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The sight-run-sight case involves a series of two or more sights in which each sight is ‘run on’
to the time of the last sight. There are several known techniques to account for the run, which
is for convenience assumed to be at a constant course. It is argued that only the GHA-Dec

updating technique (GD-UT) will give a correct position solution, whereas the pre-electronic
Intercept Method (IM)-based technique and its modern least-squares variant (LSQ) and
the Altitude updating technique (A-UT), are proxy techniques that may yield significant

deviations in position solution. GD-UT can be used in combination with a double-sight
solution method for two sights and with LSQ for two or more sights. IM, LSQ and a
geometric or algebraic double sight solution method applied to simultaneous double sights

give identical results but the simultaneous sights case is generally an abstraction and strictly
not applicable on a moving vessel.

KEY WORD

1. Astronomical running fixes.

1. POSITION SOLUTIONS IN GENERAL. A fix (observed position)
with two sights is determined by the intersection of their position circles. The most
common methods to determine the relevant intersection point are the Intercept
Method (IM), its modern variant the least-squares method (LSQ) and the double-
sight or two-body method. The latter method is either geometric or algebraic. In
this article we will use the algebraic or K-Z method1. When applied to two or more
‘simultaneous’ sights all of the above methods obtain identical results2 in terms
of the intersection point for each combination or pair of two sights. In terms of
the resulting ‘cocked hat’ n-polygon (no3), with simultaneous sights all methods
produce identical vertex coordinates. Of the above methods, only LSQ computes a
fix for the n-polygon and much of the subsequent discussion in this paper deals
with the interpretation of the triangulation implied by the cocked hat n-polygon.

Critical to the dependability of position solutions in the sight-run-sight case, which
involves a series of two or more sights, is the manner in which the position circle of
an earlier sight is transferred for the run to the time of the last sight in the series. The
sight-run-sight problem is often simply sidestepped by assuming that all sights are
simultaneous3. This is generally an inadmissible abstraction when a moving vessel
is involved, even if the run is short.
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There is actually only one correct transfer technique, which is the GHAyDec
updating technique (GD-UT) but several other techniques have been used. As will
be argued in Sections 3 and 4, the latter transfer techniques are at best only ‘proxy’
methods, which may cause significant deviations in position solution, depending
on the interaction of such factors as azimuth, zenith distance (Zd), magnitude and
direction of the run displacement. The dependability of position solutions in the
sight-run-sight case has in fact two main aspects :

’ Application of the correct method for transferring the position circle of the
earlier sight for the run data

’ The error margin of the fix and the error sources

This part of the paper addresses the first aspect. The error issue is discussed in Part 2
which will appear in the May edition of The Journal.

2. THE GHA-DEC UPDATING TECHNIQUE (GD-UT). With GD-
UT, the geographic position (GP) of the earlier sight is displaced for the distance
(d) and true course bearing (a) of the run, i.e. by ‘updating’ the GHA and Dec of
the earlier sight for the run’s displacement (see Table 1). In all examples it is for
simplicity assumed that the run between sights is at a constant bearing (a). Of
course, this assumption needs to and can be relaxed in practical applications.

The GD-UT method was of course known in the pre-electronic era but could
effectively be applied only if the radii (zenith distances) of the intersecting position
circles were short enough to be drawn on the chart, as most pre-electronic celestial
navigation methods had to rely heavily on chart plotting5.

When applied to two sights or to the cocked hat vertex combinations of three or
more sights, GD-UT can be used with two methods, with K-Z (i.e. GD-UT+K-Z) or
with LSQ (i.e. LSQ+GD-UT). Both methods will give identical vertex coordinates.
As already explained, with either method the GHA and Dec of earlier sights, Sun and
Moon in the example of Figure 16, are updated for the run with GD-UT to the time of
the last sight. With three or more sights, only LSQ+GD-UT will obtain a fix.

