, w are integers with n � u, v, w and U,V ,W are disjoint sets

of vertices of size u, v, w respectively. Divide U into U1, . . . , Un so that |Ui| = u/n, and

divide V into V1, . . . , Vn such that |Vi| = v/n. Let H be the hypergraph formed by taking

KN3(n, k) and adding the complete 3-partite hypergraph on U,V ,W and the following

edges. For S ∈ V (KN3(n, k)) and x ∈ Ui and y ∈ Vj , make {S, x, y} an edge if i, j ∈ S . The

minimum degree is maximized when u = v and w = u/9, which gives minimum degree

approximately

uv/9 ≈ 18

361
·
(
N

2

)
,

where N = u+ v + w +
(
n
k

)
is the number of vertices in the hypergraphs.

Let F be any hypergraph in T K3(4) and assume that F is a subhypergraph of H in

which c1, c2, c3, c4 are the four core vertices. Because any 3-partite hypergraph is T K3(4)-

free, it is easy to see that some edge of F must lie in KN3(n, k), and so there must be

at least two core vertices in KN3(n, k). If c1, c2 ∈ KN3(n, k) and c3 ∈ U ∪ V , then c3 is

in either Ui or Vi for some i. But then i ∈ c1 ∩ c2 (recall that vertices in KN3(n, k) are

k-sets), which contradicts the fact that c1 and c2 are contained together in some edge of

KN3(n, k). Thus all four core vertices must be in KN3(n, k), which is not possible because

n < 4k.

This gives lower bounds on the chromatic thresholds of TK3(4)-free and T K3(4)-free

hypergraphs and leads to the following questions.

https://doi.org/10.1017/S0963548315000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548315000061


On the Chromatic Thresholds of Hypergraphs 205

Question 9.2. What is the chromatic threshold for TK3(4)-free hypergraphs? It is between

18/361 and 2/9. What is the chromatic threshold for T K3(4)-free hypergraphs? It has the

same lower bound as for TK3(4)-free hypergraphs, and because F5 ∈ T K3(4) the upper bound

is (
√

41 − 5)/8.

A similar construction provides a T K3(s)-free hypergraph for any s � 5. We have not

optimized the values.

Lemma 9.3. When s � 5, the chromatic threshold of T K3(s)-free hypergraphs is at least

(s− 2)(s− 3)(s− 4)2

(s2 − 13)2
= 1 − 13

s
+ O

(
1

s2

)
.

Proof. Fix t � 2, k � 2t, and let n = 3k + 2(t− 1). Notice that n < 4k. By Theorem 7.5,

the chromatic number of KN3(n, k) is therefore at least t. Fix N �
(
n
k

)
.

Partition N vertices into one part of size u and s− 2 parts of size x, for some u that

is divisible by n. Include as an edge each triple that has at most one vertex in each

part. Further partition the part of size u into n sets, U1, . . . , Un, each of size u/n. From

the remaining s− 2 parts of size x, choose two and designate them W1,W2; label the

remaining s− 4 parts V1, . . . , Vs−4. Let H be the 3-uniform hypergraph formed by taking

the disjoint union of KN3(n, k) and the above complete (s− 1)-partite hypergraph, and

adding the following edges. If S ∈ V (KN3(n, k)), v ∈ Vi, and v′ ∈ Vj for i �= j, add the

edge {S, v, v′}. If S ∈ V (KN3(n, k)) and u ∈ Ui and v ∈ Vj , then add the edge {S, u, v} if

and only if i ∈ S .

Notice that H has chromatic number at least t, and that V (H) = N +
(
n
k

)
.

Claim 1. H contains no element of T K3(s) as a subgraph.

