

# The crystal structure of trisodium hexachlororhodate (Na<sub>3</sub>RhCl<sub>6</sub>)

Martin Etter<sup>a)</sup>

Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany

(Received 4 April 2017; accepted 2 January 2018)

Commercially available trisodium hexachlororhodate (Na<sub>3</sub>RhCl<sub>6</sub>) was dehydrated and characterized by laboratory X-ray powder diffraction. The crystal structure is isostructural to the Na<sub>3</sub>CrCl<sub>6</sub> structure type with space group  $P\bar{3}1c$ . Unit-cell parameters are a = 6.8116(1) Å, c = 11.9196(2) Å, V = 478.95 (2) Å<sup>3</sup>, and Z = 2. © 2018 International Centre for Diffraction Data. [doi:10.1017/S0885715618000155]

Key words: trisodium hexachlororhodate, Na<sub>3</sub>RhCl<sub>6</sub>

#### **I. INTRODUCTION**

Trisodium hexachlorometalates (Na<sub>3</sub>*M*Cl<sub>6</sub>, *M* = metal ion) were reported to crystallize in three crystal structure types namely the Na<sub>3</sub>AlF<sub>6</sub> (cryolite) structure type (for *M* = Dy, Er, Ho, Lu, Sc, Ti, Tm, Y, Yb) (space group *P*2<sub>1</sub>/*n*), the Na<sub>3</sub>CrCl<sub>6</sub> structure type (for *M* = Cr, In, Mo, V) (space group  $P\bar{3}1c$ ), and the Na<sub>3</sub>GdCl<sub>6</sub> structure type (*M* = Eu, Gd, Tb) (space group  $R\bar{3}H$ ) (an overview and related literature can be found in Table I). Interestingly, another trisodium hexachlorometalate, trisodium hexachlororhodate (Na<sub>3</sub>RhCl<sub>6</sub>) was reported in a diffraction study by Krylov *et al.* (1983) (ICDD PDF4 + ID # 00-036-0754); however, neither the crystal structure nor the indexing of the reported X-ray diffraction (XRD) pattern was given by them.

Here, the crystal structure of Na<sub>3</sub>RhCl<sub>6</sub> was examined using laboratory X-ray powder diffraction.

### **II. EXPERIMENTAL**

#### A. Sample preparation

Commercially available trisodium hexachlororhodate(III) was bought from the Sigma-Aldrich Chemie GmbH (Taufkirchen, Germany). The bright red powder was ground in an agate mortar with an agate pestle to a fine powder and subsequently filled in a quartz capillary of 0.5 mm diameter (Hilgenberg GmbH, Malsfeld, Germany). The dehydration of the sample was done by mounting the capillary on the diffractometer and by heating it for half an hour at a constant temperature of 350 °C with an MRI capillary heater. The heating and the cooling rate from room temperature to 350 °C and back was 0.5 °C/s. After the heat treatment, the color of the powder turned into a darker red.

#### B. XRD data collection

Room temperature X-ray powder diffraction measurements of the Na<sub>3</sub>RhCl<sub>6</sub> specimen were carried out using a Bruker D8 Advance diffractometer in Debye–Scherrer geometry. The diffractometer was equipped with a sealed tube Molybdenum X-ray source (operated at 50 kV and 40 mA) and a Ge(220) primary beam monochromator to obtain pure Mo $K\alpha_1$  radiation at a wavelength of  $\lambda = 0.7093$  Å. Detection of diffracted X-rays was done using a Lynxeye detector. The diffractogram was collected from 2 to 45.0°  $2\theta$  with a resolution of 0.01°  $2\theta$  and a total integration time of 8 h.

#### C. Data treatment

Crystal structure determination and subsequent Rietveld refinements of the measured powder diffraction pattern of Na<sub>3</sub>RhCl<sub>6</sub> were performed using the TOPAS 4.2 software from Bruker AXS Inc. (Cheary *et al.*, 2004). The background of the pattern was modeled by Chebyshev polynomials plus five broad Lorentzian peak shapes, whereas phase peaks where modeled by the fundamental parameter approach.