Table 1. GD-UT illustrated with actual data4.

d=31k.5602; a=79x.5949; Dec=19x.8730; GHA=15x.2600. The GP is denoted X and the transferred GP

as X*; all transferred variables are indicated with *. From DXPX* (—PXX*=a ; —XPX*=b) :

Cosa =[SinDec*-SinDecCos(d/60)]/CosDecSin(d/60)

SinDec* =CosaCosDecSin(d/60)+SinDecCos(d/60)=0.3415

Dec* =19x.9672 (Cosine Formula)

Dec* =Dec+(d/60)Cosa=19.9680 (rhumbline equation)

Cosb =[Cos(d/60)-SinDecSinDec*]/CosDecCosDec*=0.99995385

b =0.5504, or with Sine Rule:

Sinb =(Sin(d/60)Sina/CosDec*=0.0096

b =0.5504

GHA* =GHA-b=14.7096

GHA* =GHA – (d/60)Sina/Cos[1/2(Dec+Dec*)]=14.7097 (with rhumbline equation)

The differences in Dec* and GHA* obtained with either the rhumbline formulas or the fundamental

formula (Cosine Formula) are negligible and either method may be used.
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3. SIGHT-RUN-SIGHT POSITION SOLUTIONS WITH IM/
LSQ. With IM, the position line (PL) of an earlier sight in a series of two or more
sights is transferred for the run as shown in Figure 1 for PLMoon and PLSun. On
the chart this was done with the parallel ruler7, so that the transferred PLs
and intercepts become PL*Moon, PL*Sun, with intercepts p*Moon and p*Sun. The
PL of the last sight (PLVega) and the two transferred PL*s form the cocked hat
triangle AaBaCa. The assumptions on which the IM rests8, define the quadrangle
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Figure 1. Position solutions from multiple sights with different methods. (Yallop-Hohenkerk

Sun-run-Moon-run-Vega case)
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DRMoon-JM -J*M -DRVega for the Moon sight as a plane parallelogram; similarly
with DRSun -JS -J*S -DRVega for the Sun sight.

LSQ replicates the ‘parallel-ruler ’ method9. The first iteration with LSQ, using
an initial assumed (DR) position defines the cocked hat triangle that an electronic
version of IM would obtain, e.g. AaBaCa in Figure 1. Thus, the cocked hat obtainable
with traditional IM is generally identical to the cocked hat triangle obtained with
LSQ. Additional iterations define the point (fix F2) inside the cocked hat where the
PLs would intersect if there were no observation errors so that intercepts like p*Sun,
p*Moon, pVega, respectively 1k.25, 5k.47 and x7k.49, would only reflect corrections for
the (incorrect) assumed (DR) position. The cocked hat therefore reflects observation
errors only and the intercepts from F2 may be called ‘error intercepts ’ (e), which
are respectively x0k.31, x0k.23 and x0k.25. Similar error intercepts are of course
computed with LSQ+GD-UT. For the cocked hat triangle ABC in Figure 1 they
are respectively x7k.6, x5k.3 and x5k.7.

The fundamental assumption underlying the IM/LSQ transfer technique and also
the Altitude-updating technique (A-UT; see Section 4), is that the displacement of the
earlier position circle’s GP according to d and a for all practical purposes translates
in a displacement of the same magnitude and direction at the observer position on the
position circle’s circumference, like at JM, JS. The assumption that DRMoon-JM -J*M -
DRVega forms a plane parallelogram is in fact based on the more fundamental
assumption that spherical quadrangles like XX*J*J and XX*Z*Z (see Figure 2) can
be treated as plane parallelograms too. The great circles through respectively X and Z
and X* and Z* are what may be called ‘parallel ’ great circles in spherical trigon-
ometry: they are not parallel10. Treating XX*Z*Z as a parallelogram has therefore no
general validity and it is in fact the chief cause of the deviations mentioned earlier.