Proof. Suppose there is such a subgraph; then at least one core vertex must be contained

in V (KN3(n, k)), because an (s− 1)-partite graph is T Ks(3)-free. In that case, no core vertex

can be in W1 ∪W2 because there is no edge that contains a vertex from W1 ∪W2 as

well as a vertex from V (KN3(n, k)). There must therefore be at least three core vertices

in V (KN3(n, k)), which means that two of them must appear in an edge contained within

V (KN3(n, k)). Suppose they are S1, S2. If another core vertex is in U, say u ∈ Ui, then

there must be an edge of H containing u and S1, and there must be an edge containing

u and S2. This implies that i ∈ S1 ∩ S2, which contradicts the fact that S1 and S2 appear

together in an edge of KN3(n, k).

All core vertices must therefore be in V (KN3(n, k)) ∪ V , which means that there must

be at least four of them in V (KN3(n, k)). Because each pair of those four core vertices

must appear together in an edge, and that edge must be in KN3(n, k), those four sets must

be pairwise disjoint. This is impossible because n < 4k.
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The minimum degree of this graph is approximately

min

{
1

3
(s− 4)ax+

(
s− 4

2

)
x2,

(
s− 2

2

)
x2, (s− 3)ax+

(
s− 3

2

)
x2

}
.

Notice that a vertex in W1 ∪W2 has degree strictly less than a vertex in KN3(n, k), and

so they do not enter into the above computation. This minimum is largest when

u =
3(2s− 7)x

s− 4
,

which implies that

x =

(
s− 4

s2 − 13

)
N.

The minimum degree of H is then

(s− 2)(s− 3)

2
· (s− 4)2

(s2 − 13)2
N2 =

(
1 − 13

x
+ O

(
1

s2

))
N2

2
.

The construction in Lemma 9.3 has one part of ‘type’ U (which is partitioned into n

sets), s− 4 parts of ‘type’ V (which are not partitioned, and whose vertices appear in

edges that intersect K), and two parts of ‘type’ W (which are not partitioned and have

no vertices that appear in edges intersecting K). Using this strategy, one can generate

similar constructions for TKr(s); the above proof applies whenever there are x parts

of type U, s− (r + 1) parts of type V , and y parts of type W , where x+ y = r and

s− (r + 1) + x � r − 1. This last condition is needed for the edges intersecting K .

Question 9.4. What is the chromatic threshold for TK3(s)-free hypergraphs for s > 3? It is

between

(s− 2)(s− 3)(s− 4)2

(s2 − 13)2
= 1 − 13

s
+ O

(
1

s2

)

and (
1 − 1

s− 1

)(
1 − 2

s− 1

)
= 1 − 3

s− 1
+

2

(s− 1)2
.

The upper bound comes from Tr,s−1(n).

9.2. S(7)-free hypergraphs

Next, consider the Fano plane S(7). De Caen and Füredi [6] showed that

ex(n, S(7)) =

(
3

4
+ o(1)

)(
n

3

)
.

The extremal hypergraph for S(7), proved to be extremal by Füredi and Simonovits [14]

and also by Keevash and Sudakov [21], is the hypergraph formed by taking two almost

equal vertex sets U and V and taking all edges that have at least one vertex in each of U

and V . We can modify the hypergraph from Section 7.3 to obtain a lower bound on the

chromatic threshold of S(7)-free hypergraphs.
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Proposition 9.5. The chromatic threshold of S(7)-free hypergraphs is at least 9/17.

Proof. Fix t � 2 and 0 < ε � 1. Then by Lemma 7.5 there exists k sufficiently large

that if n = (3 + ε)k then KN3(n, k) has chromatic number at least t. Fix such a k, and fix

N �
(
n
k

)
.

Partition N vertices into two sets, U and V , with |U| = 9N/17 and |V | = 8N/17.

Further partition U into n parts, U1, . . . , Un, each of size |U|/n. Include as an edge each

triple that has at least one vertex in each of U, V . Let H be the hypergraph formed

by taking the disjoint union of this hypergraph and KN3(n, k) and adding the following

edges. For u ∈ Ui, u
′ ∈ Uj , and X ∈ V (KN3(n, k)) include {X, u, u′} as an edge if i, j ∈ X

(recall that vertices in KN3(n, k) are subsets of [n]). Let K = V (KN3(n, k)). Notice that H

has chromatic number at least t, and that V (H) = N +
(
n
k

)
.