## **III. RESULTS AND DISCUSSION**

The first indexing attempts (Coelho, 2003) of the measured powder diffraction pattern at room temperature suggested either monoclinic (e.g. P2, P2<sub>1</sub>), trigonal (e.g. P31c, P3), or orthorhombic (e.g. Ccc2, C2221, Cmc21) space groups for Na<sub>3</sub>RhCl<sub>6</sub>. From the suggested solutions, the monoclinic ones provided the smallest volume and the best figure of merit (de Wolff, 1968); however, subsequent whole powder pattern decomposition refinements (Le Bail et al., 1988) revealed that not all reflections could be satisfactorily modeled. In contrast to the monoclinic solutions, trigonal and orthorhombic solutions (which had an exactly double unit-cell volume compared with the trigonal ones) did only match under the assumption, that two of the observed reflections have to be classified as impurity lines. Subsequent whole powder pattern decomposition refinements of the trigonal solutions unveiled several possible impurity lines. Therefore, possible by-products, which could emerge because of the heating process, were checked. It was found that ordinary sodium chloride (NaCl) could be reasonably fitted by a Rietveld refinement to the impurity reflections. Interestingly, no other crystalline rhodium containing impurity phase could be identified. As the trigonal solutions and the corresponding lattice parameters suggested a close structural relationship to the Na<sub>3</sub>CrCl<sub>6</sub> structure type, Na<sub>3</sub>CrCl<sub>6</sub> was used as starting model for a Rietveld refinement

https://doi.org/10.1017/S0885715618000155 Published online by Cambridge University Press

<sup>&</sup>lt;sup>a)</sup>Author to whom correspondence should be addressed. Electronic mail: martin.etter@desy.de

TABLE I. Overview of Na<sub>3</sub>MCl<sub>6</sub> (M = metal ion) compounds and related literature.

| Compound                          | Structure type                    | Space group           | Powder diffraction analysis | Single crystal diffraction analysis |
|-----------------------------------|-----------------------------------|-----------------------|-----------------------------|-------------------------------------|
| Na <sub>3</sub> DyCl <sub>6</sub> | Na <sub>3</sub> AlF <sub>6</sub>  | $P2_1/n$              | Meyer et al. (1987)         | Schurz <i>et al.</i> (2011)         |
| Na <sub>3</sub> ErCl <sub>6</sub> | Na <sub>3</sub> AlF <sub>6</sub>  | $P2_1/n$              | Meyer et al. (1987)         | Meyer et al. (1987)                 |
| Na <sub>3</sub> HoCl <sub>6</sub> | Na <sub>3</sub> AlF <sub>6</sub>  | $P2_1/n$              | Meyer et al. (1987)         | Böcker et al. (2001)                |
| Na <sub>3</sub> LuCl <sub>6</sub> | Na <sub>3</sub> AlF <sub>6</sub>  | $P2_1/n$              | Meyer et al. (1987)         |                                     |
| Na <sub>3</sub> ScCl <sub>6</sub> | Na <sub>3</sub> AlF <sub>6</sub>  | $P2_1/n$              | Meyer et al. (1987)         |                                     |
| Na <sub>3</sub> TiCl <sub>6</sub> | Na <sub>3</sub> AlF <sub>6</sub>  | $P2_1/n$              | Hinz et al. (2000)          |                                     |
| Na <sub>3</sub> TmCl <sub>6</sub> | Na <sub>3</sub> AlF <sub>6</sub>  | $P2_1/n$              | Meyer et al. (1987)         |                                     |
| Na <sub>3</sub> YCl <sub>6</sub>  | Na <sub>3</sub> AlF <sub>6</sub>  | $P2_1/n$              | Meyer et al. (1987)         | Liao and Dronskowski (2004)         |
| Na <sub>3</sub> YbCl <sub>6</sub> | Na <sub>3</sub> AlF <sub>6</sub>  | $P2_1/n$              | Meyer et al. (1987)         |                                     |
| Na <sub>3</sub> CrCl <sub>6</sub> | Na <sub>3</sub> CrCl <sub>6</sub> | P-31c                 |                             | Friedrich et al. (1987)             |
| Na <sub>3</sub> InCl <sub>6</sub> | Na <sub>3</sub> CrCl <sub>6</sub> | P-31c                 |                             | Yamada <i>et al.</i> (2005)         |
| Na <sub>3</sub> MoCl <sub>6</sub> | Na <sub>3</sub> CrCl <sub>6</sub> | <i>P</i> -31 <i>c</i> | Friedrich et al. (1987)     | Beran and Meyer (2011)              |
| Na <sub>3</sub> VCl <sub>6</sub>  | Na <sub>3</sub> CrCl <sub>6</sub> | P-31c                 | Friedrich et al. (1987)     |                                     |
| Na <sub>3</sub> EuCl <sub>6</sub> | Na <sub>3</sub> GdCl <sub>6</sub> | R-3H                  | Meyer et al. (1987)         |                                     |
| Na <sub>3</sub> GdCl <sub>6</sub> | Na <sub>3</sub> GdCl <sub>6</sub> | R-3H                  | Meyer et al. (1987)         | Meyer (1984)                        |
| Na <sub>3</sub> TbCl <sub>6</sub> | Na <sub>3</sub> GdCl <sub>6</sub> | R-3H                  | Meyer et al. (1987)         |                                     |