This can be shown in various ways. One way is to compare actual position
solutions obtained with the various techniques, as we will do later. It can also be
shown that LSQ does not obtain intermediate results that are mathematically
equivalent to those obtained with GD-UT+K-Z. For instance, the Zn (true cal-
culated azimuth) of the sight transferred with LSQ defines GHA and Dec values that
differ from the GHA and Dec values updated with GD-UT+K-Z. A third way is
using a ‘‘due North’’ model where a is 360x (due North) and the observer’s position Z
is predetermined for a given azimuth. If the GP is at X, the displaced GP at X*
and the displaced observer position at Z*, XX* may significantly differ from ZZ*,
depending on the combination of azimuth, Ho and run distance. It also follows
indirectly from this model that a at X is unequal to ak at Z. If the parallel-ruler
analogy would hold, this should not happen, i.e. XX*BZZ* and aBak.

A final point is, although the transfer concept underlying IM/LSQ and A-UT is
identical, they may produce significantly different position solutions and intermediate
results, which should not happen if they are based on a common theory. The differ-
ence between fix F1 obtained with LSQ+GD-UT and fix F2 with IM/LSQ indicates
the deviation introduced with the latter methods. In the case of Figure 1 the deviation
in absolute terms is :

difference in d’Lat=1k.9
difference in Dep=7k.8

Similar deviations in position solution can be demonstrated by using two sights
only. This is shown for a number of cases analyzed in Table 2. In cases (1) and (3) the
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deviations are very significant, in cases (2), (4) and (5) less significant. The deviations in
all cases are caused by the fact that LSQ depends for its solution model on the ‘parallel-
ruler’ analogy to represent the run data and therefore gives unreliable results.

4. GD-UT VERSUS A-UT. The A-UT method was already mentioned and
characterized as a proxy method. The rationale of A-UT is illustrated with the
sketch in Figure 2. The position estimated from the DR would be in J, transferred
as a rhumbline to J*. The actual position is in Z*, the intersection of PC*1 (trans-
ferred earlier sight’s PC) and PC2. In plane geometry the points J* and Z* would lie
on the transferred circle. In spherical trigonometry this ‘parallel-ruler ’ analogy does
not hold, i.e. the points J* and Z* would lie on the transferred position circle
but the distances JJ* and ZZ* and the bearings ak at J and aa at Z would differ
from respectively d and a.

d

Z*Z

X*
X

P

PC2

PC1

MD

δ

MD = meridian difference
α = true course bearing

δ = d'Long = α(d/60)Sin /Cos[0.5(LatJ+LatJ*)]
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J J*
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α
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Figure 2. A-UT and GD-UT in the sight-run-sight case.
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Table 2. Deviations in position solution with LSQ+GD-UT and LSQ.

Sun-run-Moon

(Y-H)

(1)

Moon-run-Vega

(Y-H)

(2)

Sun-run-Vega

(Y-H)

(3)

Moon-run-Sun

(ANM)

(4)

Sun-run-Sun

(G.Keys)

(5)

Sun Moon Moon Vega Sun Vega Moon Sun Sun Sun

GHA 82.583 358.776 358.776 287.771 82.583 287.771 7.995 309.178 15.260 89.500

Dec 23.321 3.371 3.371 38.767 23.321 38.767 x22.040 5.205 19.873 19.832

Ho 30.151 57.677 57.677 21.372 30.151 21.372 17.412 19.945 62.455 22.972

GHA* 82.698 — 359.052 — 82.998 — 7.453 — 14.710 —

Dec* 23.426 — 3.647 — 23.702 — x21.857 — 19.968 —

d 8k.9 23k.5 32k.3 32k.1 31k.6
a 315x 315x 315x 70x 79x.6

Initial 32x.0068 N 32x.1120 N 32x.0068 N 50x.1667 N 47x.3300 N

DR 14x.6168 W 14x.7410 W 14x.6168 W 14x.8333 W 13x.1170 W

LSQ+GD-UT:

Fix 32.0269/x14.6995 32.2387/x15.1280 31.9252/x14.8854 50.5117/x13.8323 47.4402/x12.2474

Zn 280.310 149.189 148.880 56.761 280.709 56.743 173.796 106.776 185.009 274.771

LSQ:

Fix 31.9789/x14.7940 32.2469/x15.1344 32.2334/x15.1239 50.4930/x13.8412 47.4494/x12.2462

Zn 280.249 148.991 148.960 56.761 280.259 56.7603 173.556 106.762 184.578 274.768

Dev d’Lat 2k.9 d’Lat 0k.5 d’Lat 18k.5 d’Lat 1k.1 d’Lat 0k.6
Dep 4k.8 Dep 0k.3 Dep 12k.1 Dep 0k.3 Dep 0k.1

Notes to Table 2:

– The data for the cases marked ‘‘Y-H’’ are taken from Yallop Hohenkerk, op.cit. The ANM case data are from the ANM, op. cit., p 191–195; the G. Keys’ case is

from op.cit., p 140.

– The initial DR Position is given for the first sight in all cases.

– The d’Lat and Dep deviations are the absolute deviation in the fixes
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GD-UT as explained finds the locus of the transferred position circle by moving
X (=GP) to X* for the magnitude and direction of the displacement (d and a) and by
projecting the circle from X* with its given radius (Zd=90x-Ho=XZ=X*Z*). With
A-UT this logic is for some reason sidestepped. The point J* is seen as the intersection
of the transferred position circle (PC*1) and a concentric circle with radius XJ* drawn
from X. The reasoning appears to be that if J* and Z* are close enough, the distances
XJ* and XZ* would be about the same, so that J* and Z* would lie approximately on
a concentric circle with centre X and radius XJ*. As mentioned, A-UT also subscribes
to the parallel-ruler analogy, so that it is assumed that JJ*=ZZ*=d and ak=aa=a.

There are to my knowledge two versions of A-UT in the literature. One version is
A-UT as applied by G. Keys11. In this version, computed first is MD, with Dec1,
Ho,1 and LatJ (see Fig 2). The radius XJ* (=90x-H*o,1) is computed next, from
MDtd, Dec1 and LatJ*

12
. In applying a double-sight solution method, H*o,1 is then

substituted for Ho,1.
G. G Bennett uses another version of A-UT13. Assuming that the approximate

true azimuth at J is known from observation or from a star finder, Bennett’s ‘short-
cut’ formula for finding the surrogate altitude (H*o,1=90x - XJ*) is H*o,1=Ho,1

+(d/60)Cos(Zn-a). For short run-distances this formula yields practically the same
result as the cosine formula applied to the spherical triangle XJJ* (see Figure 2)14. The
technique may have been used in Surveyors’ circles. It is for example not found in
the Admiralty Navigation Manual or in Bowditch15.

Taking as observed azimuth (Zn) 55x as implied by Bennett’s data and analyzing
the data with the A-UT versions and GD-UT gives the results in Table 3.

The difference in position solution obtained with the two A-UT versions compared
to GD-UT is negligible in the case of Bennett’s version and 5k.0 in d’Lat and 1k.1 in
Dep in respect of Keys’ version. The A-UT methods also do not obtain the same
position solutions and in this example differ in d’Lat by 5k.0 and in Dep by 1k.2. The
A-UT versions are evidently not based on an identical interpretation of the properties
of the triangle PXJ* in Figure 2.

Keys’ version requires an assumed initial (DR) position. Bennett’s A-UT version is
seemingly free of assumed position but the catch is that MD, LatJ and LongJ (or
LatDR and LongDR, i.e. one’s initial DR position) are automatically determined once
Zn is established. Only GD-UT is really free from the assumed-position odium.