Claim 1. H contains no subhypergraph isomorphic to S(7).

Proof. First notice that KN3(n, k) is S(7)-free because every pair of vertices in S(7) are

in an edge, which would require there to be 7 pairwise-disjoint k-subsets of [n]. Because

n = (3 + ε)k, this would be a contradiction. It is easy to see, by considering the partition

U, (K ∪ V ), that if H contains a copy of S(7) then it must involve an edge from H[K]

(otherwise the extremal S(7)-free hypergraph also contains a copy of S(7)). Call this edge

{A,B, C}.

There are four vertices in S(7) \ {A,B, C}, and at least one must be outside K . No more

than one can be in V because there is no edge with one vertex in K and two in V . No

more than one can be in U otherwise one of A ∩ B, A ∩ C , B ∩ C is non-empty, which

contradicts the assumption that {A,B, C} is an edge of H[K]. Therefore, there must be

either five or six vertices of S(7) in K . Suppose v is a vertex of S(7) that is outside K . Then

v appears in three edges that overlap only at v, say {v, S1, S2}, {v, S3, S4}, and {v, S5, S6}. At

least one of these edges must contain two vertices from K , but there is no such edge in

H .

The minimum degree of H is at least

min

{
|U||V | +

(
|U|/3

2

)
, |U||V | +

(
|U|
2

)
, |U||V | +

(
|V |
2

)}
=

9

34
N2 − 3

34
N.

Question 9.6. What is the chromatic threshold of S(7)-free hypergraphs? It is at least 9/17

and at most 3/4, where the upper bound is from the extremal hypergraph of S(7).

9.3. T5-free hypergraphs

Recall that the 3-uniform hypergraph T5 has vertices A,B, C, D, E and edges

{A,B, C}, {A,D, E}, {B,D, E}, {C,D, E}.

Let B3(n) be the 3-uniform hypergraph with the most edges among all n-vertex 3-graphs

whose vertex set can be partitioned into X1, X2 such that each edge contains exactly one
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vertex from X2. Füredi, Pikhurko and Simonovits [13] proved that for n sufficiently large

the extremal T5-free hypergraph is B3(n). It follows that the chromatic threshold for the

family of T5-free hypergraphs is at most 4/9.

Proposition 9.7. The chromatic threshold of T5-free hypergraphs is at least 16/49.

Proof. Fix t � 2 and 0 < ε � 1. Then by Lemma 7.5 there exists k sufficiently large that

if n = (3/2 + ε)k then KN3
2(n, k) has chromatic number at least t. Fix such a k, and fix

N �
(
n
k

)
.

Partition N vertices into two parts, U and V , with |U| = 4N/7 and |V | = 3N/7. Further

partition U into n parts, U1, . . . , Un, each of size |U|/n. Include as an edge any triple with

two vertices in U and one in V . Let H be the hypergraph formed by taking the disjoint

union of this graph and KN3
2(n, k) and including the following edges. If X ∈ V (KN3

2(n, k))

and u ∈ Ui and v ∈ V , then let {u, v, X} be an edge if i ∈ X (recall that vertices of KN3
2(n, k)

are subsets of [n]). Let K = V (KN3
2(n, k)). Notice that H has chromatic number at least

t, and that V (H) = N +
(
n
k

)
.

Claim 1. T5 is not a subhypergraph of H .

Proof. Let H ′ be the hypergraph obtained from H by deleting all edges contained in K ,

and let X1 = K ∪U and X2 = V . It is now easy to see that H ′ is a subhypergraph of the

extremal T5-free hypergraph; if H contains a copy of T5 it must therefore involve an edge

from K . If that edge is {A,D, E} (see the labelling of T5 above), then because {B,D, E}
and {C,D, E} are edges of T5 it must be the case that both of B,C are in K , but by

Lemma 8.3 K does not span a copy of T5. Similarly, neither {B,D, E} nor {C,D, E} can

be contained in K .