Figure 1. (Color online) Rietveld plot of the measured powder X-ray diffraction data. Two phases,  $Na_3RhCl_6$  [wt% = 96.03(2)] and NaCl [wt% = 3.97(2)] were refined. At low 2Theta values the background is increased because of amorphous scattering of the quartz capillary.

| TABLE II.                            | Crystal structure d | lata obtained | from the | Rietveld | refinement | for |
|--------------------------------------|---------------------|---------------|----------|----------|------------|-----|
| Na <sub>3</sub> RhCl <sub>6</sub> at | room temperature    | (303 K).      |          |          |            |     |

| Formula                                  | Na <sub>3</sub> RhCl <sub>6</sub>   |
|------------------------------------------|-------------------------------------|
| Crystal system                           | Trigonal                            |
| Space group                              | P-31c                               |
| a (Å)                                    | 6.8116(1)                           |
| c (Å)                                    | 11.9196(2)                          |
| Cell volume ( $Å^3$ )                    | 478.95(2)                           |
| Formula units Z                          | 2                                   |
| Calculated density $(g \text{ cm}^{-3})$ | 2.6668(1)                           |
| Scan range                               | 2° <b>≤</b> 2 <i>θ</i> <b>≤</b> 45° |
| Radiation wavelength Mo $K\alpha_1$ (Å)  | 0.7093                              |
| Zero shift                               | 0.0005(3)                           |
| Numbers of refined parameters            | 48                                  |
| $R_{\rm p}$ (%)                          | 2.651                               |
| $R_{\rm WD}$ (%)                         | 3.602                               |
| $R_{\rm B}$ (%)                          | 1.309                               |
| GOF                                      | 2.085                               |

(Rietveld, 1969), exchanging the chromium ion by a rhodium one. Together with the NaCl phase, a successful Rietveld refinement of all reflections could be performed (Figure 1). Intriguingly in this refinement, anisotropic displacement parameters could be utilized for all atoms within the Na<sub>3</sub>RhCl<sub>6</sub> phase, as the quality of the collected data was insomuch excellent, that the  $R_{wp}$  dropped by a significant value of 0.3% compared with the usage of sole isotropic displacement parameters. The reasonability of the values of the anisotropic displacement parameters was subsequently confirmed by drawing ellipsoidal atomic models of the crystal structure (see Figure S2 in the online Supplementary material). The final agreement factors of this refinement are  $R_p = 2.651\%$ ,  $R_{wp} = 3.602\%$ ,  $R_{\rm B}({\rm Na_3RhCl_6}) = 1.309\%$ ,  $R_{\rm B}({\rm NaCl}) = 1.232\%$ , and GOF = 2.085 (all agreement factors as defined in TOPAS 4.2). The