Bennett subsequently revised the A-UT version mentioned above, apparently with
the aim to account for long run distances and to allay criticism that the run being
a rhumbline distance is being equated with a great-circle distance16. Again, the
refinements with the revised version do not change the A-UT rationale, nor do
they significantly affect the position solution from one A-UT version to another.
Nevertheless, the analysis of Bennett’s numerical example of the long run distance
shows that the position solution with A-UT is significantly different from the position
solution obtained with GD-UT. The data of this case are :

LatDR–LongDR at 1st sight: 54x N/46x W; Course: 205x ; Speed: 20 kt

Time difference between sights: 5.1100 hrs

Body 1 Body 2

GHA1 39.2933 GHA2 80.6400

Dec1 26.7367 Dec2 51.4900

Ho,1 62.4083 Ho,2 69.4117
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The position solution obtained with A-UT (Bennett’s Method A) is : Latfix 52.3733 N;
Longfix 46.9750 W. The application of GD-UT+K-Z to this case proceeds as
follows:

Table 3. Comparison of A-UT and GD-UT results with Bennett’s data.

A-UT +K-Z

method G. G Bennett

A-UT+K-Z

method G.Keys GD-UT+K-Z

Sun Moon

GHA 140.3100 263.8083

Dec 22.7333 x2.5967

Ho 10.2850 26.3333

LatFix 29.7187 S 29.6349 S 29.7180 S

LongFix 157.1522 E 157.1743 E 157.1523 E

Difference (1) negligible d’Lat 5k.0 Dep 1k.1
Difference (2) d’Lat 5k.0 Dep 1k.2

Sun Moon Sun Moon Sun Moon

Z 56.2672 77.0368 56.2669 77.0903 56.2585 77.0372

Zn 56.2672 282.9632 56.2669 282.9097 56.2585 282.9628

LHA 297.4622 60.9605 297.4843 60.9827 297.5037 60.9607

time diff (hr)=0.3672; d=2k.5706; a=243x

Zn 55.00 MD 60.9125 d’Lat x1k.17
Zn-a x188.00 CosZ 0.5736 Dep x2k.29

dCos(Zn-a) x2k.5455 Z 55.0000 DecSun 22.7333

H*o,1 10.2426 SinH*o,1 0.1789 Dec*Sun 22.7139

H*o,1 10.3051 GHASun 140.3100

LatDR1 x31.6874 GHA*Sun 140.3513

LongDR1 158.7775

LatDR2 x31.7068

LongDR2 158.7326

dCosa x1k.17
d’LongDR x2k.69

Note to Table 3: (1) Abs. difference with GD-UT results ; (2) Abs. difference between A-UT (Bennett)

and A-UT (Keys)

time diff distance course d’Lat d’Long Initial Dec New Dec Initial GHA New GHA

Body 1 5.1100 102k.2000 205 x1.5437 x1.8007 26.7367 25.1929 39.2933 40.0940

Body 1 Body 2

GHA*1 40.0940 GHA2 80.6400

Dec*1 25.1929 Dec2 51.4900

Ho,1 62.4083 Ho,2 69.4117

Lat1(selected) 52.2829

Lat2 32.2494

Long1(selected) 47.0046 W

Long2 70.6325 W

CosZ x0.9720 0.1951

Z 166.4044 78.7467

Zn 166.4044 281.2533

LHA 353.0894 33.6354

LHA>180 LHA<180

Zn=Z Zn=360-Z
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When comparing the respective position solutions it is seen that the (absolute)
difference in Latfix between A-UT and GD-UT is 5k.4, in Longfix1k.8. This is another
example of the fact that A-UT (Bennett’s methods in this case) may give comparable
results in some instances, but not in others. In this particular case, the run
distance is 102k.2, while in the case analyzed in Table 2, the run distance is only 2k.6.
In this latter instance, the position solution with A-UT and GD-UT is virtually
the same. It therefore appears that run distance can be a contributory factor in
causing a difference in position solution. Further noted is, Bennett’s revised A-UT
versions simply require an initial assumed (DR) position, just like Keys’ A-UT
method. Also, azimuth (Zn) used in the formulas is calculated and no longer obtained
from an approximate bearing or a star finder as with Bennett’s 1979 ‘‘standard
method’’.