We may therefore assume that {A,B, C} is contained in K . Because {A,D, E} is an

edge, and by Lemma 8.3, at least one of D,E is in U. Suppose that D ∈ Ui. Then

because {A,D, E}, {B,D, E}, and {C,D, E} are all edges of T5 it must be the case that

i ∈ A ∩ B ∩ C . This contradicts the assumption that {A,B, C} is an edge.

The minimum degree of H is at least

min

{
2|U||V |

3
, |U||V |,

(
|U|
2

)}
=

8

49
N2 − 2

7
N.

9.4. Co-chromatic thresholds

There is another possibility when generalizing the definition of chromatic threshold from

graphs to hypergraphs: we can use the co-degree instead of the degree. Recall that if H is

an r-uniform hypergraph and {x1, . . . , xr−1} ⊆ V (H), then the co-degree d(x1, . . . , xr−1) of

x1, . . . , xr−1 is |{z : {x1, . . . , xr1 , z} ∈ H}|. Let F be a family of r-uniform hypergraphs. The

co-chromatic threshold of F is the infimum of the values c � 0 such that the subfamily

of F consisting of hypergraphs H with minimum co-degree at least c|V (H)| has bounded
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chromatic number. More generally, the k-degree d(x1, . . . , xk) of x1, . . . , xk is

|{{zk+1, . . . , zr} : {x1, . . . , xk, zk+1, . . . , zr} ∈ H}|

and we define the k-chromatic threshold similarly. Given a hypergraph H and subsets

U,V ,W of V (H), we say that an edge {u, v, w} is of type UVW if u ∈ U, v ∈ V and

w ∈ W .

The co-chromatic thresholds of F5-free hypergraphs and TK3(4)-free hypergraphs are

trivially zero because if the minimum co-degree of H is at least 10 then H contains a

copy of TK3(4) and a copy of F5. For the Fano plane, the last author proved [26] that for

every ε > 0 there exists n0 such that any 3-uniform hypergraph with n > n0 vertices and

minimum co-degree greater than (1/2 + ε)n contains a copy of S(7). In 2009, Keevash

[18] improved this by proving that any 3-uniform hypergraph with minimum co-degree

greater than n/2 contains a copy of S(7) for n sufficiently large. Notice that the lower

bound construction for the chromatic threshold described above has non-zero minimum

co-degree but the co-degree depends on the parameter t. We can modify the construction

to prove a better lower bound on the co-chromatic threshold of S(7)-free hypergraphs.

Proposition 9.8. The co-chromatic threshold of S(7)-free hypergraphs is at least 2/5.

Proof. Fix t � 2 and 0 < ε � 1. Then by Lemma 8.2 there exists k large enough that if

n = (3/2 + ε)k then KN3
2(n, k) has chromatic number at least t. Fix N �

(
n
k

)
.

Partition N vertices into two parts, U and V , of size 3N
5

and 2N
5

respectively. Include as

an edge any triple with at least one vertex in each part. Further partition U into n sets,

U1, . . . , Un, each of size |U|/n. Let H be the hypergraph formed by taking the disjoint union

of this hypergraph with KN3
2(n, k) and including the following edges. Include any edge of

type KUV , where K = V (KN3
2(n, k)). For any X,Y ∈ K , if |X ∩ Y | < k − 4εk then include

every edge of the form {X,Y , u} where u ∈ Ui for some i ∈ X ∪ Y . If |X ∩ Y | � k − 4εk

then include every edge of the form {X,Y , u} where u ∈ Ui for some i ∈ X ∩ Y . Notice

that H has chromatic number at least t and that V (H) = N +
(
n
k

)
.

Claim 1. The above hypergraph contains no subgraph isomorphic to S(7).