63 Powder Diffr., Vol. 33, No. 1, March 2018

https://doi.org/10.1017/S0885715618000155 Published online by Cambridge University Press

|      |                  |                 |           |           |           |           |             | Aı          | nisotropic displace | ement parameter | (Å <sup>2</sup> ) |             |
|------|------------------|-----------------|-----------|-----------|-----------|-----------|-------------|-------------|---------------------|-----------------|-------------------|-------------|
| Atom | Wyckoff position | Oxidation state | x         | Υ         | N         | Occupancy | u11         | u22         | u33                 | u12             | u13               | u23         |
| Rh1  | 2d               | +3              | 2/3       | 1/3       | 0.25      | 1         | 0.0148 (7)  | 0.0148 (7)  | 0.0221 (13)         | 0.0074 (4)      | 0                 | 0           |
| Nal  | 2a               | +1              | 0         | 0         | 0.25      | 1         | 0.0320 (43) | 0.0320 (43) | 0.0229 (67)         | 0.0160 (22)     | 0                 | 0           |
| Na2  | 4f               | +1              | 2/3       | 1/3       | 0.5476(3) | 1         | 0.0404 (18) | 0.0404 (18) | 0.0301 (35)         | 0.0202 (9)      | 0                 | 0           |
| CI1  | 12i              | -1              | 0.9412(3) | 0.6157(3) | 0.3654(1) | 1         | 0.0356 (16) | 0.0321 (19) | 0.0237 (18)         | 0.0108 (13)     | -0.0184 (11)      | 0.0023 (12) |
|      |                  |                 |           |           |           |           |             |             |                     |                 |                   |             |

| TABLE IV. | Selected | bond | lengths | for | Na <sub>3</sub> RhCl <sub>6</sub> . |
|-----------|----------|------|---------|-----|-------------------------------------|
|-----------|----------|------|---------|-----|-------------------------------------|

| Bond       | Length (Å) |
|------------|------------|
| Rh1-Cl1    | 2.343(2)   |
| Na1-Cl1    | 2.803(2)   |
| Na2-Cl1(1) | 2.884(3)   |
| Na2-Cl1(2) | 2.721(2)   |

TABLE V. Powder X-ray diffraction data for  $Na_3RhCl_6$ . Calculated values are from the Rietveld refinement, whereas observed values are determined by single peak fittings. Lines which are uniquely identified as NaCl reflections are omitted here.