Table 4 compares the results from four double sight cases analyzed with A-UT and
GD-UT. As may be seen, a large difference in position solution between A-UT and
GD-UT as in case (1) tends to correspond to a large difference between XZ* and XJ*
(Figure 2). In case (1) the difference in position is d’Lat 18k.5/Dep 12k.1 and the
difference between XZ* and XJ* is 56k.7. In the other three cases, relatively small
differences in |XZ*-XJ*| correspond to small differences in position solution. The
differences in position solution are in general too significant to be ignored and no case
can be made for the general validity of A-UT.

5. CONCLUSIONS. The various methods that may be used for finding the
relevant point of intersection of two position circles, the Intercept Method (IM),
LSQ and the double sight solution methods, all give identical results in the simul-
taneous sights’ case. This also applies to the cocked hat n-polygons (no3) that
are obtained with these methods when more than two sights are involved: the
coordinates obtained for the vertices of such polygons will be identical.

In the sight-run-sight case, however, the Lat and Long coordinates of a fix
obtained with two sights or of the polygon’s vertices in the case of three or more
sights can be significantly influenced by the methods employed to account for the
run between sights. It is argued that the correct method (GHA-Dec Updating
Technique; GD-UT) for transferring the position circle of an earlier sight is to
transfer the coordinates of its GP (GHA and Dec) for the run data, i.e. distance
(d) and course (a). The effect is that an observer’s position on this position circle
will not be transferred according to the distance d and course a as is implied by
other methods used to account for the run between sights, such as the transfer
method with IM/LSQ and the Altitude Updating Technique (A-UT). In all sight-
run-sight situations the correct vertex coordinates are found by updating the GHA
and Dec of each sight for the run and to the time when the last sight in the series
was taken. The recommended approach in the multiple sight-run-sight situation is
therefore to first adjust the GHA and Dec of earlier sights for the run and then
apply LSQ to the adjusted data (GHA*, Dec* and Ho) by bypassing LSQ’s run-
subroutine.

Part 2 of this paper which will follow in the next issue will examine the errors and
error margins as another aspect of position solution dependability.
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Table 4. Comparison of results obtained with A-UT and GD-UT for four double sight cases.

(1) (2) (3) (4)

Sun Vega Sun Sun Moon Sun Moon Vega

GHA 82.5829 287.7705 15.2600 89.5000 7.9950 309.1783 358.7759 287.7705

Dec 23.3211 38.7668 19.8730 19.8320 x22.0400 5.2050 3.3713 38.7668

Ho 30.1507 21.3722 62.4550 22.9720 17.4117 19.9450 57.6765 21.3722

d 32k.3 31k.6 32k.1 18k.7
a 315x 79x.6 70x 315x

Initial DR 32.0068 47.3200 50.1667 32.1120

(assumed) x14.6168 x13.1170 x14.8333 14.7410

A-UT A-UT A-UT A-UT A-UT

(Keys) (Bennett) (Keys) (Bennett) (Bennett)

H*o 30.5918 30.5946 62.3130 17.2914 57.2983

XJ* 59.4082 59.4054 27.6870 72.7086 32.7017

LatFix 32.2329 32.2363 47.4513 50.4842 32.2467

LongFix x15.1235 x15.1262 x12.2460 x13.8454 x15.1342

Zn (approx.) 280x.5 173x 149x

Zn-a x34x.5 103x x166x

dCos(Zn-a) 26k.6335 x7k.2172 x22k.6920

GD-UT GD-UT GD-UT GD-UT

GHA* 82.9982 14.7096 7.4533 359.0520

Dec* 23.7020 19.9672 x21.8571 3.6469

v 68.1128 2.4623 6.3791 16.0760

b 0.4153 0.5503 0.5417 0.2761

XZ* 60.3539 27.6758 72.7351 32.6922

LatFix 31.9252 47.4402 50.5117 32.2387

LongFix x14.8854 x12.2474 x13.8323 x15.1280

|XZ* – XJ*| 56k.7 0k.7 1k.6 0k.6
Diff d’Lat 18k.5 18k.7 0k.7 1k.7 0k.5
Diff Dep 12k.1 12k.2 0k.1 0k.5 0k.3