Proof. First notice that the complete bipartite 3-uniform hypergraph contains no copy

of S(7). Therefore, by considering the partition U,V ∪K , we can see that any copy of

S(7) must contain an edge induced by K . Call this edge {A,B, C}. It also follows from

Lemma 8.4 that there is no copy of S(7) completely contained in K .

Claim 1a. Any copy of S(7) intersects U (or V ) in at most one vertex.

Proof. Notice that for any edge e in S(7), every other edge intersects e in at exactly one

vertex; therefore for any copy of S(7) in H every edge contains one of A,B, C . If there

were two vertices of S(7) in U (or in V ) then the edge of S(7) joining them would be

unable to intersect A,B, or C .
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Claim 1b. Any copy of S(7) contains no vertex from V .

Proof. Suppose for contradiction that a copy of S(7) contains some vertex from V ; then

by Claim 1a it intersects V in exactly one vertex. Every vertex of S(7) is contained in

three edges, but because there is at most one vertex from U involved in the copy of S(7),

there can be only one edge that contains the vertex from V .

Any copy of S(7) must therefore have exactly six vertices in K and exactly one vertex

in U. Suppose they are A,B, C, D, E, F ∈ K and G ∈ Ui. Suppose also that the edges of

S(7) induced by K are

{A,B, C}, {A,E, F}, {C,D, E}, {B,D, F}.

Claim 1c. If {S1, S2, S3} is an edge in K then |Si ∩ Sj | � k/2 + εk for all i �= j.

Proof. This follows from the definition of the hypergraph on K ,

k = |S1| � n− |S2 ∩ S3| = (3/2 + ε)k − |S2 ∩ S3|, so |S2 ∩ S3| � k/2 + εk,

and the claim follows through symmetry.

Claim 1d. The following intersections all have size at least 2k − 4εk: A ∩ D,B ∩ E,C ∩ F .

Proof. We will prove that |A ∩ D| � 2k − 4εk; the rest follow through symmetry. Because

{B,D, F} is an edge,

D ⊆ (B ∩ F) ∪ (B ∩ F) ∪ (B ∩ F).

Also, because {A,B, C} is an edge,

|A ∩ B| = |A| − |A ∩ B| � (k/2 + εk) − (k/2 − εk) = 2εk.

Similarly, because {A,E, F} is an edge, |A ∩ F | � 2εk. Therefore,

|D ∩ A| � |A ∩ B ∩ F | + |A ∩ B ∩ F | + |A ∩ B ∩ F | � |A ∩ B| + |A ∩ F | � 4εk,

and so |D ∩ A| � |D| − 4εk = k − 4εk.

It follows from Claim 1d that S(7) cannot be a subgraph of H . Otherwise, the edges

{A,D, u}, {B,E, u}, {C, F, u}

would all appear, and by the definition of H , because the intersections mentioned in

Claim 1d are large, it follows that i ∈ (A ∩ D) ∩ (B ∩ E) ∩ (C ∩ F). In that case, however,

A ∩ B ∩ C is not empty and so {A,B, C} is not an edge.

It remains only to compute the minimum degree ofH . Vertices S1, S2 ∈ K have co-degree

at least

k − 4εk

n
|U|
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if |S1 ∩ S2| � k − 4εk, and at least

k + 4εk

n
|U|

otherwise. Vertices u1, u2 ∈ U have co-degree at least |V | and vertices v1, v2 ∈ V have

co-degree at least |U|. All other pairs of vertices have co-degree at least |U| or |V |. The

minimum co-degree is therefore at least

min

{
k(1 − 4ε)

k(3/2 + ε)
|U|, |U|, |V |

}
=

{
2 − 8ε

3 + 2ε
· 3

5
N,

3

5
N,

2

5
N

}
.

For some choice of ε, this is approximately 2
5
|V (H)|.

Question 9.9. What is the co-chromatic threshold of the Fano-free hypergraphs? It is

between 2/5 and 1/2.
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