|   |    |         | $2\theta_{\rm obs}$ | $d_{\rm obs}$ | $2\theta_{cal}$ | $d_{cal}$ |                      | Lohe  |
|---|----|---------|---------------------|---------------|-----------------|-----------|----------------------|-------|
| h | k  | l       | (°)                 | (Å)           | (°)             | (Å)       | $\Delta 2\theta$ (°) | (%)   |
| 0 | 0  | 2       | 6.821               | 5 961         | 6.823           | 5.960     | _0.002               | 18.0  |
| 0 | 1  | 0       | 6 801               | 5 901         | 6.803           | 5 800     | -0.002               | 34.6  |
| 0 | 1  | 1       | 7 602               | 5 287         | 7 603           | 5 287     | -0.002               | 100.0 |
| 0 | 1  | 2       | 7.072               | 5.207         | 9 705           | 1 103     | -0.001               | 100.0 |
| 1 | 1  | 0       | 11 053              | 3 406         | 11 954          | 3.406     | _0.001               | 86    |
| 0 | 1  | 3       | 12 356              | 3 296         | 12 356          | 3 295     | 0.000                | 22.0  |
| 0 | 0  | 4       | 12.550              | 5.270         | 13 670          | 2 980     | 0.000                | 22.0  |
| 1 | 1  | 2       | 13 777              | 2 957         | 13.070          | 2.957     | 0.000                | 66.4  |
| 1 | _2 | 2       | 15.777              | 2.751         | 13.777          | 2.957     | 0.000                | 00.4  |
| 0 | 2  | 0       |                     |               | 13.812          | 2.950     |                      |       |
| 0 | 2  | 1       |                     |               | 14 231          | 2.950     |                      |       |
| 0 | 1  | 4       |                     |               | 15 325          | 2.660     |                      |       |
| 0 | 2  | 2       |                     |               | 15.323          | 2.600     |                      |       |
| 0 | 2  | 3       | 17 224              | 2 368         | 17 225          | 2.613     | -0.001               | 25.3  |
| 1 | 1  | 4       | 18,197              | 2.243         | 18,198          | 2.243     | -0.001               | 46.6  |
| 1 | -2 | _4      | 101177              | 2.2.10        | 18 198          | 2 243     | 0.001                |       |
| 2 | 1  | 0       |                     |               | 18 305          | 2 2 3 0   |                      |       |
| 0 | 1  | 5       |                     |               | 18 467          | 2.230     |                      |       |
| 2 | 1  | 1       | 18 623              | 2 192         | 18.625          | 2.192     | -0.002               | 12.3  |
| 1 | _3 | -1      | 10.025              | 2.1/2         | 18.625          | 2.192     | 0.002                | 12.5  |
| 0 | 2  | 4       | 19 481              | 2 096         | 19 480          | 2.192     | 0.001                | 17    |
| 2 | 1  | 2       | 19 559              | 2.098         | 19.100          | 2.098     | 0.001                | 1.7   |
| 1 | _3 | -2      | 17.557              | 2.000         | 19.556          | 2.000     | 0.005                | 1.0   |
| 0 | 0  | 6       |                     |               | 20.567          | 1.987     |                      |       |
| 0 | 3  | Ő       | 20,781              | 1.966         | 20.782          | 1.966     | -0.001               | 25.5  |
| 2 | 1  | 3       | 21.018              | 1 944         | 21.019          | 1 944     | -0.001               | 23.4  |
| 1 | -3 | -3      | 211010              | 10/11         | 21.019          | 1.944     | 0.001                | 2011  |
| 0 | 3  | 1       |                     |               | 21.066          | 1.940     |                      |       |
| 0 | 1  | 6       |                     |               | 21.716          | 1.883     |                      |       |
| 0 | 3  | 2       | 21.897              | 1.867         | 21.897          | 1.867     | 0.000                | 5.6   |
| 0 | 2  | 5       | 22.055              | 1.854         | 22.055          | 1.854     | 0.000                | 3.8   |
| 2 | 1  | 4       | 22.916              | 1.785         | 22.917          | 1.785     | -0.001               | 3.5   |
| 1 | -3 | -4      |                     |               | 22.917          | 1.785     |                      |       |
| 0 | 3  | 3       |                     |               | 23.219          | 1.762     |                      |       |
| 1 | 1  | 6       | 23.853              | 1.716         | 23.855          | 1.716     | -0.002               | 19.7  |
| 1 | -2 | -6      |                     |               | 23.855          | 1.716     |                      |       |
| 2 | 2  | 0       | 24.031              | 1.704         | 24.041          | 1.703     | -0.010               | 5.1   |
| 0 | 2  | 6       |                     |               | 24.859          | 1.648     |                      |       |
| 0 | 3  | 4       |                     |               | 24.959          | 1.641     |                      |       |
| 2 | 2  | 2       |                     |               | 25.019          | 1.637     |                      |       |
| 2 | -4 | $^{-2}$ |                     |               | 25.019          | 1.637     |                      |       |
| 3 | 1  | 0       | 25.031              | 1.637         | 25.038          | 1.636     | -0.007               | 18.5  |
| 0 | 1  | 7       |                     |               | 25.040          | 1.636     |                      |       |
| 2 | 1  | 5       | 25.165              | 1.628         | 25.159          | 1.628     | 0.006                | 3.2   |
| 1 | -3 | -5      |                     |               | 25.159          | 1.628     |                      |       |
| 3 | 1  | 1       | 25.277              | 1.621         | 25.277          | 1.621     | 0.000                | 9.0   |
| 1 | -4 | -1      |                     |               | 25.277          | 1.621     |                      |       |
| 3 | 1  | 2       |                     |               | 25.981          | 1.578     |                      |       |
| 1 | -4 | -2      |                     |               | 25.981          | 1.578     |                      |       |
| 0 | 3  | 5       |                     |               | 27.042          | 1.517     |                      |       |
|   |    |         |                     |               |                 |           |                      |       |