Data source: (1) – Yallop-Hohenkerk; (2) G.Keys; (3) ANM; (4) Yallop-Hohenkerk
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1 The geometric solution is elegant if it is based on what may be called the ‘‘cosine method’’, using

Cos(GHA1 – GHA2) as argument, which is equal to Cos(GHA2 – GHA1). An example is the derivation

by Gerry Keys – ‘‘Practical Navigation by Calculator’’, 1982, p 135–138. If the solution method uses

Sin(GHA1 – GHA2) as argument it requires special sub-rules, switching from a rectangular to a polar

function for certain but not all equations, not executing certain divisions and so on. An example of the

latter geometric solution is found in G. G. Bennett, ‘‘General Conventions and Solutions – Their Use in

Celestial Navigation’’, Journal of the Inst. of Nav. (USA), Vol 26–4, p 275–280. For the algebraic or K-Z

method see K. H. Zevering ‘‘The K-Z Position Solution for the Double Sight’’ – European Journal of

Navigation, Vol 1–3 p 43–46. Corrections for some typographic errors appeared in Vol 1–4. The co-

ordinates of the intersections of two position circles, if real solutions exist, are found algebraically by

solving Lat and Long from: Cos(GHA1tLong)=SinAlt1/CosLatCosDec1 – TanDec1TanLat (1) and

Cos(GHA2tLong)=SinAlt2/CosLatCosDec2 – TanDec2TanLat (2)
2 By ‘‘ identical’’ is strictly meant that in using either of these methods in the simultaneous sights situation

rounding will generally not affect the position coordinate values (in degrees) at the 3rd decimal place and

only marginally so at the 4th decimal place. Only rather extreme assumed (DR) positions in the case of the

IM may produce significant differences in position solution compared to the double-sight method, which

is free from any assumptions regarding initial (DR) position.
3 An example is M. Blewitt’s widely read ‘‘Celestial Navigation for Yachtsmen’’. It simply sidesteps the

fact that all of the author’s examples show differences between the timing of successive sights, which are

simply ignored. To the contrary, in the (British) Admiralty Navigation Manual (ANM), the title

‘‘Simultaneous Star and Planet Sights’’ (op. cit., ed. 1937, Vol II, p 201) appears as chapter heading

but even the example in this chapter is converted into a sight-run-sight case. There are no examples in the

ANM of truly simultaneous sights.
4 Data derived from the Sun-run-Sun case in Gerry Keys. op. cit., p 140
5 See for example the ANM, Vol III, p 43: ‘‘When two observations … are taken, two position circles may

be drawn, and the observer’s position is at one of their two points of intersection ….. If the observer is in

a ship and there is a run between sights, the first position circle must be transferred for the run. This

can be done by transferring the geographical position and then drawing the circle’’ (ANM Vol III, p 43).

This statement is made in connection with a large altitude case because only in this case could the method

be implemented on the chart.
6 The data are from B. D Yallop & C. Y. Hohenkerk – ‘‘Compact Data for Navigation and Astronomy

(1986–1990)’’, p xxiii
7 The coordinates of all points J, DR, and the vertices of triangle A"B"C" (see Figure 1) can be found using

rhumbline equations, in the past calculated with the Traverse Table. It is easy to devise an electronic