Continued

TABLE III. Refined atomic coordinates, occupancy, and atomic anisotropic displacement parameters for Na<sub>3</sub>RhCl<sub>6</sub> at room temperature (303 K).

TABLE V. Continued

| h | k  | l  | 2θ <sub>obs</sub><br>(°) | d <sub>obs</sub><br>(Å) | $2\theta_{cal}$ (°) | d <sub>cal</sub><br>(Å) | $\Delta 2 \theta$ (°) | I <sub>obs</sub><br>(%) |
|---|----|----|--------------------------|-------------------------|---------------------|-------------------------|-----------------------|-------------------------|
| 3 | 1  | 3  | 27.116                   | 1.513                   | 27.115              | 1.513                   | 0.001                 | 2.5                     |
| 1 | -4 | -3 |                          |                         | 27.115              | 1.513                   |                       |                         |
| 0 | 0  | 8  | 27.543                   | 1.490                   | 27.540              | 1.490                   | 0.003                 | 1.8                     |
| 2 | 1  | 6  |                          |                         | 27.667              | 1.483                   |                       |                         |
| 1 | -3 | -6 |                          |                         | 27.667              | 1.483                   |                       |                         |
| 2 | 2  | 4  | 27.758                   | 1.478                   | 27.758              | 1.479                   | 0.000                 | 11.4                    |
| 2 | -4 | -4 |                          |                         | 27.758              | 1.479                   |                       |                         |
| 0 | 4  | 0  |                          |                         | 27.830              | 1.475                   |                       |                         |
| 0 | 2  | 7  | 27.836                   | 1.474                   | 27.831              | 1.475                   | 0.005                 | 1.8                     |
| 0 | 4  | 1  | 28.046                   | 1.464                   | 28.046              | 1.464                   | 0.000                 | 4.8                     |
| 0 | 1  | 8  |                          |                         | 28.423              | 1.445                   |                       |                         |
| 3 | 1  | 4  |                          |                         | 28.634              | 1.434                   |                       |                         |
| 1 | -4 | -4 |                          |                         | 28.634              | 1.434                   |                       |                         |
| 0 | 4  | 2  |                          |                         | 28.687              | 1.432                   |                       |                         |
| 0 | 3  | 6  | 29.399                   | 1.398                   | 29.402              | 1.398                   | -0.003                | 0.6                     |
| 0 | 4  | 3  |                          |                         | 29.726              | 1.383                   |                       |                         |



Figure 2. (Color online) Trigonal crystal structure of  $Na_3RhCl_6$ . (a) View along the crystallographic (110)-direction, (b) view along the crystallographic *c*-direction.

calculated weight percentage of the Na<sub>3</sub>RhCl<sub>6</sub> phase is wt% = 96.03(24), whereas that of the NaCl impurity could be determined to wt% = 3.97(24). The results of the final Rietveld refinement of the Na<sub>3</sub>RhCl<sub>6</sub> phase (lattice parameters, agreement factors, etc.) are summarized in Table II, whereas atomic positions, occupancies, and anisotropic displacement parameters of this phase are listed in Table III. Selected bond lengths

are listed in Table IV and the powder diffraction data are given in Table V. The crystal structure of  $Na_3RhCl_6$  is presented in Figure 2.