‘‘vertex program’’ that will calculate the coordinates of all these points. Needless to say the entire IM is

programmable.
8 The assumptions may be found in the ANM, op. cit. Vol II, p 135, i.e constant azimuth in the neigh-

bourhood of ‘‘J ’’ ; an intercept coincides with the zenith distance’s line of bearing; the position circle

may be represented as a straight line.
9 An expose of the method is found in B. D Yallop & C. Y. Hohenkerk – ‘‘Compact Data for Navigation

and Astronomy (1986–1990)’’. G. G. Bennett, op. cit., p 279 refers to his use of a ‘‘ least-squares sub-

routine’’, which includes a ‘‘sub-routine’’ for running on earlier sights. Yallop-Hohenkerk may not be

the original authors of LSQ. LSQ has also been programmed as the foremost position solution algorithm

in the package ‘‘Celestnav’’ (visit www.mobilegeographic.com).
10 ‘Parallel ’ great circles have two common points of intersection 180x apart. Meridians are a special

‘ family’ of parallel great circles whose intersection points are P (North Pole) and Pk (South Pole). The

equator intersects great circles belonging to a family other than the meridian family at varying angles (e)

that are all smaller than 90x. The translation of X (GP of an earlier sight) along direction a and distance d

is to a point X* lying on a gr. circle through X*Z* that is a parallel great circle to the one through XZ.

The spherical quadrangle XX*Z*Z begins to approach a parallelogram in terms of plane geometry only

in large-altitude cases, so that the analysis of the large-altitude multiple sights case with IM/LSQ pro-

duces insignificant deviations in position solution compared to the analysis with LSQ+GD-UT.
11 op. cit., p 139–140
12 It is immaterial whether the calculations use LatDRyLongDR or LatEPyLongEP, where

LatEP=LatDR+p1CosZn1 and LongEP=LongDR+p1SinZn1/Cos[1/2(LatDR+LatEP)].
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13 op. cit., p 279–280
14 Bennett calls his technique ‘‘a standard method employed in sight reduction’’ (ibid. p 279). The same

result should in fact be obtainable from triangle XJJ* by applying the fundamental or cosine

formula: Cos(Zn-a)=[Cos XJ* – Cos(d/60)CosJX]/Sin(d/60)SinJX=[SinH*o,1 – Cos(d/60)SinHo,1]/

Sin(d/60)CosHo,1, so that SinH*o,1=Cos(Zn-a)Sin(d/60)CosHo,1+Cos(d/60)Sin Ho,1. Bennett’s ‘stan-

dard method’ and the cosine formula-derived one tend to give significantly different results when the run

distance becomes substantial. Regardless of these formulas, however, the displacement at J is assumed to

be the same in magnitude and direction as the displacement at X, or if not the same then at least

sufficiently close in magnitude and direction. This assumption has no general validity.
15 N. Bowditch – The American Practical Navigator, 1977
16 G. G. Bennett – The Two Body Fix Revisited, Navigators Newsletter (The Foundation for the

Promotion of the Art of Navigation), Issue 44, 1994. The formulas for one revised method (‘‘Method

A’’) corrected here for an error in Bennett’s article are equivalent to:

SinH*o,1=SinHoCos(d/60)+CosHoSin(d/60)Cos(Zn-a-CA)..(i)

CA=x1/2(d/60)SinTanMeanLat.. (ii)

where CA is a ‘‘Conversion Angle’’ to adjust triangle PJJ* (see Figure 2) to a spherical triangle. Zn is

determined (with the quadrantal formula) from Dec1, GHA1 and initial LatDRyLongDR. The resulting

surrogate altitude H*o,1 is consistent with H*o,1 found when treating triangles PJJ* and XJJ* as spherical

triangles with the cosine formula:

Cos(dk/ 60)=CosdCosLatJCosLatJ*+SinLatJSinLatJ*..(a)

Cosa*=[SinLatJ* – SinLatJCos(dk/60)]/[CosLatJSin(dk/60)]..(b)

SinH*o,1=SinHoCos(dk/60)+CosHoSin(dk/60)Cos(Zn – a*)..(c),

where for a* in (c) is substituted either a* from (b) or 360 – a* depending on compass bearing quadrant.
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