#### **IV. CONCLUSION**

Commercially available trisodium hexachlororhodate (Na<sub>3</sub>RhCl<sub>6</sub>) was dehydrated and characterized by laboratory X-ray powder diffraction. The crystal structure is isostructural to the Na<sub>3</sub>CrCl<sub>6</sub> structure type with space group  $P\overline{3}1c$ . Unit-cell parameters are a = 6.8116(1) Å, c = 11.9196(2) Å, V = 478.95(2) Å<sup>3</sup>, and Z = 2.

#### SUPPLEMENTARY MATERIAL

The supplementary material for this article can be found at https://doi.org/10.1017/S0885715618000155

#### ACKNOWLEDGEMENT

The author acknowledges Christine Stefani, Max Planck Institute for Solid State Research (Stuttgart, Germany) for carrying out the powder X-ray diffraction experiments.

- Beran, M. and Meyer, G. (2011). "Crystal structure of Na<sub>3</sub>MoCl<sub>6</sub>," Crystals 1, 99–103.
- Böcker, M., Gerlitzki, N., and Meyer, G. (2001). "Crystal structure of trisodium homium(III) hexachloride, Na<sub>3</sub>HoCl<sub>6</sub>," Z. Kristallogr. 216, 19.
- Cheary, R. W., Coelho, A. A., and Cline, J. P. (2004). "Fundamental parameters line profile fitting in laboratory diffractometers," J. Res. Natl. Inst. Stand. Technol. 109, 1–25.
- Coelho, A. A. (2003). "Indexing of powder diffraction patterns by iterative use of singular value decomposition," J. Appl. Crystallogr. 36, 86–95.
- de Wolff, P. M. (1968). "A simplified criterion for the reliability of a powder pattern indexing," J. Appl. Crystallogr. 1, 108–113.
- Friedrich, G., Fink, H., and Seifert, H. J. (1987). "Über Alkali-hexachlorochromate(III): Na<sub>3</sub>CrCl<sub>6</sub>," Z. Anorg. Allg. Chem. 548, 141–150.
- Hinz, D., Gloger, T., and Meyer, G. (2000). "Ternäre Halogenide vom Typ A<sub>3</sub>MX<sub>6</sub>. Kristallstrukturen von Na<sub>3</sub>TiCl<sub>6</sub> und K<sub>3</sub>TiCl<sub>6</sub>," Z. Anorg. Allg. Chem. 626, 822–824.
- Krylov, V. V., Danilov, M. P., Stepareva, N. N., and Kotlyar, Yu. A. (1983). "Phase interactions in the NaCl-RhCl<sub>3</sub> system," Russ. J. Inorg. Chem. 28, 1230–1232.
- Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). "Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction," Mater. Res. Bull. 23, 447–452.
- Liao, W., and Dronskowski, R. (2004). "Trisodium yttrium(III) hexachloride," Acta Crystallogr. E60, i72-i73.
- Meyer, G. (1984). "Na<sub>3</sub>gdcl<sub>6</sub>: Einkristalle der Tieftemperaturform bei der metallothermischen Reduktion von GdCl<sub>3</sub> mit Na," Z. Anorg. Allg. Chem. 517, 191–197.
- Meyer, G., Ax, P., Schleid, T., and Irmler, M. (1987). The chlorides Na3MCl6 (M = Eu-Lu, Y, Sc): synthesis, crystal structures, and thermal behaviour," Z. Anorg. Allg. Chem. 554, 25–33.
- Rietveld, H. M. (1969). "A profile refinement method for nuclear and magnetic structures," J. Appl. Crystallogr. 2, 65–71.
- Schurz, C. M., Meyer, G., and Schleid, T. (2011). "Na<sub>3</sub>dycl<sub>6</sub>," Acta Crystallogr. E67, i33.
- Yamada, K., Kumano, K., and Okuda, T. (2005). "Conduction path of the sodium ion in Na3InCl6 studied by X-ray diffraction and <sup>23</sup>Na and <sup>115</sup>In NMR," Solid State Ion. 176, 823–829.